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LINEAR FUNCTIONAL EQUATIONS AND INTERPOLATION SERIES

PriLip Davis

1. Introduction. The question of obtaining complete sets of solutions for a
given linear partial differential equation is of the greatest interest from the
theoretical as well as from the computational point of view. For constructing
such sets, several methods of considerable generality have been proposed.
Thus, for instance, Bergman [ 3] has introduced an integral operator which pro-
vides a means for the generation of complete sets when the differential equation
is of the second or the fourth order. Extensions may be made to higher orders.
By means of Bergman’s operator, the space of analytic functigns of a single
complex variable is mapped upon the space of solutions of the given differential
equation, and the process yields a generalization of the operator Re in the case

of harmonic functions.

Complete sets of solutions may also be found by a method which is analo-
gous to Runge’s method of approximation in the theory of analytic functions. A
description of this may be found in [6, p.282]. This scheme has the practical
drawback of requiring a knowledge of a fundamental singularity for the differ-
ential equation, a function which is known explicitly for but few differential

equations.

In the present paper, we adopt a different point of view and study possible
representations of solutions of linear functional equations of a certain class,
and the generation of complete sets of such solutions by means of generalized

interpolation series, By this is meant a biorthogonal series of ‘the form

(1) f~ 2 Llf),; Lm(b,)=8,, .

n=o0

Here { L,,} is a sequence of linear functionals., When each L, is a point or a
linear differential operator, then the series (1) reduces to a classical inter-
polation series. Our method is, essentially, to reduce the problem of the solution
of the linear functional equation to a problem involving a denumerable infinity
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of interpolatory conditions. An interpolatory procedure then yields an operator
which may be cast into integral form, and which maps an appropriate space of

functions onto a subspace of solutions.

In order to carry out this method with ease, it is convenient to deal with
Hilbert spaces H of functions, H being supposed to possess a reproducing
kernel [cf. 5, 1], to restrict our basic functional equations to those possessing
certain boundedness properties with respect to H, and to consider only solu-
tions which lie in /. These assumptions will cause no difficulty in many in-
stances where the existence and regularity of solutions may be known before-
hand from independent considerations. Our work, therefore, falls mainly within

the region of representation theory.

It is our principal aim to construct interpolation series which converge in
preassigned regions to solutions of linear functional equations, and, by way of
corollary, to construct complete systems of solutions. This is carried out in
€§2-4. In $¢5 and 6 we discuss some related topics, while in the final sec-
tions we take up the problem of systems of equations. The work is applicable
to linear differential equations, both ordinary and partial, in an arbitrary number

of variables, or of systems of such equations.

2. Reduction to an interpolatory problem. For the sake of definiteness,
but realizing that restrictions other than the ones about to be set forth may
prove useful in other circumstances, we shall deal with n complex variables

zj=x].+iyj (j=1""’”)’
and shall designate by B a fixed 2n-dimensional region in the space Z=(z,---,
z,) of the n complex variables. We shall designate by L?(B) the class of
functions f which are single-valued analytic functions of z, are regular in B,

and are such that

(2) Hf”2= _/1; lflz do < «; do=dxy <=« dx, dy; ++- dy,.

It may sometimes prove expedient to introduce a weight function in (2). By L,
we shall designate a fixed linear operator defined on L?(B) and with the
property that L(f), f € L?(B), is regular analytic in B. Additional conditions
on L will be required below. We shall be concerned with representations of

solutions of class L?(B) of the functional equation

(3) L(f)=o0.
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A principal application will be the case in which L is a partial differential

operator of the kth order:

okf
W L(H= X o —— e,
i . . 15025 s ‘n 11 19 in
L1+12 +'-°+Ln=k aZl 822 ---azn

where the + ... in (4) indicates the presence of partial derivatives of order
< ko I now all the coefficients in (4) are regular in B, then so also will L (f)
be regular in B. It is to be remarked that the case n =1 which leads in (4) to
an ordinary differential equation is not excluded.

et {L,} (n=0,1...) be a sequence of linear functionals each of which
is defined over the set R of functions which are regular in B and which possess

the following two additional properties:

(a) The set {L,} is complete® for R; that is, if fER and L,(f)=0 (n =0,
1,.+.), then f= 0.
(b) Fach linear functional En =L,(L) is bounded over L%(B); that is,

for each %, there exists a positive constant My such that
(5) LR < My (1 £ 1]
for all f€ L2(B).
Tn connection with (b), let us observe that the composite operator
La(f) = Ly(L(f))
is a linear functional from L?(8) onto the complex numbers.

Example. let L be the differential operator (4) with coefficients regular

in B. Set

my +m‘2 +oes +mn

(6) Li(f) = ! ,

m m m
9z, Yoz 2 eea gz -
1 2 n j Tz

where k= k(my, mg,+++,my,) refers to a fixed indexing of the n-tuples of non-

*
29°°

interior to B. It is clear that condition (a) holds for the selection (6). Let us

negative integers my, my,+++,mp, and where the point Z* = (z;“, z .,z:) is

1 Banach [2, p- 42] calls such sets total.
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next examine En, which is (6) acting on (4). In this case Zn(f) is a finite
linear combination with constant coefficients of mixed partial derivatives of
f evaluated at Z = Z*, To show that condition (b) is satisfied, it suffices to
show that any linear functional of the form (6), with Z* interior to B, is bound-
ed over L2(B). This is a consequence of the fact that the functionals (6) have
a representation as Cauchy integrals with the path of integration lying in B,
and hence are applicable term by term to any series of analytic functions which

converges uniformly in a neighborhood of Z*. Now let
(]Sm(Z) = ¢m (21,22,0--,Zn)

be a complete orthonormal system for L?(B). Each fELZ(B) possesses a

Fourier expansion

[~

(7) [(Z)=3" ane,(Z); 3" lanl®=[If1]* <,

n=0 n=0

convergent uniformly in every closed bounded subregion of B. Hence

(8) Lk(f)=z anLk(qﬁn(Z)),

n=0
the series (8) converging for all selections a, with 2% lan]* <w. By a

lemma of Landau, this implies that
(9) 5 1L (6217 < o,
n=0
and the Schwarz inequality applied to (8) yields
(10) (O 12 < I 220 T L)%,
n=0
This establishes (b).

For analytic functions of a single complex variable, complete sets of func-
tionals {L,} of a wide variety are known. We can, for instance, replace (6)

(in the 1-dimensional case) by

(1) Li(f) =f(Zy); lim Zy=2% Zy, Z* interior to B.

- 00
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If we are dealing with differential equations with nonconstant coefficients,
such a selection may reduce the complexity of the subsequent formal work. The
points Z need not have an accumulation point interior to B as is suggested by
(11), but, as in the Blaschke theory for the unit circle, may only have a weak
accumulation of points on the boundary. In the theory of analytic functions of
several complex variables, questions of the completeness of linear functionals
are largely uninvestigated. However, certain sets in addition to (6) are known.
Thus, for example, we may select the set (11) with the added restriction that
the points Z; do not lie on an analytic hypersurface { 10, p.391.

The functionals (6) and (11) are the usual ““point” functionals met in
interpolatory function theory. However, complete sets of integral functionals
usually associated with orthogonal expansions may also be employed here.
Within an L? theory, for complex analytic functions the distinction between

these two types is weak, and persists only in certain discussions [ 8].

Under the fdregoing hypotheses, we have the following result.

TueorREM Y. The linear functional equation L(u) =0 possesses a non-
trivial solution of class L?(B) if and only if the set of functionals {L,} is
incomplete for L*(B).

Proof. Suppose first that { L} is incomplete. Then there exists an f € L2(B)
which does not vanish identically and such that Ly(f)=0 (%k=0,1,--.). That
is, L{L(f))=0for k=0,1,---. By hypothesis, L (f) is regular in B. Since
therefore { L } is complete for the class of regular functions in B, we must have
L (f)= 0. Conversely, let these begin a nontrivial f € L?(B) such that L (f)=0
in B. Then

Li(f) = Li(L(f) =0,

so that the incompleteness of { L1} follows.

In this way, the consideration of the functional equation L (f) = 0 may be
reduced to a consideration of the denumerable infinity of interpolation condi-

tions of the type?
Lu(fry=0 (k=0,1,-++).

It is frequently of importance to be able to solve this equation subject to the

auxiliary conditions

2 Interpolation problems of this type, where the functionals involved are point func-
tionals have been considered in Bergman, Mefnorial Sciences Math., vol. 106, pp. 46-48.
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(12) 4,(f)=0 (n=0,1,2,++4),

where A, designates a linear functional which we shall again assume is bounded
over L2(B). Let now { L } be an augmented set of linear funcnonals which in-
cludes both the sets {L,} and { 4,1}, but only these; that is, each L,, is either
an L, or an An, while every L, and every 4, is some L We may now state

the following result.

THEOREM 1% The linear functional equation (3), under the auxiliary con-
ditions (12), possesses a nontrivial solution of class L%(B) if and only if the

set of linear functionals { L,} is incomplete for L*(B).

Thus it appears that, from our present point of view, the role played by the
auxiliary conditions (12) is indistinguishable from that of the functional equa-
tion itself. In the notation used later, the circumflex * will indicate the pres-
ence of auxiliary conditions; that is, we deal with the equation (3) and derive
from it a set of functionals {Ln} but when auxiliary conditions are present,
the set § Z,, } will be augmented to yield { L }. It should also be observed that,
in eigenvalue problems, the operator L may involve a parameter A. In such

~ A
cases, the functionals L, and L, will also involve this parameter.

3. Representation of solutions. We reproduce here, for convenience of
reference, the following theorem on double orthogonality which was established

in a previous paper [12].

THEOREM 2. Let {Zk} be a set of linear functionals each of which is
defined and bounded over L*(B). The set {Zk} will be assumed independent.
There then exists a set of functions Y ¢F(Z)} (k=0,1,--) and a set of linear
functionals { L} (k=0,1,..) which possess the following properties:

(a) Each ¢f is of class L%(B) and the set is orthonormal over B:

(13) /B¢;&Edw=5ik

(b) Each Z}: is a finite linear combination of the functionals Ly, :

k
(14) *= S anp Ly (k=0,1,0-")

for an appropriate set of constants ajp.
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(c¢) The sets { L} and { ¢} } are biorthonormal:
(15) Lx(¢f) =0,
(d) For all f€ L%(B), we have
(16) N;(f)=£f;?;dw.
(e) The functions ¢} may be obtained by taking the set?
(17) $,(Z) =L, 5 KS(Z, W) (n=0,1,.--)

and orthonormalizing them by the Gram-Schmidt process.

(£) The set {¢f} is complete for L*(B) if and only if the set (L3 is
complete for L*(B).

In (17),

KB(Z;W)=KB(Z1,22 3°**32pn; 51, 52,---,176,,)

designates the Bergman kernel function for the domain B, and in our notation
an asterisk * used with the symbols for either functions or functionals indicates
that the corresponding set of functions or functionals is orthonormal. Starting
from a given B and a given ordered set {L1}, the sets {Z}:} and { ¢} are de-
termined uniquely, and we shall speak of them as being the biorthogonal sets
associated with { Zk } and B.

The inner products

(18) (¢i’¢j)=.é¢i(z;dﬁ)’

which occur in the orthonormalizing process, may be easily evaluated in terms
of Kg(Z; W). We have, from (16), (17), and the orthonormal expansion for Kp,

If we introduce the determinants

(20) Dn=|(¢p¢,-)l (i, j=0,1,00+,1n),

3 The notation Ly, % means that L, is to be applied to Kp as a function of w.
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then we have

(9250, ¢0)9 Tty (¢0’ Qén)

(21) ¢x(Z)=(D, D v%.| -
(Ppers Bo)avesl, s b))

¢0(Z)’ cey an(Z)

while

(22) ani=("'1)i(Dn-an)-%

(¢0’ 9150)’ "',(¢0,¢i_1), (¢0a q5i+l)’ R (¢0, ¢n)

(¢n-l’ qso)’ "',(¢n_1, ¢i_1), (d)n-l’ ¢i+l)’ .“’(qsn-l’ qsn)

In view of the orthonormality of the functions ¢}, we may form the kernel

function

(23) Ki(Z; W) = 3 ¢(Z) $F (W),
k=0

the series (23) converging uniformly and absolutely for Z and W confined to any
closed bounded subset of B x B and defining there an analytic function of
Z1, Z25+++, 2 and an anti-analytic function of w,, wy,+«+,w,. If the system
{¢p} is complete for L?(B), then K; must coincide with Kg. If auxiliary con-

ditions are present, we replace (23) by

(23%) Ki(Z; W) = 3 $(2) L ()],
k=0

A o) A
where {¢}} and {L}} are the biorthonormal sets associated with { L}} and B.

Combining this observation with Theorem 1, we have the following result:

THEOREM 2. The functional equation (3) (augmented, possibly, by
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auxiliary conditions (12)) possesses nontrivial solutions of class L*(B) if

and only if K; # Kg, or if and only if K{(Z;2) < Kg(Z;Z), Z € B.

If we admit the possibility of a nontrivial solution, the kernel K; may be
thought of as an ‘“‘incomplete’” kernel for B relative to the functional equation
(3). Tt is wholly accessible to computation via (19)-(23) once Kg has been
established. Moreover, K; may be used to project the space L?(B) onto the

linear subspace S of solutions:

TuEoREM 3. The function g(Z) is a solution of (3) of class L*(B) if
and only if there exists an f € L?(B) for which

(24) T(f)zg(Z)=f(Z)~£K1(Z,W)f(W)de,

or alternately, for which

(24%) T(f)=g(Z)=f(Z)= 3 Lx(f) ¢p(Z).

k=0

Appropriate changes must be made if auxiliary conditions (12) are present.

Proof. We observe that in view of (16) and (23), (24) and (24°) are equiva-
lent. For a given f € L?(B), construct a g by means of (24°). Since the quanti-
ties Z:(f) are Fourier coefficients of f, the sum in (24°) is of class L?(B).
Thus also g € L2(B). As remarked previously, g will be a solution of (3) if
Ek (g)=0 (k=0,1,.-.). By (14), this is equivalent to Zl’:(g) =0 (k=
0,1,+++). In view of the boundedness of Z}t over L2(B), we have

~ ~

(25) (@) =Lr(f) = 3 Dx()Y () =L () -Lr(n)=o0.
n=o0

The last equality follows from (15). Thus g is a solution. Conversely, if g is

a solution of class L?(B) we shall have

Lx(g) =Ly (L(g)=0 (k=0,1,--),

so that (24°) holds with = g,
Equation (24)-(24°) yields a projection of L?(B) onto the subspace S

of solutions. The partial sums of (247),
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N
Ly () ¢ (2),
k=0

have the usual minimum property of Fourier series; that is, for each N they

solve the minimization of the integral
N 2
(26) 1N=/£; f= 22 a, ¢ ()| do.
k=0

On the other hand, the series in (247) has two characters: it is simultaneously
a Fourier series and an interpolation series as well. This means that the partial

sum

N
(27) Sy =2 LAf) ¢p(2)
k=0

is that linear combination of ¢, ¢ ,+++, ¢, which interpolates to f in the

sense that

(28) LHSN(Z)N) =L (f) (k=0,1,--+,N),
or, equivalently,

(28”) L(Sy(z)) =L, (f) (k=0,1,-++,N),

Cnce Kp is known, and if { L, } is a sequence of point or differential operators,
then no integrals extended over B of the inner product type need actually be
computed to obtain either ¢* or the series expansion in (247). The explicit
orthogonalization formulas of Gram-Schmidt (20)-(22) are equivalent to an
interpolation series of Newton type with respect to the sequence {En }. For a
fixed N, formulas of the Lagrange type may be developed, and may prove to be

more convenient.

In view of the reproducing property of Kg, we may write (24) in the form

(29) T(f)=g(Z)= 'éKB(Z;W)f(W)de—4K,(Z;W)f(W)de,

so that by introducing the kernel
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(30) Ks(Z;W)=Kg(Z;W) =K, (Z; W)

we have the representation
(31) g(Z)=4Ks(Z;W)f(W)a’wW.

IffeS, then g(Z)=f(Z) inasmuch as

Lx(fy=Lr(L(f)N=0 (n=0,1,.-.).

Thus, Ks(Z;W ) is a reproducing kernel for the subspace S and as such, may be
proved unique (that is, nondependent upon the selection {L,}) in the usual
way. Kg(Z,W) may also be defined by

(32) Ks (Z;W)= 22 v, (Z) ¢, (W),
k

where {l//k} is any orthonormal set which is complete for S. In the case of
ordinary differential equations, the sum in (32) will consist of a finite number
of terms. In the case of ordinary differential equations of infinite order or of
partial differential equations, there will, in general, be an infinity of terms

present.

The incomplete kernel K; may be identified as the kernel of the orthogonal
complement S” of S, and the utility of the backward decomposition of Kp given
by (30) lies in relative accessibility of K| as opposed to Kg. Let us note also
the orthogonality relationship

(33) /BKS(Z;W)K,(W;XM@W:o,
which follows from (30) and from the reproducing properties of Kg and Kg over

S and L?(B), respectively.
For f € S, we have, by (31) and the Schwarz inequality,

(4 1[I < IS /BKS<Z;W>KS<Z;w>de

=1 f120Kg(Z;Z)-K1(Z;Z) ].

The inequality (34) is a wide generalization of the Schwarz Liemma for functions
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regular in the unit circle. Finally, we may generate complete sets of solutions
in the following way:

THEOREM 4. Let 6,(Z) (n=0,1,-..) be a complete set for L*(B);
then the functions

(35) wn(2)=T(en)=fBKS(Z;W)0n(W)de
=0,(Z)~ 2 L} )¢t (Z) (n=0,1,--+)
k=0

form a complete set of solutions.

Proof. We must show that any solution g can be approximated arbitrarily

closely by combinations of ¢, +++, ¢, +++. Let

Then by (34), (35), we have

< elKg(Z;Z)~Ki(Z;Z2)1%,

N
= 2 Y
k=0

which establishes completeness.

4. The nonhomogeneous case. We consider next the nonhomogeneous linear
functional equation

(36) L(uw)=f,
which may be supplemented by auxiliary conditions of the form

(37) Al (u) = o (k=0,1,.-.).

We assume that f is regular in B, and that all previous hypotheses regarding L
and 4, remain in force. We first reduce (36)-(37) to a problem in interpolation

in the following way.

THEOREM 5. The linear functional equation (36), subject to the auxiliary



LINEAR FUNCTIONAL EQUATIONS AND INTERPOLATION SERIES 515

conditions (37), is equivalent to the interpolation problem

(38) Ek(u)=Lk(f)

(38%) Aplu) = o (k=0,1,---).
If conditions (37) are absent we may omit (38°),

Proof. That (38), (38”) follow from (36), (37) is evident. Suppose con-
versely that (38) holds. We wish to prove that L (u) = f throughout B. We have

LkL(u)—Lk(f)=O (}f=0’1,"').
Thus

LilL(u)-f1=0 (b=0,1,+-2).

Now L (u) - f is regular in B, and { L} is complete for R. Hence the conclusion

follows.

It will now be convenient to uniformize our notation. We introduce an aug-
mented set { L} of linear functionals as in the previous paragraph, and intro-

duce a set of constants { 8, } by means of the definition

(39a) B=L,(f) it L,=T

The interpolation problem is now
(4‘0) Lk(u)=Bk (k:o’l,c--).

We observe again that there is no distinct role played by the auxiliary con-
ditions. Boundary value and initial value problems of mathematical physics may
be fitted into the pattern (40) providing it is known a priori that the required
solutions are regular across the boundary so that the functionals Lj will have
the requlred boundedness properties. We next introduce the biorthonormal sets
{ L*} and {qﬁk } associated with § L } and B. We have

k

A A

(41) Jl’:=z akaP
p=o

for constants Wp determined as in the previous paragraph. The following result
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now holds.

THEOREM 6. The linear functional equation (36), (37) possesses a solu-
tion of class L2 (B) if and only if

(42) >

The solution is unique (within L*(B)) if and only if {L,} is complete for
L%(B). If (42) kolds, then the series

00 k N
(43) W(2)= ¥ (Z: akpﬁp) 1 (2)

k=0 | p=o

converges to a solution u(Z) uniformly and absolutely in every closed bounded

subset of B.

Proof. Suppose that a solution u € L?(B) exists. Then from (40) and (41)

we have

A k
Lp(u)= 3~ akpo.

p=0

But since the L} (u) are Fourier coefficients of u with respect to { ¢} }, we must
have (42). If (42) holds, then the series (43) converges uniformly and absolute-
ly in every closed bounded subregion of B to a function V (Z) of class L% (B).
Now,

A k
L;:(V)= Z akp’BP

p=0

in view of the boundedness and biorthogonality properties of these functionals.
Hence

Ly (V) =B, (h=0,1,-+-).
so that V satisfies the equations (36) and (37) by Theorem 5.

A particularly important special case is to solve (36) subject to the auxiliary
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conditions
(44) Ap(u) =0 (k=0,1,.-.).

A A
As in Theorem 5, we again construct the biorthonormal sets {Ll’:} and {qﬁl’:},

and note that each functional L/’: is a finite linear combination of functionals

L) and A:
A k N
(45) L/’::Zakp p:ZbkaerchpAp,
p

where the coefficients bkp and Cip DOW contain certain dummy zeros. lLet us

write

(46) S by L, =3 b, LL=SLiS, = 3 b, L,
p

We now have the following result.

THEOREM 6% The linear functional equation (36), (44) possesses a
solution of class L*(B) if and only if

(47) > 1Sk()]? < 0.
k=0
If (47) holds, the interpolation series

(48) wW(Z)= 3 S(f) $2(2)
k=0

converges to a solution uniformly and absolutely in every closed bounded subset

of B.

Proof. U 3, = o, = 0 when L, = 4, then, by (39),

S By = 3 by Ly ()=, ().
P P

Under the assumption that the equation (36), (44 ) possesses a solution for
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all feL?*(B), we may find a second representation for the interpolation series
(48). The functionals S; are bounded over L*(B), and hence possess a Riesz
representative sy (Z ):

(49) Sk(f)=_/‘fs—;C do; feL?(B),
B

where

(50) si(Z) =Sy, Kg (Z; W),

If (36), (44) possess a solution of class L2 (B) for all f € L*(B), then (47)
must hold for all f € L?(B). In particular, from

(51) sk (Zo) =Sk,wKg(ZosW), Zo €8,
we learn that

o0

(52) Z 1sp(Z)]? < w for all Z, € B.

We may therefore form the mixed kernel
(53) Z; W)= Z “(Z) s (W),

which will converge uniformly and absolutely in every closed bounded subregion
of B x B. Finally, from (48) and (49), we have the representation

(54) U(Z)= /BD(Z;W)f(W)de.

The kernel D(Z; W) plays a role analogous to a Green’s function or to the
Duhamel kernel in the superposition theorem of the theory or ordinary linear
differential equations. The totality of solutions in L2 (B) of (36), (44) may be
written in the form

(55) U(Z)=fBD(Z;W)f(W)de+ _L;KS(Z;W)h(W)de; heL?(B),

or, in interpolatory form,



LINEAR FUNCTIONAL EQUATIONS AND INTERPOLATION SERIES 519

(56)  U(Z)= 3 S(f)&H(Z)+h(Z)= 3 LEh)GE(2); h L2 (B).
k=0 k=0

5. Convergence of interpolation series for { ¢ L%*(B). In the present para-
graph we return to the interpolation series (24 7). This has been discussed under
the hypothesis that f € L2(B). If, however, each functional Z?; (or Zk) is ap-
plicable to a wider class of functions than L?(B), a formal series (24°) may
be constructed and its properties examined for f in this wider class. This will
be the case, for example, when Lj are differential operators. For the sake of
definiteness, let us assume that we are dealing with the ordinary linear dif-

ferential equation

(57) L) =1 ya(z) PV 4t va,(2)f=0,

and that we have selected

(58) Ly (f)=f%)(0) (k=0,1,.-).

The coefficients aj(z) in (57) are assumed regular in a region R containing

the origin. If { is regular at z = 0, then the series (24°) may be formed. If this

series then converges uniformly in a neighborhood of z = 0, the difference
gz)=f(2)= 2 Lx(f) ¢} (2),

k=0

which is again regular at z = 0, will be a solution; for, since the functionals

th are applicable term by term, we have
Lre)=Lp() = 3 DO LEe) = L) = LE(f) =0, (k=0,1,--2),
p=0

and this implies that L (g) = 0. The interpolation series (247) has a doubly

orthogonal character, but the above proof will apply to any interpolation series
(59) g(z)=f(z)= 2 Ly(f )y, (2)
k=0

in which the regular functions i, are merely biorthogonal:
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(60) Lry) =8, .

Such sets are more numerous than doubly orthogonal sets. To determine such
a set, we need only start from a given set of functions {¢,(z)} (n=0,1,+-+)
which has properties of independence with respect to { L;} and determine linear

combinations

k
(61) ¢k(z)=2 ekptp(z) (k=0,1,--+)
p=o

successively by the requirement (60).

We shall now prove that we may find a set {1, (z)} biorthogonal to {ZZ}
with the property that if f is regular in any neighborhood of z = 0, the inter-

polation series

(62) g(z)=f(z2)= 2 L)y, ()

k=0

will converge to a solution of (57) in some neighborhood of z = 0. The present
proof will generalize to both partial differential equations and to ordinary dif-

ferential equations of infinite order.

We have, from (57) and (58),

n

- dk n+k )
() Li=3 — lap (7P (] _ = 5 by 1900),
z j=0

p=0
while
ntk )
(64) Lr(f) =3 o £(0)
j=o0

for appropriate b]’." 4+ We assume that B contains the origin and is contained in
’

the region of regularity of a;(z).

LeEmMA. Let f(z) be regular in |z| < p. Then there exist positive con-
stants M and t such that

(65) |Lr(f)] < M (k=0,1,:+.).
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Proof. For any g € L*(B), we have
Lx(g) = ffgq?; dx dy (k=0,1,...).
B
Thus L7 (g) are Fourier coefficients of g, so that, by the Bessel inequality,
(66) i | Lx(g))? < ff lg|? dx dy.
k=0 B

In particular, we may select

g =2P/p! (p=0,1,.--),
so that
N nt+k ()l
(67) L:(zp/p!)z % b;:].[zp/p!] ] z=o=b;€kp°
j=

From (66) we obtain

o 0 P |2
(68) 3 \LpGP/pD|*= 32 [bf, 17 < ff —| dxdy
k=0 k=0 g 1P
A
cMrea(B) b (0,1,
(p1?

where d designates the maximum distance from the boundary of B to the origin.

1f now f is regular in | z| < p, we have, for some constant M¥,

(69) L0 < w1/ (j=0,1,+++),
so that from (64) and (68),

(70) L ()] < M(d/p) (k=0,1,++),
with

M = M* (Area (B))? (d/p)"*'/(d/p) ~ 1.
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LEMMA. There exist positive constants m and o such that
(71) |L($f (z)] < m|z|*
forall £ =0,1,--+, and for all |z]| < o.
Proof. The orthonormal functions ¢} (z) satisfy the requirements [12, p.16]
Lo(f) =Li(@f) =+- =Ly (gD = 0,
or with notation g, = Lo,
g, (0) =g/ (0)=... = glk-D(0) = 0.

Let |z]| =0”and |z| =0, 0" > o both be contained in B. Since ¢* are ortho-
normal over B, they are uniformly bounded by some M over |z| < o hence, by

(57) and Cauchy’s i.equality,

n
(72) lL((]_’)]";H_<_0'MZBjj!sj+1=m;‘z|SO,
j=0 ‘
where
s=0"~0 and B;j= max |a;(z)].
lz[ <o’

Thus the functions L (¢}) are uniformly bounded in |z| < o by m. The in-

equality (71) now follows from Schwarz’s lemma.

We observe now that the last two lemmas imply that the series

L*(f)Lp*(z)
k k

k=0

will converge absolutely and uniformly in |z| <r, r < 1/t. Furthermore, we

must have

(73) L(f)=3 Lr(f)Lgt(2);|z] <o
k=0

To show this, designate the sum of (73), |z| < r, by g(z). By uniform



LINEAR FUNCTIONAL EQUATIONS AND INTERPOLATION SERIES 523

convergence, we may apply L, term by term. Thus

(74) Ly(g)= Z F(f)Lp L (2),
so that
(75) Lx(g)= 20 Ly(HLx (¢ () =Lx(f)=LXL(f).

By the completeness of { L b, g=L(f)

Let now B, designate a region containing z = 0 and contained in |z| < 1,
and let D(z,w)= DBl(z,uT) be the kernel described in (54)-(55). We have,
for each f regular in | z| < r, the identity

(76) f(z)= ffD(z,E)L(f(w))dww+s(z),
By

where s (z) is some solution of L (s) = 0, regular in B;. Applying this inversion

operator to (73), we have

(77) flz)=-s(z)= Z J.J D(z,w) L(¢f (w))day
k=0 B,
Z F()y, (2,
k=0
where
(78) U, ()= f D(z,w) L(¢f (w))day, (k=0,1,-.+).
By

The functions {¢, } are easily seen to be biorthonormal to the interpolation

operators { Z}: }. We therefore have the following result.

THEOREM 7. For each f(z) regular in |z| < o, the biorthogonal inter-

polation series
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(79) g(z)=f(z)~ 2 Lr(f)y, (2)
k=0

converges to a solution of the equation (57).

6. Relation to questions of stability. In a previous paragraph we have given
necessary and sufficient conditions in order that a given functional equation
possess solutions of class L?(B). If the coefficients of this equation involve
a parameter A, then a criterion may be obtained in terms of A. Here B designates
any region which possesses a kernel function Kg. If B is chosen as an un-

bounded domain, then membership in L? (B) acts as a stability criterion.

To elucidate this remark, let us consider the two dimensional case, and let
S designate the bhalf-strip

Re(z) > 0, |Im(2)} < h.

Then we have f € L?(S) if and only if*
2 _ h foo SN2
(30) iz = ) [Tireeimprad <o

Thus, to belong to L2(S) a function must not become large too rapidly as z
approaches the horizontal boundaries of the strip, and indeed, must approach

zero with a certain maximal rapidity along any horizontal line.
LEMMA. Let f€L?(S); then along each line
y=0, —h <o <h,
we must have

(81) lim f(x+io)=0.

x— + 00

Proof. 1f (81) were not true, we could find two positive quantities 4 and &

and a sequence of values A; < A; < +«. such that
(82) M=Ap1 >8>0 (n=1,2,++4),

and

4Various authors have considered solutions of class L2(0,oo); for example, see

[13].
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(83) lf(Ap+io)] >4 >0 (n=0,1,...).

In virtue of (82) we may find an r > O such that the circles
Cpilz=(Ay+i0)| <r

lie in S and do not overlap. Now

(84) « > fsf |f|2dxdy>_§; ﬂmzdxdy.

Since f is regular in C,, it possesses a Taylor series expansion

(85) )= f(P)+f(P)(z~Pp)4eees Py=Ap+ io,
so that .
50 U | (2)|2 dxdy > ar® |[(Py)|%,

CTL

Combining this with (84), we must have

(87) STOf(P)I? <.

n=0

This contradicts (83) and proves the result.

The ‘stability’ which is spoken of here is that usually associated with the

theory of linear, non time-varying electrical networks; in this theory we

confronted with a differential equation

(88) y(")+a1y("")+-~-+any=f(x),
to be solved under initial conditions such as

(89) y(0)=y7(0)=-+. y(»1(0) = 0.
If the characteristic roots of (88) are

’Tj=uj+i1}]' (j=

are

ceyn),

assumed distinct, then the n independent solutions of the homogeneous equation
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u;ix Iv;x
1" e I,

yi(x)=e

The equation (88) is called stable if u; < 0 (j=1,+++,n). We observe now that
y].(z ) € L*(S) if and only if uj < 0. For

[}’j(z)|2= o2 ix - vy,

and this result is now implied by (80). It appears then that the equation (88)
is stable if and only if the fundamental solutions of the homogeneous equation
are in ,2(S). For the case of more general linear networks, we propose member-
ship in L2(S) as a possible extension of this type of stability. Added flexi-
bility may be achieved by varying &, and by attaching a weighting function to
(80). Inasmuch as the mapping function for S is elementary, the kernel function
Ks of S may be computed explicitly, and the criterion of §3 can be formulated

in closed form.

7. Systems of functional equations. The methods of the previous paragraphs
may be extended to the case of systems of equations. As the proofs and the
principal results parallel those given in § 2-4 very closely, we shall not dwell
on these aspects, and shall be content merely with showing how the generaliza-

tion may be set up.

For the sake of simplicity, we consider here only systems of two functional

equations in the two unknown functions, u; = u;j{(zy, 25, ++, z) =;(Z), (i=1,2),
(90) Ll(ul, 11,2)=O9
Lz(ll.li ZL2)=O.

Introducing the solution vector u = (uy, u, ) and the vector operator L = (L, L,),

we may write (90) as
(90%) L(u)=0.

We assume that L:(u,, uy) are regular functions of zy,+-+,z, whenever u; are,
and that L is linear on the vector u. We shall say that (90”) possesses a solu-
tion of class L2(B) if there exists u; € L*(B) for which (90°) holds. In addi-
tion to (90), we may consider an augmented system comprising (90) plus certain

auxiliary conditions which may be written in the form
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(91) Ap(u)=A4,(uy,u)=0 (n=0,1,¢+2).

Here A, is a linear functional on u. Let again { L,} designate a fixed set of
linear functionals defined on the set of functions regular on B and complete for

this set. We introduce

(92) Ly, (u)=LoLYuy, uy) (n=0,1,-+-),
E2n+1(U)=LnL2(ul,u2) (n:O,ly...).

Ezn and Ezn-{»l are linear functionals defined over vectors u, and we shall say
that a sequence L, of such functionals is complete for a class S of vectors
if L,(u)=0 (rn=0,1,---) implies u=0. We have the following parallel to
Theorem 1.

THEOREM 8. The system (90°) possesses a nontrivial solution of class
L*(B) if and only if the set of functionals {L,} is incomplete for L*(B). If
auxiliary conditions (91) are present, the set { Ly} must be augmented by the

addition of { A}
It is now convenient to introduce the direct sum of L? (B) with itself:
LXB)=L*(BYDL*(B).
This space consists of pairs
u=(uy,u,),u; €L*(B).
Vector addition and scalar multiplication are defined by
u+ve=_{(uy,u )+ vy, vy)="(ur +vy, ug +vy)
and
au=aluy,uy)=(auy,au,).

We introduce an inner product in L22 (B) by means of ®

(93) {U, V}={(u1, 7% ), (‘Ul, Uz)}= é(ula +u21—}_2)dw,

5In what follows, the parenthesis is used solely for the element pairs of L (B). If
the inner product in L2 (B) is required, we shall write (u, v) L3(B)"
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and a norm by

(94) ull? =[] Ceryua) 1 =t (ugy uz), Cuyyup)

fBum%1u2|2>dw=nul||2z(3)+Huzniz(m.

Under this norm, it is known that L? (B) becomes a Hilbert Space. By classical
results, any bounded linear functional T over L22 (B) possesses a representation

of the form

(95) T(u)={uv}= 4(u151+u21—)_2)dw
for some v € L22 (B). Hence we have the decomposition
(96) T(u):Tl(u1)+T2(u2),

where T, and T, are bounded linear functionals over LZ(B). The converse

evidently holds also. Moreover,
(97) T2 =1V = o 12+ oo (2= [Ty (12 + (1 T2 112

In what follows, we shall assume that En as well as A, are linear and bounded

over L2 (B). The examples given in § 2 are easily extended to the present case.

"Nw)

converges uniformly and absolutely in every closed bounded subdomain of

If {u®} is a complete orthonormal system for L?(B), it may be shown by
: ]
]

an extension of the usual proofs that each of the series 2 = ugn)(z Yu

B x B. In addition, a strong Riesz-Fischer theorem exists for L22(B); that is,
uc L22(B) if and only if

u= > apu'™ with > lanl? <
n=o

n=0

and
ap =f{u, u'™} (n=0,.+.).

The convergence of each of the component series is uniform and absolute in

every closed bounded subdomain of B. The array
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3wl (z)ul® (w) > al™()udM (w)
n=o0 n=0

(98) Hg(Z;W)=
2 ué”)(Z)uf")(w) > ug")(Z)uén)(w)
n=o0 n=o0

will be known as a kernel tensor for the space L;(B). Each row of #p is, for
fixed W €B, a vector element of L7 (B) which we shall denote by ¥}(Z,W)
and #2)(Z, ). Thus,

3’{1; (Z;W)
(99) Hp(Z,W) =

2 7

%{B (Z;W)

If
u= (ul, U2)€L22(B),

then we have

(100) ui ={HL(Z, W), u(w)} (i=1,2).

Let us consider, for example, the case { = 1; then

an(uf™, ui™),

M

3
1l
(=]

so that

(HE(Z;W), W)}:[(}: uM(Z)uM (), 3 ufn)(z>u§">(W)),

n=o n=0
(Z anufn)(W), anuén)(W))].
n=o n=0

= > a u!™(2) fBu§m>(W)u§”)(W)+u§m>(W)u§ﬂ>(W)dw,

S 3

0
0
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which by orthonormality reduces to
N P
> a,u"(Z)=u/(2).
n=o

The reproducing property may be written more compactly as

(100%) u(Z) = {u(W), X (W;2)3.

It can be seen that if { u,} is a complete orthonormal system for L?(B), then

the set of vectors
(101) Uy, = (u,,0) (n=0,1,+++),
Uypey = (O,up) (n=0,1,++),

is complete and orthonormal for L22 (B). With this special selection, we find a

kernel tensor of the form

(102) Hp(Z;W) = _
0 Kg(Z,W) | ,

where K is the kernel for L2(B).

We come now to the analogue of Theorem 2.

THEOREM 9. Let {Ek} be a set of linear functionals each of which is de-
fined and bounded over L;(B). The set { Ly} will be assumed independent.

Then there exists a set of pairs
ﬁ;‘(z)=(¢z‘,l,¢z‘,2) (k=0,1,¢++)

and a set of linear functionals {It;:} (n=0,1,-++) which possess the following

properties:

(a) Each B is of class L22 (B), and the set is orthonormal:

(b) Each L} is a finite linear combination of the functionals Lj:
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k
(104) Ly = 2 akap (k=0,1,...)
p=0

for an appropriate set of constants akp .

(c) The sets {I,j;';} and {Ql";} are biorthonormal:
(105) i;(g;;):&ik,

(d) Forall ¥ €L§(B) we have

(106) LE(V) = { v, @5 ).

(e) The pairs Q’;‘ may be obtained by taking the set
(107) ¢, (Z) =L,z Kg(Z,W) (n=0,1,--+)

and orthonormalizing them by the Gram-Schmidt process.
(f) The set {Qk} (or {}1) is complete for L;(B) if and only if the set
{ Ly} is complete for L;(B )

By (107) is meant that

(108) by ((2) = Lo w25 W) (i=1,2)

where

2,(2)= (¢, (2D ¢, ,(2))

Using the specific set of functionals (92), we construct the related bi-
orthonormal sets { Lf} and {J} 1. We then have the following analogue of Theo-

rem 3.

THEOREM 10. The vector g(z) is a solution of the system (90) of class
L22(B) if and only if there exists an £(Z) € L22(B ) for which

oo

(109) §(Z)=1(2)= > D02t (2).
k=0

For each f € L22 (B), the series in (109) converges uniformly and absolutely
in every closed bounded subdomain of B. It is:simultaneously a Fourier series

and an interpolation series whose terms may be obtained by interpolating to f
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by means of { Ly }.
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