SETS OF RADIAL CONTINUITY OF ANALYTIC FUNCTIONS

F. HERZOG AND G. PIRANIAN
SETS OF RADIAL CONTINUITY OF ANALYTIC FUNCTIONS

FRITZ HERZOG AND GEORGE PIRANIAN

1. **Introduction.** A point set E on the unit circle C ($|z|=1$) will be called a *set of radial continuity* provided there exists a function $f(z)$, regular in the interior of C, with the property that $\lim_{r \to 1} f(re^{i\theta})$ exists if and only if $e^{i\theta}$ is a point of E. From Cauchy's criterion it follows that the set E of radial continuity of a function $f(z)$ is given by the formula

$$E = \prod_{k=1}^{\infty} \sum_{n=1}^{\infty} \prod_{\epsilon \bar{\epsilon}} E \left\{ |f(r_1 e^{i\theta}) - f(r_2 e^{i\theta})| \leq \frac{1}{k} \right\},$$

where the inner intersection on the right is taken over all pairs of real values r_1, r_2 with $1 - 1/n \leq r_1 < r_2 < 1$. From the continuity of analytic functions it thus follows that every set of radial continuity is a set of type $F_{\sigma\delta}$. The main purpose of the present note is to prove the following result.

Theorem 1. If E is a set of type F_{σ} on C, it is a set of radial continuity.

The theorem will be proved by means of a refinement of a construction which was used by the authors in an earlier paper [2] to show that every set of type F_{σ} on C is the set of convergence of some Taylor series.

2. **A special function.** That the set consisting of all points of C is a set of radial continuity is trivial. In proving Theorem 1, it may therefore be assumed that the complement of E is not empty. In order to surmount difficulties one at a time, we begin with a new proof of the well-known fact that the empty set is a set of radial continuity (see [1, vol. 2, pp. 152-155]).

Let

$$f(z) = \sum_{n=N}^{\infty} C_n(z),$$

where

Received July 28, 1952.

Pacific J. Math., 4 (1954), 533-538

533
\[C_n(z) = \frac{z^{k_n}}{n^2} \left\{ 1 + \frac{z}{\omega_{n_1}} + \left(\frac{z}{\omega_{n_1}}\right)^2 + \cdots + \left(\frac{z}{\omega_{n_1}}\right)^{n^2-1} \right\} \]

\[+ z^{n^2} \left[1 + \frac{z}{\omega_{n_2}} + \left(\frac{z}{\omega_{n_2}}\right)^2 + \cdots + \left(\frac{z}{\omega_{n_2}}\right)^{n^2-1} \right] \]

\[+ \cdots \]

\[+ z^{(n+1)n^2} \left[1 + \frac{z}{\omega_{n_1}} + \left(\frac{z}{\omega_{n_1}}\right)^2 + \cdots + \left(\frac{z}{\omega_{n_1}}\right)^{n^2-1} \right] \right\}; \]

where \(\omega_{n_j} = e^{\pi i j/n} \)

and \(\{ k_n \} \) is a sequence of nonnegative integers which increases rapidly enough so that no two of the polynomials \(C_n(z) \) contain terms of like powers of \(z \), and so that a certain other requirement is met; the positive integer \(N \), which is the lower limit of the foregoing series, will be determined later.

If \(z \) is one of the points \(\omega_{n_j} \), then \(|C_n(z)| = 1 \). On the other hand, let \(z \) lie on the unit circle, and let \(\Gamma_n(z) \) be any sum of consecutive terms from (1). If \(z \) is different from each of the roots of unity \(\omega_{n_j} \) that enter into \(\Gamma_n(z) \), and \(\delta \) denotes the (positive) angular distance between \(z \) and the nearest of these \(\omega_{n_j} \), then

\[|\Gamma_n(z)| < \frac{A_1}{\delta n^2}, \]

where \(A_1 \) is a universal constant (see [2, Lemma A]). Now, if

\[z = e^{i\theta} \omega_{n_j}, \quad |\theta| < \frac{\pi}{n^2}, \]

and \(R_{n_j}(z) \) denotes the sum of the terms in the \(j \)th row of (1) (including the factor \(z^{k_n/n^2} \)), then

\[|R_{n_j}(z)| = \frac{\sin (n^2\theta/2)}{n^2 \sin (\theta/2)} > A_2, \]

where \(A_2 \) is again a positive universal constant. But if the angular distance
between z and ω_{nj} is less than π/n^2, the angular distances between z and the remaining nth roots of unity are all greater than $1/n$, and therefore (3) implies that, for sufficiently large n, by (2) and (4),

$$|C_n(z)| > A_2 - 2A_1/n > 5A_3,$$

where $A_3 = A_2/6$. We now choose N so large that the second of these inequalities holds whenever $n \geq N$.

Let $k_N = 0$; let r_N be a number $(0 < r_N < 1)$ such that

$$|C_N(re^{i\theta}) - C_N(e^{i\theta})| < \frac{A_3}{N!}$$

for $r_N \leq r \leq 1$ and all θ. Next, let k_{N+1} be large enough so that

$$|C_{N+1}(rNe^{i\theta}) - C_{N+1}(e^{i\theta})| < \frac{A_3}{(N+1)!}$$

for all θ; and let $r_{N+1} > r_N$, and near enough to 1 so that

$$|C_{N+1}(re^{i\theta}) - C_{N+1}(e^{i\theta})| < \frac{A_3}{(N+1)!}$$

for $r_{N+1} \leq r \leq 1$ and all θ. Let this construction be continued indefinitely.

Now let L be a line segment joining the origin to a point $e^{i\theta}$, and let n be an integer such that $n > N$ and

(5) $$|C_n(e^{i\theta})| > 5A_3.$$

We then write

$$f(re^{i\theta}) - f(r_{n+1}e^{i\theta}) = C_n(e^{i\theta}) + [C_n(r_ne^{i\theta}) - C_n(e^{i\theta})] - C_n(r_{n+1}e^{i\theta})$$

$$+ \sum_{j=N}^{n-1} \{ [C_j(r_ne^{i\theta}) - C_j(e^{i\theta})] - [C_j(r_{n+1}e^{i\theta}) - C_j(e^{i\theta})] \}$$

$$+ \sum_{j=n+1}^{\infty} \{ C_j(r_ne^{i\theta}) - C_j(r_{n+1}e^{i\theta}) \}$$

and obtain from the inequalities above.
It follows that, if there exist infinitely many integers \(n \) for which (5) is satisfied \(f(z) \) does not approach a finite limit as \(z \) approaches \(e^i \) along the line \(L \). But for each real \(\theta \) there exist infinitely many integers \(n \) with the property that, for some integer \(j_n \),

\[
\frac{\theta}{2\pi} - \frac{j_n}{n} < \frac{1}{2n^2}
\]

(see [3, p. 48, Theorem 14]), so that each \(z \) on \(C \) admits infinitely many representations (3). It follows that \(\lim_{r \to 1} f(re^{i\theta}) \) does not exist for any value \(\theta \).

3. Closed sets of radial continuity. Let \(E \) be a closed set on \(C \), and let \(G \) denote its (nonempty) complement. Again, let \(f(z) \) be the function defined in 3.2, except for the following modification. In the polynomial \(C_n(z) \), let \(\omega_{n1}, \omega_{n2}, \ldots, \omega_{np_n} \) denote those \(n \)th roots of unity which lie in \(G \) and have the additional property that the angular distance of each one of them from \(E \) is greater than \(n^{-\frac{3}{2}} \). The exponent of \(z \) in the factor outside of the brackets in the last row of the right member of (1) becomes \((p_n - 1)n^2 \). And the \(p_n \) \(n \)th roots of unity \(\omega_{nj} \) that occur in \(C_n(z) \) must be so labelled that their arguments increase as the index \(j \) increases, with \(\arg \omega_{nj} > 0 \) and \(\arg \omega_{np_n} \leq 2\pi \). Then every partial sum \(\Gamma_n(z) \) of consecutive terms of \(C_n(z) \) satisfies the inequality \(| \Gamma_n(z) | < A_1n^{-3/2} \) for all \(z \) belonging to \(E \), and therefore the Taylor series of \(f(z) \) converges on \(E \). On the other hand, let the exponents \(k_n \) in (1) be chosen in a manner similar to that of 3.2, and let \(L \) be a line segment joining the origin to a point \(e^{i\theta} \) in the (open) set \(G \). Then there exist infinitely many integers \(n \) for which (5) is satisfied by our newly constructed polynomials \(C_n(z) \), and therefore \(\lim_{r \to 1} f(re^{i\theta}) \) does not exist.

4. The general case. Suppose finally that \(E \) is a set of type \(F_\sigma \) on \(C \). Then the complement \(G \) of \(E \) is of type \(G_\delta \); that is, it can be represented as the intersection of open sets \(G_1, G_2, \ldots \), with \(G_k \supset G_{k+1} \) for all \(k \). In turn, we can represent \(G_1 \) as the union of closed intervals \(I_{1h} \) in such a way that no two distinct intervals \(I_{1h} \) and \(I_{1h'} \) contain common interior points, and in such a way that no point of \(G_1 \) is a limit point of end points of intervals \(I_{1h} \). Similarly,
each set \(G^*_k \) can be represented as the union of closed intervals \(I_{kh} \) satisfying similar restrictions.

Let \(n_0 \) be any positive integer. Since the denumerable set of all open arcs

\[
z = e^{i\theta}, \quad |\theta - 2\pi j/n| < \pi/n^2 \quad (j = 1, 2, \ldots, n, \ n > n_0)
\]
covers the entire unit circle, there exists a set of finitely many such arcs covering the unit circle. It follows that we can choose a finite number of terms \(C_n(z) \) (see (1)), modified as in \(\S \ 3 \), such that their sum \(f(z) \) has the following properties:

i) for each \(\theta \) in \(I_{11} \), there exist two values \(\rho' \) and \(\rho'' \), \(0 < \rho' < \rho'' < 1 \), such that \(|f_1(\rho'e^{i\theta}) - f_1(\rho''e^{i\theta})| > A_3 \);

ii) for each point \(e^{i\theta} \) outside of \(I_{11} \) and outside of the two neighboring intervals \(I_{1h} \) and \(I_{1h'} \), and for each \(n \) for which \(C_n(z) \) occurs in \(f(z) \), the modulus of any sum of consecutive terms of \(C_n(e^{i\theta}) \) is less than \(A_1 n^{-3/2} \).

Next we accord a similar treatment to \(I_{12} \), then to \(I_{21}, I_{13}, I_{22}, I_{31}, I_{14} \), and so forth. The sum \(f(z) \) of the polynomials \(f_1(z), f_2(z), \ldots \) thus constructed has the following properties: if \(e^{i\theta} \) lies in \(E \), that is, lies in only finitely many of the intervals \(I_{kh} \), the Taylor series of \(f(z) \) converges at \(z = e^{i\theta} \); if \(e^{i\theta} \) lies in \(G \), there exist pairs of values \(\rho' \) and \(\rho'' \) arbitrarily near to 1 and such that

\[
|f(\rho'e^{i\theta}) - f(\rho''e^{i\theta})| > A_3.
\]

It follows that \(E \) is the set of radial continuity of \(f(z) \), and the proof of Theorem 1 is complete.

5. Sets of uniform radial continuity. The following theorem is analogous to Theorem 2 of [2].

Theorem 2. If \(E \) is a closed set on \(C \), then there exists a function \(f(z) \), regular in \(|z| < 1 \), such that \(\lim_{r \to 1} f(re^{i\theta}) \) exists uniformly with respect to all \(e^{i\theta} \) in \(E \) and does not exist for any \(e^{i\theta} \) not in \(E \).

For the proof of Theorem 2, we refer to the function \(f(z) \), constructed in \(\S \ 3 \). Note that \(|\Gamma_n(z)| < A_1 n^{-3/2} \) for all \(z \) in \(E \). Hence the Taylor series of \(f(z) \) converges uniformly in \(E \). It then follows easily, by the use of Abel's summation, that the convergence

\[
\lim_{r \to 1} f(re^{i\theta}) = f(e^{i\theta})
\]
is also uniform in E.

6. **An unsolved problem.** The converse of Theorem 1 is false, since a set of radial continuity can be the complement of a denumerable set which is dense on C. We do not know whether there exist sets of type $F_{\sigma\delta}$ that are not sets of radial continuity.

References

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, E.G. Straus, at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back numbers (Volumes 1, 2, 3) are available at $2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

* To be succeeded in 1955, by H.L. Royden, Stanford University, Stanford, California.
** To be succeeded in 1955, by E.G. Straus, University of California, Los Angeles 24, Calif.
Paul Civin, *Orthonormal cyclic groups* .. 481
Kenneth Lloyd Cooke, *The rate of increase of real continuous solutions of algebraic differential-difference equations of the first order* 483
Philip J. Davis, *Linear functional equations and interpolation series* 503
F. Herzog and G. Piranian, *Sets of radial continuity of analytic functions* ... 533
P. C. Rosenbloom, *Comments on the preceding paper by Herzog and Piranian* ... 539
Donald G. Higman, *Remarks on splitting extensions* 545
Margaret Jackson, *Transformations of series of the type \sum_{ψ}* 557
Herman Rubin and Patrick Colonel Suppes, *Transformations of systems of relativistic particle mechanics* ... 563
A. Seidenberg, *On the dimension theory of rings. II* 603
Bertram Yood, *Difference algebras of linear transformations on a Banach space* 615