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REMARKS ON SPLITTING EXTENSIONS

D.G. IllGMAN

1. Introduction. If N is a normal subgroup of the finite group G we call G

an extension of N. Such an extension G over iV is said to split if there exists a

complement of N in G, that is, if there exists a subgroup of G which contains

exactly one element from each coset of G modulo N. A frequently used criterion

for splitting is provided by a theorem of Schur, namely, if N has order prime to

its index in G9 then G splits over N. W. Gaschϋtz [ l ] has recently given a

generalization of this theorem for the case when N = A is abelian, which states

that ( i ) G splits over A if and only if there is for each prime p a p-Sylow sub-

group S of G which splits over SnA9 and ( i i) there exists a subgroup U <G such

that G — AU if and only if there exists for some prime p a p-Syloiυ subgroup S of

G and a subgroup V of S such that

S = [Sn A]V9 andhGiVn A) = Sn A.1

Here R ^ i F n A) denotes the subgroup generated by all the conjugates to Fn A

in G.

In § 2 of this note we apply part ( i ) of the theorem of Gaschϋtz to establish

a generalization of the theorem of Schur for non-abelian extension. In § 3 we

apply ( i i) to obtain a characterization of extensions G over Λ such that N is

contained in the Frattini subgroup. The remaining two sections are concerned

with the question of conjugacy of complements.

NOTATIONS. Group will always mean finite group unless the contrary is ex-

plicitly stated. For // a subgroup of a group G, [G:H] = index of // in G. For

Y a set of elements of G, \ Y} ;= subgroup generated by the elements of Y. If

A and B are groups, A x B denotes their direct product. A < B means A is con-

Since any two p-Sylow subgroups of G are conjugate, this condition is satisfied
by all p-Sylow subgroups whenever it is satisfied by any one of them. The condition
is automatically satisfied by those p-Sylow subgroups of G for which p does not divide
both the order and the index of the normal subgroup.
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tained in B, while A < B means proper inclusion. A n B - set theoretic inter-

section of A and B.

2. A subgroup C of G is a complement for the extension G over N if and

only if G = Λ'C and 1 = Λ n C.

THEOREM 1. ^ subgroup C of a group G is a complement for the extension

G over N if and only if C is minimal with respect to the property G - NC, and

there exists for each prime p a p-Sylow subgroup S of G9 and a complement of

N π S in S which is part of C.

Proof. Assume that C is a complement of N in G. Then clearly C is minimal

with respect to the property G = Λ'C. If P is a p-Sylow subgroup of C, and if S

is a p-Sylow subgroup of G such that P < S, then P is a complement of S n Λ in

S. For, since P < C, Λ n P < Λ ' n C = l . And since P < S, [Sn N]P < S. But

S n N is a p-Sylow subgroup of Λ, and P is a p-Sylow subgroup of C, from which

it follows that [Sn Λ]P is a p-Sylow subgroup of G. Hence [Sn N]P = S. We

have proved the necessity of the condition of the theorem.

Now assume conversely that this condition is satisfied. Let P be a Sylow

subgroup of M — N n C, % an element of C. Since M is a normal subgroup of C,

P* is also a Sylow subgroup of M for the same prime. Hence there is an element

y in M such that Px^ = P. Then #y is in the normalizer T of P in C, that is x is

in A/71. Hence C = MT, so that G = Λ'C = NMT = NT. Hence by the minimality

property of C, T = C. We have shown that each Sylow subgroup of M is normal in

C, that is, that M is nilpotent.2 We must prove that M - 1.

If p is a prime, there exists by our assumption a p-Sylow subgroup S of G,

and a complement U of S n Λ in S which is part of C. Since U < Ss ί/ is a p-

subgroup of C. If ζ? is a p-Sylow subgroup of C such that U <^ Q, then £/ is a

complement of Λί n Q in 0. For, let P be a p-Sylow subgroup of G such that

Q <. P. Then there is an element % in C such that

Hence, since 1 = ϋ n N, P = [ P n Λ ] ί/', so that

The condition that C be minimal with respect to the property G = ΛC is equivalent

to the condition Λί = TV n C < _ φ ( C ) . We may infer the nilpotency of M from the nilpotency

oiφ(C) (c.f. § 3 ) .
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For X a subgroup of G, set X — M'X/M'9 where M' denotes the commutator

subgroup of M. Then Q is a p-Sylow subgroup of C, and since M'U c\ M = M'[Un

M] = M\ V is a complement of QnM in C. Hence, since M is abelian, there

exists by part ( i ) of the theorem of Gaschϋtz a complement D = D/M' of M in

C. But then C — MD and M' = M n D. Since M is nilpotent, M ^ 1 implies l ί n D =

Λί' < M = Mn C, that is D < C. Since G = NC = MMD = iVD, this contradicts

the minimality property of C. Hence M = 1, which proves the sufficiency of the

condition.

COROLLARY (Schur's theorem). // N has order prime to its index in G,

then G splits over N.

REMARK. Theorem 1 does not, of course, settle the question of the neces-

sity of the hypothesis that N be abelian for the theorem of Gaschϋtz. 3

The following example shows that in a splitting extension G over /V, not

every subgroup C which is minimal with respect to the property G = NC need be

a complement, even when N is abelian.

EXAMPLE. Let M ^ 1 be an abelian normal subgroup of the group C, and

assume that M is contained in the Frattini subgroup φ(C) of Cfc.f. § 3 ) . Since

φ(C) is nilpotent it will have a center ^ 1; we may take, for instance, M - the

center of φ(C). By a theorem of Artin [2, p. 103] there exists a free abelian

group A of finite rank, and an (infinite) group G such that if we set N = M x A,

then

1. G is a splitting extension of N.

2. G = NC

3. M = NnC.

By the choice of M and C, no proper subgroup of C satisfies 2.

Let now m be the order of M. Since N is abelian, Nm [= the totality of mXh

powers of elements of N] is a characteristic subgroup of /V, and hence is normal

in G. Furthermore, Nm n M = 1. Since N is abelian of finite rank, and since G/N

is finite, as an isomorphic image of the finite group C/M9 G/Nm is finite. Set

G = G/Nm, N = N/Nm and C = NmC/Nm. Since the extension G over N splits,

so does G over N. C is minimal with respect to the property G = NC9 but

Cn /V= MNm/Nm ~M φ 1.

THEOREM 2. For an extension G over N the following five conditions are

That this hypothesis actually is necessary has been shown by Professor
Zassenhaus. See the note at the end of this paper.
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equivalent.

(1) N has order prime to its index in G.

(2) if H is a subgroup of G9 then

( a ) there exists a complement of Nn H in H.

(b) if either H/[N n H] or Nn H is solvable, then any two complements of

N n H in H are conjugate in H.

(3) for each prime divisor p of the order of N9 there exists a p-Sylow subgroup

S of N such that if T denotes the normalizer of S in G9

( a ) there exists a complement of N n T in T.

(b) if H is a nilpotent subgroup of T, then any two complements of N n H in

H are conjugate in H.

(4) if H is a nilpotent subgroup of G9 then

( a ) there exists a complement of Nn H in H.

(b) any two complements of N n H in H are conjugate in H.

(5) if H is a nilpotent subgroup of G9 then there exists a subgroup C of H

such that for each subgroup U of H, ί/ = [ t / n / V ] x [ ί / n C ] .

Proof. Assume that N has order prime to i ts index in G, then clearly the

same is true of the normal subgroup N n H of H, for any subgroup H of G. Hence

H sp l i t s over N n H by the theorem of Schur. Furthermore, by a theorem of

Zassenhaus [ 2 , p . 132] if either H/[N(\ H] or N n H i s solvable then any two

complements for this extension are conjugate in H. Thus ( 2 ) is a consequence

o f ( l ) .

Conditions ( 3 ) and ( 4 ) are immediate consequences of ( 2 ) .

Next we shall prove that ( 3 ) and ( 4 ) each imply ( 1 ) . Assume that the ex-

tension G over /V sat is f ies ( 3 ) , and assume that p is a prime which divides

both the order and the index of N. Then by ( 3 ) , ( a ) there exis ts a p-Sylow sub-

group S of /V, and a subgroup C such that if T denotes the normalizer of S in

G, C is a complement of N n T in T. But G = NT, so that C is a complement of

N in G. Thus [ C : 1 ] = [G:/V], hence since p divides [G:/V], there exis ts an

element x in C of order p. Since x is in T, and since p divides the order of /V,

there exis ts an element z of order p in S n N such that xz = zx. Since x i s not

in N, ^ = U , z ! = U ! x i 2 ! and N n H - { z !, whereby it follows from ( 3 ) , ( b ) ,

that {x \ and {xz \ are conjugate in H. Since this is impossible, ( 3 ) implies ( 1 ) .

Now assume ( 4 ) , and suppose again that p is a prime which divides both

the order and the index of /V. If S i s a p-Sylow subgroup of G, there exis t s by
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( 4 ) , ( a ) , a complement C of S n N in S. Since p divides [ G : N ], there exis ts an

element # in C of order p. Since p divides the order of /V, S n Λ' is a non-trivial

normal subgroup of S. Now a repetition of the construction of the preceding para-

graph leads to a contradiction with ( 4 ) , ( b ) , proving that ( 4 ) implies ( 1 ) . We

have proved the equivalence of the first four conditions.

If H is a nilpotent subgroup of G, ( 2 ) implies the existence of a complement

C of N n H in H, and ( 1 ) implies that the orders of N n H and C are relatively

prime. Now ( 5 ) is a consequence of a property of nilpotent groups. Thus ( 5 )

is implied by the equivalent conditions ( 1 ) and ( 2 ) . Conversely, if S is a p-

Sylow subgroup of C, ( 5 ) implies the existence of a subgroup C of S such that

[/ = [ ί / n i V ] x [ ί / n C ] for each subgroup U of S. But it is well known that this

implies that S n /V and C have relatively prime orders. Hence one of S n /V and

C is trivial. This proves that ( 5 ) implies ( 1 ) , completing the proof of Theorem

2.

3. The Frattini subgroup φ(G) of the group G is the intersection of G with

all i ts maximal subgroups. In this section we shall note a characterization of

those normal subgroups N of G which are contained in φ(G). It is well known

that

( a ) N < φ(G) if and only if G = /VCS C a subgroup of G implies G - C.

Hence part ( i i ) of the theorem of Gaschϋtz has an equivalent statement

( b ) the abelian normal subgroup A of G is contained in φ(G) if and only

if for each prime p there is a p-Sylow subgroup S of G such that S ~[S n A]V9 V

a subgroup, implies S n A = \lG( V n A ). x

Using ( a ) it is easy to verify that

( c ) if M is a normal subgroup of G such that M < N9 then N < φ(G) if and

only ifU <φ(G) and N/M < φ ( G/M ).

Since φ(G) is nilpotent [ 2 , p. 122; this can be proved using ( a ) together

with the first part of the argument of the sufficiency proof of Theorem l ] it will

suffice for the purposes of determining the normal subgroups N which are con-

tained in φ(G) to consider the case in which N has prime power order.

N{i) denotes the ith derived subgroup of N, Λ ' ( θ ) = N, N{l) = N'. For X a

subgroup of G, Π/£(λ) denotes the subgroup generated by all the conjugates to

X in G.

THEOREM 3. Let N be a normal subgroup of the group G, and assume that

N has p-power order, p a prime. Then N < φ (G) if and only if there exists a
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p-Syloiυ subgroup S of G such that for all i >_ 0, S = N ι Vf V a subgroup, im-

plies

Proof, Assume first that N < φ(G). For X a subgroup of G, write X-

yy(* + i)^/yy(/ + l)β

 rf\len jyd) is_an abelian normal subgroup of G with p-power

order. Furthermore, by ( c ) , N < φ(G). Let ζ be the p-Sylow subgroup of G

whose existence is inferred by (b) (indeed, any p-Sylow subgroup will d o 1 ) .

Then S = S//VU + 1 ) , S a p-Sylow subgroup of G. If S = /V ( ι )F, V a subgroup,

then S = W> V. Hence by (b) it follows that W] = UG ( V n Λ^~}). But

) n V = N{i)/N(i+ι) n N(i + ι ) V/NU+ι) = NU+ι)[NU)n V]/N{i+ι\

from which it is.easily verified that

Hence /V(ί) = Λ/(i' + l ) ϊlG ( F n /V(i)). We have proved the necessity of the condition

of the theorem.

Assume conversely that this condition is satisfied. We prove N <_φ(G) by

induction on the order of /V. If N = 1 there is nothing to prove. Otherwise, since

N is a p-group, /V' < /V, and since the condition of the theorem is clearly satis-

fied by N' whenever it is satisfied by N, it follows from the induction hypothesis

that N' < φ(G). S = S/N' is a p-Sylow subgroup of G = G/N'. If V= V/N' is

a subgroup of G such that S = NV, N = N/N', then S = NV. Now the condition

of the theorem implies

H e n c e , s i n c e N i s an a b e l i a n p-group it fo l lows from ( b ) t h a t N < 0 ( G ) . H e n c e

N <φ(G)bγ(c).

4. In this section we assume that N = A is abelian, and consider the problem

of the conjugacy of complements of A in G. A complement C of A in G is in

particular a set of representatives for G over A; C consists of exactly one ele-

ment c(X) from each coset X in G/A. If D is a second complement, d(X) =

D n X, then the function t from G/A to A defined by d(X) = t(X) c (X) satisfies

(1) l = t ( Y ) x tiXYT1 t(X)
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for all X9 Y in G/A. (Since A is abelian, all the elements x in X induce the

same automorphism of A. We write a = ax for a in A).

Conversely, if t is any function from G/A to A which sat is f ies ( 1 ) , then the

totality D of elements d (X) = t (X) c (X) for X in G/A is a complement of A

in £ . Moreover

( 2 ) two complements C and D which are related by t are conjugate subgroups

of G if and only if there is an element a in A such that t(X) = al"X for X in

Let H be a subgroup of G such that A < //, and set m = [ G : / / ] .

T H E O R E M 4. // m is prime to the order of A9 if the function t from G/A to

A satisfies ( 1 ) 3 and if c is an element of A such that t(Y) = c ' for all Y in

H/A$ then there is an element a in A such that t(X) = a for all X in G/A.4

Proof. The function f defined by / ( X ) = t (X) c " ι sat is f ies ( 1 ) , and has

the property that f(Y) =* 1 for all Y in H/A. Choose a system L of left repre-

sentatives for C/A over H/A so that each X in G/A has (uniquely) the form X-

X X_, with λ' in L$ X in H/A. By ( 1 ) we have

1 = f (X)* f (χrι f (X) = f U)- 1 f(χ)

that is/U) = /U). Hence

Taking the product over all Y in L we have

o) /U)m= Π / ( y)"x Π / ( w .
YGL YEL

Since m is prime to the order of A, the mapping Cί :α —

morphism of A (which commutes with every other automorphism oΓA ). Henc

In terms of the cohomology theory of groups this means that the number of classes
of conjugate complements of A in G is the order of the first cohomology group of G/A by
A.

4 This result is a consequence of the 1-dimensional case, whereas (i) of the Gaschutz
theorem is a consequence of the 2-dimensional case, of a general theorem in the co-
homology theory of groups (see B. Eckmann, Cohomology groups and transfer, Ann.
of Math., 58(1953), 481-493.
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Π f(Y) a " 1

YEL j

is an element of A. As Y runs through L, so does XY, hence, applying Cί'1 to

(3) w e h a v e / U ) = b'Xb = bl'X. Thus

Theorem 4 is now proved with a — be.

COROLLARY 1. If m is prime to the order of A$ then two complements C and

D of A in G are conjugate in G if and only if C n H and D n H are conjugate in

H.

Proof. Let t be the function relating C and D. The subgroups C n H and

Dn H are complements of A in II, and are related by the restriction of t to H/A.

If C and D are conjugate in G, then by ( 2 ) there exis ts an element a in A such

that t(X) = a1' for all λ in G/A, and hence in particular for X in ////4. Hence

by ( 2 ) , C n A7 and D n H are conjugate in //.

If on the other hand C n H and D n H are conjugate subgroups of //, then it

follows by ( 2 ) that there is an element c in A such that t(Y) — c ~Ύ for all y

in H/A. Hence by Theorem 4 there exis ts a in A such that ί ( Z ) = α 1 " * for all

X in G/4. Hence by ( 2 ) , C and D are conjugate in G. This proves the corollary.

By part ( i ) of the theorem of Gaschutz the extension G over A spl i t s if and

only if there is for each prime p a p-Sylow subgroup S of G which spl i ts over

S n A. By Theorem 4 we have

COROLLARY 2. Let G be a splitting extension of A. If for each prime p

there is a pSylow subgroup S of G such that any two complements of S n A in

S are conjugate in S, then any two complements of A in G are conjugate in G.

Proof. We must prove that for each function t satisfying (1) there is an

element a in A such that t(X) = al"X for all X in G/A. Let p. be the prime

divisors of the order of A and let /4j be the corresponding primary components of

A (i - 1, 2, . . , k). Then A -Aγ x xAfa and each A}, being characteristic in

A, is a normal subgroup of G. For each X in G/A, t(X) has (uniquely) the

form
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with ίj(/Y) in Ai Define Γ ; ( . 4 J Λ ; ) = t(Λx) for x in G, and let S^ be a p .-Sylow

subgroup of G. We have assumed that Sj may be chosen in such a way that there

is an element b( in A( with

for all y in Sj (indeed, any p .-Sylow subgroup will do). By Theorem 4, there

exists aι in A such that

for all x in G. Hence

whereby

k k k ) ί-Λx

t{Aχ) = y[ti(Ax) = Yla}'Ax= Π c

1 = 1 i = i 1 = 1

for all x in G, with a = Π i = 1 α; an element of τ4.

5. It has been conjectured that if N has order prime to its index in G, then

any two complements of N in G are conjugate. The following theorem shows that

this conjecture is equivalent to

( + ) if G is a group9 and Γ a group of automorphisms of G such that the

orders of Γ and G are relatively prime, then for each prime p9 there exists a

p-Sγlow subgroup of G which is mapped onto itself by every automorphism in Γ.

Thus the theorem of Zassenhaus [2, p. 132] suffices to prove ( + ) in case either

G or Γ is solvable.

THEOREM 5. For an extension G over N such that N has order prime to its

index in G, the following are equivalent statements,

( a ) if C and D are complements of N in G9 then they are conjugate in

\C,D\.

( b ) for each subgroup H of G such that G = NH9 and for each pair C9 D of

complements of NnH in H9 there exists an automorphism a of H such that

C = Da.
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( c ) for each subgroup H of G such that G = NH9 for each complement C of

N n H in H9 and for each prime p9 there exist a p-Sylow subgroup S of N n H such

that C is part of the normalizer of S.

Proof. Clearly ( a ) implies ( b ) . Assume ( b ) , and let H be a subgroup of

G such that G = NH. Let P be a p-Sylow subgroup of N n H, and let T be the

normalizer of P in H. Then H = [/V n H]T. Hence, s ince the order of N n H is

prime to i ts index in H, there exis ts by the theorem of Schur a complement D of

N n H in H which is part of T, that is, which normalizes P. If now C is any

complement of /V n H in H, there exis ts by ( b ) an automorphism of // such that

C-Da. Hence C normalizes the p-Sylow subgroup S = Pa of TV n //. Thus ( b )

implies ( c ) .

Now assume ( c ) , and let C and D be two complements of N in G. Assume

that if { U, V \ is a pair of complements of N in G such that the order of { U9 V \

is l e s s than the order of H = { C9D\, then U and V are conjugate in { U 9 V \. If

/V n H is nilpotent, s ince we have assumed that the orders of N and G/N are

relatively prime, it follows by the theorem of Zassenhaus that C and D are con-

jugate in R. Otherwise, there exists a prime p such that the normalizer in H of

a p-Sylow subgroup of Λ'n // is a proper subgroup of H. By ( c ) there exist p-

Sylow subgroups P and Q of N n H which are normalized by C and D respectively.

There exis ts an element x in H such that P = Qx, and the complement E = Dx of

N in G normalizes P . Thus, if we let T denote the normalizer of P in H, {C9E \ £

T < H. Now it follows by the induction hypothesis that there exis ts an element

y in { C9 E \ such that C - E? = D % ^ . Since both x and y are in H = { G9D\, so

Added in proof. The very interesting fact, that the hypothesis that the ex-

tension be abelian is indeed necessary for Gaschϋtz ' s theorem ( i ) , as s tated in

the introduction of the present note, is shown by the following example com-

municated to the author by Professor Zassenhaus :

Let G be the group with generators /!;&, B(9 Cι (i,k= 1,2) and the defining

relations

} 2 A 2 A 2 - ( A A \2 A A -A A
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1. Jl rC L 2* 1 /£ \ r£ 2, \ 2, 2 \ 2 \ \ 2t 1 ^ 2, 1

The subgroup A generated by the four elements A^ is the direct product of two

quaternion groups with identified centers, thus A; is of order 32. The group N is

normal in G and the subgroup Gγ of G generated by A', B^ and B2 is normal too

such that Gγ/N is abelian of type (3,3). The factor group G/Gχ is of type (2,2).

Thus G is of order 1152.

The group G does not split over its normal subgroup A7. But the factor group

Gγ/N is the 3-Sylow7 subgroup of the factor group G/N such that Gγ splits over

A' with the subgroup generated by Bγ and B2 as representative subgroup. More-

over the factor group generated by N, Cι and C2 over W is a 2-Sylow subgroup

of G/N such that the subgroup generated by Ci A2γ and C2 Ai2 is a representa-

tive subgroup of order 4.
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