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ORTHONORMAL CYCLIC GROUPS

PAUL CIVIN

In an earlier paper [ l ] a characterization was given of the Walsh functions

in terms of their group structure and orthogonality. The object of the present

note is to present a similar result concerning the complex exponentials.

T H E O R E M . Let \An{x)\ U = 0, ± 1, . . 0 < x < 1 ) be a set of complex-

valued measurable functions which is a multiplicative cyclic group. A neces-

sary and sufficient condition that \An(x)\ be an orthonormal system over

0 <C Λ; < 1 is that the generator of the group admit a representation exp {2πi c(x))

almost everywhere, with c(x) equimeasurable with x.

As the sufficiency is immediate, we present only the proof of the necess i ty .

Let the notation be chosen so that the generator of the group is Aι(x), and

An(x) = (Aι(x))n U = 0, ± 1, . . . ) .

The normality implies [ ^ ( Λ ; ) ! = 1 almost everywhere. Hence there is a measur-

a b l e a ( x ) 9 0 < a ( x ) < 1, s u c h t h a t

A i ( x ) = exp ( 2 π i a ( x ))

almost everywhere . L e t b(x) be a function [ 2 , p . 2 0 7 ] m o n o t o n i c a l l y i n c r e a s i n g

and e q u i m e a s u r a b l e with a(x). Also le t

c ( x ) = m \ u : 0 < u < 1, b ( u ) <_ x \ (- oc < % < oc).

The orthonormal condition becomes

exp (277ru b(x))dx = / exp (2 πniy ) dc (y ) ,

J - oo

where the latter integral is a Lebesgue-Stieltjes integral. Thus for any € > 0,
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fb{ί)
80 n = I exp (2 π niy ) dc (v ^

' Jb(o)-e

= / l e x p ( 2 7 r w y ) r f c ( y ) + e x p ( 2 f r r a £ 6 ( 0 ) ) roU : 6 ( * ) = 6 ( 0 ) } ,
Jb(o)

and the latter integral is interpre table as a Riemann-Stieltjes integral.

Integration by parts yields

Γb(ί)
(1) δ 0 > F l = exp (277FM i ( l ) ) — 27Γ7U / c (y ) exp (2πniy )dy .

If / ( y ) = y, 0 < y <_ 1, and / ( y + l ) = / ( y ) , a direct calculation shows that

( 2 ) δ 0 Λ * exp (2TΓ/iί 6 ( 1 ) ) - 2πni f / (y - 6 ( 1 ) ) exp ( 2 z r n i y ) d γ .

Formulas ( 1 ) and ( 2 ) , and the completeness of the complex exponentials,

imply the existence of a constant k such that for almost all y, 0 < y <_ 1,

0, 0 < y < 6 ( 0 )

c(y\ 6 ( 0 ) < y < 6 ( 1 )

0, 6 ( 1 ) < y < 1 .

Since the supremum of c(y) is one, and f (y) has no interval of constancy,

one infers that k = 0, 6 ( 0 ) = 0, and 6 ( 1 ) = 1. Thus c ( y ) = y, 0 < y < 1, which

is equivalent to the proposition that was asserted.
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THE RATE OF INCREASE OF REAL CONTINUOUS SOLUTIONS OF

ALGEBRAIC DIFFERENTIAL-DIFFERENCE EQUATIONS

OF THE FIRST ORDER

K. L. COOKE

1. Introduction. It is the purpose of this paper to prove several theorems

describing the rate of increase, as t—»+oo, of real solutions of algebraic dif-

ferential-difference equations of the form

(1) P ( t , u ( t ) , u ' i t ) , u ( t + l ) , u ' ( ί + D ) = 0 .

In this equation, and throughout this paper, P (t9u9v9 •) denotes a polynomial

in the variables t9 u9 v9 , with real coefficients, and a prime denotes dif-

ferentiation with respect to έ. In order to explain the significance and limita-

tions of these theorems, it is first necessary to summarize the work, by other

investigators, which suggested the present discussion.

In 1899, E. Borel, [ l ] , published a memoir in which he studied the magni-

tude of solutions of algebraic differential equations. His result, as later im-

proved by E. Lindelδf, [4], is quoted here for reference:

Let u(t) be a real function which is defined and which has a continuous

first derivative for all t larger than to, and which satisfies the first order alge-

braic differential equation

(2) P(t,u(t),u'(t)) = 0

for t > t0. Then there is a positive number ks which depends only on P9 such

that

\u(t)\ < exp (tk/k)

for t >_ £Q

It is noteworthy that it is impossible to prove a result of the above type for

higher order equations. For a discussion of this point, refer to Vijayaraghavan,

[ 7 ] .
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484 K. L. COOKE

Extensions of the Borel-Lindelof method to difference equations have already

been effected by Lancaster, [3], and Shah, [5] and [β] . Shah demonstrated

that no theorem comparable to that of Borel and Lindelδf can be obtained for

the class of algebraic difference equations of the form

(3) P i t , u i t ) , u i t + l ) ) = 0 .

For, let git) be an arbitrary increasing function which becomes indefinitely

large as t—» + oo. Shah proved that it is poss ible to construct an equation of

the type ( 3 ) with a real solution uit) which exis t s and is continuous for t >_t0

and which exceeds git) at each point of a sequence \tn\ such that tn — » + o o

as n—>oc. The situation with respect to higher order equations is similar.

Shah did, however, obtain the following weaker resul ts concerning the possible

rate of growth of solutions of ( 3 ) :

There exists a positive number A, which depends only on the polynomial P,

with the following property: if uit) is, for all t >_ to, a real continuous solution

o / ( 3 ) , then there is no number T such that1

I uit) I > e2iAt) for all t > T.

That is, for each such solution uit) there is a sequence tχ$ t2, itn—> + oc

as n —> oo) such that

( 4 ) \uit)\ <e2iAt)

for t — t\, t2 , . If uit) is a real, continuous, monotonic solution o / ( 3 ) for

t >_ to, then there exists a number T >_ £Q such that ( 4 ) holds for all t >_ T.

We shall now turn to a discussion of the c lass of differential-difference

equations of the form ( 1 ) . We first make the following definition.

DEFINITION. A real function uit) will be said to be a proper solution of

a differential-difference equation ( 1 ) if there exis t s a number t0 such that uit)

exists and is a solution of ( 1 ) for all t >_ t0, and such that uit) has a con-

tinuous first derivative for t >_ to.

In view of Shah's resul ts on difference equations, it is not to be expected

that a theorem analogous to the Borel-Lindelof theorem should hold for first

We here employ the notation e2ix)= exp iex ) which was adopted by G. H. Hardy,
[ 2 ] .
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order differential-difference equations. However, it might be expected that a

result like that of Shah could be obtained for equations of the class (1) . This

is not the case, as is shown by the following theorem.

THEOREM 1. Let git) be an arbitrary increasing function which becomes

indefinitely large as t — > + oo. It is possible to construct an algebraic dif-

ferential-difference equation of the form

(1) P ( t , u ( t ) , u'it), uit + 1 ) , u'(t + l ) ) = 0

which has a proper solution u ( t ) which exceeds git) for all t. This statement

remains valid if equation ( 1 ) is replaced by the equation

( 5 ) P(t,u(t),u'(t),u'(t+l)) = Q.

Proof, We shall prove this theorem at once by constructing a suitable ex-

ample. Define a function uit) as follows. Let uit) = gin + 2) + 1 in the in-

terval \_nt n + 1 ] , for n - 0, 2, 4, . ϊn the intervals [n9 n + l ] , where n = 1, 3,

5, , let uit) be any continuous, non-decreasing function which has a con-

tinuous first derivative, and for which

u i n ) = g i n + D + I , a U + l ) = g U + 3 ) + l , u ' i n ) = u ' i n + D = 0.

It is clear that the function so defined satisfies the equation

( 6 ) i t ' ( ί ) i ί ' ( ί + D = 0

for all t > 0. Furthermore, uit) is non-decreasing for all t and uit) > git)

for t >̂  0. Since equation (6) is in the class of equations of the form ( 1 ) , and

in the class of equations of the form ( 5 ) , the proof of Theorem 1 is complete.

This theorem is in sharp contrast to those for algebraic differential or dif-

ference equations. It shows that no bound at all can be placed on the rate of

growth of solutions of differential-difference equations of the form ( 1 ) . The

same difficulty intrudes even if we speak only of monotone solutions.

It is, however, possible to obtain useful bounds on the rate of growth of

solutions of less general classes of differential-difference equations. We ob-

serve first of all that, according to Theorem 1, no results like those of Borel

or Shah can be obtained for the class of equations of the form ( 5 ) . We shall,

however, prove analogous results for equations of the following types:

(7) Pit,uit), u ' ( ί + l ) ) = 0
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( 8 ) P ( t , u ( t ) , u ' ( t ) , u ( t + l ) ) = 0

( 9 ) P ( t 9 u ' ( t ) , u ( t + l ) ) = 0 .

Even for such equations it is not possible to establish a theorem like the βorel-

Lindelδf theorem. This may be seen from the following simple counterexample.

Let git) be an arbitrary real, continuous, increasing function which becomes

indefinitely large as t —» + oo. Let m be any non-negative integer. Let u{t) = tm

for t in the intervals [2n, 2n + 1 ] , n - 0, 1, 2 , . . . . For t in the intervals (2n + 1,

2/z + 2) , n = 0, 1, 2 , . . . , let u ( t ) be defined in any convenient fashion for which

u'(t) is continuous and ui2n + 3/2) > g ( 2 π + 3/2). This function uit) ex-

ceeds g ( ί ) for arbitrarily large values of t, and satisf ies each of the following

equations for all t > 0:

( 1 0 ) U ' ( t + l ) - m ( t + l Γ - ι H i x ( t ) » ί ' π i = O

( I D U ( ί + i ) - ( ί + i ) m ] U ' ( f ) - / H ί ' 7 | - ι ] = o .

Note that ( 1 0 ) is an equation in the class ( 7 ) and equation ( 1 1 ) is in the

class ( 8 ) and ( 9 ) . Furthermore, all the above remarks are correct for m = 0,

in which case ( 1 0 ) and ( 1 1 ) are equations with constant coefficients. The

following theorem has therefore been proved.

THEOREM 2. Let # ( ί ) be an arbitrary increasing function which becomes

indefinitely large as t — > + oc. It is possible to construct a first order algebraic

differential-difference equation of the form

( 7 ) P ( t , u ( t ) , u'(t+ l ) ) = 0

with a proper solution u ( t ) which exceeds git) at each point of a sequence

\tn\ for which tn—> + oc a s n — » o o . The statement remains true if ( 7 ) is

replaced by equation ( 8 ) o r equation ( 9 ) , or by one of the equations

( 1 2 ) / ) ( « ( t ) , u ' ( i + l ) ) = 0

( 1 3 ) P ( i ί ' ( ί ) , « ( ί + l ) ) = 0 .

Although we cannot establish theorems of the ΰorel-Lindelδf type for the

c l a s s e s of equations mentioned above, we have proved several resul ts analogous

to those of Shah. These results are stated in Theorems 3, 5, and 6 of t 3 below.

Moreover, in Theorem 4, s tated below, we have proved a theorem of the Borel-

Lindelδf type for a certain subclass of equations of the type ( 7 ) . No theorems
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are given in this paper for equations with higher order derivatives or differences,

since results like those mentioned above can be obtained only for rather special

classes of such equations.

2. Lemmas. In this section, we shall prove several lemmas which will be

required in proving the theorems of V 3.

LEMMA 1. Suppose that u{t) is, for all t >_ t0} a positive function with a

continuous first derivative. Let Λ and B be two positive numbers for which

B < e . Let C be an arbitrary non-negative number. Suppose that there is a

sequence { τn \ for which τn —> + oo as n —> oo and for which u(τn) >_ e2( Aτn).

Then there exists a sequence \ tn \ for which tn—> + oo as n —» oc and for which

u'(tn + 1) > tC u(tn)
B.n n n

Proof. Assume that u(t) is a positive function with a continuous first

derivative, and that

( 1 4 ) „ ' ( * + 1 ) < ! C u ( t ) B

for all t > T. We shall prove that as a consequence there is a number T2 such

that

(15) u(t) < e2(Λt)

for t >_ T2. This will prove Lemma 1. We divide the proof of (15) into two cases.

Case 1. We assume that B > 1. We may, of course, suppose that T is as

large as is convenient; choose T so large that

(16) β/- ι log T > / - I (; = 1 ,2,3, . . . ) .

This is certainly true for / sufficiently large if log T > 0, and by choosing T

large enough we can ensure that it is true for all /. Then for / = 1, 2, 3, ,

(17) (2T)B}'1 > 2TB3'1 > T + eΐ'1 > T + j .

Having chosen T, define

M' = max u(t), M = m a x (M', 1 ) .

T <t < T+ 1

We shall now prove by induction that
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(18) nit) <MBnf\ (T + j
7 = 0

for T + n < t < T + n + 1 (n = 0, 1, 2, ). This is evident for n ~ 0. Suppose

that (18) has been proved for n = k - 1 (A > 1). Then by (18) and (14)

for T + k — 1 <. £ <^ T + k. Upon observing that the right hand side of inequality

(18) is an increasing function of n, and employing (14) again, we get

u'(t + l)dt

< i / + ( 7 ' + A ) c ( * - l ) , W β * Π ( F

On integrating the first inequality under ( 1 8 ) from J + k - 1 to t, where t < T + k$

and combining with the inequality jus t derived, we obtain

u(t + l) <t(T + k)cMB Π ( Γ + / ) ( c + ι ) β "' ( Γ + fc-l^ί^Γ + A) .

7=o

Replacing t by J + & in the right member of the above inequality, we see that

( 1 8 ) is valid for n — k. This completes the inductive proof of ( 1 8 ) .

We now employ ( 1 7 ) . ( 1 8 ) takes the form

u ( ί ) < [ i f ( 2 ί ) U + l ) ( c + ι ) f = β 2 in log B + log ί ( 1 + n)(C + 1) log ( 2 7 ) + log M \]

for Γ + Λ < t < T + n + 1. Let Λ = max ( 2 Γ , Aί). Then

w ( ί ) < e 2 [ ̂  log β + log (nC + n + C + 2) + log log R ]

ίor T + n <^t <_ Γ + 7& + 1. Since log B < A by hypothesis, ( 1 5 ) follows.
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Case 2. We now assume that B < 1. Using the same method as in Case 1,

we can easily prove by induction that

n

(19) uit) <M Π ( 7 + / ) c + 1

for T + n < t < T + n + 1 (n = 0, 1, 2, . . . ) . Hence

u(t) <M(T + n ) U + ϊ ) { C + ί ) < , W i ( C + l ) ( ί - Γ + l )

for 7 +72 <_ ί < 7 + 72 + 1. ( 1 5 ) follows at once. This completes the proof of

Lemma 1.

LEMMA 2. Suppose that u{t) is, for all t >_ to, a positive non-decreasing

function with a continuous first derivative, and that uit) >_ eiiAt) for t >_ ίo

Let B and C be any non-negative numbers for which B + C < e , and let D be

any non-negative number. Then, given any positive number €$ there exists a

sequence tγ, t2 , (tn — > + co as n — > oc ) such that

(20) u(tn + 1 ) > u(tn)
Bu'(tn)

C

( Λ = 1 , 2 , . . . ) .

(21) t ° u i t n ) < u ' { t n ) < u ( t n ) i + 6

Proof. We divide the proof into two cases .

Case 1. Suppose that u'(t) ^tDu(t) for all sufficiently large t, say for

t >_ to. It will be sufficient to prove the lemma for values of £ so small that

( β + C ) ( l + e ) < e / 1 . Let e be any such number, and let Cί = ( B + C) ( 1 + e ) .

Borel, [ l ] , proved that if a function uit) i s , for all t >_ to, a posit ive, non-

decreasing function with a continuous first derivative, then, given any positive

number e, u' (t) >_ uit) e at most on a set of intervals the sum of whose

lengths is a finite number (which depends on e). This result will hereafter be

referred to as Borel 's Lemma,

If uit) satisf ies the hypotheses of Lemma 2, then by Borel 's Lemma there

is a number T >^ t0 such that u'it) <uit)l + € for all t > T, except for t be-

longing to a set E of intervals of total length less than 1/2. We can now choose

a number r > T such that no point of the sequence r , r + 1, τ + 2, , belongs

to E. It follows that ( 2 1 ) holds for each point tn — T + n. We shall now show
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t h a t ( 2 0 ) h o l d s a t the p o i n t s of an inf in i te s u b s e q u e n c e of t h e s e q u e n c e {τ+ n\

If t h i s i s not t rue , t h e r e i s an i n t e g e r /V s u c h t h a t

u { r + n + 1 ) < u i τ + n ) B u ' ( τ + n ) C for all τι > /V.

This implies that

u{τ+n + 1 ) < u(τ+n)a for rc > /V.

It follows that

u ( τ + N + m ) < e 2 [ m l o g (X + l o g l o g u ( r + N ) ]

for m = 1, 2, 3 , . S i n c e log Cί < A, t h i s c o n t r a d i c t s the h y p o t h e s i s t h a t

u(t) >_ e2(At) for t >_ to. It fo l lows t h a t t h e r e i s an inf in i te s u b s e q u e n c e of

the s e q u e n c e j r + n \ a t which ( 2 0 ) i s v a l i d . T h i s c o m p l e t e s the proof in C a s e

1.

Case 2. T h e a l t e r n a t i v e to the s u p p o s i t i o n of C a s e 1 i s t h a t u'(t) < t u(t)

for a r b i t r a r i l y l a rge v a l u e s of £. We def ine Cί a s in C a s e 1, and a g a i n s u p p o s e

6 so s m a l l t h a t log (X < A. From t h e fact t h a t u(t) >_ e 2 ( ^ ί ) it fo l lows t h a t

u' (t) > t uit) for a r b i t r a r i l y l a r g e ί. By c o n t i n u i t y of u ( t ) a n d u' (t), u' (t) <

tDu(t) in o p e n i n t e r v a l s , a n d u ' ( ί ) > ί uit) in c l o s e d i n t e r v a l s . L e t t h e

o p e n i n t e r v a l s be

(au bι\ (a2$b2 ) , • • • , (an, b n ) , .••

(αi >_ to) and let the closed intervals be

[ bί9 a2 X [ b2, a3 ], , [ bn, α^ + i J, .

Note that an —» + oc and bn —» + oc, and that

(22) u'(an) = a»u(an) a n d u'(bn) = b £ u ( b n ) .

By Borel 's Lemma, u'(t) <u(t)1 € for all t except for ί in a set E of

open intervals of finite total length. Let En be the subset of E contained in

[bnfan + ι] and let Ln be the sum of the lengths of the intervals of En. Then

lim Ln — 0 as n —»oo. We shall prove that there are arbitrarily large values of

n for which there is at least one point tn in the interval [bn, α n + i l such that

u(tn + l) ^ u ( t n ) B u ' ( t n ) C
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and such that tn is not in En The proof will be by contradiction. Assume the

contrary. Then there is a positive integer N such that, for every n >_ N,

(23) u(t + 1 ) < u(t)Bu'(t)C

for a l l t w h i c h a re in ίbn9an + ι] b u t not in En.

F i r s t we s u p p o s e t h a t 0 < OC <_ 1. S i n c e u(t) >^ β2^At), we may s e l e c t

a n i n t e g e r p >_ /V s u c h t h a t

u{bn)
e > b® for all n > p .

Equations ( 2 2 ) therefore imply that

u ( bn) > u' ( bn) for all n >^ p .

Hence bn is not in En if n >_ p. Consequently ( 2 3 ) implies that

u ( b p + 1 ) < u ( b p ) B u ' { b p ) C < u ( b p ) a < u ( b p ) .

But u{t) is non-decreasing. Thus we have reached a contradiction, and (23)

cannot be true if 0 < α < 1.

Suppose, then, that Cί > 1. Just as before, we may select an integer p >̂  N

such that bn is not in En for n >_ p. We also choose p so large that Ln < 1 for

n >_ p and so large that

(D+l)ζD

 mb

(24) max < α p log u ( bp ) .
ζ > bp cίζ log α

This is possible because the right-hand member becomes indefinitely large as

p — > + o c , since u(t) > e 2 ( ^ ί ) and A > log Cί, and because the maximum in

the left member is finite. Define cp = bp. We shall now employ an inductive

method to establish the existence of a sequence cp) cp+ι, Cp+2, , for which

(25) l o g i t ( c p + i ) < α C p + i ' C p + Σ δ M o g u ( C p )

(i = 0, 1, 2, ), where the summation is over all j >_ p for which bj <_ cp + ι.ι,

and where the δy are defined below. In the first place, it is clear that (25) is

true for ί = 0. Suppose that we have established the existence of points cp+ι,

cp + 2> , cn+A;-1 (A: >_ 1) for which ( 25) holds. There are now two possibilities:
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( a ) One possibil ity is that the point Cp+k-i l ies in an interval [ ^ α ^ + i l

for some value of q. If this is so, Cp+ji.ι may lie in Eg, or it may not. Let eq ι

be the smallest non-negative number such that Cp+fo. t — eqy\ * s i n t^σ> α σ + i ]

but not in Eg. Such a number exists , s ince bg is not in Eg. Then, by ( 2 3 ) ,

) ll'll' ( C p + & . i - 6q f

By B o r e l ' s Lemma and the fact t h a t uit) i s n o n - d e c r e a s i n g , t h i s g ives r i s e to

Since £gfι < Lg < 1, the points Cp+^.i and Cp+^.i + 1 — £qfι cannot lie in the

same interval of Eg. If Cp + k-ι + 1 - 6 ^ 1 > α^ + i, we define Cp+k= Cp+^.i +

1 — eq, l If n°t> w e proceed as follows. Let €qf2 be the smallest non-negative

number such that Cp+^.i + 1— €„ ι — e^ 2 is i n [bq, a,q + ι] but not in Eg, Using

( 23) again, we find that

u(cp+k.ι + 2 - 6gfi - 6gf2) < U ( Cp + ^ . 1 + 1 - 6 ^ 1 - 6 9 , 2 ) α

and therefore that

log zi(cp+fc.i + 2 - e 9 > i - 6qf2) < a2 log w ί c p + ^ . i ) .

We continue in this manner, obtaining a sequence of points

Cp+k-l » Cp+k-l + 1 ~ eq, 1 > c p+/c-l + ^ - β ^ 1 - £q,2 9 ' ' ' 9

no two of which can lie in the same interval of Eg. Let

cp+kΊ + r ~ eq,l ~ ' •• ~ eq,r

be the first point in this sequence which is larger than α^ + i; such a point must

.exist since

δq = 6gf 1 + e ^ 2 + + ^ , r < Lq < 1 .

Define

cp+k = + 6 6

T h e n
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lozu(cp+k) < aΓ l o g u(cp+kmi) = oίCp + k~Cp+k'1 + ^ l o g u

C o m b i n i n g t h i s r e s u l t wi th ( 2 5 ) for ι = k - 1, we find t h a t ( 2 5 ) h o l d s for ί = k,

with t h e c h o i c e of Cp+fc made a b o v e .

( b ) T h e a l t e r n a t i v e to ( a ) i s t h a t Cp+fr.γ l i e s in an i n t e r v a l (aq, bq) for

some v a l u e of q. ( I n t h i s c a s e k >_ 2, s i n c e cp - bp.) Now u'(t) < tD u{t)

for a l l t in t h i s i n t e r v a l . H e n c e , by i n t e g r a t i o n ,

( 2 6 ) u(bq) < ϋ

In this case, we define Cp+fo = bq, We shall now show that, with this choice

of Cp+k, (25) is satisfied for i - k. From the extended theorem of the mean and

the inequality (24) we can deduce

This inequality will still be true if, in the right member, we place the additional

factor

Σs,
α ' ,

where the summation is over all / >_ p for which bj < Cp+/C.2 Using this result,

( 26), and ( 25) for i = k - 1, we obtain

log u(cp+k) < c°:i - c ^ + l o g u ( C p + A . ι )

The inequality ( 2 5 ) for i ~ k is an immediate consequence.

This completes the proof that there is a sequence of points Cp+i for which

( 2 5 ) is valid. It is clear that cp+i—> + oc as i —»oo. Since the sum of the

δj (/ = 1, 2, •) is no greater than the sum L of the lengths of all the intervals

of E,

log u ( t ) < a Cp log u ( Cp) - exp [( t - cp -f L) log Cί + log log u(cp)]

for t - Cp+i ( i = 0, 1, 2, ). Since log Cί < A9 it is a consequence of the above

inequality that there is a positive integer / such that log u{t) < exp (At) for

t = Cp + i {i > / ) . This contradicts the hypothesis of Lemma 2. Therefore ( 2 3 )

cannot be true if (X > 1. Hence, no matter what the value of (X, there are arbi-

trarily large values of n for which there is at leas t one point tn in the interval
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[bn9 an + ι] such t h a t

u(tn + l) >_uitn)
Bu'itn)

C,

a n d s u c h t h a t tn i s n o t i n E n . S i n c e tn i s n o t i n E n 9 u'{tn) ^ u i t n ) 1 * 6 f o r

e a c h s u c h t n . S i n c e tn l i e s i n [bn9 an + ι], w e h a v e u'{tn) >_tΌuitn). T h i s

completes the proof of the lemma.

LEMMA 3. Suppose that uit) is, for all t >_ ίO ί α positive function with a

continuous first derivative, and that uit) >^e2iAt) for all t >_ t 0 . Let C be

any non-negative number less than e . Then there is a sequence t\9 t2 >

( t n — > + co as n — > oo) such that

uitn + l) > u ' ( t n ) C , u'(tn) > e t n .

Proof. F i r s t we s u p p o s e that there i s a number T >^ t0 s u c h t h a t u'it) >_ eι

for t >_ T. Then uit) i s non-decreas ing for t >_ T, and the r e s u l t follows a t

once from Lemma 2.

On the other hand, s u p p o s e t h a t u'(t) < el for arbi trar i ly large v a l u e s of ί.

Since uit) >_ e2iAt), u'it) > e for arbitrari ly large v a l u e s of t. Therefore

there i s a s e q u e n c e of numbers t\f t2$ itn—> + oo a s n—»oo) such that

u' itn) = exp itn ). There e x i s t s a p o s i t i v e integer N such that

u i t n + D > e 2 l A ( t n + l ) \ > i e t n ) C = u ' i t n ) C

for n >_ N. This completes the proof of Lemma 3.

3. Theorems. We can now state and prove the theorems alluded to in the

last paragraph of the introduction. The first of these is the following.

THEOREM 3. Consider any equation of the form

(7)

There exists a positive number Λf which depends only on the polynomial P9

with the following property: to each proper solution uit) of ( 7 ) there corre-

sponds a sequence t\9 t2> ( t n — > + oo a s n — > oo) such that

( 4 ) | M ( ί ) | < e2iAt)

for t - tn in ~ 1, 2, 3, ). That is9 if uit) is a proper solution of%i7) then there
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i s n o n u m b e r T > 0 f o r w h i c h \ u ( t ) \ >_ e 2 ^ A t ) f o r a l l t >_ T.

Proof. Equation ( 7 ) may be written in the form

Σ, Σ Σ
1=0 /=0 /c = 0

where

The aijk are real numbers independent of t. Among the terms Ί^ there is one

term Tpqr se lected in the following way:

( 1 ) Choose r — K.

( 2 ) Choose q to be the greatest of the values of j among all the terms T(jr .

( 3 ) Choose p to be the greatest of the values of i among all the terms I ^ Γ .

The term Tpqr so defined will be called the principal term.

Except for constant factors, the ratios Tijk/Tpqr a r e ° ί the following three

possible types (excluding the ratio Tpqr/Tpqr):

( a )

where ΓQ and rγ are rational numbers and r > k.

ί2 ]q->
(b) —

where Γ2 is a rational number and q > j.

( c ) tf"P

where p > i. Let R be the least non-negative number which is greater than or

equal to the maximum value of ri for all ratios of type ( a ) . Let A be any posi-

tive number such that e > R.

Now suppose that u(t) is a proper solution of ( 7 ) and that u{t) >_

for t >_ T. Choose B so that R < B < e . I t follows from Lemma 1 that there

exists a sequence { tn\ for which tn —> + oo as n —»oo and for which u' (tn + l)>

uitn)
B. For each value t = tn9 the function u(t) sat is f ies not only equation
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(7), but also the equation

/ J K J

t 2 8 ) ΣΣΣr=°
i-0 ; = 0 k=0 pqr

Since uit) >_ e2iAt), all ratios of types ( b ) or ( c ) approach zero as tn —» + GO.

Each ratio of type ( a ) is bounded by

' « ( * ) *

uit)1

r-k

when t — tn, for appropriate values of ΓQ and k. Since B > R and r > k, each

such ratio approaches zero on the sequence { tn}. It now follows that we may

find a positive integer N such that the sum of all ratios Tij^/Ίpqj is less than

one in absolute value when t = £#, whereas Tpqr/Tpqr = 1. Thus ( 2 8 ) cannot

be satisfied at the point tf^ This contradiction shows that a proper solution

uit) of ( 7 ) cannot satisfy uit) >_ e2iAt) for all t >_ Ί.

Moreover, a proper solution uit) of ( 7 ) cannot satisfy uit) <^ — e2iAt)

for all t >_ T. For if it could, the function U it) = - uit) would satisfy Uit) >

e2iAt) for t > T and would be a proper solution of an equation of the type ( 7 ) .

We have just shown that this is impossible. Since a proper solution is con-

tinuous, this completes the proof of Theorem 3.

The following theorem gives a much stronger result than does Theorem 3,

but for a smaller c lass of equations.

THEOREM 4. Let uit) be a non-decreasing or non-increasing proper solution

of an equation of the form

I

( 2 9 ) 2 1 aiLKtϊuit^u'it + Ό* + 2^ aijkt
iu{tYu'(t+ 1 ) A = 0 ,

wherein the a^j^. are constants and the latter summation is a triple summation

over the ranges i = 0, 1, , /; j = 0, 1, •••,/; k - 0, 1, , K - 1. ( L may be

greater than /, equal to /, or less than J.) Then there exists a number A > 0,

ivhich depends only on the form of (29), and there exists a number T > 0, which

depends on (29) and on uit), such that

(4) \uit)\ < e2iAt)
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for all t > T.

Proof. The method used in the proof of Theorem 3 for selecting the principal

term Tpqr leads to the choice p = /, q = L, r = K ίor the equation ( 2 9 ) . Except

for constant factors, the rat ios Ύij]i/Ύpqτ are of the following two poss ib le types

(excluding the ratio Tpqr/Tpqr):

( a )

where r 0 and r\ are rational and K > k.

where / > i. Define R, A, and B as in the proof of Theorem 3. Let C be any

positive number for which C/2 is larger than the maximum value of r 0 for all

ratios of type ( a ) .

Now suppose that u(t) is a proper, non-decreasing solution of ( 2 9 ) for

which u(t) >_ e2(^.1) for a sequence { τn \ of values of t for which τn —» + 00 a s

n—> 00. It follows from Lemma 1 that there exis ts a sequence \ tn\ for which

tn—> + 00 and for which u' ( t n + 1) > tR u ( t n ) . For each value t = tn, the

function u(t) sat is f ies not only equation ( 2 9 ) , but also the equation ( 2 8 ) ob-

tained by dividing by the principal term. But for t = tn all ratios of type ( b )

approach zero as n —> 00. Each ratio of type ( a ) is bounded by

t C / 2 u ( t ) R

t C u ( t ) B

K-k

S i n c e B > R a n d K > ks a n d s i n c e u(tn)—» + 00 a s tn—»+oo, e a c h s u c h

r a t i o a p p r o a c h e s z e r o . We t h u s o b t a i n t h e s a m e c o n t r a d i c t i o n a s in t h e proof of

T h e o r e m 3. No s u c h s o l u t i o n u(t) c a n e x i s t . T h e r e f o r e to e a c h p r o p e r non-

d e c r e a s i n g s o l u t i o n u(t) t h e r e c o r r e s p o n d s a T > 0 s u c h t h a t | w ( ί ) | < β 2 ( / 4 ί )

for a l l t > T.

If a p r o p e r , n o n - i n c r e a s i n g s o l u t i o n u(t) e x i s t s for w h i c h u(t) £ - e2(At)

for t = τn ( n = 1, 2, . ) , w h e r e τn —» + oc a s n — > 00, we de f ine U ( ί ) = - u(t),

and o b t a i n t h e s a m e c o n t r a d i c t i o n . T h e r e f o r e t o e a c h p r o p e r , n o n - i n c r e a s i n g

s o l u t i o n u(t) t h e r e c o r r e s p o n d s a Ί > 0 s u c h t h a t | w ( ί ) | < e2(At) for a l l

t >_ T. T h i s c o m p l e t e s t h e proof of T h e o r e m 4.

Our n e x t t h e o r e m i s a s f o l l o w s .
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THEOREM 5. Consider any equation of the form

( 8 ) P(tfu(t),u'(t),u(t + l)) = O.

There exists a positive number A, which depends only on the polynomial P>

with the following property: to each proper non-decreasing or non-increasing

solution u(t) of ( 8 ) there corresponds a sequence t\, t2, (tn—> + 00 as

n —» 03) such that

( 4 ) \ u ( t ) \ < e2(Λt)

for t = tn (n = 1, 2 , . ) . That is, if u(t) is any proper non-decreasing or non-

increasing solution 0 / ( 8 ) , there is no number T > 0 for which \u(t)\ >_ e2(At)

for all t >_ T.

Proof, Equation ( 8 ) may be written in the form

H I J K

Σ Σ Σ Σ τhiik-o

Λ=o ί=o 7=0 k=0

where

T h i j k = a h i j k t h u ( t Y u ' i t ) ' u ( t + l ) k .

The ahijfc are real numbers independent of ί. We select a principal term TpqΓS in

the following way. Let S be the set of all terms Thijk* Let S t be the subset of

S consisting of those terms for which k = K. Let Mi be the maximum value of

i + j for all terms in S l β Let 52 be the set consisting of those terms of Si for

which i + j = M\. Let M2 be the maximum value of j for all terms in S 2 . Let

S3 be the set containing those terms of S2 for which j — M2. Let Λ/3 be the

maximum value of h for all terms in S 3 . There is a unique term in S3 for which

h = M3. This term will be called the principal term. We shall use the symbol

Tpqrs f o Γ it.

Except for constant factors, the ratios Thijk/Tpqrs are of the following

possible types (excluding the ratio TpqΓS/TpqΓS):

t u\t) u
( a )

u(t+l) I

where ΓQS Γ I , and τ2 are rational numbers and s > k.
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(b)

where q + r > i + /. Since i s /, q9 and r are i n t e g e r s , terms of type ( b ) fall into

one of the following two s u b - c l a s s e s .

u'{t)m+n

where m is an integer, h — p is an integer, n is a positive integer, and m + n is

a non-negative integer.

( 2 )
t3u'(t)

Lω 1 + Γ 4

m

where m and n are positive integers, h - p is an integer, r 3 is a rational number,

and Γ4 is a positive rational number.

( c )
Puit)

u'it)

where re, is a rational number and r > /.

(d) &P

where p > h.

Let Ro be the maximum value of Γo for all ratios of type ( a ) . Let R' be the

maximum value of rL for all ratios of type ( a ) , and let Rι = max ( 0 , R^). Let

/v' be the maximum value of Γ2 for all ratios of type ( a ) , and let R2 — max

(0, β p . Let A be any number such that e > ^ i +/?2 Select any numbers B

and C for which B > R\, C > R2, and B + C < e . Let /?3 be the maximum

value of Γ3 and let M be the maximum value of m for all ratios of type ( b 2 ) . Let

R4 be the minimum value of r$ for all ratios of type ( b 2 ) . Let e be any positive

number less than /v4/2. Let R^ be the maximum value of Γ5 for all rat ios of

type ( c ) , and let R$ = max (0 , R$). Select any number D for which D > R5.

Now assume that there exis ts a proper, non-decreasing solution nit) of ( 8 )

for which uit) >^ e2(At) for all t >_ ίo By Lemma 2 there exis ts a sequence

{ tn ] such that ( 2 0 ) and ( 2 1 ) are satisfied. For each value t = tn, uit) sat is f ies

not only equation ( 8 ) , but also the equation
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h-0 /=o

N o w s i n c e uit) >_ e2iAt) a n d u' it) >_ tDuit) w h e n t - tn, a l l r a t i o s of t y p e s

( b l ) , ( c ) , a n d ( d ) a p p r o a c h z e r o a s tn—» + oo. A l s o , e a c h r a t i o of t y p e ( a )

i s , a c c o r d i n g t o ( 2 0 ) , b o u n d e d b y

tRou(t)Rιu'(t)R2 s-k

u(t)Bu'(t)C

when t = tn; and each ratio of type (b2) is, according to (21), bounded by

vω
uit) l + 2 e

R3 // \
ί U it)

u'it)uitY

when t — tn. Since B > R\ and C > R2, all these ratios tend to zero as tn—> + oo.

This conclusion yields a contradiction, just as in the proofs of the earlier

theorems. Therefore no such solution uit) can exist.

The assumption that a proper, non-increasing solution uit) sat is f ies uit) <^

- e2iAt) for all t >_ t0 may be shown to lead to a contradiction by defining

The conclusion stated in Theorem 5 follows.

Our final theorem is the following.

THEOREM 6. Consider any equation of the form

(9) Pit,u'it), u(t

There exists a positive number A, which depends only on the polynomial P, with

the following property: to each proper solution uit) of ( 9 ) there corresponds a

sequence tχ9 £2* i^n — > + <x> as n — > 00) such that

( 4 ) \uit)\ < e2iAt)

for t - t n in = 1 , 2 , ) . Γ Λ α ί i s , if uit) is any proper solution of ( 9 ) , there is

no positive number T for which \uit)\ >_ e2iAt) for all t >_ T.

Proof. Equation ( 9 ) may be written in the form ( 2 7 ) , where
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The principal term TpqΓ is selected as follows:

(1) r=K;

(2) q is the greatest of the values of / among all terms T(jr;

(3) p is the greatest of the values of i among all terms TiqΓ,

By using Lemma 3, the proof of Theorem 6 may now be completed in much the

same way as before. We omit the details.
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LINEAR FUNCTIONAL EQUATIONS AND INTERPOLATION SERIES

PHILIP DAVIS

1. Introduction. The question of obtaining complete sets of solutions for a

given linear partial differential equation is of the greatest interest from the

theoretical as well as from the computational point of view. For constructing

such sets, several methods of considerable generality have been proposed.

Thus, for instance, Bergman [3] has introduced an integral operator which pro-

vides a means for the generation of complete sets when the differential equation

is of the second or the fourth order. Extensions may be made to higher orders.

By means of Bergman's operator, the space of analytic functigns of a single

complex variable is mapped upon the space of solutions of the given differential

equation, and the process yields a generalization of the operator Re in the case

of harmonic functions.

Complete sets of solutions may also be found by a method which is analo-

gous to Runge's method of approximation in the theory of analytic functions. A

description of this may be found in [6, p. 282]. This scheme has the practical

drawback of requiring a knowledge of a fundamental singularity for the differ-

ential equation, a function which is known explicitly for but few differential

equations.

In the present paper, we adopt a different point of view and study possible

representations of solutions of linear functional equations of a certain class,

and the generation of complete sets of such solutions by means of generalized

interpolation series. By this is meant a biorthogonal series of the form

n-0

Here ί Ln \ is a sequence of linear functionals. When each Ln is a point or a

linear differential operator, then the series (1) reduces to a classical inter-

polation series. Our method is, essentially, to reduce the problem of the solution

of the linear functional equation to a problem involving a denumerable infinity
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of interpolatory conditions. An interpolatory procedure then yields an operator

which may be cast into integral form, and which maps an appropriate space of

functions onto a subspace of solutions.

In order to carry out this method with ease, it is convenient to deal with

Hubert spaces H of functions, H being supposed to possess a reproducing

kernel [cf. 5, l ] , to restrict our basic functional equations to those possessing

certain boundedness properties with respect to H, and to consider only solu-

tions which lie in H. These assumptions will cause no difficulty in many in-

stances where the existence and regularity of solutions may be known before-

hand from independent considerations. Our work, therefore, falls mainly within

the region of representation theory.

It is our principal aim to construct interpolation series which converge in

preassigned regions to solutions of linear functional equations, and, by way of

corollary, to construct complete systems of solutions. This is carried out in

§§2-4. In § § 5 and 6 we discuss some related topics, while in the final sec-

tions we take up the problem of systems of equations. The work is applicable

to linear differential equations, both ordinary and partial, in an arbitrary number

of variables, or of systems of such equations.

2. Reduction to an interpolatory problem. For the sake of definiteness,

but realizing that restrictions other than the ones about to be set forth may

prove useful in other circumstances, we shall deal with n complex variables

Zj =x + iy. (j = 1, — , 7z),

and shal l designate by B a fixed 2^-dimensional region in the space Z = ( z i , ,

zn) of the n complex variables. We shall designate by L2(B) the c lass of

functions / which are single-valued analytic functions of z9 are regular in B,

and are such that

-L( 2 ) | | / | | 2 = / I / I 2 dω < oc; dω = dxx •• dxn dγι dyn .

It may sometimes prove expedient to introduce a weight function in ( 2 ) . By L,

we shall designate a fixed l inear operator defined on L 2 ( β ) and with the

property that L(f), / G L 2 ( β ) , is regular analytic in B. Additional conditions

on L will be required below. We shall be concerned with representations of

solutions of c las s L2(B) of the functional equation

( 3 ) L ( / ) = 0 .
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A principal application will be the case in which L is a partial differential

operator of the kt\\ order:

(4 ) Uf)'. . Σ . " I . * . - , ' - . , n S j Ά i n

 + " "
^ 1 "^2 "̂  ~^~ ijι~k uZ OZ OZ

1 2 U

where the + ••• in ( 4 ) indicates the presence of partial derivatives of order

< k. If now all the coefficients in ( 4 ) are regular in B9 then so also will L{f)

be regular in B. It is to be remarked that the case n = 1 which leads in ( 4 ) to

an ordinary differential equation is not excluded.

Let { Ln \ (n = 0, 1 •• ) be a sequence of linear functionals each of which

is defined over the set R of functions which are regular in B and which p o s s e s s

the following two additional properties:

( a ) The set \ Ln } is complete 1 for R; that is, if / G R and Ln(f) = 0 U = 0,

1, . . . ) , then f= 0.

( b ) Each linear functional Ln = Ln{L) is bounded over L (B); that i s ,

for each k9 there exis ts a positive constant Mk such that

( 5 ) \Lk(f)\ <Mk

for al l feL2(B).

In connection with (b )9 let us observe that the composite operator

L n ( / ) s Ln{L(f))

i s a l i n e a r f u n c t i o n a l from L (B) onto t h e complex n u m b e r s .

Example. L e t L be the d i f ferent ia l o p e r a t o r ( 4 ) with c o e f f i c i e n t s r e g u l a r

in B. Set

d - - +mn

(6) M/)
n m l n m 2 rι m n

(72 f OZn •• OZ

where k — k ( m 1 ? πi29 , mn ) refers to a fixed indexing of the n-tuples of non-

negative integers m ^ m 2 ? 9 mn9 and where the point Z * = (z*$ z * ? . . . ? z * ) is

interior to B. It is clear that condition ( a ) holds for the select ion ( 6 ) . Let us

Banach [2, p. 42J calls such sets total.
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next examine Ln, which is ( 6 ) acting on ( 4 ) . In this case Ln(f) is a finite

linear combination with constant coefficients of mixed partial derivatives of

/ evaluated at Z = Z * . To show that condition ( b ) is satisf ied, it suffices to

show that any linear functional of the form ( 6 ) , with Z * interior to B9 is bound-

ed over L (B), This is a consequence of the fact that the functionals ( 6 ) have

a representation as Cauchy integrals with the path of integration lying in B,

and hence are applicable term by term to any series of analytic functions which

converges uniformly in a neighborhood of Z * . Now let

φm(Z) = φ m (zuz2,-.-,zn)

b e a c o m p l e t e o r t h o n o r m a l s y s t e m f o r L 2 ( B ) . E a c h f E L 2 ( B ) p o s s e s s e s a

F o u r i e r e x p a n s i o n

( ? ) / ( z ) = Σ<*nΦn(z) , Σ , I « » I 2 = I I / Ί Γ < < * .
7Z=0 72=0

convergent uniformly in every closed bounded subregion of B. Hence

(8) _

the series (8) converging for all selections an with Σ Λ = 0 | an \2 < oo. By a

lemma of Landau, this implies that

( 9 ) Σ \ L k ( φ n ( Z ) ) \ 2 < c o ,

n=0

and the Schwarz inequality applied to ( 8 ) yields
oo

d o ) \Lk(f)\2 < H / I Γ Σ \Lk(Φn)\2>

This establ i shes ( b ) .

For analytic functions of a single complex variable, complete s e t s of func-

tionals {Ln\ of a wide variety are known. We can, for instance, replace ( 6 )

(in the 1-dimensional c a s e ) by

( 1 1 ) Lk(f) =f(Zk); lim Zk=Z*;ZkiZ* interior to B.
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If we are dealing with differential equations with nonconstant coefficients,

such a selection may reduce the complexity of the subsequent formal work. The

points Zβ need not have an accumulation point interior to B as is suggested by

(11), but, as in the Blaschke theory for the unit circle, may only have a weak

accumulation of points on the boundary. In the theory of analytic functions of

several complex variables, questions of the completeness of linear functionals

are largely uninvestigated However, certain sets in addition to (6) are known.

Thus, for example, we may select the set (11) with the added restriction that

the points Z^ do not lie on an analytic hypersurface [10, p. 39].

The functionals (6) and (11) are the usual "point" functionals met in

interpolatory function theory. However, complete sets of integral functionals

usually associated with orthogonal expansions may also be employed here.

Within an L 2 theory, for complex analytic functions the distinction between

these two types is weak, and persists only in certain discussions [ 8 ] ,

Under the foregoing hypotheses, we have the following result.

T H E O R E M 1. The linear functional equation L{u) — 0 possesses a non-

trivial solution of class L2(B) if and only if the set of functionals { L n \ is

incomplete for L (B).

Proof. S u p p o s e f i rs t t h a t \ Lfc} i s i n c o m p l e t e . T h e n t h e r e e x i s t s an / € L (B)

which d o e s not v a n i s h i d e n t i c a l l y and such tha t L / f ( / ) = 0 ( k = 0 , 1 , ) . T h a t

i s , Lfci / , ( / ) ) = 0 for k = 0 , 1 , . By h y p o t h e s i s , L (f ) i s r e g u l a r in B. S ince

therefore { L& i i s comple te for the c l a s s of r e g u l a r func t ions in B9 we mus t h a v e

L ( / ) Ξ O , C o n v e r s e l y , l e t t h e s e begin a n o n t r i v i a l f G L2{B ) s u c h t h a t L ( / ) Ξ O

in B. T h e n

so that the incompleteness of { L^ \ follows.

In this way, the consideration of the functional equation L{f) = 0 may be

reduced to a consideration of the denumerable infinity of interpolation condi-

tions of the t y p e 2

£*(/) = o U = o,i,...).

It is frequently of importance to be able to solve this equation subject to the

auxiliary conditions

2 Interpolation problems of this type, where the functionals involved are point func-
tionals have been considered in Bergman, Memorial Sciences Math., vol. 106, pp. 46-48.
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(12) An(f) = 0 U = 0,l,2,. . ),

where An designates a linear functional which we shall again assume is bounded

over L2(B). Let now \ Ln\ he an augmented set of linear functionals which in-

cludes both the sets \Ln\ and {J4 Λ } , but only these; that is, each Ln is either

an Ln or an An, while every Ln and every An is some Ln. We may now state

the following result.

T H E O R E M I 7 . The linear functional equation ( 3 ) , under the auxiliary con-

ditions ( 1 2 ) , possesses a nontrivial solution of class L (B) if and only if the

set of linear functionals { Ln } is incomplete for L2 {B).

Thus it appears that, from our present point of view, the role played by the

auxiliary conditions (12) is indistinguishable from that of the functional equa-

tion itself. In the notation used later, the circumflex A will indicate the pres-

ence of auxiliary conditions; that is, we deal with the equation (3) and derive

from it a set of functionals { Ln j , but when auxiliary conditions are present,

the set { Ln \ will be augmented to yield { Ln }. It should also be observed that,

in eigenvalue problems, the operator L may involve a parameter λ. In such

cases, the functionals Ln and Ln will also involve this parameter.

3. Representation of solutions. We reproduce here, for convenience of

reference, the following theorem on double orthogonality which was established

in a previous paper [12],

THEOREM 2. Let [L^] be a set of linear functionals each of which is

defined and bounded over L2(B) The set { Lfc \ will be assumed independent.

There then exists a set of functions \φ£(Z)} {k = 0 , 1 , ••) and a set of linear

functionals \ Lf \ ( k = 0 , 1 , ) which possess the following properties:

( a ) Each φΐ is of class L2 (B) and the set is orthonormal over B:

(13)

(b) Each L | is a finite linear combination of the functionals

k

(14) L* =
p = 0

for an appropriate set of constants
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(c ) The sets { L? \ and { φf \ are biorthonormal:

(15) ψΦV-*ik'

(ά) For all f£L2(B),we have

(16) LΠf)- I fφξdω.

(e) The functions φt maγ be obtained bγ taking the set

Φn(Z) = Ln>ΰKB{Z,W) U = 0 , l , . . )

and orthonormalizing them by the Gram-Schmidt process.

( f ) The set \φ^\ is complete for L (B) if and only if the set \ Lfc \ is

complete forL2{B),

In (17),

KB(Z;W) = KB( zl9z2 , -,zn; wι, w2 , . . , wn )

designates the Bergman kernel function for the domain B, and in our notation

an asterisk * used with the symbols for either functions or functionals indicates

that the corresponding set of functions or functionals is orthonormal. Starting

from a given B and a given ordered set ί L& }, the sets { Z/| \ and { φ£ \ are de-

termined uniquely, and we shall speak of them as being the biorthogonal sets

associated with { L^ \ and B.

The inner products

(18) (Φi>Φj)= J ΦtΦj dω,

which occur in the orthonormalizing process, may be easily evaluated in terms

of KB{Z; W). We have, from (16), (17), and the orthonormal expansion for KB,

(19) IΦrΦ^-L^U-i-K^Z W)}.

If we introduce the determinants

(20) Dn = \{φi,φj)\ ( i , / = 0 , l , . . , n ) ,

3 The notation Ln^ means that Ln is to be applied to Kβ as a function of w.
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(21)

φo(Z), , φn(Z)

while

(22) α B , = ( - 1 )'(/>„-iCn

^ - l ' Φn) *

In view of the orthonormality of the functions φ£9 we may form the kernel

function

(23)
h=o

φ$(Z)φΠW),

the series (23) converging uniformly and absolutely for Z and W confined to any

closed bounded subset of B x B and defining there an analytic function of
zι» Z2s'"9zn a n ( l a n anti-analytic function of wι9 w2$ 9 wn H the system

{ φ% \ is complete for L2(B), then Kj must coincide with Kβ. If auxiliary con-

ditions are present, we replace (23) by

(23')
k-0

where { φ£ \ and { L^ 1 are the biorthonormal sets associated with { L^ ! and B

Combining this observation with Theorem 1, we have the following result:

THEOREM 2. The functional equation ( 3 ) (augmented9 possibly, by
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auxiliary conditions ( 1 2 ) ) possesses nontrivial solutions of class L2(B) if

and only if Kj φ KBf or if and only if Kj{Z;Z) < KB{Z;Z), Z E B.

If we admit the possibility of a nontrivial solution, the kernel Kj may be

thought of as an " incomplete" kernel for B relative to the functional equation

( 3 ) . It is wholly accessible to computation via (19)-(23) once KB has been

established. Moreover, Kj may be used to project the space L2(B) onto the

linear subspace S of solutions:

T H E O R E M 3 . The function g(Z) is a solution of ( 3 ) of class L 2 ( B ) if

and only if there exists an f E L 2 ( B ) for which

(24) T(f) = g(Z) = f { Z ) - f KI(Z,W)f(W)dωw,

B

or alternately$ for which
oo

(24') Γ(/) = g(Z) = / ( Z ) - Σ, ^k{f)c^k(Z)'

Appropriate changes must be made if auxiliary conditions (12) are present.

Proof. We observe that in view of (16) and (23), (24) and (24 ' ) are equiva-

lent. For a given / E L2 {B)9 construct a g by means of ( 2 4 ' ) . Since the quanti-

ties L*(f) are Fourier coefficients of /, the sum in (24 ' ) is of class L2 (B).

Thus also g E L2 (B). As remarked previously, g will be a solution of ( 3 ) if

Lk(g) = 0 (k = 0 , 1 , . . . ) . By (14) , this is equivalent to L * ( g ) = 0 (k =

0 , 1 , ). In view of the boundedness of Lf over L2 (B)9 we have

(25) L*k(g) = ΐ*kif)-Σ, fyfyV % %
71=0

The last equality follows from (15) . Thus g is a solution. Conversely, if g is

a solution of class L2 (B) we shall have

so that (24 ' ) holds with f = g.

Equation ( 2 4 ) - ( 2 4 ' ) yields a projection of L2{B) onto the subspace S

of solutions. The partial sums of (24 ' ) ,
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have the usual minimum property of Fourier series; that is, for each Λ they

solve the minimization of the integral

(26)

k=o

2
dω.

On the other hand, the series in (24') has two characters: it is simultaneously

a Fourier series and an interpolation series as well. This means that the partial

sum

(27)

is that linear combination of φQ, φγ9 , φN which interpolates to / in the

sense that

(28)

or, equivalently,

(28') I

Once KB is known, and if ί L^ \ is a sequence of point or differential operators,

then no integrals extended over B of the inner product type need actually be

computed to obtain either φ* or the series expansion in (24"). The explicit

orthogonalization formulas of Gram-Schmidt (20)-(22) are equivalent to an

interpolation series of Newton type with respect to the sequence { Ln !. For a

fixed /V, formulas of the Lagrange type may be developed, and may prove to be

more convenient.

In view of the reproducing property of Kβ, we may write (24) in the form

ί ί
(29) Π / ) = g ( Z ) = / KB(Z;W)f(W)dωw- / KI(Z;W)f (W)dωw ,

so that by introducing the kernel
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(30) KS(Z;W) = KB(Z;W)-KI(Z;W)

we have the representation

(31) g(Z)= I Ks(Z;W)f(W)dωw.

If / E S, then g{Z) = f(Z) inasmuch as

L * ( / ) = L * ( L ( / ) ) = 0 U - 0 , 1 , . . . ) .

Thus, K${Z;W) is a reproducing kernel for the subspace S and as such, may be

proved unique (that i s , nondependent upon the selection \Ln\) in the usual

way. K$ (Z, W) may also be defined by

(32) KS(Z;W)= £ φk(Z)ψk{W),
k

where {φ^ \ is any orthonormal set which is complete for S. In the case of

ordinary differential equations, the sum in (32) will consist of a finite number

of terms. In the case of ordinary differential equations of infinite order or of

partial differential equations, there will, in general, be an infinity of terms

present.

The incomplete kernel Kj may be identified as the kernel of the orthogonal

complement S^ of S, and the utility of the backward decomposition of KB given

by (30) lies in relative accessibility of Kj as opposed to X5. Let us note also

the orthogonality relationship

(33) / KS{Z;W)KI(W;X)dωw = 0,
*B

which follows from (30) and from the reproducing properties of K$ and Kg over

S and L 2 ( β ) , respectively.

For / E S$ we have, by (31) and the Schwarz inequality,

(34) I / I 2 < l i /ΊI 2 ί Ks(Z;W)Ks(Z',W)dωw
B

= \ \ f \ \ 2 [ K B ( Z ; Z ) - K I ( Z ; Z ) ] .

The inequality (34) is a wide generalization of the Schwarz Lemma for functions
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regular in the unit circle. Finally, we may generate complete sets of solutions

in the following way:

T H E O R E M 4 . Let θn{Z) U = 0 , 1 , ) be a complete set for L2(B);

then the functions

(35)
Γ

T1 ( /-) ^ — /

n ~~ JD

Ks(Z;W)θn(W)dωw

form a complete set of solutions.

Proof, We must show that any solution g can be approximated arbitrarily

closely by combinations of φ 9 , φn, Let

N

k=0

< e.

Then by (34), (35), we have

N

k-o
< e[KB(Z;Z)-K,(Z;Z)YA,

which establishes completeness.

4. The nonhomogeneous case. We consider next the nonhomogeneous linear

functional equation

(36) L(u) = f,

which may be supplemented by auxiliary conditions of the form

(37)

We assume that / is regular in B, and that all previous hypotheses regarding L

and Λn remain in force. We first reduce (36)-(37) to a problem in interpolation

in the following way.

THEOREM 5. The linear functional equation (36), subject to the auxiliary
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conditions (37 )f is equivalent to the interpolation problem

(38) LkU) = Lk(f)

(380 Ak(u)=ak U = 0,l,. . .).

If conditions (37) are absent we maγ omit ( 3 8 ' ) .

Proof. That ( 3 8 ) , ( 3 8 ' ) follow from ( 3 6 ) , ( 3 7 ) is evident. Suppose con-

versely that ( 3 8 ) holds. We wish to prove that L{u) = / throughout B. We have

L k LU)-Lk(f) = 0 U = 0 , l , . . . ) .

Thus

Lk[L(u)-f] = 0 U = 0,l, . . .).

Now L(u) - f is regular in B, and { Lk } is complete for /?. Hence the conclusion

follows.

It will now be convenient to uniformize our notation. We introduce an aug-

mented set { Lk } of linear functionals as in the previous paragraph, and intro-

duce a set of constants { β^ \ by means of the definition

(39a) βk = Lk{f) if Lk=Lk,

The interpolation problem is now

( 4 0 ) Lk(u) = βk ( 4 - 0 , 1 , . . . ) .

We observe again that there is no distinct role played by the auxiliary con-

ditions. Boundary value and initial value problems of mathematical physics may

be fitted into the pattern (40) providing it is known a priori that the required

solutions are regular across the boundary so that the functionals Lk will have

the required boundedness properties. We next introduce the biorthonormal sets
A /, A

ί L | \ and { φ^ \ associated with { L^ \ and B. We have

for constants α, determined as in the previous paragraph. The following result
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now holds.

THEOREM 6. The linear functional equation (36), (37) possesses a solu-

tion of class L2 (B) if and only if

(42)

P=o

The solution is unique (within L (B)) if and only if {L^ \ is complete for

L2(B). If ( 4 2 ) holds, then the series

(43) α(Z)« Σ, Σ %pβ\ ΦZ(Z)
k-Q \ p=0 /

converges to a solution u(Z) uniformly and absolutely in every closed bounded

subset of B.

Proof. Suppose that a solution u (ΞL2(B) exists. Then from (40) and (41)

we have

p = 0

But since the L£ (u) are Fourier coefficients of u with respect to j φ% \, we must

have (42). If (42) holds, then the series (43) converges uniformly and absolute-

ly in every closed bounded subregion of B to a function V ( Z ) of class L2 {B).

Now,

p=o

in view of the boundedness and biorthogonality properties of these functionals.

Hence

so that V satisfies the equations (36) and (37) by Theorem 5.

A particularly important special case is to solve (36) subject to the auxiliary
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conditions

(44) Ak(u)=0 U = 0 , l , . . . ) .

A A

As in Theorem 5, we again construct the biorthonormal sets } L£\ and { φΐ }9

and note that each functional L^ is a finite linear combination of functionals

Lfc and A^:

( 4 5 )

where the coefficients b^ and c^ now contain certain dummy zeros. Let us

write

(46) Σ K Z

P = Σ W = hL> h - Σ % L

P
P P P

We now have the following result.

THEOREM 6' . The linear functional equation ( 3 6 ) 9 ( 4 4 ) possesses a

solution of class L2 {B) if and only if

(47) £ l5/c(/)| < <».

// (47) holds$ the interpolation series

(48) u ( Z ) = 2 1 S k ( f ) φ * ( Z )

converges to a solution uniformly and absolutely in every closed bounded subset

ofB.
Λ

Proof. If βk = α^ = 0 when L^ = ̂ , then, by (39a),

P P

Under the assumption that the equation (36), (44) possesses a solution for
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all f £ L2 (B), we may find a second representation for the interpolation series

(48). The functionals Sk are bounded over L (B), and hence possess a Riesz

representative sk(Z):

(49) Sk{f)= f f 7 k dω; f £ L 2 ( B ) ,

JB

where

(50) s k ( Z ) = Skfϊϋ K B ( Z ; W ) .

If (36), (44) possess a solution of class L2 {B) for all / £ L2 {B), then (47)

must hold for all / £ L2 {B ). In particular, from

( 5 1 ) s k ( Z 0 ) = S k f W K B ( Z 0 ; W ) , Z 0 £ B ,

we learn that

(52) ]Γ \sk(Z0)\2<oD for all Zo β B .
k=o

We may therefore form the mixed kernel

(53) D(Z;W)= £ Φt(Z)sk{W),

which will converge uniformly and absolutely in every closed bounded subregion

of B x B. Finally, from (48) and (49), we have the representation

(54) U(Z)= fD(Z;W)f(W)dωw.

The kernel D(Z; W) plays a role analogous to a Green's function or to the

Duhamel kernel in the superposition theorem of the theory or ordinary linear

differential equations. The totality of solutions in L2(B) of ( 3 6 ) , ( 4 4 ) may be

written in the form

(55) ί / ( Z ) = I D(Z;W)f(W)dωw+ [ Ks (Z;W)h(W)dωw; h £ L 2 ( B ) ,

or, in interpolatory form,
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(56) Σ, kfφ Σ,
fc=o k=o

5. C o n v e r g e n c e of i n t e r p o l a t i o n s e r i e s for / £ L 2 ( B ) . In t h e p r e s e n t p a r a -

graph we return to the interpolation series (24'). This has been discussed under

the hypothesis that / G L (B ). If, however, each functional Lϊ (or L.) is ap-

plicable to a wider class of functions than L2(B), a formal series (24') may

be constructed and its properties examined for f in this wider class. This will

be the case, for example, when L^ are differential operators. For the sake of

definiteness, let us assume that we are dealing with the ordinary linear dif-

ferential equation

(57) L ( / ) Ξ / U ) + α 1 ( 2 ) / ( n - ι ) + . . . + α n ( 2 ) / = 0 ,

and that we have selected

(58) L Λ ( / )

The coefficients aj(z) in (57) are assumed regular in a region R containing

the origin. If / is regular at z ~ 0, then the series (24') may be formed. If this

series then converges uniformly in a neighborhood of z = 0, the difference

fc=O

which is again regular at 2 = 0, will be a solution; for, since the functional*

Lf are applicable term by term, we have

and this implies that L ( g ) = 0. The interpolation series (24') has a doubly

orthogonal character, but the above proof will apply to any interpolation series

(59) g ( z ) = / ( z ) - 2_ L

in which the regular functions φ^ are merely biorthogonal:
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(60) ty

Such se t s are more numerous than doubly orthogonal s e t s . To determine such

a set , we need only start from a given set of functions \ tn(z)\ (n = 0, 1, )

which has properties of independence with respect to { Lj \ and determine linear

combinations

V Ό-L / ψ L \ Z ) — f _, e fop Ip \Z ) \n = \J9 19 )

p=0

success ively by the requirement ( 6 0 ) .

We shal l now prove that we may find a set {ψ,(z)\ biorthogonal to ί Lΐ \

with the property that if / is regular in any neighborhood of z = 0, the inter-

polation ser ies

oo

(62) g{z) = f(z)~ Σ, Lt(f)Ψk(z)

will converge to a solution of (57) in some neighborhood of z = 0. The present

proof will generalize to both partial differential equations and to ordinary dif-

ferential equations of infinite order.

We have, from (57) and (58),

n ik . n+k

S ί-^ i k P lz = 0

p=0 a z

while

n+k

(64) £ £ ( / ) = _
/=o

for appropriate b* ,. We assume that B contains the origin and is contained in

the region of regularity of a t ( z ) .

LEMMA. Let f(z) be regular in \z\ < p . Then there exist positive con-

stants M and t such that

(65) \L
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Proof. For any g G L 2 (B ), we have

L*(g)= // gφ* dxdy ( A - 0 , 1 , . . . ) .

Thus LJ(g) are Fourier coefficients of g, so that, by the Bessel inequality,

oo

(66) Σ, i:

In particular, we may select

so that

(67) L*(zP/p\)

From ( 66 ) we obtain

n+k

7=0
°kj z = 0

(68)

k=0 k=0

zp
dx dγ

Area(β)

where J designates the maximum distance from the boundary of B to the origin.

If now f is regular in | z \ < p, we have, for some constant Λf*,

(69) M* j\/pί ; = 0,l, ),

so that from (64) and (68),

(70) l % ( / ) | <M(d/P)
k

with
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LEMMA. There exist positive constants m and σ such that

(71) \ L ( φ * ( z ) ) \ < m \ z \ k

for all k = 0, 1, , and for all | z | < σ.

Proof. The orthonormal functions φ^(z) satisfy the requirements [ 12, p. 16]

Lo(φ*) = Lι(φ*) = ... = Lk.ι(φfc) = 0,

or with notation g^ = Lφ£,

Let I z I = σ ' and | z | = σ, σ ' > σ both be contained in B. Since φ* are ortho-

normal over B, they are uniformly bounded by some M over | z \ < σ'; hence, by

(57) and Cauchy's ixiequality,

(72) I W j p l < σ ' M Σ , Bj j \ s i + ι = m; \ z \ < σ ,
/=o

where

σ ' - σ and βy = max | αy (z ) | .

Thus the functions L(φf) are uniformly bounded in | z \ < σ by m. The in-

equality (71) now follows from Schwarz's lemma.

We observe now that the last two lemmas imply that the series

£ L*k(f)Lφ%(z)
/c=o

will converge absolutely and uniformly in | 2 | < r, r < 1/ί. Furthermore, we

must have

(73) L ( f ) = ^ L * ( f ) L φ * { z ) ; \ z \ <r.

/c=0

T o s h o w t h i s , d e s i g n a t e t h e s u m o f ( 7 3 ) , | z | < r , b y g ( z ) . B y u n i f o r m
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convergence, we may apply Lp term by term. Thus

(74) Lp(g)= Σ L*(f)LpLφ*(z),
k=o

so that

( 7 5 ) £ £ ( * ) = Σ ^ ( / ) ί > ( c 5 6 * ( z ) ) = L * ( / ) = L * L ( / ) .

k-0

By the c o m p l e t e n e s s of } L * \, g = L (f).

L e t now β t d e s i g n a t e a reg ion c o n t a i n i n g z = 0 and c o n t a i n e d in | z | < r?

and l e t D (z$w) = DBl(z$w) be the k e r n e l d e s c r i b e d in ( 5 4 ) - ( 5 5 ) . We h a v e ,

for e a c h f r e g u l a r in | z \ <_ r, t h e i d e n t i t y

= j j D{z,w)(76) / U ) = JJ D(z,w)L(f{w))dωw

where s{z) i s some s o l u t i o n of L {s) = 0, r e g u l a r in β 1 # Apply ing t h i s i n v e r s i o n

o p e r a t o r to ( 7 3 ) , we h a v e

(77) JJ D(z,w]

k = 0

where

(78) φ , ( z ) = \\ D(z,w) L(φΐ(w))dωw ( A = 0 , 1 , . . . ) .

The functions { φ, \ are easily seen to be biorthonormal to the interpolation

operators ί Lΐ \ We therefore have the following result.

T H E O R E M 7 . For each f(z) regular in \z\ < σ , the biorthogonal inter-

polation series
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(79)

converges to a solution of the equation (57).

6. Relation to questions of stability. In a previous paragraph we have given

necessary and sufficient conditions in order that a given functional equation

possess solutions of class L2 (B) If the coefficients of this equation involve

a parameter λ, then a criterion may be obtained in terms of λ Here B designates

any region which possesses a kernel function Kβ, If B is chosen as an un-

bounded domain, then membership in L2(B) acts as a stability criterion.

To elucidate this remark, let us consider the two dimensional case, and let

S designate the half-strip

R e ( z ) > 0, | I m ( z ) | < h.

Then we have / € L (S) if and only if4

( 8 0 ) | | / | | 2 = fh f | / ( * + iy)\2 dxdy < oc .
ύ J-h Jo

Thus, to belong to L2 (S) a function must not become large too rapidly as z

approaches the horizontal boundaries of the strip, and indeed, must approach

zero with a certain maximal rapidity along any horizontal line.

LEMMA. Let f G L2 (S); then along each line

y = σ, - h < σ < h,

we must have

(81) l im f(x + iσ) = 0.

Proof. If (81) were not true, we could find two positive quantities A and δ

and a sequence of values λ 0 < λL < such that

(82) λ n - λ n . 1 > δ > 0 (71 = 1 , 2 , - . . ) ,

and

Various authors have considered solutions of class L (0,oo); for example, see
[13].
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(83) | / ( λ π + iσ)\ > A > 0 U = 0 , l , . . . ) .

In virtue of (82) we may find an r > 0 such that the circles

Cn : I z - ( λ n + iσ) I < r

lie in S and do not overlap. Now

JJ \f\2dxdy> £ JJ(84) oc >

S n=0 C~

Since / is regular in Cn, it possesses a Taylor series expansion

(85) / U W ( P n ) + Γ(Λι)U-Λι) + ;Pn = λn+ i°>
so that *

(86) JJ \ f { z ) \ 2 d x d y > π r 2 \ f ( P N ) \ 2 .

Combining this with (84), we must have

oo

(87) £ l / ί ^ J I 2 < °°*

This contradicts (83) and proves the result.

The 'stability' which is spoken of here is that usually associated with the

theory of linear, non time-varying electrical networks; in this theory we are

confronted with a differential equation

(88) y U ) + α i y

U " ι ) + . . . + any = f{x),

to be solved under initial conditions such as

(89) y ( 0 ) = y ' ( 0 ) = . . . y U " l ) ( 0 ) = 0 .

If the characteristic roots of (88) are

Tj=uj+ivj ( / = l , 2 , . , n ) ,

assumed distinct, then the n independent solutions of the homogeneous equation
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are

/ N UjX iVjX

y\x)=e s e J ,

The equation (88) is called stable if u; < 0 (y = 1, ,τι). We observe now that

y\z) EL2{S) if and only if UJ < 0. For

and this result is now implied by (80). It appears then that the equation (88)

is stable if and only if the fundamental solutions of the homogeneous equation

are in L2 (S). For the case of more general linear networks, we propose member-

ship in L2(S) as a possible extension of this type of stability. Added flexi-

bility may be achieved by varying h9 and by attaching a weighting function to

(80), Inasmuch as the mapping function for 5 is elementary, the kernel function

Ks of S may be computed explicitly, and the criterion of § 3 can be formulated

in closed form.

7. Systems of functional equations. The methods of the previous paragraphs

may be extended to the case of systems of equations. As the proofs and the

principal results parallel those given in § 2 - 4 very closely, we shall not dwell

on these aspects, and shall be content merely with showing how the generaliza-

tion may be set up.

For the sake of simplicity, we consider here only systems of two functional

equations in the two unknown functions, u{ - Ui(zιs z2? * zn) == u>i(Z), (i — 1, 2 ),

(90) Lι(uu u 2 ) = 0,

L2(uu M 2 ) = 0 .

Introducing the solution vector u = ( u l 9 u2 ) and the vector operator L = ( L l f L2 )9

we may write (90) as

( 9 0 ' ) L ( u ) = 0 .

We assume that Lι (uι$u2) are regular functions of z\9 9zn whenever u{ are,

and that L is linear on the vector υ. Vv!e shall say that ( 9 0 ' ) posses ses a solu-

tion of class L2{B) if there exists u( £L2{B) for which (90 ' ) holds. In addi-

tion to (90), we may consider an augmented system comprising (90) plus certain

auxiliary conditions which may be written in the form
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(91) An(u) = An(uuu2) = 0 U = 0 , l , . . . ) .

Here An is a linear functional on u. Let again ί Ln \ designate a fixed set of

linear functionals defined on the set of functions regular on B and complete for

this set. We introduce

( 92) ΐ2nM=LnL
ι(ulfu2) (n = 0,1, ),

u ) = LnL
2 (uuu2) ( n = 0 , 1 ? • • ) .

L 2 n and ^ 2 n + ι are linear functionals defined over vectors u, and we shall say

that a sequence hn of such functionals is complete for a class S of vectors

if L^(u) = 0 (n = 0,1, •••) implies u = 0. We have the following parallel to

Theorem 1.

THEOREM 8. The system (90") possesses a nontrivial solution of class

L2(B) if and only if the set of functionals { hn \ is incomplete for L2 (B). If

auxiliary conditions (91) are present, the set { Ίun \ must be augmented by the

addition of { An\.

I t i s n o w c o n v e n i e n t t o i n t r o d u c e t h e d i r e c t s u m o f L 2 ( B ) w i t h i t s e l f :

= L2(B)®L2(B).

This space consists of pairs

u = ( u l 9 u 2 ) , Ui G L 2 ( B ) .

Vector addition and scalar multiplication are defined by

u + x = ( u i 9 u 2 ) + ( v i 9 v 2 ) = ( u ι + v ι , u 2 + v 2 )

a n d

a u = a ( u χ , u 2 ) - ( a u ι 9 a u 2 ) .

We introduce an inner product in L2 (B) by means of5

(93) { u , v i = { ( u i 9 u 2 ) , ( v i 9 v 2 ) \ = / ( u ί v ι + u 2 v 2 ) d ω 9

5 I n what follows, the parenthesis is used solely for the element pairs of L2 {B ). If
the inner product in L2 (B ) is required, we shall write (u, v ) 2 .

L \B)
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and a norm by

(94) \\υ\\2 = \\(ulfu2)\\2 =Hulfu2), U

U n d e r t h i s norm, i t i s k n o w n t h a t L (B) b e c o m e s a H u b e r t S p a c e , By c l a s s i c a l

r e s u l t s , any b o u n d e d l i n e a r f u n c t i o n a l ϊ over L2(B) p o s s e s s e s a r e p r e s e n t a t i o n

of t h e form

J {uχVι Λ- U2 V2(95) T (u) = ί u, v} = / {uι vt + u2 v2 )dω

for some v G L2 (B). Hence we have the decomposition

/ C\(l \ rr ( \ T ( \ • T1 / \

\yo) i \ u ) ~ l ι { u ι ) + l 2 \ u 2 ) ,

where Ί\ and T2 are bounded l inear functionals over L (B). The converse

evidently holds a l s o . Moreover,

In what follows, we s h a l l assume that L w a s well as An are l inear and bounded

over L2(B). The examples given in § 2 are eas i ly extended to the present c a s e .

If { i r Λ ' } i s a complete orthonormal system for L2{B)9 it may be shown by

an extension of the usua l proofs that each of the s e r i e s 2 L Λ = 0 ui

n'{z)[uj(w)~\

converges uniformly and absolutely in every closed bounded subdomain of

B x B. In addition, a strong R i e s z - F i s c h e r theorem e x i s t s for L2(B); that i s ,

uβL2(B) if and only if

OO (X)

u = 2 3 α n u with 2 1 \ a n \ 2 < oo
71=0 ft = O

and

αra = ί u , u U > ! U = 0,.. ) .

The convergence of each of the component series is uniform and absolute in

every closed bounded subdomain of B. The array
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(98)

£ u[n\z)u[n)(w) u\n\z)u[n)(w)
n=o

u(

2

nHz)u[n)(w) u[n)(z)u{

2

n)(w)
n=o n-o

w i l l be k n o w n a s a k e r n e l t e n s o r for t h e s p a c e L ^ ( B ) . E a c h row of KB i s , for

f ixed W G B, a v e c t o r e l e m e n t of L^{B) w h i c h w e s h a l l d e n o t e by K^(Z, W)

andti{

B

2)(Z9W).Ίhus9

(99)

If

then we have

(100) ) , u(w) (t = 1,2).

Let us consider, for example, the case i — 1; then

so that

an{u[n\u[n)),

[n){Z)u[n)u[n){Z)u[n)(W),
n=0

n=o

_
- o



530 PHILIP DAVIS

which by orthonormality reduces to

n=o

The reproducing property may be written more compactly as

(100') u ( Z ) = i u ( ί n , KB(W;Z)\.

It can be s e e n that if ί un \ i s a complete orthonormal s y s t e m for L2 (B), then

the s e t of v e c t o r s

( 1 0 1 ) u 2 n = U Λ , 0 ) ( n = 0 , l , . . . ) f

= (09un) U = 0,1, . . .) ,

i s complete and orthonormal for L2(B). With t h i s s p e c i a l s e l e c t i o n , we find a

kernel t e n s o r of the form

KB(Z;W) 0

(102) KB(Z;W) = \

I 0 KB(Z,W)

where KB i s the kernel for L2(B).

We come now to the a n a l o g u e of Theorem 2.

THEOREM 9. Let \ L^ \ be a set of linear functionals each of which is de-

fined and bounded over L2(B), The set { L^ \ will be assumed independent.

Then there exists a set of pairs

and a set of linear functionals \ Lj* } (n - 09 1? ) which possess the following

properties:

( a ) Each 0ΐ is of class L2(B), and the set is orthonormal:

(103 ) ί 0 | , 0? \ = δjk

(b) Each L^ is a finite linear combination of the functionals L^r
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k

(104) L* = £ %S (A = 0 f l , . . . )
P=o

for an appropriate set of constants a^ .

(c) The sets { Lf \ and \0ΐ\ are biorthonormal:

(105) ϊ>02i )-δ. f c .

( d ) For allX £L*(B)we have

(106) L ( V ) = f V , 0 i .

( e ) T/ze pairs 0 * may 6e obtained by taking the set

(107) <£B (Z) = LΠfiJ; KB(Z,ΪF) U = 0,l, )

and orthonormalizing them by the Gram-Schmidt process.

(f) The set \0L\ (or \0f\) is complete for L^(B) if and only if the set

{ Lβ.} is complete for L (B).

By (107) is meant that

(108) φnfi(Z) = ΐnfϊd&
(

B

i)(Z;Ψ) (ί = 1,2)

where

Using the specific set of functionals (92), we construct the related bi-

orthonormal sets j Lf \ and \0t i ^ e then have the following analogue of Theo-

rem 3.

T H E O R E M 10. The vector g ( z ) is a solution of the system ( 9 0 ) of class

L^(B) if and only if there exists an f ( Z ) G L^ (B) for which

( 1 0 9 ) g ( Z ) = f ( Z ) - £ £ f c £
k=o

For each f ^L^(B), the series in (109) converges uniformly and absolutely

in every closed bounded subdomain of B. It is simultaneously a Fourier series

and an interpolation series whose terms may be obtained by interpolating to f
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by means of { L^ }.
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SETS OF RADIAL CONTINUITY OF ANALYTIC FUNCTIONS

F R I T Z HERZOG AND GEORGE PIRANIAN

1. Introduction. A point set E on the unit circle C ( | z \ = 1) will be called

a set of radial continuity provided there exists a function / (z ), regular in the

interior of C, with the property that lim,-^ i /(re* ) exists if and only if e is

a point of E. From Cauchy's criterion it follows that the set E of radial con-

tinuity of a function f (z) is given by the formula

£= Π ΣΠE
fc-l n = l J

where the inner intersection on the right is taken over all pairs of real values
Γi? r2 with 1 — \/n <. τ\ < Γ2 < 1. From the continuity of analytic functions it

thus follows that every set of radial continuity is a set of type Fσ$. The main

purpose of the present note is to prove the following result.

THEOREM 1. If E is a set of type Fσ on C% it is a set of radial continuity.

The theorem will be proved by means of a refinement of a construction which

was used by the authors in an earlier paper [2] to show that every set of type

Fσ on C is the set of convergence of some Taylor series.

2. A special function. That the set consisting of all points of C is a set of

radial continuity is trivial. In proving Theorem 1, it may therefore be assumed

that the complement of E is not empty. In order to surmount difficulties one at a

time, we begin with a new proof of the well-known fact that the empty set is a

set of radial continuity (see [ 1, vol. 2, pp. 152- 155]).

Let

where
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11 + z/ωni + (z/ωj2

 + ...
n *

(z/ωn2 ) 2 +

( 1 )

here

nj

and } kn \ is a sequence of nonnegative integers which increases rapidly enough

so that no two of the polynomials Cn(z) contain terms of like powers of z, and

so that a certain other requirement is met; the positive integer /V, which is the

lower limit of the foregoing series, will be determined later.

If z is one of the points ωnj, then | Cn(z) | = 1. On the other hand, let z lie

on the unit circle, and let Tn(z) be any sum of consecutive terms from (1) . If

z is different from each of the roots of unity ωnj that enter into Vn(z), and 8

denotes the (positive) angular distance between z and the nearest of these

ωnj , then

Λi
(2) | Γ π ( z ) | < — ,

3n2

where Aγ is a universal constant (see [2, Lemma A]) . Now, if

( 3 ) z = e i θ ω n j , \θ\ < —2 ,

n

and Rn;(z) denotes the sum of the terms in the /th row of ( 1 ) (including the

factor 2 k n / n 2 ) , then

, x s ί n U 2 < ? / 2 )
( 4 ) Λ n / ( z ) | = - >A2,

π 2 sin (θ/2)

where A2 is again a positive universal constant. But if the angular distance
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between z and ωnj is l e s s than π/n2, the angular d i s tances between z and the

remaining nth roots of unity are all greater than 1/n, and therefore ( 3 ) implies

that, for sufficiently large n, by ( 2 ) and ( 4 ) ,

\Cn(z)\ > A2- 2Aι/n > 5 ^ 3 ,

where Λ3 = A2/6 We now choose N so large that the second of these inequali-

ties holds whenever n >_ N.

Let ICN - 0; let r# be a number (0 < r/γ < 1) such that

\CNireiθ)-CN(eiθ)\ < —

for r/v < r < 1 and all θ. Next, let kjy+ γ be large enough so that

for all θ; and let r/y+i be greater than r/γ, and near enough to 1 so that

\CN+ι(reiθ)-CN+ι(eiθ)\ <jj^jy]

for r/v +1 < r < 1 and all θ. Let this construction be continued indefinitely.

Now let L be a line segment joining the origin to a point eι , and let n be

an integer such that n > N and

(5) \Cn(eiθ)\ > 5 Λ 3 .

Vve then write

f (rne
iθ) - f (rn.ιe

iθ)= Cn(eiθ) + [Cn(rne
iθ) - Cn(eiθ)] - Cn(rn.ιe

iθ)

+ Σ \^Cj(rne
iθ)-Cj{eiθ)λ-VCj{rn.ϊe

iθ)-Cj(eiθm
j=N

and obtain from the inequalities above
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>Λ £ 2 £ 25 --I - 2, - 2 £ 2 - 2

> A3A 3 [ 5 - 2 ( e - l ) ]

It follows that, if there exist infinitely many integers n for which (5) is satisfied

f(z) does not approach a finite limit as z approaches eι along the line L. But

for each real θ there exist infinitely many integers n with the property that, for

some integer j ,

Θ In

2π n

1

2n 2

(see [3, p. 48, Theorem 14]), so that each z on C admits infinitely many repre-

sentations (3) . It follows that limr_> ι f {re1 ) does not exist for any value θ.

3. Closed sets of radial continuity. Let E be a closed set on C, and let G

denote its (nonempty) complement. Again, let f(z) be the function defined in

§ 2 , except for the following modification. In the polynomial Cn(z), let ωnl,
ωn2> * * * 9 ωnp denote those nth. roots of unity which lie in G and have the ad-

ditional property that the angular distance of each one of them from E is greater

than n 2. The exponent of z in the factor outside of the brackets in the last row

of the right member of ( 1 ) becomes (p — \)n . And the p rcth roots of unity

ωnj that occur in Cn{z) must be so labelled that their arguments increase as the

index / increases, with arg ωnl > 0 and arg ωnpn < 2π. Then every partial

sum Vn(z) of consecutive terms of Cn(z) satisfies the inequality | Γw ( z ) | <

Λιπ"3//2 for all z belonging to E, and therefore the Taylor series of f(z) con-

verges on E. On the other hand, let the exponents kn in ( 1 ) be chosen in a man-

ner similar to that of § 2, and let L be a line segment joining the origin to a

point eι in the (open) set G. Then there exist infinitely many integers n for

which (5) is satisfied by our newly constructed polynomials Cn(z), and there-

fore H m ^ i f (re1 ) does not exist.

4. The general c a s e . Suppose finally that £ i s a s e t of type Fσ on C. Then

the complement G of E is of type Gg; that i s , it can be represented as the inter-

sect ion of open s e t s Gι,G2, , with G p G ^ + 1 for all k. In turn, we can

represent Gγ a s the union of closed intervals Iih in such a way that no two

dist inct intervals Iχh and Iih' contain common interior points , and in such a way

that no point of G± i s a limit point of end points of intervals /i/^. Similarly,
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each set G^ can be represented as the union of closed intervals / / ^ satisfying

similar restrictions.

Let no be any positive integer. Since the denumerable set of all open arcs

z =eiθ, I θ-2πj/n\ < π/n2 ( / = 1 , 2 , . . . , n, n > n0 )

covers the entire unit circle, there exists a set of finitely many such arcs

covering the unit circle. It follows that we can choose a finite number of terms

Cn(z) (see (1)) , modified as in § 3 , such that their sum f^z) has the follow-

ing properties:

i) for each θ in / 1 L , there exist two values p ' and p " , • 0 < p ' < p" < 1,

s u c h t h a t \fι(p'eiθ)-fί(p"eiθ)\ > A 3 ;

i i ) for each point eι ou t s ide of In and outs ide of the two neighboring

interva l s / ^ and I\hΊ an^ f ° r each n for which Cn{z) o c c u r s in f^z), the

modulus of any sum of c o n s e c u t i v e terms of Cn(eι ) i s l e s s than A ι n .

Next we accord a s imi lar t reatment to Ii2, then to I2 i , /13, ̂ 2 * his ^14* a n ( l

so forth. The sum f(z) of the polynomials f.(z), / ( z ) , ••• t h u s c o n s t r u c t e d

h a s the following p r o p e r t i e s : if ei l i e s in E, that i s , l i e s in only f initely many

of the in terva l s 7/^, the Taylor s e r i e s of f (z) converges a t z = eι if eι l i e s

in G, there e x i s t p a i r s of v a l u e s p ' and p" arbitrar i ly near to 1 and such that

| / ( p eι ) - / ( p eι ) \ > A3.

It follows that E i s the s e t of radia l cont inuity of f(z), and the proof of The-

orem 1 i s complete .

5. S e t s of uniform radial continuity. The following theorem is ana logous to

Theorem 2 of [ 2 ] .

T H E O R E M 2. If E is α closed set on C, then there exists α function f{z),

regular in \ z \ < 1, such that l i m r _ , t fire1 ) exists uniformly with respect to

all eι in E and does not exist for any eι not in E.

For the proof of Theorem 2, we refer to the function f{z), constructed in

§ 3 . Note that | Γ Λ ( z ) | < Axn'3/2 for all z in E. Hence the Taylor ser ies of

/ ( z ) converges uniformly in E. It then follows easily, by the use of Abel's

summation, that the convergence
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is also uniform in E.

6. An unsolved problem. The converse of Theorem 1 is false, since a set

of radial continuity can be the complement of a denumerable set which is dense

on C. Vve do not know whether there exist sets of type Fσ$ that are not sets of

radial continuity.
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COMMENTS ON THE PRECEDING PAPER

BY HERZOG AND PIRANIAN

P . C. ROSENBLOOM

1. Our main purpose here is to extract and formulate explicitly the general

principle underlying the construction of Herzog and Piranian. The results in

this note are implicitly contained in the computations on pp. 535 and 537 of their

paper, and the full credit belongs to them.

2. We use the notation M(r,f) = max | / (z ) | on = r.

T H E O R E M 1. Let f be analytic in \z\ < 1, let rn be increasing, 0 < rn

as n —> oc, let an > 0,

let R(t) - Σ α ^ over all k such that r^ >^ t9 and let g — Σ n = \ f . //

(a) M{rm fn + ι) < ani

and

(b) M{l,{'n) <an(l-rnY
ι

for all n% then g is analytic in \ z \ < 1, and for \z \ <^ 1, rn. \ < r <_ rnf we have

(1)

(rnz)-g(rn.ιZ)-fn(z)\ <2A(l-rn.ιΫ
A

Proof. We have
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I 4 ( r 2 ) - 4 ( * ) | < a k ( l - r ) / ( I - r k )

ak{l-r)% if rk < l - ( l - r ) 1 / 2

ak if k <^ n - 1,

and I fΛrz ) | <_ ak.\ for k > n. Inequality ( 1 ) now follows from

n-l n~l °o

k = ί /c = l k=n+l

We now apply ( 1 ) with r = rn and r = rn.\ to estimate

Λ ( z ) = g{rnz) - g(rn.ιz) -fn(rnz) + f B ( r n . ι z ) ,

and obtain (2) from

3. We d e n o t e by E (g) t h e s e t of r a d i a l c o n t i n u i t y of g.

C O R O L L A R Y l a . // | z0 \ = 1, l im s u p ^ ^ ^ \fn(z0) \ > 0, then z0 £ E (g).

COROLLARY lb . // I zol - 1* an(^ lim fn^
rzo ) exists as r —> 1 and n —> oo

simultaneously, then

oo

l i m r ^oo g(rzo) and ^ ^ f ( ZQ ) = g ( z 0 )

either both exist or both do not exist. If l im / ( r z 0 ) = 0» ί^eri

lim g(rz0) = g{z0)

if either exists. Hence if M{l,fn) — > 0 as n — » o c ί then E(g) is the set of

convergence of Σ,n = ι fn(z) on \z\ = 1.

4. We now establish:

The weaker condition that fn(rzo) has a limit as n—> -f oo and r—>1 in such
way that rn_ι <^ r <_rn for all n is sufficient for this corollary.
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T H E O R E M 2. If Fn is analytic in \z\ < 1, M(l,Fn) <Mn9 M(1,F^) < Mn

for all n$ and an > 0 (all n), Σ n = i an < + oc, then there exist sequences rn and

kn such that fn(z) = z n Fn(z) satisfies ( a ) and ( b ) of Theorem 1.

Proof. L e t kι = 0 a n d s u p p o s e t h a t A;2> ••• ? A Λ , Γi ,••• , rn.\ a r e d e f i n e d .

T h e n ( b ) i s s a t i s f i e d i f

Choose any rn such that

1 > rn > max

Then ( a ) is satisfied if

log (a

5. As a consequence, we have:

C O R O L L A R Y 2a. //

lim sup I an I > 0, lim sup k"n log | dn | = 0 ,

α Λ > 0, Σ α π < + oo, and >_ log

K an

for all n, then E (g) = 0, where g(z ) = Σ α R z ra .

If an = 0(1), lim supπ^oo | α β | > 0, A;π increasing, and

2^ log — < + oo,

then E (g ) = 0.

C O R O L L A R Y 2b. Suppose that f is analytic in the circle \z\ < 1, / ( 1 ) = 1,

M(l9 / ' ) < 1, and that an > 0 (all n),
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Let

if

> 0,

then z = e i θ £ E ( g ) if | θ - θn \ < U / 3 ) ~ h, 0<h< π/3, for infinitely many n.

In particular, E(g) - 0 if the set { 0n \ is dense in the interval [ 0 , 277].

6. The discussion of Cn(z) on pp. 534, 535 of the preceding paper shows

that they are constructed essential ly in accordance with Theorem 2 above. The

gap theorem in Corollary 2a is very crude, and can certainly be improved. The

high-indices theorem of Hardy and Littlewood and Tauberian methods ( s e e [Z]

and [ 3 ] ) yield much sharper resul t s .

7. The construction on p. 537 of Ilerzog and Piranian can also be carried

out as follows.

LEMMA. If A and B are disjoint closed sets in the plane and B is bounded

and has a simply connected compliment, and e > 0, then there is a polynomial

P(z) such that \P(z)\ <eonBand\P(z)\ > 1 on A.

Proof. L e t Tn(z) be the C h e b y s h e v polynomial of degree n for B; t h a t i s ,

Tn i s the polynomial of degree n with h i g h e s t coeff icient 1 whose maximum

modulus on B i s the l e a s t p o s s i b l e . T h e n Tn{z)lAn—>φ(z) in the exter ior

of B, where φiz) i s the function which m a p s the exter ior of B onto the exter ior

of a c i rc le | w \ > c and w h o s e Tay lor expans ion at 00 b e g i n s t h u s : φiz)—

z + . L e t c < C < R be such t h a t | < £ ( z ) | > / ? + € o n / 4 . Then there i s an

n such that

\Tniz)\ί/n > R on A and | Tn iz ) \ ι / n < C on B.

If n is chosen such that eiR/C)n >_ 1, then R"n Tn is a polynomial with the

desired properties.
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There are, of course, many other ways of constructing such a polynomial.

Now in the construction on p. 537, take a convergent double series ΣL a^n

with afch > C. Choose A — l^h and let B be the sector z ~ re1 with 0 <̂  r <_ 1

and θ in the closed interval complimentary to //^ and its two adjacent intervals

in G/j . Let Pfrh be a polynomial such that \Pkh^z^\ > 1 on l^n and | ^/^(z ) | <

ajςh on β. Arrange the pairs ik,h) in a sequence by the diagonal process, and

apply Theorem 2, then Theorem 1.

8. The polynomials Cn used by Herzog and Piranian are of the desired type

for the sets A and B considered in the preceding paragraph. They provide a

simple explicit construction and enjoy other interesting properties which seem

to be useful in a number of problems. The fact that they are small on the whole

set B above follows from the following remark which is surely known:

If

<*> n

f ( z ) = ^ a n z n and sniz) = ^ auz ,

71=0 /C=O

and 0 < r < 1, | z \ < 1, then \f(rz)\ < sup^ | s ^ ( z ) | .

This is a trivial consequence of the identity f(rz) = 0 ( 1 - r ) Σ 0 rn sn{z).
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REMARKS ON SPLITTING EXTENSIONS

D.G. IllGMAN

1. Introduction. If N is a normal subgroup of the finite group G we call G

an extension of N. Such an extension G over iV is said to split if there exists a

complement of N in G, that is, if there exists a subgroup of G which contains

exactly one element from each coset of G modulo N. A frequently used criterion

for splitting is provided by a theorem of Schur, namely, if N has order prime to

its index in G9 then G splits over N. W. Gaschϋtz [ l ] has recently given a

generalization of this theorem for the case when N = A is abelian, which states

that ( i ) G splits over A if and only if there is for each prime p a p-Sylow sub-

group S of G which splits over SnA9 and ( i i) there exists a subgroup U <G such

that G — AU if and only if there exists for some prime p a p-Syloiυ subgroup S of

G and a subgroup V of S such that

S = [Sn A]V9 andhGiVn A) = Sn A.1

Here R ^ i F n A) denotes the subgroup generated by all the conjugates to Fn A

in G.

In § 2 of this note we apply part ( i ) of the theorem of Gaschϋtz to establish

a generalization of the theorem of Schur for non-abelian extension. In § 3 we

apply ( i i) to obtain a characterization of extensions G over Λ such that N is

contained in the Frattini subgroup. The remaining two sections are concerned

with the question of conjugacy of complements.

NOTATIONS. Group will always mean finite group unless the contrary is ex-

plicitly stated. For // a subgroup of a group G, [G:H] = index of // in G. For

Y a set of elements of G, \ Y} ;= subgroup generated by the elements of Y. If

A and B are groups, A x B denotes their direct product. A < B means A is con-

Since any two p-Sylow subgroups of G are conjugate, this condition is satisfied
by all p-Sylow subgroups whenever it is satisfied by any one of them. The condition
is automatically satisfied by those p-Sylow subgroups of G for which p does not divide
both the order and the index of the normal subgroup.
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tained in B, while A < B means proper inclusion. A n B - set theoretic inter-

section of A and B.

2. A subgroup C of G is a complement for the extension G over N if and

only if G = Λ'C and 1 = Λ n C.

THEOREM 1. ^ subgroup C of a group G is a complement for the extension

G over N if and only if C is minimal with respect to the property G - NC, and

there exists for each prime p a p-Sylow subgroup S of G9 and a complement of

N π S in S which is part of C.

Proof. Assume that C is a complement of N in G. Then clearly C is minimal

with respect to the property G = Λ'C. If P is a p-Sylow subgroup of C, and if S

is a p-Sylow subgroup of G such that P < S, then P is a complement of S n Λ in

S. For, since P < C, Λ n P < Λ ' n C = l . And since P < S, [Sn N]P < S. But

S n N is a p-Sylow subgroup of Λ, and P is a p-Sylow subgroup of C, from which

it follows that [Sn Λ]P is a p-Sylow subgroup of G. Hence [Sn N]P = S. We

have proved the necessity of the condition of the theorem.

Now assume conversely that this condition is satisfied. Let P be a Sylow

subgroup of M — N n C, % an element of C. Since M is a normal subgroup of C,

P* is also a Sylow subgroup of M for the same prime. Hence there is an element

y in M such that Px^ = P. Then #y is in the normalizer T of P in C, that is x is

in A/71. Hence C = MT, so that G = Λ'C = NMT = NT. Hence by the minimality

property of C, T = C. We have shown that each Sylow subgroup of M is normal in

C, that is, that M is nilpotent.2 We must prove that M - 1.

If p is a prime, there exists by our assumption a p-Sylow subgroup S of G,

and a complement U of S n Λ in S which is part of C. Since U < Ss ί/ is a p-

subgroup of C. If ζ? is a p-Sylow subgroup of C such that U <^ Q, then £/ is a

complement of Λί n Q in 0. For, let P be a p-Sylow subgroup of G such that

Q <. P. Then there is an element % in C such that

Hence, since 1 = ϋ n N, P = [ P n Λ ] ί/', so that

The condition that C be minimal with respect to the property G = ΛC is equivalent

to the condition Λί = TV n C < _ φ ( C ) . We may infer the nilpotency of M from the nilpotency

oiφ(C) (c.f. § 3 ) .
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For X a subgroup of G, set X — M'X/M'9 where M' denotes the commutator

subgroup of M. Then Q is a p-Sylow subgroup of C, and since M'U c\ M = M'[Un

M] = M\ V is a complement of QnM in C. Hence, since M is abelian, there

exists by part ( i ) of the theorem of Gaschϋtz a complement D = D/M' of M in

C. But then C — MD and M' = M n D. Since M is nilpotent, M ^ 1 implies l ί n D =

Λί' < M = Mn C, that is D < C. Since G = NC = MMD = iVD, this contradicts

the minimality property of C. Hence M = 1, which proves the sufficiency of the

condition.

COROLLARY (Schur's theorem). // N has order prime to its index in G,

then G splits over N.

REMARK. Theorem 1 does not, of course, settle the question of the neces-

sity of the hypothesis that N be abelian for the theorem of Gaschϋtz. 3

The following example shows that in a splitting extension G over /V, not

every subgroup C which is minimal with respect to the property G = NC need be

a complement, even when N is abelian.

EXAMPLE. Let M ^ 1 be an abelian normal subgroup of the group C, and

assume that M is contained in the Frattini subgroup φ(C) of Cfc.f. § 3 ) . Since

φ(C) is nilpotent it will have a center ^ 1; we may take, for instance, M - the

center of φ(C). By a theorem of Artin [2, p. 103] there exists a free abelian

group A of finite rank, and an (infinite) group G such that if we set N = M x A,

then

1. G is a splitting extension of N.

2. G = NC

3. M = NnC.

By the choice of M and C, no proper subgroup of C satisfies 2.

Let now m be the order of M. Since N is abelian, Nm [= the totality of mXh

powers of elements of N] is a characteristic subgroup of /V, and hence is normal

in G. Furthermore, Nm n M = 1. Since N is abelian of finite rank, and since G/N

is finite, as an isomorphic image of the finite group C/M9 G/Nm is finite. Set

G = G/Nm, N = N/Nm and C = NmC/Nm. Since the extension G over N splits,

so does G over N. C is minimal with respect to the property G = NC9 but

Cn /V= MNm/Nm ~M φ 1.

THEOREM 2. For an extension G over N the following five conditions are

That this hypothesis actually is necessary has been shown by Professor
Zassenhaus. See the note at the end of this paper.
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equivalent.

(1) N has order prime to its index in G.

(2) if H is a subgroup of G9 then

( a ) there exists a complement of Nn H in H.

(b) if either H/[N n H] or Nn H is solvable, then any two complements of

N n H in H are conjugate in H.

(3) for each prime divisor p of the order of N9 there exists a p-Sylow subgroup

S of N such that if T denotes the normalizer of S in G9

( a ) there exists a complement of N n T in T.

(b) if H is a nilpotent subgroup of T, then any two complements of N n H in

H are conjugate in H.

(4) if H is a nilpotent subgroup of G9 then

( a ) there exists a complement of Nn H in H.

(b) any two complements of N n H in H are conjugate in H.

(5) if H is a nilpotent subgroup of G9 then there exists a subgroup C of H

such that for each subgroup U of H, ί/ = [ t / n / V ] x [ ί / n C ] .

Proof. Assume that N has order prime to i ts index in G, then clearly the

same is true of the normal subgroup N n H of H, for any subgroup H of G. Hence

H sp l i t s over N n H by the theorem of Schur. Furthermore, by a theorem of

Zassenhaus [ 2 , p . 132] if either H/[N(\ H] or N n H i s solvable then any two

complements for this extension are conjugate in H. Thus ( 2 ) is a consequence

o f ( l ) .

Conditions ( 3 ) and ( 4 ) are immediate consequences of ( 2 ) .

Next we shall prove that ( 3 ) and ( 4 ) each imply ( 1 ) . Assume that the ex-

tension G over /V sat is f ies ( 3 ) , and assume that p is a prime which divides

both the order and the index of N. Then by ( 3 ) , ( a ) there exis ts a p-Sylow sub-

group S of /V, and a subgroup C such that if T denotes the normalizer of S in

G, C is a complement of N n T in T. But G = NT, so that C is a complement of

N in G. Thus [ C : 1 ] = [G:/V], hence since p divides [G:/V], there exis ts an

element x in C of order p. Since x is in T, and since p divides the order of /V,

there exis ts an element z of order p in S n N such that xz = zx. Since x i s not

in N, ^ = U , z ! = U ! x i 2 ! and N n H - { z !, whereby it follows from ( 3 ) , ( b ) ,

that {x \ and {xz \ are conjugate in H. Since this is impossible, ( 3 ) implies ( 1 ) .

Now assume ( 4 ) , and suppose again that p is a prime which divides both

the order and the index of /V. If S i s a p-Sylow subgroup of G, there exis t s by
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( 4 ) , ( a ) , a complement C of S n N in S. Since p divides [ G : N ], there exis ts an

element # in C of order p. Since p divides the order of /V, S n Λ' is a non-trivial

normal subgroup of S. Now a repetition of the construction of the preceding para-

graph leads to a contradiction with ( 4 ) , ( b ) , proving that ( 4 ) implies ( 1 ) . We

have proved the equivalence of the first four conditions.

If H is a nilpotent subgroup of G, ( 2 ) implies the existence of a complement

C of N n H in H, and ( 1 ) implies that the orders of N n H and C are relatively

prime. Now ( 5 ) is a consequence of a property of nilpotent groups. Thus ( 5 )

is implied by the equivalent conditions ( 1 ) and ( 2 ) . Conversely, if S is a p-

Sylow subgroup of C, ( 5 ) implies the existence of a subgroup C of S such that

[/ = [ ί / n i V ] x [ ί / n C ] for each subgroup U of S. But it is well known that this

implies that S n /V and C have relatively prime orders. Hence one of S n /V and

C is trivial. This proves that ( 5 ) implies ( 1 ) , completing the proof of Theorem

2.

3. The Frattini subgroup φ(G) of the group G is the intersection of G with

all i ts maximal subgroups. In this section we shall note a characterization of

those normal subgroups N of G which are contained in φ(G). It is well known

that

( a ) N < φ(G) if and only if G = /VCS C a subgroup of G implies G - C.

Hence part ( i i ) of the theorem of Gaschϋtz has an equivalent statement

( b ) the abelian normal subgroup A of G is contained in φ(G) if and only

if for each prime p there is a p-Sylow subgroup S of G such that S ~[S n A]V9 V

a subgroup, implies S n A = \lG( V n A ). x

Using ( a ) it is easy to verify that

( c ) if M is a normal subgroup of G such that M < N9 then N < φ(G) if and

only ifU <φ(G) and N/M < φ ( G/M ).

Since φ(G) is nilpotent [ 2 , p. 122; this can be proved using ( a ) together

with the first part of the argument of the sufficiency proof of Theorem l ] it will

suffice for the purposes of determining the normal subgroups N which are con-

tained in φ(G) to consider the case in which N has prime power order.

N{i) denotes the ith derived subgroup of N, Λ ' ( θ ) = N, N{l) = N'. For X a

subgroup of G, Π/£(λ) denotes the subgroup generated by all the conjugates to

X in G.

THEOREM 3. Let N be a normal subgroup of the group G, and assume that

N has p-power order, p a prime. Then N < φ (G) if and only if there exists a
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p-Syloiυ subgroup S of G such that for all i >_ 0, S = N ι Vf V a subgroup, im-

plies

Proof, Assume first that N < φ(G). For X a subgroup of G, write X-

yy(* + i)^/yy(/ + l)β

 rf\len jyd) is_an abelian normal subgroup of G with p-power

order. Furthermore, by ( c ) , N < φ(G). Let ζ be the p-Sylow subgroup of G

whose existence is inferred by (b) (indeed, any p-Sylow subgroup will d o 1 ) .

Then S = S//VU + 1 ) , S a p-Sylow subgroup of G. If S = /V ( ι )F, V a subgroup,

then S = W> V. Hence by (b) it follows that W] = UG ( V n Λ^~}). But

) n V = N{i)/N(i+ι) n N(i + ι ) V/NU+ι) = NU+ι)[NU)n V]/N{i+ι\

from which it is.easily verified that

Hence /V(ί) = Λ/(i' + l ) ϊlG ( F n /V(i)). We have proved the necessity of the condition

of the theorem.

Assume conversely that this condition is satisfied. We prove N <_φ(G) by

induction on the order of /V. If N = 1 there is nothing to prove. Otherwise, since

N is a p-group, /V' < /V, and since the condition of the theorem is clearly satis-

fied by N' whenever it is satisfied by N, it follows from the induction hypothesis

that N' < φ(G). S = S/N' is a p-Sylow subgroup of G = G/N'. If V= V/N' is

a subgroup of G such that S = NV, N = N/N', then S = NV. Now the condition

of the theorem implies

H e n c e , s i n c e N i s an a b e l i a n p-group it fo l lows from ( b ) t h a t N < 0 ( G ) . H e n c e

N <φ(G)bγ(c).

4. In this section we assume that N = A is abelian, and consider the problem

of the conjugacy of complements of A in G. A complement C of A in G is in

particular a set of representatives for G over A; C consists of exactly one ele-

ment c(X) from each coset X in G/A. If D is a second complement, d(X) =

D n X, then the function t from G/A to A defined by d(X) = t(X) c (X) satisfies

(1) l = t ( Y ) x tiXYT1 t(X)
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for all X9 Y in G/A. (Since A is abelian, all the elements x in X induce the

same automorphism of A. We write a = ax for a in A).

Conversely, if t is any function from G/A to A which sat is f ies ( 1 ) , then the

totality D of elements d (X) = t (X) c (X) for X in G/A is a complement of A

in £ . Moreover

( 2 ) two complements C and D which are related by t are conjugate subgroups

of G if and only if there is an element a in A such that t(X) = al"X for X in

Let H be a subgroup of G such that A < //, and set m = [ G : / / ] .

T H E O R E M 4. // m is prime to the order of A9 if the function t from G/A to

A satisfies ( 1 ) 3 and if c is an element of A such that t(Y) = c ' for all Y in

H/A$ then there is an element a in A such that t(X) = a for all X in G/A.4

Proof. The function f defined by / ( X ) = t (X) c " ι sat is f ies ( 1 ) , and has

the property that f(Y) =* 1 for all Y in H/A. Choose a system L of left repre-

sentatives for C/A over H/A so that each X in G/A has (uniquely) the form X-

X X_, with λ' in L$ X in H/A. By ( 1 ) we have

1 = f (X)* f (χrι f (X) = f U)- 1 f(χ)

that is/U) = /U). Hence

Taking the product over all Y in L we have

o) /U)m= Π / ( y)"x Π / ( w .
YGL YEL

Since m is prime to the order of A, the mapping Cί :α —

morphism of A (which commutes with every other automorphism oΓA ). Henc

In terms of the cohomology theory of groups this means that the number of classes
of conjugate complements of A in G is the order of the first cohomology group of G/A by
A.

4 This result is a consequence of the 1-dimensional case, whereas (i) of the Gaschutz
theorem is a consequence of the 2-dimensional case, of a general theorem in the co-
homology theory of groups (see B. Eckmann, Cohomology groups and transfer, Ann.
of Math., 58(1953), 481-493.
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Π f(Y) a " 1

YEL j

is an element of A. As Y runs through L, so does XY, hence, applying Cί'1 to

(3) w e h a v e / U ) = b'Xb = bl'X. Thus

Theorem 4 is now proved with a — be.

COROLLARY 1. If m is prime to the order of A$ then two complements C and

D of A in G are conjugate in G if and only if C n H and D n H are conjugate in

H.

Proof. Let t be the function relating C and D. The subgroups C n H and

Dn H are complements of A in II, and are related by the restriction of t to H/A.

If C and D are conjugate in G, then by ( 2 ) there exis ts an element a in A such

that t(X) = a1' for all λ in G/A, and hence in particular for X in ////4. Hence

by ( 2 ) , C n A7 and D n H are conjugate in //.

If on the other hand C n H and D n H are conjugate subgroups of //, then it

follows by ( 2 ) that there is an element c in A such that t(Y) — c ~Ύ for all y

in H/A. Hence by Theorem 4 there exis ts a in A such that ί ( Z ) = α 1 " * for all

X in G/4. Hence by ( 2 ) , C and D are conjugate in G. This proves the corollary.

By part ( i ) of the theorem of Gaschutz the extension G over A spl i t s if and

only if there is for each prime p a p-Sylow subgroup S of G which spl i ts over

S n A. By Theorem 4 we have

COROLLARY 2. Let G be a splitting extension of A. If for each prime p

there is a pSylow subgroup S of G such that any two complements of S n A in

S are conjugate in S, then any two complements of A in G are conjugate in G.

Proof. We must prove that for each function t satisfying (1) there is an

element a in A such that t(X) = al"X for all X in G/A. Let p. be the prime

divisors of the order of A and let /4j be the corresponding primary components of

A (i - 1, 2, . . , k). Then A -Aγ x xAfa and each A}, being characteristic in

A, is a normal subgroup of G. For each X in G/A, t(X) has (uniquely) the

form
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with ίj(/Y) in Ai Define Γ ; ( . 4 J Λ ; ) = t(Λx) for x in G, and let S^ be a p .-Sylow

subgroup of G. We have assumed that Sj may be chosen in such a way that there

is an element b( in A( with

for all y in Sj (indeed, any p .-Sylow subgroup will do). By Theorem 4, there

exists aι in A such that

for all x in G. Hence

whereby

k k k ) ί-Λx

t{Aχ) = y[ti(Ax) = Yla}'Ax= Π c

1 = 1 i = i 1 = 1

for all x in G, with a = Π i = 1 α; an element of τ4.

5. It has been conjectured that if N has order prime to its index in G, then

any two complements of N in G are conjugate. The following theorem shows that

this conjecture is equivalent to

( + ) if G is a group9 and Γ a group of automorphisms of G such that the

orders of Γ and G are relatively prime, then for each prime p9 there exists a

p-Sγlow subgroup of G which is mapped onto itself by every automorphism in Γ.

Thus the theorem of Zassenhaus [2, p. 132] suffices to prove ( + ) in case either

G or Γ is solvable.

THEOREM 5. For an extension G over N such that N has order prime to its

index in G, the following are equivalent statements,

( a ) if C and D are complements of N in G9 then they are conjugate in

\C,D\.

( b ) for each subgroup H of G such that G = NH9 and for each pair C9 D of

complements of NnH in H9 there exists an automorphism a of H such that

C = Da.
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( c ) for each subgroup H of G such that G = NH9 for each complement C of

N n H in H9 and for each prime p9 there exist a p-Sylow subgroup S of N n H such

that C is part of the normalizer of S.

Proof. Clearly ( a ) implies ( b ) . Assume ( b ) , and let H be a subgroup of

G such that G = NH. Let P be a p-Sylow subgroup of N n H, and let T be the

normalizer of P in H. Then H = [/V n H]T. Hence, s ince the order of N n H is

prime to i ts index in H, there exis ts by the theorem of Schur a complement D of

N n H in H which is part of T, that is, which normalizes P. If now C is any

complement of /V n H in H, there exis ts by ( b ) an automorphism of // such that

C-Da. Hence C normalizes the p-Sylow subgroup S = Pa of TV n //. Thus ( b )

implies ( c ) .

Now assume ( c ) , and let C and D be two complements of N in G. Assume

that if { U, V \ is a pair of complements of N in G such that the order of { U9 V \

is l e s s than the order of H = { C9D\, then U and V are conjugate in { U 9 V \. If

/V n H is nilpotent, s ince we have assumed that the orders of N and G/N are

relatively prime, it follows by the theorem of Zassenhaus that C and D are con-

jugate in R. Otherwise, there exists a prime p such that the normalizer in H of

a p-Sylow subgroup of Λ'n // is a proper subgroup of H. By ( c ) there exist p-

Sylow subgroups P and Q of N n H which are normalized by C and D respectively.

There exis ts an element x in H such that P = Qx, and the complement E = Dx of

N in G normalizes P . Thus, if we let T denote the normalizer of P in H, {C9E \ £

T < H. Now it follows by the induction hypothesis that there exis ts an element

y in { C9 E \ such that C - E? = D % ^ . Since both x and y are in H = { G9D\, so

Added in proof. The very interesting fact, that the hypothesis that the ex-

tension be abelian is indeed necessary for Gaschϋtz ' s theorem ( i ) , as s tated in

the introduction of the present note, is shown by the following example com-

municated to the author by Professor Zassenhaus :

Let G be the group with generators /!;&, B(9 Cι (i,k= 1,2) and the defining

relations

} 2 A 2 A 2 - ( A A \2 A A -A A
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1. Jl rC L 2* 1 /£ \ r£ 2, \ 2, 2 \ 2 \ \ 2t 1 ^ 2, 1

The subgroup A generated by the four elements A^ is the direct product of two

quaternion groups with identified centers, thus A; is of order 32. The group N is

normal in G and the subgroup Gγ of G generated by A', B^ and B2 is normal too

such that Gγ/N is abelian of type (3,3). The factor group G/Gχ is of type (2,2).

Thus G is of order 1152.

The group G does not split over its normal subgroup A7. But the factor group

Gγ/N is the 3-Sylow7 subgroup of the factor group G/N such that Gγ splits over

A' with the subgroup generated by Bγ and B2 as representative subgroup. More-

over the factor group generated by N, Cι and C2 over W is a 2-Sylow subgroup

of G/N such that the subgroup generated by Ci A2γ and C2 Ai2 is a representa-

tive subgroup of order 4.
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TRANSFORMATIONS OF SERIES OF THE TYPE 3 Ψ 3

MARGARET JACKSON

1. Sears [3] has given relations between series of the type 3 Φ 2 # Generaliza-

tions of some of these results are included in, or may be obtained from, the

following two formulae established by Slater [4]:

π
r=o

(1 - xξq") (1 - qΓ*l/xξ) ( 1 - bt q
r) (1 ~ bMqr)

Ψ
MΎM

'* x

•> 9 bM

Π
r=o

(1.1)
(l~aιq

Γ/aM)(l-a2q
r+ί/aί)-.-U-aMqr+ι/aι)

x Λ

+ (M - 1) similar terms obtained by interchanging «! with α2,

= q/ax

r=0

M ) ( l - qr+2/aιxξ)(l-
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( l - 6 Λ ί /
+ 1 / α 1 ) ( l - α ι

X

(l-α^V^M-
(1.2)

x

+ (M - 1) similar terms obtained as in (1.1),

where

M 2 2M l

> 1, ζ = , I Λ; I < 1, and | qr | < 1 •

In particular we see that (1.2), with M - 3, is a generalization of the basic

analogue of the fundamental three-term relation [3, §10, result IVa] for 3F2 to

which it reduces if we take α t = aq, a2 = bq9 α 3 = cq9 a5 -a, a6 = 6, a7 = c,

bι = q> b2 - e9 63 = /, and Λ; = ef/abc. Similarly, (1.1) and (1.2) may be used

to obtain many more of the relations given by Sears. It will be noted, however,

that the parameters occurring in the Ψ series in (1.1) and (1.2) are related in

a very symmetrical way, and consequently these formulae can only be expected

to provide generalizations of the two-, three-, and four-term relations between

3 Φ 2 which are of a symmetrical nature; in particular, they do not provide a

generalization of the basic analogue of the fundamental two-term relation [3,

§ 10, 1] . In this paper, one such generalization is obtained which, when used in

conjunction with (1.1), will yield generalizations of all Sears' formulae and

provide basic analogues of known transformations [2] of 3H3 .

2. To obtain the required generalization, we establish the basic analogue

of the formula [2, §2.1] which was used to obtain the generalization of the

fundamental two-term relation between 3F'2> The method by which this result

can be obtained has been indicated by Bailey [ l ] , who obtained a particular

case of the following formula (2.1). We use the fact that a basic bilateral

series g Ψ g which terminates below can be expressed in terms of an g Φ 7 , which

can in turn be transformed into two series 4 Φ 3 , one of which can be replaced

by a 4 Ψ 4 which terminates below. Then, proceeding to the limit, we obtain a

transformation which can be restated in the form (2.1). The analysis is straight-

forward, though rather lengthy, so we just state the result:
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(2.1)
fa )n (~<7 V α )n ( b )n ( c )n (^)n

^ )τι (-V« )Λ («ί/6 )n (aq/c )n{aq/d)n

(e)n(f)n(-l)nqn

/ a*

)n (aq/f)n \ bcdef

- Π

π - aqΓ+i/ef)(l - aqΓ+ι/df)

(l-a2qr+ι/def)

3 ψ 3

6, c, a2q/def;
aq

aq/d, aq/e, aq/f c

(l-dqr/a)(l-eqr/a)(I-fqΓ/a)

{l-a2qΓ+2/bdef)(l~a2qΓ+2/cdef){l-q

(1 - a2 qr+2/def){l - defqr-ι/a2)

r+1 '

x φ
aq/ef, aq/df9 aq/de q

a2q2/bdef, a2q2/cdef

We obtain a generalization of the basic analogue of the fundamental two-term

relation by interchanging both b and d and c and e in (2.1), then replacing a by

def/aq2, d by ef/aq, e by df/aq, f by de/aq, leaving 6 and c unaltered, and

replacing def/abcq by σ, we obtain:

π ^ ^
r=0 (1 ~ aqr+2/ef) (1 - aqr+2/df)(l - σcqr)(l - σbqr)
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π
r=o

α, b, c def

d, e, / abc(>

r=0

(2.2)

-aqr/b)(l-aqr/c)(l-qr+l)

(l-aqr+i){l-qτ/a)

π

-π

Φ
3*2

' aq/d, aq/e, aq/f; q'

aq/b, aq/c

(l-aqr+ι/f)

3 ^ 3

.-dqr)(l-eqr)

K c, f

π
r=o ( 1 -

(l-q

r+ι/f)(l~dfqΓ/bc)(l-efqΓ/bc)
Φ

//c, f/b$ σ

The two 3Φ which occur in this formula are not connected by a two-term

relation, and it would appear therefore that (2.2) is probably the simplest

generalization of the fundamental two-term relation for 3 Φ 2 to which it reduces

when f-q This is the only relation between 3 Φ 2 which can be obtained from

(2.2).

There are some relations involving 3 Ψ 3 , which generalize more than one

3 Φ 2 transformation. Such a formula can be obtained from (2.1) by interchanging

the parameters b and d, then replacing a by def/aq2, d by ef/aq9 e by df/aq,

f by de/aq, but leaving b and c unaltered:

Ψ
3 Y 3

'a, b, c; def

d, e, / ahcc*
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(2.3)
'

(l-aqΓ)(l-aqr+2/ef)(l-σcqΓ)

r=0

(1 - dqr/c ) ( 1 - eqr/b ) ( 1 - fqΓ/b )

- aqr+ί/e )(1 - α<7Γ+ι//)(l - e//" l/M * $

" c, e//αί7, ef/bq

σc, e, /

r=o

- aqr+l/b)

- qr+ι/b)(l - qΓ+l/c)

(l~gr+ι)(l-agr){l-cσqr)

- efqΓ/bc)(l - dqr/c) \aq/d,f/b,e/b; q

6 / + I / / ) ( l ^ r ) '

3 2

aq/b9 ef/bc

.aq/b9 aq/c

If e (or /) = q, (2.3) reduces to a two-term relation; but it reduces to a

four-term relation between 3 Φ 2 when c = 1. This particular result is not stated

explicitly by Sears but can be deduced from his results.

It will be seen that the 3 Ψ 3 transformations are more complicated than the

analogous H transformations. For this reason, no more such results are given,

but they can all be obtained from (1.1) and (2.2).

3. Corrigenda. In (2.3) and (2.4) of [2], the terms Γ (1 + b-σ), Γ (1 + c-σ)

should be Γ ( l - i - σ ) , Γ ( l - c - σ ) , in (5.1) the factor Γ(d~c) on the left

should be in the denominator of the first term on the right, and there should be

a factor Γ(GO in the denominator on the left.
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TRANSFORMATIONS OF SYSTEMS OF RELATIVISTIC

PARTICLE MECHANICS

HERMAN R U B I N AND P A T R I C K S U P P E S

1. Introduction. In [7] the axiomatic foundations of classical particle

mechanics were investigated; and in [ 8] the transformations which carry systems

of classical particle mechanics into systems of classical particle mechanics

were determined. The purpose of the present paper is a similar investigation of

relativistic particle mechanics (in the sense of the special theory of relativity).

Some remarks on the general orientation of these studies are to be found in

[7, § 1 ] and in [ 9 ] .

In regard to our axiomatization of relativisitic particle mechanics, we want

to emphasize that we have in no sense attempted to use primitive notions which

are logically or epistemologically simple. Investigations with these latter aims

are to be found in [ l l ] , [12], [13], and [14]; but these studies are incomplete

in the sense that they do not give axioms adequate for relativisitic particle

mechanics as it is ordinarily conceived by physicists. We have attempted to

present such a complete set of axioms in a mathematically clear way.

The main result of the present paper is the determination under a certain

weak hypothesis of the set of transformations which always carry systems of

relativistic particle mechanics into systems of relativistic particle mechanics.

Although this set of transformations is not a group (under the usual operation)

we are able to show that it is essentially a Brandt groupoid. It is difficult

precisely to compare our results with those in [ 6 ] , but our results seem to

represent an improvement in three respects: ( i ) we work within an explicit

axiomatic framework; ( i i ) we consider transformations of the units of mass and

force as well as position and time; (i i i) we consider transformations from one

value for the velocity of light to another.

We briefly summarize the mathematical notations we use, most of which are

standard. We denote the ordered rc-tuple whose first member is al9 whose second

member is α 2 , and so on, by

Received May 7, 1953. The authors are grateful to Professor J.C.C. McKinsey for a
large number of helpful suggestions and criticisms. This work was supported in part by
a grant from the Office of Naval Research.
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( a l 9 , a n ) β

By an rc-dimensional vector we mean an ordered rc-tuple of real numbers. Opera-

tions on vectors are defined in the usual way. We use the symbol " 0 " to denote

the real number zero, the ^-dimensional vector all of whose components are

zero, and the matrix all of whose elements are zero. If A = ( α L , •• , α π ) is any

vector, the length | A \ of A is defined by

| / l | = Y α + +α

and by [A }il9i2, ,ir

 w e mean the r-dimensional vector ( α ^ , α j 2 , , α l r ) .

Thus if A = (4,7,5), then M]2,3 = (7,5) . If A is a vector, we sometimes write

"A2" for " | ; 4 | 2 . " If a is a matrix, we denote the transpose of Q by " G * , "

and the determinant of G> by " | a | . " ^ e denote the identity matrix by "c$L"

Although we treat vectors as one-rowed matrices, if A is a vector we always

mean by | A | the length of A and not the determinant of A: the meaning should

be clear from the context. We use both matrix notation and usual vector notation

for the inner product of two vectors A and B. Thus we sometimes write: AB*,

and sometimes: A β, whichever is more convenient.

We use Menger's notation for derivatives (see [10]) . If / is a function,

then D (f ) is the derivative of /. Thus, for example,

D (s in) = cos, [D (s in)] (x) = cos x9 and [ D 2 ( s in)] (%) = - s i n % .

In this connection, we use the standard notation for sums, products, quotients,

square roots, and so on, of functions. Thus, for example, if / and g are functions

of a real variable, by f+g we mean the function h such that for every real

number x

If / is a one-to-one function, /"* is the inverse function of / . It is also con-

venient to introduce a special symbol for the composition of two functions: if

/ and g are functions of a real variable, by g o / we mean the function h such

that for every real number x

h(x) = g(f(x)).

To make some of our equations involving derivatives more perspicuous in re-

lation to the notation ordinarily used in physics, we introduce formally the
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following two symbols: if / and g are functions of a real variable, then the func-

tion df/dg is defined by the following equation (for all real numbers x )

and the function d2f/dg2 by the equation

d2f (D[Df/Dg]\
— : (*) = ) (x)
dg2 \ Dg I

Finally, we also use the following notation: / is the set of all positive

integers, R is the set of all real numbers, R+ is the set of all positive real

numbers, and En is the set of all ^-dimensional vectors. We sometimes use

geometrical language, referring to vectors in En as points in ^-dimensional

Euclidean space, and so on.

2. Primitive notions. Our axioms for relativistic particle mechanics are

based on six primitive notions: P, 3, πι9 s9 f, and c. P is a set, 3 and m are

unary functions, s is a binary function, / is a ternary function, and c is a con-

stant.

The intended physical interpretation of P is as the set of particles. For

every p in P, c3 (p ) is to be interpreted physically as a set of real numbers

measuring elapsed times (in terms of some unit of time and measured from some

origin of time). There is a good physical reason for assigning (possibly) dif-

ferent sets of real numbers to different particles, instead of having one set of

elapsed times for the whole system, as in [7]: two particles which have a

simultaneous "life-span" with respect to one inertial frame of reference may

have life-spans which do not even overlap with respect to another inertial frame.

For every p in P, m (p) is to be interpreted physically as the numerical

value of the rest mass of p. For every p in P and t in 3 (p ), s (p, t) is a vector,

to be thought of physically as giving the position of p at time t. Thus the primi-

tive s fixes the choice of a coordinate system. It is also possible to take as a

primitive the set of all admissible (that is, inertial) coordinate systems; this

procedure is followed in [ 3 ] . We remark that for a fixed p in P, it is usually con-

venient to use in place of s the function sp9 which is defined on θ(p) and is

such that, for every t in 3 (p ),

Sp(t ) = S (p9t) .
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For every p in P and t in 3 ( p ) , and for i any positive integer, f(p9t,i) is

a vector giving the components (parallel to the axes of the coordinate system)

of the ΐth force acting on p at time t. For further discussion of this primitive,

applicable to relativistic as well as classical particle mechanics, see [ 7 ] .

Our primitive constant c is to be interpreted as the numerical value of the

velocity of light.

3. Axioms. Using the six primitive notions just described, we now give our

axioms for relativistic particle mechanics.

An ordered sextuple Γ = ( P , 3, m,s,f, c) which satisfies the following Axioms

A1-A7 is called an n-dimensional system of relativistic particle mechanics

(or sometimes, simply a system of relativistic particle mechanics, for abbrevia-

tion, S.R.P.M.):

KlNEMATICAL AXIOMS

Al. P is a nonempty, finite set.

A2. If p G P , then <3 (p ) is an interval of real numbers.

A3. // p G P and t E c 3 ( p ) s then Sp(t) is an n-dimensional vector', and,

moreover, the second derivative of sp exists throughout the interval 3 ( p ) .

A4. The constant c is a positive real number such that for every p inP and

t in 3 (p ),

\(Dsp)(t)\ < c.

DYNAMICAL AXIOMS

A5. // p G P, then m(p) is a positive real number.

Aβ. If p £P and teS(p), then f (p, t, 1) , / (p, t, 2 ) , are n-dimensional

vectors such that the series

is absolutely convergent.

A7. IfpePandteΰ(p), then

m(p)\υ
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Since this set of axioms is similar in many ways to that given for classical

mechanics in [ 7 ] , a large number of remarks to be found in § 3 of that paper

are also applicable here and will not be repeated. From Axiom A7 it is clear

that the force concept we are using is that of Minkowski. In the solution of

special problems this concept is not always the most useful one, but the rela-

tive simplicity of its transformation properties more than justifies its use here.

Some readers may feel that there are good physical grounds for taking the notion

of relativistic mass as primitive instead of that of rest mass; however, it is

easy to define the notion of relativistic mass in terms of the notion of rest mass

and our other primitives, and the use of the notion of rest mass as a primitive

emphasizes the considerable formal similarity between our axioms for relativis-

tic mechanics and the axioms in [7] for classical mechanics.

For p in P$ 3 ( p ) is a time interval for the particle p (with respect to the

frame of reference fixed by our choice of primitives). It may seem that it would

have been simpler to take 3 (p ) as the interval of proper time of the particle p.

However, this approach would complicate the treatment of systems of particles.

In the main, the notion of proper time is most convenient in discussions re-

stricted to the consideration of a single particle. From the remark in the pre-

vious section it is clear that it is not reasonable to require that the intervals

3 ( ρ ) be overlapping. A second argument against such an assumption is the

prominence in modern physics of elementary particles with very short life-

spans. x We note, however, that in studying certain special problems, such as

that of defining a reasonable notion of center of mass of a S.R.P.M., it is de-

sirable to restrict the discussion to systems in which a (p ) = (— oo, -f oo) for

every p in P.

If ( i ) " c " is replaced by "1/fc" in the inequality of Axiom A4 and the

equation of Axiom A7, ( i i) k is treated as a primitive replacing c, and (ii i)

Axiom A4 is modified to read: "The constant A; is a nonnegative real number

such that , " then, by adding appropriate further axioms, we can get either

classical or relativistic particle mechanics. Thus an additional axiom asserting

that k = 0 gives us classical mechanics; and the assertion that k > 0 gives us

relativistic mechanics.

xPaulette Destouches-FeVrier [2, pp. 5-6] advocates the use of a three-valued
logic to describe the creation and annihilation of elementary particles. Actually, the
situation is easily handled by the simple device of introducing the function cJ defined on
P instead of a fixed interval T for the whole system. Indeed, to our mind, her drastic
proposal cannot be taken seriously until we know a great deal more about the mathe-
matics which goes with a multi-valued logic. Even if such a body of mathematics existed
(as it does not—we do not have even the general outlines of elementary set theory in
three-valued logic ), it would be reasonable to adopt such a proposal only after every
feasible alternative in standard mathematics had been explored.



568 HERMAN RUBIN AND PATRICK SUPPES

We close this section with a number of definitions which will be useful later.

For p in P and t in 3 (p ), we set

vp(t)= (Dsp) ( ί ) ;

Vp(t) is, of course, the velocity of p at time t. With respect to a fixed element

t0 in 3 ( p ) , we define the function τtQ (for p in P and t in 3 ( p ) ) as follows:

ft / \Vp(t)

*° P* " Λ o * c 1

τ ί ( ) (p, ί ) is the proper time of p. Since we are interested only in the derivative

of this function with respect to ί, and since the derivative is independent of

ί0, we shall usually drop the subscript.

For p in P and t in 3 (p ), we define the function q as follows:

q (p, t) = (s (p, ί ) , ί ) .

It is natural to call q the space-time function.

For p in Ps t in 3 (p), and i any positive integer, we define what we call the

relativistic force function fτe as follows:

, / f(p,t,i) vp(t)\

c 2

Although it is not usual to adopt a special name for this function, the function

itself is used frequently in textbook treatments of relativity.

By a c-particle path (for any positive number c) we mean a set & of points

(that is, vectors) in En + ι for which there exists a S.R.P.M. ({ 1}, 3, m, s9 /, c)

such that for every point X of En + ί9 X is in & if and only if there exists a t in

3 ( 1 ) such that X = (s (1 , t), ί) , 2 It is obvious that if g is any twice-differenti-

able function defined on an interval T of real numbers and taking vectors in

En as values, then the set of vectors (g(t),t) for t in T is a c-particle path,

provided that | (Dg ) (t) \ < c for all t in T.

By the slope of a line OC in £Vι + i> whose projection on the (n + 1 )st-axis

2 The intuitive interpretation of En + ι is as the space-time manifold of special rela-
tivity with the (rc+l)st coordinate representing the time coordinate. Thus, if (Z, x) is
a point of En + lt then under the intended interpretation, the ^-dimensional vector Z gives
the spatial coordinates of the point and x its time coordinate.
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is a nondegenerate segment, we mean the ^-dimensional vector W such that for

any two dist inct points \ Z U xγ) and ( Z 2 , x2) of OC,

{ - Z2

xι ~ x2

= W.

By the speed of Cί we mean the nonnegative number \W\. By a c-inertial path

we mean a line in En + ι whose speed is less than c. We note that every segment

of a c-inertial path is a c-particle path, but is not necessarily a c-inertial path

(since a c-inertial path must be a whole line). By a c-line we mean a line in

En + i whose speed is equal to c. The notion of a c-line corresponds to the in-

tuitive notion of a light line.

If we want to refer to a S.R.P.M. Γ with numerical constant c, we shall

write: S.R.P.M. Γc .

4. Transformation theorems. We begin by defining the notion of a generalized

Lorentz matrix. An intuitive discussion of such matrices follows Theorem 1.

DEFINITION 1. Let c, c', and λ be positive real numbers. Then a matrix

& of order n + 1 is said to be a generalized Lorentz matrix with respect to

(c9c\λ) if and only if there exist numbers 8 and β, an ^-dimensional vector

U, and an orthogonal matrix 8 of order n9 such that

and

0

o\

c

c '

/ε

0

0

δ

υ*υ -
βϋ*

-βU β

The following two lemmas simplify the statement and proof of Theorem 1.

LEMMA 1. Let ( { 1 ί, 3, m, s,/, c) be a S.R.P.M., let c' and λ be positive

real numbers^ and let Q be a generalized Lorentz matrix with respect to (c,c'9
λ ) . Let the function h be defined by the equation (for every t in o ( 1 ) ) :

h(t)~[(sι(t),t)(l]n+ι.
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Then the function Dh exists; its values are either always positive or always

negative; and the function h is one-to-one.

Proof. From Definition 1 and the hypothesis of the lemma we see that there

are numbers 8 and β, an n-dimensional vector U, and an orthogonal matrix c,

such that

-£)-'
and

a
ε

(j8-l)8ί/*ί/\ λβEϋ*\

λcδβu

c'

c

λcδβ

c'

Thus

λcδβt λβSl(t)&U* I \cδβ\ I δsi
,(t) = - — = — \t

1 c / \

(t

Hence

'(DA)(ί) vi(t)88(J*

δλβc cc

Using Axiom A4 and the fact that S is orthogonal, we have

c'(Dh)(t)

δλβc

Since \U\ < c', the function Dh is bounded away from zero, and it thus follows

from Rolle's theorem that h is one-to-one.

The following lemma is a theorem of matrix theory.

LEMMA 2. Let c9 c\ and λ be positive real numbers. Then a matrix U of

order n + 1 is a generalized Lorentz matrix with respect to ( c, c', λ) if and

only if
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μ o \ /a o \
( i ) α α* = λ2

\θ - c ' 2 / \ 0 - c 2 /

Proof, The proof of necessity is obtained by direct application of Definition

1.

For the proof of sufficiency, let

IU K*\α-L
\ L ml

where U is a matrix of order n9 K and L are ^-dimensional vectors, and m is a

real number. From ( i ) we obtain at once:

(1)

(2)

(3)

From ( 3 ) it follows that

(4)

We define:

( 5 ) β

( 6 ) 8

( 7 ) U

UU*-

UL*-

LL*-

c'\ m \

cλ

m

L
— - i — ,

m

Since the right member of equation ( i ) of Definition 1 can be written
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( j8- l)8£/*£/ xβSu*
, ' 2

λcδβu

in order to complete the proof it suffices to show that

(i)

(Π)

x ε
u2

λcδβU

λcδβ

(HI) r— = L>

(IV)

(V) S2 = l ,

(VI)

(vπ) ε ε * = «a.

E q u a t i o n ( I I I ) f o l l o w s i m m e d i a t e l y f rom ( 5 ) , ( 6 ) , a n d ( 7 ) , e q u a t i o n ( I V ) from

( 5 ) a n d ( 6 ) , e q u a t i o n ( V ) f rom ( 6 ) , a n d e q u a t i o n ( V I ) f rom ( 3 ) , ( 5 ) , a n d ( 7 ) .

F r o m ( 2 ) a n d ( 7 ) w e g e t

( 9 )

a n d t h e n f rom ( 8 ) a n d ( 9 ) w e h a v e

n π . 1 L (β-l)c'2K*u\
do)

1
UU*

βU2 ,

8 - l ) c ' 2

\u*
{β-l)c'2U*K

2 Π2
β2υ

[β{-c'2K*)K + βK*(-c'2K)

+ (β-l)c'2K*K]
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1

λ 2
UU*

β2

λ2 I β2U2

From (VI) , ( 1 ) , and ( 1 0 ) we conclude that

which establ ishes equation (VII) . Multiplying both s ides of ( 8 ) on the right

by —λβU /c ' , and using ( 9 ) , we get equation ( I I ) . Equation ( I ) follows from

( 8 ) and ( I I ) , completing the proof of the lemma.

The following theorem is a generalization of the well-known result that the

relativist ic equation of motion is covariant under a Lorentz transformation.

THEOREM 1. Let ( P9 3, m9 s9f9 c ) be an n-dimensional S.R.P.M. Let c\

γ9 and λ be positive real numbers, let B be an (n + 1)-dimensional vector, and

let u be a generalized Lorentz matrix with respect to \c9c'9 λ ) . For each p in

P let the function hp be defined as follows (for all t in 3 (p )) :

hp(t) = [(sp(t),t) Q + B]n + ι .

(By Lemma 1 the inverse function hp exists,) Let the function c3 be defined

as follows: for p in Ps 3 (p) is the range of the function hp; and let the func-

tions m'$ s '9 and f be defined by the following equations (for p in P$ t' in

c3 ' (p ) and i in 1):

m'(p ) = γm(p)9

Γ(P, «',;) =
f(p,hpHt'),i)-vp(h-p

ι(n

> α i, ,n

ThenΓ'= (P93',m',s',f'9c') is an n-dimensional S.R.P.M.

Proof. It will suffice to show that Γ ' satisfies Axioms A4 and A7, since

the proof for the other axioms is trivial. Let
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It is easy to show that for p in P, and i ' in c3 (p ),

(vp(h pHt'),i)
( 1 )

(vp{hpHt'),i)(E*)

with the denominator of the right member of (1) always unequal to zero. (Since

in this proof we always consider a fixed particle p, we drop the subscript " p "

from this point on.)

We have, from Axiom A4,

(2) λ a ( | t ; ( λ - ι U ' ) ) | 2 - c 2 ) < 0;

but

λ 2 ( | i ; ( A - ι ( n ) | 2 - c 2 ) - λ 2 ( i ; ( A - ι ( ^ ) ) , l > ( _ ^ 2 ) ( v {h' ι(t')), 1 >* .

Then by Lemma 2 we have

°( 3 ) λ 2 ( | t ; ( A - 1 ( ί ' ) ) | 2 - c 2 ) = , . . . . , . , _ , ,

\0 -c'

T h e r i g h t member of ( 3 ) i s e q u a l to

( 4 ) (v(h-ι(t')\

- c ' 2 ( « , ( λ - ι ( t ' ) ) , l ) Γ

and u s i n g ( 1 ) we s e e t h a t ( 4 ) i s e q u a l t o

•E*"2

E*

(5) ((v(h HtΊ)Λ)^*\v'(t')\ -c'2({v(h-ι(t'),i)(E*y\

From (2), (3), (4), and (5) we conclude that
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\ υ ' { t ' ) \ 2 - c ' 2 < 0 ,

which verifies Axiom A4 for Γ .

It is not difficult to show that from Axiom A7 we have

Setting ς r ' ( έ ' ) = (s'(t'), t') for all ί ' in 3 ' ( p ) , we conclude from the hypo-

thesis of our theorem that

and thus

(7) ((Dq')°h){t)(Dh)U)=(Dq)(t)(ί.

Directly from the definition of q and q' we obtain

(8)

and

(Dq){t)l °) ((Dq)(t))*=\v(t)\2-c2,
\ 0 — c I

(9) ((D<?'W)(ί)( M ({{Dq')oh)(t))*=\(v'°h)(t)\2-c'2.
\ 0 —c /

U s i n g L e m m a 1, L e m m a 2, a n d ( 7 ) we o b t a i n , from ( 8 ) a n d ( 9 ) ,

| ( » Ό A ) ( ί ) | 2 - c ' 2 = ( | t ; ( ί ) | 2 - C

2 ) ,

((Dh)U))2

and thus

do)
c

[i
' 2 c ' 2 ( ( D Λ ) ( ί ) ) 2 1 c 2

By Lemma 1, (Dh){t) is either always positive or always negative; the re-

mainder of our proof i s analogous in the two c a s e s , so that we shall only con-

sider the case where it is always positive. We then have, from ( 7 ) and ( 1 0 ) ,
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(Dq') ° c'(Dq)(t)(l
_

{ l - \ { v ' ° h ) ( t ) \ 2 / c ' ψ ~ λc{l-\v(t)\2/c2)^ '

and hence

(11)
Dq'

( 1 - v'\2/c'2ΫA

c'(Dq)(t)&

λc(l-\v{t)\2/c2ΫA

Differentiating both sides of (11), and using (6), we obtain

From (10), (12), and the hypothesis of our theorem, we infer that

(13) γm(p) D
Al-\v'\2/c'2YAi

°h\ ( t )

(v'oh)(t)\2

and from (13) we conclude immediately that Axiom A7 holds for Γ . 3

REMARK 1. All the transformations mentioned in Definition 1 and Theorem

1 have a clear intuitive interpretation if we consider ( P, 3, m9 s s f$ c) as a

physical system whose mechanical properties are observed and measured with

respect to some (inertial) frame of reference and some set of units of measure-

ment, and ( P , 3 ί ^ ' j 5 ' ) / ' ^ ' ) as the same physical system observed and meas-

ured with respect to some other (inertial) frame of reference and some other

set of units of measurement. Thus, c is the old and c* the new velocity of

light. The introduction of the number y amounts to changing the unit of mass

by an amount 1/y, and the vector B corresponds to shifting the origin of the

spatial frame of reference by - [ β ] i , . . . , r t , and the origin of time by an amount

3Readers familiar with the standard treatments of relativistic mechanics will note
that (in the interests of rigor and explicitness ) we have replaced " ί ' " by "hp(t)."
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— [β]n+i The number λ represents a uniform stretch of space and time. When

3 = - 1, we have a reversal of the direction of time. The matrix 8 represents

(for n <^ 3) a rotation of the spatial coordinates —or a rotation followed by a

reflection. The vector U represents the relative velocity of the two inertial

frames of reference, and the number β, which is determined by V and c', is the

well-known Lorentz contraction factor. Finally, it is easy to check that the

last matrix in the factorization of the matrix fl yields the ordinary Lorentz trans-

formations. We note that the rather complicated transformation of the forces is

the velocity-dependent transformation to be expected in relativistic mechanics.

REMARK 2. Theorem 2, our main result, is a sort of converse of Theorem

1: roughly speaking, we show that the transformations described in Theorem 1

are the only transformations which always take systems of relativistic particle

mechanics into systems of relativistic particle mechanics. To facilitate the

formulation and proof of Theorem 2, an additional lemma and some definitions

will be useful.

L E M M A 3. Let A[i = \ Z 1 , % 1 ) , ^2 = ( Z 2» %2 )* an^ ^ 3 = ( 2 3 , X 3 / be any

three points in £ ^ + i such that ( i ) x± < x2 < #3* ( ϋ ) there is a c-inertial path

through Xι and X2, and ( i i i ) there is a c-inertial path through X2 and X3. Then

there is a c-particle path through Xl9 X2$ and X$.

Proof. In v i e w of t h e r e m a r k n e a r t h e end of § 3, i t w i l l suf f ice to c o n s t r u c t

a f u n c t i o n g w h i c h : ( a ) i s d e f i n e d on the c l o s e d i n t e r v a l [ % i s # 3 ] ; ( b ) t a k e s

v e c t o r s in En a s v a l u e s ; ( c ) i s t w i c e d i f f e r e n t i a t e ; ( d ) i s s u c h t h a t for e v e r y

t in[xl9x3], \(Dg){t)\ < c ; a n d ( e ) i s s u c h t h a t

g(xχ) = Zi, g ( * 2 ) = Z 2 * a n c l £ ( * 3 ) = Z 3

L e t

a = x2 — Xγ 9 b = x3 — x2 s

2c log 2 aV log cosh γb + bW log cosh γa
γ = : , ^ =

(c - max (I V |, I If I )) min (α, 6 ) α log cosh γb Λ- b log cosh yα

α & y ( I F - F )
B =

a log cosh γb + b log cosh γa
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T h e r e a d e r may verify t h a t t h e funct ion g de f ined by the fo l lowing e q u a t i o n

(for t in [xϊ9 x3 ] ) h a s p r o p e r t i e s (a) - ( e ) :

B
g(t) = Z 2 + (t- x2)A + — [ l o g c o s h γ(t - x2)].

Y

DEFINITION 2. Let φ be a function mapping R* into /?+; let φ be a func-

tion which is a one-to-one mapping of En + ± into itself; and let φ be a function

mapping E2n into £ Λ . Then we call the ordered triple ( φ^9 φ2,φ3) an eligible

transformation.

DEFINITION 3. Let Φ = {φγ9 φ2,φ3) be an eligible transformation; let

Γ = ( P s 3 , m, s, /, c ) be a S.R.P.M.; and for each p in P let the function Hp be

defined as follows (for every t in 3 ( p ) ) :

Then by the Φ-transform of Γ (which we also write: Φ ( Γ ) ) , we mean the ordered

quintuple \ P, a $ m '9 s '9 f ) , where for p in P:

m'ip) = ^ ^ ^ ( p ) ) ;

o ( p ) is the range of the function Hp', and s ' and / ' are defined by the following

equations for t' in 3 ' ( p ) , if the pre-image H'1 {t') of t' under Hp is unique,

and otherwise they are undefined:

s'(p,t') = ίφ2(s (p, H'p
l(t')9

for i >_ 1.

We are now in a position to state and prove the main result of this paper.

THEOREM 2. 4 Let Φ= (φι9 φ2, φ3) be an eligible transformation, and let

4 The statement of Theorem 2 would be made more symmetrical to Theorem 1 if
φ>2 were replaced by two functions φ' and φ " such that

φ'(Z,x)=[φ2{Z,x)]n+ι and φ"(Z,x) = [φ2(Z,x)]lιm..,n.

This procedure was followed in [8] for classical mechanics; but in relativistic me-
chanics, it is natural to introduce the single transformation Φ2 for the space-time
manifold.
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c and c' be positive real numbers such that ( i ) for every n-dimensional system

of relativistic particle mechanics Γ C ϊ \ Φ ( Γ C ) , c / is a system of relativistic

particle mechanics? and ( i i ) φ carries no c-line into a c'-particle path. Then

there exist positive real numbers γ and λs an {n + \)-dimensional vector B^ and

a generalized Lorentz matrix U with respect to \ c9 c'% λ)? such that? for any

vectors Zx and Z 2 in En with \Z2\ < cf every x in R, and γ in 7?+

s

Proof. We first want to show that if Z is any vector in En such that \Z\ <

then

Setting P = ί 1 !, 3 ( 1 ) = (-oc, oo), m ( l ) = 1, and, for t in 3 ( 1 ) ,

/ ( 1 , ί, i) = 0 for i > 1,

we see that ( P9 3 , m, s, fs c) is a S.R.P.M. Since for every t in 3 ( 1 ) , Z = v (1, ί ) ,

we conclude from the hypothesis of our theorem, Definition 2, and Axiom A6

that the ser ies

is absolutely convergent. Hence

(1) 0 3 ( O , Z ) = O.

For every segment & of a oinertial path there exists a one-particle S.R.P.M.

( ί 1 ί, 3S m, s, f, c ) such that, for every t in 3 (1),

f (p9t,i) = 0 for i > 1 ,

and for every vector X in En + U X is in J& if and only if there is a t in 3 ( 1 )

such that
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X=(s(l,t),t) .

Hence it follows immediately from (1) and the hypothesis of our theorem that:

(2) φ carries segments of c-inertial paths into segments of c'-inertial

paths.

Let Γ c = \ P9 3, m, s ^ c ' ) be any S.R.F.M. with constant c. By hypothesis,

\ Φ ( Γ c ), c) is a S.R.P.M. For any p in P, if tι and t2 are in 3 (p ) and tγ Φ t2,

then

Φ2(s {p,tι),tι) Φ φ2(s (pit2),t2),

since φ2 is one-to-one. Suppose now that

[φ2(s(p,ti),tι)]n+i = [φ2(s(pft2)9t2)]n + ι

Then we must have

ί φ 2 ( s ( p 9 t ί ) 9 t ί ) ] l f . . . f Λ Φ [ φ 2 ( s { p 9 t 2 ) y t 2 ) ] u . . . t n

but then \ Φ ( Γ C ), c ' ) is not a S.R.P.M., for p is required to be in two places

at the same time, which violates Axiom A3. We thus conclude:

(3) φ is one-to-one in the last coordinate along the space-time path of any

particle of a S.R.P.M. also, Γ c , and thus the pre-image under φ2 of any point

ί' in 3 (p ), is unique.

Furthermore, since by hypothesis φ2 takes the interval 3 ( p ) into an in-

terval 3 (p ), we have:

(4) φ is continuous in the last coordinate along the space-time path of

any particle of a S.R.P.M.

From (4) and the fact that any two points \Zsx) and \Z$y) lie on a c-

inertial path, we obtain:

(5) For any point (Z,x) and any € > 0, there exists a δ > 0 such that for

any point (Z9y) if | x - γ \ < δ, then | * ' ~ y Ί < €, where

We next show that

(I) φ2 is continuous.
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Let \ZuXι) be any point of En + l9 and let e be any positive number. Let

e* = e / [ 2 ( l + c ' ) ] . Using ( 5 ) , let δ* be a positive number such that if

i x ι "~ y I < δ* then | x^ - y' \ < €*, where

x[ = and y ' = [<£2 ( Z l f y ) ] n + 1

and let δ = cδ*/( 3c + 2). We shall show that if ( Z 2 Ϊ Λ ; 2 ) i s a n y point of En + X

such that

(6 ) \ ( Z U X ι ) - ( Z 2 , x 2 ) \ < δ ,

then

Suppose for definiteness that

\ ί / Λ> γ S Λ>2

We may choose x0 and x3 so that

I 7 - 7 17 7
2 1 9 "~ 1

(8) Λ;2 — — — ^ — — δ < Λ Q ^ *2 "~ — — —

and

\Z2-ZX\ \Z2-ZX\
( 9 ) xx + < χ3 < xx + + δ

c c

From ( 7 ) , ( 8 ) , and ( 9 ) , we obtain

\Z2-Zί

( 1 0 ) 1*3 - * o I < | * 2 - * i I +

and from ( 6 ) and ( 1 0 ) we t h e n infer t h a t

S i n c e f r o m ( 7 ) , ( 8 ) , a n d ( 9 ) w e h a v e

( 1 2 ) x0 < x2 < %i < x3
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we obtain from ( 1 1 )

1*3 - * 1 I < δ * ,

\Xί -XQ I < § * .

Consequently, by ( 5 ) ,

and thus, by the triangle inequality,

( 1 3 ) 1 * 3 - * ό I <

where

From the second part of ( 8 ) it follows that there is a c-inertial path through

\Zux0) and \ Z 2 , Λ : 2 ) ; and from ( 7 ) and the first part of ( 9 ) it follows that

there is a c-inertial path through \ Z 2 , # 2 / a n < ^ \Zuχ$)' ^ ' e thus conclude

from Lemma 3 that there exis ts a c-particle path through \Zl9x0), \ Z 2 , ^ 2 ) >

and \Z l9 x3) . As before, for abbreviation, we set

Z2'

Since φ is one-to-one and continuous in the las t coordinate along any c-particle

path, it is monotone in the last coordinate along any c-particle path, and we

thus have: either

( 1 4 )

x0 < * ,

x0 <x2 <χ3;

< < < < <
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Also, since segments of oinertial paths are carried by φ into segments of

c'-inertial paths, we have:

( 1 5 ) l Z n ~ Z

2 I 1 I Z H ~ Z 1 3 I + I Z 1 3 ~ Z 2 I < C l % ! - %

3 I + C I X

3 ~ X

2 »

a n d

(16) i z ^ - z i < I z;x - z;o i + i z;o - z;ι < c ' | * ; - « 0 ' | + C ' | * O ' - * 2 Ί .

We o b t a i n from ( 1 4 ) , ( 1 5 ) , and ( 1 6 ) :

(17) i\z[x - z ; | < c ' t i ^ ' - ^ i + ! % ; - < ! + U ; - * 2 Ί + I < - < Π

< 2 c ' | x 3 ' - < l

Thus from (13) and (17) we conclude that

I Z ^ - Z i < 2 c ' e * ,

and from (13 ) and (14) that

\x[-xί\ < 2e*;

and since e* = e/[ 2 (1 + c')], we infer that

| < £ 2 ( Z i * * l ) - ^ 2 ( Z 2 S ^ 2 ) | < 6>

which establishes ( I ) .

We now establish:

(II) φ carries parallel segments of oinertial paths into parallel segments

of c'-inertial paths.

It is clearly sufficient to show that φ carries parallel c-inertial paths into

parallel segments of c'-inertial paths. Let η and τ?2 be two parallel c-inertial

paths, and let 77 be a c-inertial path which intersects 77 and 77 in the points

Aι and /1 2 , respectively (obviously such a c-inertial path 77 exists). (See

Figure 1, on following page.) As previously, we use a prime to designate the

image under φ2 of a point, line, and so on. We may construct a fourth c-inertial

path which intersects 77 between /l t and A2 and which intersects 77 and 77 at
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Figure 1

points distinct from Aι and A2. Consequently, we infer from ( 2 ) that the seg-

ments 77j and 772 lie in the same plane in the image space of φ .(See Figure 2 on

following page.) Suppose now that 77̂  and 77̂  are not parallel . We extend (if

necessary) 77̂  and 77' to their point of intersection, say / ' . We next se lect

B' on 77' between / ' and A' (we use " b e t w e e n " in such a way that B' must

be distinct from / ' and A'); similarly, we select Ώ' on 77' between / ' and

A^ We now consider the pre-images, B and D, of B' and D ' . Since φ2 is one-to-

one and continuous, it is clear that B and D must be on the same side of η3;

that is , the segment BD does not intersect 773 Let E be a point on 773 between

A{ and A2> Then, since η3 is a c-inertial path, one of the numbers [ ^ 2 ^ + 1 "

[E]n + ι and [A ί]n + ί - [E]n + ί is positive, and the other is negative. Since

ηι and 772 are parallel, [B]n+ί -[Aι]n + ί and [ D ] π + i - [A2 ]n + ι have the same

sign. We then construct a line through D ' parallel to 77̂  or through B' parallel
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Figure 2

to η^9 according to whether [A2 ]n + ι - [ E ] n + 1 or [Ai]n+i - [ £ ] n + i agrees in

sign with [ B ] ^ + i — [A ] n + i Suppose, for definiteness, ( s e e Figure 1) that

[/42]rc + i ~[E]n + i agrees in sign and that this sign is posit ive. Let F ' be the

point of intersection of η' with the line through D' parallel to η'. By construc-

tion F ' is between Af and A£9 and thus F is between Ax and A2

We then have:

< c ( [ D ] n + ι - [ F ] n + ι ) .

Hence the line through D and F is a c- inertial path. This line intersects η at a
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point, say G, and, furthermore, by construction DFG is a segment of a c-inertial

path, and hence the image D'F'G' is a segment of a c'-inertial path. But D ' F '

is parallel to 77', and the image of G does not lie on the extension oίD'F',

which is a contradiction. Thus η and 77 are parallel, and the proof of (II) is

complete.

We next show that

(III) φ2 carries the midpoint of any finite segment Cί of a c-inertial path into

the midpoint of CX.'.

We consider a fixed plane containing (X and a line parallel to the ί-axis

(the (n + 1 )st-coordinate axis). In this plane we construct, with Cί as a diagonal,

a parallelogram whose sides and other diagonal are segments of c-inertial paths.

Let the speed of the c-inertial path containing Cί be k. It is clear that through

any point of our fixed plane there are exactly two lines with speed Z, for every

positive number Z. Obviously, we may construct a parallelogram 1° with Cί as

one diagonal, with the other diagonal a segment of a c-inertial path with speed

(1/4) {3k + c ), and with one side a segment of a c-inertial path with speed

(1/2) (k -f c ). The other side of the parallelogram I is then a segment of a

c-inertial path with speed (1/6) (5A: + c ). We conclude from (II) that P is

carried by φ into a parallelogram P ' , and the diagonals of P are carried into

the diagonals of P ' . Iΐence the midpoint of (X is carried into the midpoint of

Cί' and (III) is established.

We next show that

(IV) φ carries arbitrary lines into lines.

Let α be an arbitrary line in En + U and let \Zί,xί) and ( Z 2 ί % 2 ) be any two

points on Cί. We now construct an " inert ial" parallelogram through these two

points. For definiteness, we assume:

xι > x2 .

We set

Z t + Z 2

and we choose x0 and x3 so that:

Z l ~ Z l \ \ Z l ~ Z 2
, X3 > XΛ +

2c 2c
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\(ZuXι) _ ( Z 0 > % 3 )

I (Zuχ{) - (ZOίxo) I =

Let (see Figure 3 )

Figure 3

D

C + D

Since the sides of the parallelogram ACBD are by construction segments of c-

inertial paths, we conclude from (II) that A'C'B'D' is a parallelogram, where

A ' - φ2 (A ), and so on, and that the sides of A'C'B'D' are segments of c'-

inertial paths. Moreover, it is clear that by construction CED9 FEG, and HEK

are segments of oinertial paths, and consequently CΈ'D'9 F'E'G', and
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H'E'K' are segments of c'-inertial paths. Hence, by (III), F'f G', H'9 and

K' are the midpoints of the respective sides of A'C'B'Ώ\ Thus E\ the point

of intersection of the segments F ' C and H'K', is the point of intersection of

the diagonals of A'C'B'D'. Consequently, E' is the midpoint of the segment

A'B\ Since midpoints of finite segments are carried into midpoints of finite

segments, and φ is continuous, the proof of (IV) is complete.

From (IV) and the fact that φ is one-to-one and continuous, we immediately

infer that φ2 is a protective transformation, and since it takes no finite point

into a point at infinity, we conclude that

(18) φ2 is a nonsingular affine transformation; that is, for every point (Z, x)

(19) φ2(Z,x)= (Z,x) Q + β,

where G is a nonsingular matrix of order n + 1 and B is an (n + 1 )-dίmensional

vector.

Now let

/j9 £*\
(20) CU and B=(Bub),

\F g I

where J9 i s a matrix of order n; Bί9 E, and F are n-dimens ional v e c t o r s ; and b

and g are rea l numbers . T h e n

( 2 1 ) φ2 ( Z , x) = ( Z J9 + xF + B ί , Z £ * + gx + b > .

L e t a be a c-l ine such that , for any two d i s t i n c t p o i n t s (Zl9xι) and \ Z 2 , Λ ; 2 )

of α ,

Zγ — Z 2

= W .
xx -x2

Obviously, \W \ = c. Now 0L is carried by φ2 into a line OC'. We want to show that

α is carried into a c'-line. From (21) it follows that the slope W of α ' is given

by

WB + F
(22) F'-=ri

WE + g
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By the hypothesis of our theorem,

(23) |JT | > c'.

Consider now a sequence of c-inertial lines Cί 1? CX2> •> whose slopes Wu W2,

are such that

lim Wi = W.
I —* oo

From (21) and the hypothesis of our theorem we have

I HP * I =
W Ei β + £

< C .

Hence, if WE* + g £ 0, then

(24) W'\ =
WB

W E1 *
lim

Suppose now that WE* + g = 0. Then

lim (

and therefore

lim (

Hence

but then

( w , i ) Q = o ,

which is impossible, since 0, is nonsingular. Thus we have

(25) | I T | = c ' .

For subsequent use we observe that for any S.R.P.M., \ P$ 3, m, s9 /, c /, and

any p in P and ί in 3 (p ),
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v{p9t)E*+g £ 0 .

590

(26)

For v (p91) Φ- 0, the argument is the same as afe©ve; in case v (p, t) = 0 for some

t, on the supposition that υ {p, t) E* + g = 0, we must have # = 0 and F = 0,

which again contradicts the nonsingularity of Q.

From ( 2 2 ) and ( 2 5 ) we get

= c

and hence

(27)

Since (27) holds for an arbitrary c-line, we may replace W by -W9 and thus

conclude that

Therefore, since the direction of W is arbitrary,

(28) ®F* = c'2E*g.

In view-of the fact that (26) holds for v (p, ί ) = 0, we have

and we may then obtain, from (28),

(29)
J9F*

Using (20) and (29), we obtain

QI

and since Q is nonsingular, we have

(30)
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From ( 27 ), ( 28), and ( 30 ) it follows that

J9i9*-c'2£*£ ± 0.

Thus, from (27), we have

W (J9J9* - c'2 E*E) W* = — - L i . | Π 2 .

c2

Using again the fact that the direction of W is arbitrary, we infer that

/ c '2 2

(31) ®8*-c'2E*E=Γ 8

' 2 2 _ I Γ | 2 \8 J '
where μ = [ c ' 2

g

2 - | F | 2 ] / c 2 . From (28) and (31) we obtain

'<& 0 \ „.,. h&*-c'2E*E SF*.
(32) Q

0 - c ' 2

\ ί \ " /

_/μ<Sl 0 \ _ / l 0 \
= (o v ) = > -c2]

We next want to show that μ i s posit ive. Let \Zi9xι) and \Z29X2/ be two

points in En + ι such that

μ t-z2 |
< c,

\xl ~%

and let

V=(ZlfXι) - (Z2,x2)

and

F ' = VQ.

From (32) we obtain

Hence
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v-A
By the hypothesis on V,

< !><••

and from the fact that c-inertial paths are carried into c'-inertial paths, we have

VI o )(V)* < 0.

m

Thus μ is positive since it is the ratio of two negative numbers. We set

(33) λ

We then conclude from (32), (33), Definition 1, and Lemma 2 that

(34) Q is a generalized Lorentz matrix with respect to ( c, c', λ ) .

We now turn to the function φ which transforms the forces. In deducing the

form of φ3 it will be convenient to make use of the functions r , q, and fτe

defined in § 3 (in the course of the present proof we obtain their transformation

properties). It is also useful to introduce the function H defined by the following

equation for every p in P and t in 3 (p ),

H (p, t) = [φ2 ( s ( p , ί ) , ί ) ] 7 l + 1 .

We thus have that, for i ' the element in <3'(p ) corresponding to t in <3(p),

We obtain, from ( 21),

(35)

For any S.R.P.M. Γ = v , S, ra, s,/, c ) ,, the following equation is a direct con-
sequence of Axiom A7 and the appropriate definitions (for any p in P and t in
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(36)
dτ

P

and also, under the hypothesis of our theorem,

(37)
dr'p

2

/•rel i

We now obtain the relationship between

,2 / τ2
a qp a qp

(Hp(t)) and ί(t).

dr;2 p di

Using (35), we obtain

(38)
drn

\(t)

[(Dr^)(Hp(t)][DHp)(t)]

(DτD)(t)

y/l-\v^Hp{t))\2/c'2 (vp(t)E*+g)

y/l-\vp(t))\2/c 2/c2

It is easy to show that

(39)
vp(t)E*-

hence, using (39) and squaring (38), we get

40) (" rr,

Using (27) to give us the expansion of the right member of (40) and then using

(32) to simplify the result, we obtain
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(41)

hence

Drn

( t )
c2-\vp(t)\

λ 2 ;

(42) (Drp)(t),

where δ2 = 1. We have, from ( 2 1 ) and Definition 3,

and thus

(43)

Since

(Dqp-)(Hp(t))(DHp)(t) I Dq'p

D{τ'pohp)

it is easily shown that

(Dτ'p)(Hp(t)){DHp)(t) \Dτp

T ( # p ( i ) ) ,

/2 >

(44)

From (42), (43), and (44) we infer that

' 2

(O =
2λ2

( ί ) Q .
c2λ

Now let A and Y be any two vectors in En with A ̂  0 and \Y \ < c. Then we

set:

3 ( i ) = -

\z
-1 Y

ΪTΓ ) •
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and for all t in 3 (1),

{ ( 1, t, 1) =
vι(t)(Z. Vι(t))

- \Vl(t)\2/c: (l-\vι(t)\2/c2)
2 / 2 \ 2

/ (1, t, i) = 0 for ί > 1.

It is easy to verify that Γχγ - \P, 3, m, s, /, c) is a S.R.Γ.M., and consequently

so is ( φ (VXY ), c'f . Thus there is a positive number γ such that

We note next that at t = 0:

S l ( 0 ) = 0, ( D s , ) ( 0 ) = y ,

Vve thus have from (37), for t - 0,

= Z , and / (1, 0,

y
rfr.'

and thus, from (45),

γc

c 2 λ 2
dτ\

- (0)G
If ••• *n

hence, from (36),

(46)
γc

2 x 2
C λ

In view of (1), (46) also holds for X = 0.

Now let A; be any positive real number. Then we set:

for ί in ΰ (1),
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xS xvi{t)(δ - vγ

-f

c 2 ( l - | " i U ) | 2 / c 2 ) 2

/( l , ί , i) = 0 for i > 1

We easily verify that Γ^ = (P, 3, m, s,/, c) is a S.R.P.M. such that for all t in

3(1),

Furthermore, we infer from (36), (37), and (45) that, for every t in 3 ( 1),

,/ ΦΛX) c'2 °°
r e l ( i « ( ί ) i ) Σ / Γ e l ( i ί i ) α ;

(47) £ / r

x c*λ2 -

hence, from (46),

(48) φγ(x) = γx.

Our theorem now follows from (19), (33), (34), (46), and (48).

REMARK 3. We want to emphasize the physically reasonable nature of the

hypothesis of the theorem just proved. We have assumed that systems of rela-

tivistic mechanics are carried by our transformations into systems of relativistic

mechanics and that light lines are not carried into particle paths. No assump-

tions concerning the continuity of either φ , φ , or φ have been made. Our

assumption that φ2 is one-to-one may be justified physically by the argument

that any two space-time positions of a particle distinct with respect to one

observer must be distinct with respect to every observer.

The standard presentations of the special theory of relativity vary a good

deal in their "derivations" of the Lorentz transformations. Almost without

exception, however, the assumptions underlying these derivations are not clearly

and completely stated. For the physicist who wants to begin with a set of

axioms for relativistic particle mechanics with respect to a fixed coordinate

system, our Theorem 2 provides a rigorous approach to the derivation of the
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Lorentz transformations. The transformations we obtain in Theorem 2 are, of

course, more general than the Lorentz transformations, but it is obvious how the

hypothesis of Theorem 2 may be strengthened so as to obtain just the ordinary

Lorentz transformations.

Theorem 2 is also pertient to discussions of the relativity of size, (see,

for example, [ 4 ] ) , since the determination of φ^ φ2, and φ3 tells us exact-

ly how the system of units of measurement may be changed in passing from one

inertial frame of reference to another.

It is interesting to note that the set of transformations admissible (that is,

satisfying the hypothesis of Theorem 2) in relativistic particle mechanics

differs sharply from the set of those admissible (see the hypothesis of Theorem

3 of [ 8 ] ) in classical particle mechanics: in the latter case, but not in the

former, admissible transformations can change the unit of distance differently

along different coordinates (with correspondingly different changes in the unit

of force). Thus, although classical mechanics can in a certain sense be re-

garded as a limiting case of relativistic mechanics, the set of transformations

admissible in classical mechanics is in no sense a limit of the set of transfor-

mations admissible in relativistic mechanics.

5. Algebraic structure of the set of admissible transformations. Let Φ be an

eligible transformation which satisfies the hypothesis of Theorem 2 with res-

pect to the positive real numbers c and c'. We then call the ordered triple

( Φ, c, c ' / an admissible triple; and, corresponding to the informal usage at

the end of the previous section, we call an eligible transformation an admissible

transformation if it is the first element of some admissible triple. Since the set

of admissible transformations is not a group under the obvious operation of com-

position, it is natural to ask what is its algebraic structure. We shall show that

the structure of the set of admissible triples is that of a Brandt groupoid (for-

mally defined below). Roughly speaking, the main difference between Brandt

groupoids and groups is that a Brandt groupoid is not assumed to be closed

under the binary operation corresponding to the group operation. Consequently,

a Brandt groupoid may contain many identity elements, that is, many elements

e such that % * e = % = e * % whenever x9 % * e, and e * x are in the groupoid.

If there is an e in the groupoid such that, for all x in the groupoid, e * x = x -

x * e9 then the groupoid is also a group. For this reason, we introduced the

notion of an admissible triple: the admissible transformation which carries

every S.R.P.M. into itself is an identity element whose composition with every

admissible transformation is defined; consequently, the set of admissible trans-

formations is neither a group nor a Brandt groupoid.
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The notion of a Brandt groupoid was first defined in [ l ] ; we use the formal

definition given in [ δ ] .

DEFINITION 4. An algebraic system Q = ( GΦ *, Λ " 1 ) (where * is an

operation on a subset of U x V to U, J is a subset of U and ~ι is an operation

on U to U) is called a Brandt groupoid if and only if the following conditions

are satisfied:

( i ) For x9 y, z in G, if x * y G G and y * z G G, then (^ * y ) u EG and

( % * y ) * z = % * ( y * z ) .

( i i) For #, y, z in G, if x * y £ G and x * y = # * z, then y = 2.

(i i i) For Λ;, y, z in G, if Λ; * z G G and Λ; * 2: = y * z9 then x = γ.

(iv) For Λ; in J9 x * ac = x.

(v ) For x in G, / ι * % E / and x * ΛΓ
 ι G /.

(vi) For #, z in /, there exists a y in G such that %*y GG and y * 2 G G.

Rather than deal directly with admissible triples, we find it somewhat simpler

to use the following representation. From Theorem 2 we conclude that to each

admissible triple there corresponds a unique ordered sextuple ( fl, Bf ys λ, c, c' ) ,

where B is an (ra + 1 )-dimensional vector, y, λ, c, and c ' are positive real

numbers, and Q is a generalized Lorentz matrix (of order n + 1) with respect to

( c,c',λ). Such an ordered sextuple ( Q, B, γ, λ, c, c ' ) we shall call a carrier.

From Theorem 1, together with Theorem 2, it then follows that there is a one-

to-one correspondence between the set of carriers and the set of admissible

triples.

We say that the carrier \ G', B\ y\ \\ cXy c2 ) is left-conformable to the

carrier ( G, Bf γ, λ, c 3 s c4 ) if and only if c t = c 4 . By the conformable subset

J9 of K x K we mean the set of ordered pairs of elements of K such that the

first element is left-conformable to the second.

We now define what we call the carrier system.

DEFINITION 5. By the carrier system we mean the ordered quadruple

K= (K9 *, /, - ι ) , where:

( i ) K is the set of all carriers;

(i i) * is the operation on J9 to K such that if the carrier \ G', B', y', λ\cί9 c2 )

is left-conformable to the carrier ( G, B, y, λ, c 3 , c 4 ) then

( G ' , β ' , y ' , λ ' , C l , c 2 ) * < α , β s y , λ , C 3 , c 4 ) = < Q Q ; β Q ' + β ' , y y ' , λ λ ' , c 3 > c 2 )
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(ii i) / is the set of carriers of the form ( <&, 0, 1, 1, c, c ) , where <S is the

identity matrix of order n + 1; and

(iv) - 1 is the operation on K to K such that if (G, B, y, λ, c$ c' ) E K then

( α , δ s y , λ ί C , c ' ) " l = (Cί- ι,-βCL-\l/y, l / λ , c ' , c > .

We have then the following theorem, the proof of which we omit.

THEOREM 3. The carrier system is a Brandt groupoid.

We remark first that the operation * of the carrier system corresponds to the

composition of admissible triples; that is, if ( φ , c, c / corresponds to ( Q,B,

γ,λ,c,c'), and ( ψ , c ' s c " ) corresponds to ( G', β',y', λ', c', c " ) , then

( GG',βG' + B\γγ\ λλ', c, c " ) corresponds to ( 0, c, c " ) , where ( (9, c, c " ) is

is the admissible triple such that, for any S.R.P.M. Γ c ,

( Ψ ( ( Φ ( Γ C ) , C ' ) ) , C " ) = (θ(Γc),c").

Similarly, the inverse operation "* of the carrier system corresponds to the

natural inverse operation on admissible triples; that is, if \ Φ , c , c / corres-

ponds to ( Q , B9 y3 λ, c9 c' ) , and { Ψ, c'^c) corresponds to ( G" ι , — BΌΓ ι , 1/y,

1/λ, c ' , c ) , then, for any S.R.P.M. Γ c ,

( Ψ ( ( Φ ( Γ c ) , c ' ) ),c ) = Γ C .

It thus follows as a corollary to Theorem 3 that the set of admissible triples

is a Brandt groupoid under the natural operations of composition and formation

of inverses.

It is natural to ask how the hypothesis of Theorem 2 may be strengthened

so that the set of eligible transformations satisfying it form a group. We state

without proof some results concerning this question.

THEOREM 4. Let Φ = (φ *Φ2iφz) be an eligible trans formation which

carries every system of relatiυistic particle mechanics into a system of rela-

tivistic particle mechanics. Then there exist positive real numbers δ$ γ$ λ, and

pf an (n + l)~dimensional vector B9 an orthogonal matrix t of order n9 and a

matrix G of order n + 1, such that

δ 2 = l ,
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and for any vectors Zι and Z 2 in En} any x in R, and y in R ,

φι(y) = γyt

ΦΛ(zϊfx)= ( z l i X ) α + s ,

The interpretation of 8, y, λ, B, and C is the same as that stated in Remark

1. The number p is the ratio c/c' of the absolute values of the old and new

velocities of light. The matrix ΰ is a generalized Lorentz matrix with U = 0,

which intuitively means that the old and new spatial frames of reference are

at rest with respect to each other. The fact that the hypothesis of Theorem 4

thus excludes the possibility of transforming from one inertial frame of reference

to another moving with respect to it is sufficient reason to regard this hypo-

thesis as unnecessarily strong from the point of view of our intended physical

interpretation. On the other hand, it is, of course, clear that the set of trans-

formations satisfying this hypothesis constitute a group under the obvious oper-

ations.
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ON T H E DIMENSION T H E O R Y O F R I N G S ( I I )

A. S E I D E N B E R G

1. Introduction. As in [ 3 ] , we shall say that an integral domain 0 is n-

dimensional if in 0 there is a proper chain

(0)cPι C . C P Π C ( 1 )

of prime ideals, but no such chain

In Theorem 2 of [3] it was shown that if 0 is rc-dimensional, then O[x] is at

least (rc + 1 )-dimensional and at most (2n + 1 )-dimensional: here, as throughout,

x is an indeterminate. After preparatory constructions in Theorems 1 and 2

below, this theorem is completed in Theorem 3 by showing that for any integers

m and n with n + 1 < m < 2n + I, there exist rc-dimensional rings 0 such that

0[x] is m-dimensional. The other theorems mainly concern 1-dimensional rings.

Such rings 0 can be divided into those for which 0[%] is 2-dimensional and

those for which this condition fails, the so-called F-rings. The paper [3 ] was

concerned with the existence of F-rings and showed [3, Theorem 8] that the

1-dimensional ring 0 is not an F-ring if and only if every quotient ring of the

integral closure of 0 is a valuation ring. Below, in Theorem 5, we show more

generally that if 0 is 1-dimensional but not an F-ring, then 0 [ # i , , xnλ is

{n + 1 )-dimensional, where the x{ are indeterminates: this theorem depends on

the essentially more general Theorem 4, which says that if O is an m-dimen-

sional multiplication-ring, then 0\_xu * , xn] is (m + n )-dimensional. In the

case that the xi are not indeterminates, one can still say (Theorem 10) that

dim O[xt , 9 xn] ~ 1 + degree of transcendency of 0 [ x ι , , x n I/O ,

provided that the intersection of the prime ideals (^ (0)) in 0 is = (0), where

0 is a 1-dimensional ring such that 0[x] is 2-dimensional. For F-rings 0,

Theorem 6 shows that

n + 2 < dim 0[x{, , xn] < 2rc + 1,

Received April 10, 1953.

Pacific J. Math. 4 (1954), 603-614
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where the %ι are indeterminates, while Theorem 7 constructs for any N and n

with

τι + 2 <N < 2rc + 1

an F-ring 0 such that 0[xχ, , xn] is /V-dimensional. Similar results for

rings of dimension greater than 1 would be interesting if one could get them.

2. Simple extensions. Let us call the integral domain 0 of type (n>m) if

dim 0 = n and dim 0 [ x ] - m .

THEOREM 1. Let 0 be integrally closed and of type (n,m\ let K be its

quotient field, and let K' be a proper extension of K in which K is algebraically

closed. Let Σ be any field having a discrete rank 1 valuation with K' as resi-

due field. Let 0* be the set of elements whose residues are finite and in 0.

Then 0* is integrally closed and of type (n + 1, m + 2).

Proof. L e t α e Σ , w i t h (X i n t e g r a l over 0 * ,

α s + o L (X s " 1 + ••• + as = 0 (ai e 0*),

an equation of integral dependence. Dividing this equation by (Xs and supposing

1/θC to have residue 0, we get the contradiction 1 = 0. So Cί has finite residue,

and

α s + a{ α s " 1 + •• + a~s = 0,

where the bars indicate residues. Since K is algebraically closed in K'9 we have

Cί £ K; and α € 0 , since 0 is integrally closed. Hence 0* is integrally closed.

Let P be the set of (X G 0* having residue 0. Then P is a prime ideal. From

the definitions one obtains

whence 0* is at least {n+ 1 Vdimensional. If P ' is a prime ideal in 0*, P' Φ

then P ' 3 P I n fact, let g G P ' since g is 0*, we have v(g) = s >_ 0, where t>

is the given valuation (and the group of integers is the valuation group). Then

the (s + 1 )th power of any element in P is divisible by g, whence ? C f , From

this it follows that 0* is at most (n + l)-dimensional

The quotient ring O* is integrally closed and has only one prime ideal



ON THE DIMENSION THEORY OF RINGS ( I I ) 6 0 5

(•£ (0 ) ) . Moreover it is not a valuation ring. In fact, let (X £ Σ be an element

having residue in K' but not in K. Since (X can clearly be written as a quotient

of two elements of positive value, we have that (X is in the quotient field of

0*; but neither (X nor 1/cc has residue in K, so neither Cί nor 1/α is in 0 * .

Thus 0* is not a valuation ring, and hence is an F-ring, by [3, Theorem 8]. It

follows at once that 0 * [ # ] P is not minimal in 0 * [ * ] . Now

0*[x]/0*[x] P ~ O*/P[xλ ~ 0[x],

so 0 * [ # ] is at least (m + 2 )-dimensional.

Finally, let (0) C P ι C P 2 C C Ps C (1) be a chain of prime ideals in

0*[%]. Let Pi be minimal; then P t n 0* = (0), as otherwise

P t n 0 D P and Pi D 0*[x] . P .

Similarly one concludes that if no chain of prime ideals P ' C P " can be inserted

between (0) and P 2 , then

P 2 n O* = P and P 2 = 0 * [ * ] . P

(by [3, Theorem l ] , P 2 cannot contract in 0 to ( 0 ) ) . From this it follows at

once that 0 * [ # ] is at most (m + 2)-dimensional, and the proof is complete.

REMARK. The above construction stems from an example of Kπill showing

that an integrally closed integral domain with only one proper prime ideal need

not be a valuation ring; see [2, p.670f].

THEOREM 2. Let 0, K, K', Σ , O* be as in Theorem 1 except that we

assume K = K'. Then 0* is integrally closed and of type (rc + 1, m + 1).

Proof. The proof follows exactly the lines of the proof of Theorem 1, except

that here Op is a valuation ring, as one easily sees.

THEOREM 3. For every n and m such that n + I < m <2rc + l there exist

integrally closed rings of type {n>m).

Proof* Any field is of type (0,1) . Theorem 1 gives us an integrally closed

ring of type (1,3), and Theorem 2 gives us one of type (1,2) —the required

valuations obviously exist. Suppose now by induction that for some n and each

m, n+I<^m<L2n+l, we have an integrally closed ring of type (n9m). If

n + 3 <ra <2rc + 3, then n + I <_ m - 2 < 2̂rc + l , and from an integrally closed

ring of type {n, m~2) we get, by Theorem 1, an integrally closed ring of type
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{n+ 1, m). If m = n + 2, we apply Theorem 2 similarly to get an integrally closed

ring of type (n + 1, m ).

As for simple algebraic extensions 0[cί] of an rc-dimensional ring 0, it is

clear that dim 0[cί] <_ 2τz. On the other hand, let 0 be an integrally closed ring

of type (ns m) and let 0* be a ring constructed as in Theorem 1; also let Σ and

P be as in Theorem 1. Let

α e Σ , a £ 0 * , l/oc £ 0 * .

Then

0*[<x]/0*[oc] P ~ O*/P[x] ~ 0[χ],

by [3, Theorem 7], so 0*[C(] is at least (m +1 )-dimensional; it is also at most

(m +1 )-dimensional, since 0*[%] is (ra + 2)-dimensional. Hence

(τz + 1) + 1 < dim 0*[θt] < 2 U + 1 ) .

It is thus clear that for any n' > 0 and m' with rc'-i-l £ m' < 2ra', there exists

an rc'-dimensional ring 0* such that for some (X in the quotient-field of 0* we

have dim 0* [α ] = m '. - Also

dim 0 [ α ] < dim 0

is possible. In fact, let 0 be a valuation ring of rank n, (0) C p C C p C ( l ) ,

the chain of prime ideals in 0. Let c Epi + ι, c ^ p ; then dim 0 [ l / c ] = 1. In

short? dim O[(x] covers precisely the range from 0 to In as 0 varies over the

n-dimensional rings 0.

3. Multiple transcendental extensions. We recall that a multiplication-ring

may be defined as an integral domain 0 such that 0p is a valuation ring for

each prime ideal p in 0 (see [2, p. 554]).

THEOREM 4. If 0 is an m-dimensional multiplication-ring, then 0[xi9 9xn]

is (m + n)-dimensional9 where the X( are indeterminates.

Proof. To facilitate the proof, we define the dimension of a prime ideal P in

an extension 0 ' = 0 [α 1 ? ,0^] of a finite-dimensional ring 0 (relative to 0 )

as follows:

dimP = d.t. ( 0 7 P ) / ( 0 / P ) +dim 0/p,

where p = P n 0 (and " d . t . " abbreviates "degree of transcendence"). The
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following points ( a ) , (b) do not assume 0 to be a multiplication-ring.

(a) Let O\ 0, P, p be the images of 0\ 0, P, p, respectively, under a

homomorphism with kernel contained in P. Then dim P = dim P.

In fact, O'/P = 0 VP and 0/p = 0/p; also P n 0 = p .

(b) Let M be a nonempty multiplicatively closed system in 0 not meeting p,

Then

dim P - dim 0/p = dim OM P - dim 0M /0M - p .

In fact, the rings O'/P and 0^/0^ P have the same quotient field, as do

the rings 0/p and 0^/0^ p. Note also that 0^ P n 0 ^ = 0 ^ p, whence the

required equality follows.

Let Pu P2 be two prime ideals in 0\ Pγ C P 2 , pi = P tn 0, i = 1, 2. We want

to compare dim Pi with dim P 2 . If p t =P2> then, passing to a residue class

ring, we may assume pχ - p 2 = (0) . Taking M - 0 - (0), we pass to the quotient-

ring Oy, which is a finite integral domain. Thus dim Pt > dim P 2 if p t = P2

This conclusion holds also if p t C p 2 provided O is a multiplication-ring.

(c ) If Pi and P 2 are prime ideals in 0 [ x t , , xn ] and Pγ C P 2 , then

dim Pι > dim P 2

also

dim Pv - dim P 2 >̂  dim 0/pγ - dim 0/p 2 ,

provided that 0 is a multiplication-ring.

In fact, we may suppose p C p , and have only to prove the second point.

Also, by (b), we may pass to any quotient-ring Oy, where M does not meet p 2.

Taking M = 0 - p 2 , we may assume that 0 is a valuation-ring and that p2 is its

ideal of non-units. Let zι, 9zr be elements of 0 ' which are algebraically

dependent mod Pi over 0. Then they are also dependent mod P 2 . In fact, let

/ ( * „ . . . , z r ) s
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where the coefficients of the polynomial / are in 0 but not all in p 1 # Dividing

by a coefficient of least value, we may suppose / to have a coefficient equal

to unity. But then we have a relation mod P 2 . This proves that

d.t. (O'/P2)/(O/p2) < d.t. ( O 7 P ι ) / ( O / P ι ) ,

that is, (c) is proved.

The theorem now follows from (c) since dim (0) = m + n,

COROLLARY. If 0 is an m-dimensional multiplication-ring then

dim O[al9 9CLn] <7?2+r,

where

r = d.t. 0[aί,..., an]/O.

Proof. The foregoing proof shows that

dim 0[xί 9 ••• 9xn~\ <_ dim ( 0) = m + d.t. 0 [ x t , , xn ] /O $

and in doing so makes no use of the fact that the X[ are indeterminates; this

fact is used only to get that

dim 0 [ % ! 9 9Xn\ >_m + n.

THEOREM 5. If 0 is a 1-dimensional ring such that O[x] is 2-dimensional,

then

dim O[θtχ, . , an] < 1 + d.t.

if the OCj are indeterminates, then

dim O[Cίl5 , &„] = 1 + n.

Proof. We may suppose 0 to be integrally closed. In that event, 0 is a

multiplication-ring, by [3, Theorem 8] . The present theorem now follows im-

mediately from the preceding corollary.

THEOREM 6. If 0 is 1-dimensional, then O[xί9 9xn] is at most (2n + l)-

dimensional$ where the X{ are indeterminates.

Proof. Let ( 0 ) C p 1 C p 2 C « C p s C ( l ) be a chain of prime ideals iin
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0[xi9 ,xn]. Let K = quotient field of 0. If p s n 0 = ( 0 ) , then the above

chain extends to a chain of s prime ideals in K[xχ9 , # n ] , so s <_ ra Suppose,

then, that

. + i

( 0 ) ,

whence also P i + £ n 0 = p, since 0 is 1-dimensional. P a s s i n g to & [%1? , xn ],

we see that i < n; and pass ing to

we have s — (i + 1) <_ rc? since 0/p is a field. Hence s < 2n + 1.

THEOREM 7. / / 0 is α/z F-ring9 then O[xχ, •• 9 xn] is at least {n + 2)-

dimensίonal and at most (2n + \)-dimensional. For any /V, n + 2 < N <_ 2τz+l9

ί/iere is an F-ring 0 such that 0[x ι , ,xn ] is N-dimensional, where the xι

are indeterminates.

Proof. Let K be a field, x9 yχ, , ym inde terminates. Let

K ' = K ( y x , . , y m ) , X = « ' ( * ) ,

and let v be the discrete rank 1 valuation of Σ obtained by placing

v {aι%1 + aι+ιxι 1 + +as xs ) - i,

where α; € X ^ a{ £ 0. Let 0 * be the set of elements whose residues are finite

and in K, The ring 0 * consis ts of the elements in K{x,yί9 ••• , ym ) which can

be written in the form

α U , y 1 ? ' - - , y m ) / β ( χ , y i 9 •• > y m ) ?

where

a, β£K[x,Yι, ••• , y m ] , j8(0, y l f . . . , y m ) ,έ 0 ,

By Theorem 1, 0* is an F-ring; and 0* contains only one proper prime ideal,

namely the ideal P consisting of the elements d/β with

α ( 0 , xl9 . . . ,χm)/β(09 %i, , Λ Λ ) = 0 .
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We s h a l l prove t h a t for m <_n, 0 * [xi9 ••• 9 % n ] i s (m + n'+1 ) - d i m e n s i o n a l . In

0*[xl9 . . 9 χn~\ l e t Pm be the idea l of p o l y n o m i a l s which v a n i s h for %ι =

yi ( i = 1 , , m ) . We claim t h i s i d e a l i s in

0 * [ * ι , , * J . P = P ' .

Jn fact, let

be in P m , and write

where ci^ in £ K$ ^ ι i *ιn ^ ^* This polynomial vanishes for xι = y., ί = 1, ,

m; hence also for xι = γι 9 i — 1, , m, x = 0. Hence

£ ' C ί ι . . . l n x ι . . . Λ;Λ

vanishes for X( — y^ $ i — 1, , m$ whence

and

Let Py be the ideal of elements in 0* [x ι , • ,xn ] which vanish for χι = y.9

ι = l , •••,/. Then Py is prime and (0) C Pi C C P m C P ' Since any chain

of rc prime ideals in 0*/P [xι , ,%R] gives rise to such a chain in 0* [ x ι , ,

%n ] containing P ' , we see that 0* [ # i , , xn ] is at least (m +n + 1 )-dimen-

sional. On the other hand, 0*[xι, ,xn] is of degree of transcendency

m + 7i + 1 over K, and so 0*[xι , 9 xn] is at most (m + n+ 1 )-dimensional.

This last point follows from the following lemma, the proof of which is exactly

as in the well-known case that 0 is a valuation ring.

LEMMA. Let 0 be an arbitrary integral domain containing a field K, and let

0 be of degree of transcendency r over K. Then 0 is at most r-dimensional.

Proof. This follows at once if we can show that the degree of transcendency
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of 0/P over K is less than r for any proper prime ideal P in 0. If θi9 Θ29 9

θs G 0 map into (given ) algebraically independent elements in 0/P, and 0 G P,

θ £ 0, then θ9 Θι9 9θs are algebraically independent over K, Hence

d.t. 0/K > d.t. (0/P)/K.

4. Arbitrary finite extensions. Let 0 be an arbitrary integral domain which

is not a field, it is certainly possible, for appropriate 09 that some simple ring

extension O[cc] of 0 will be a field. In fact, let 0 be such that the intersection

of all its prime ideals (^ (0)) is not the ideal (0); for example, any integral

domain with a finite, positive number of prime ideals (^ ( 0 ) ) will do. If c (£ 0)

is an element in all the prime ideals, then O[ 1/c] is a field; for if P is a prime

ideal in 0 [ l / c ] , P £ (0), then

P n O = p ^ (0)

and

1 = (1/c) c eθ[l/c] . p C P .

We also have the converse.

THEOREM 8. Given an integral domain 09 there exists a field F which is a

simple ring extension of 0 if and only if the intersection of all the prime ideals

in 0 is £ (0) .

Proof. Let F - 0[a]. Here α must be algebraic over O9 say

c o α m + c 1 α m ' 1 + + c m = 0, C J G O , c 0 £ 0 .

Then c0CC is integral over 0, as is the ring Oγ = O [ c o 0 t ] Let Fι = 0^ [ a ] ;

then Fι is a field [ l , p. 253]. Over every prime ideal in 0 there lies a prime

ideal in Oχ; since Oχ is algebraic over 0, if the intersection of the prime ideals

(^ (0) ) in 0χ is ^ (0), then the like is true in 0. Hence we may assume that

O = 0ί9 that is, that Cί is in the quotient field of 0. By a similar reasoning we

may suppose 0 is integrally closed. From the fact that l/cc £ 0 [cί ], one finds

that 1/Cί is integral over O9 hence in 0. Thus (X = 1/6, 6 G 0. The element 6

must be in every prime ideal p ( ^ (0)) ; in fact, if b £ p, then O [ l / 6 ] (I Op,

whence 0[l/b] = O[(x] is not a field. This completes the proof. —This theorem

has been previously proved in [4, p. 76].

A study of algebraic extensions of 0 must therefore separate the cases that
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t h e i n t e r s e c t i o n o f t h e p r i m e i d e a l s ( ^ ( 0 ) ) i s = ( 0 ) o r i s = / ( 0 ) .

THEOREM 9. If 0 is a l-dimensional ring such that O[x] is 2-dimensional9

and the intersection of the prime ideals { Φ ( 0 ) ) in 0 is = (0) , then the like

is true of any simple algebraic ring extension 0[(X] of 0 {where it is assumed,

of course, that 0 [ α ] is an integral domain).

Proof. By Theorem 5, we know that 0[(X] is 0- or l-dimensional, and the

previous theorem excludes the first alternative. Also 0[dsx] is 2-dimensional,

for otherwise O[γ,x]9y an indeterminate, would be of dimension more than 3,

contradicting Theorem 5. Thus it remains to prove that the intersection of the

prime ideals (φ (0 ) ) in 0[<χ] is = ( 0 ) . Let

c0d
n + cidn" + + cn - 0, Cj E 0 f c 0 / 0,

and let 5 = ί p } be the set of prime ideals (^ (0)) in 0 which do not contain

co; S is not empty. Then Π p = (0), for if d GDp, d Φ 0, then c0 d is in every

prime ideal (^ (0) ) of 0, Over every prime ideal p ES there lies a prime ideal

P in O-[(x]. If T = { P \ is the set of prime ideals in 0[cί] contracting to prime

ideals in S, then one concludes immediately that ΠP = ( 0 ) . A fortiori the inter-

section of all prime ideals (^ (0)) in O[(λ] is = (0) . This completes the proof.

If 0 is an integral domain in which the intersection {ftp) of the prime ideals

(φ ( 0 ) ) is ?£(0), then for every r it is possible to define a finite extension

O[cί ι ? •• , an] of 0 such that

dim O[(Xl9 . . . , an] = r

and

d.t. O [ α 1 ? . . . , α J / 0 = r;

namely, we adjoin to 0 an element 1/c, c £(Ίp, so that O [ l / c ] is the quotient

field of 0, and thereupon adjoin r indeterminates The situation is different

for a l-dimensional ring which is not an F-ring and in which the intersection of

the prime ideals ( φ (0) ) is = (0) .

THEOREM 10. Let 0 be a l-dimensional ring such that 0[x] is 2-dimen~

sional9 and let the intersection of the prime ideals ( Φ ( 0 ) ) in 0 be = ( 0). Then

for any integral domain 0[(λl9 ««- , Cί^],
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dim O[alf . . . , an] = 1 + d.t. 0[θLi9 . . . , an]/O.

Proof. Let

K = quotient field of O$ r = d.t. 0 [α t , , α n ] / 0 .

Then K[al9 . . . , α Λ ] is r-dimensional and a chain ( 0) C Pt C . . . C P Γ C ( 1 )

of prime ideals in K[al9 , Cί^] contracts to a chain

(0) C P ι C . . . C p r C ( 1 ) , and p. n 0 = ( 0 ) , ; = 1, . . . , r .

Moreover, pr is not maximal, for if it were, then

O[al9 - . , α Λ ] / p Γ = 0 [ α l f . . . , o c j

would be a field; hence also K[(Xί9 «•« , dn] would be a field, whence the (X;

would be algebraic over K9 therefore also over 0, This contradicts the previous

theorem. Hence

dim O [ α i , ••• , α Λ ] > 1 + d.t. 0[aι, . . . , an]/0,

and we have already seen the reverse inequality.

Since the theory of 1-dimensional rings must separate the cases that the

intersections of prime ideals ( ^ ( 0 ) ) i s = ( 0 ) o r ^ ( 0 ) , it may be of interest to

have an example of a 1-dimensional ring, not an F-ring, with infinitely many

prime ideals ( ^ ( 0 ) ) having intersection £ ( 0 ) . We construct such a ring 0 as

follows. Let K be a field containing all roots of unity, x an indeterminate, L the

algebraic closure of K{x)9 S the integral closure in L of K[x], and 0 , the

quotient-ring of S with respect to the multiplicatively closed system of poly-

nomials in i£[x] which are not divisible by x. Infinitely many prime ideals in

5 lie over (x) in X [ # ] ; to see this, let n be any integer not divisible by the

characteristic of K? aΪ9 ««« , an the nth roots of unity, y = y l + x. In K[x9y]

there lie n prime ideals over {x)9 namely (x$ y - α ^ ) , since (0, α;) is a point

of yn - 1 + x. Going up to S, we see that there exist at least n prime ideals

over {x). Every prime ideal in 0 which differs from ( 0 ) contains x, and there

are infinitely many such ideals. We now verify immediately that 0 is a ring of

the required type.
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DIFFERENCE ALGEBRAS OF LINEAR TRANSFORMATIONS

ON A BANACH SPACE

BERTRAM YOOD

1. Introduction. Let © ( X ) be the Banach algebra of all bounded linear

transformations defined on an infinite-dimensional Banacb space X and with

range in X. Let fi ( X ) be the set of completely continuous transformations con-

tained in ® ( X ) . It is well known that $ ( X ) is a closed two-sided ideal in

© ( X). Thus, under the usual definitions, the difference algebra *5 ( X ) - JE ( X )

is again a Banach algebra. Let π be the canonical homomorphism of S ( X) onto

( S ( X ) - R ( X ) .

The algebraie nature of P ( X) - S ( X) differs from that of S ( X). In particular

S ( X ) is semi-simple while § ( X ) — S ( X ) need not be semi-simple. An example

of this is provided by taking for X the Banach space L{S) of Lebesgue-integra-

ble numerical functions defined on, say, the unit interval 5. If T and U are in

S ( X) and are weakly completely continuous then TU is completely continuous

as shown by Dunford and P e t t i s [ 5 , p. 370]. From this it follows readily that

the image of the set of weakly completely continuous transformations in (5 ( X)

under π i s contained in the radical f)χ of ® ( X ) - S ( 1 ) . ϊ ience <§ ( X ) - K ( X )

is not semi-simple for this X. On the other hand if X is ( s e p a r a b l e ) Hubert

space, then S ( X ) - & ( X ) is semi-simple.

In this paper we begin an investigation of the algebra ® ( X ) — $ (3£). In

particular its radical and its se t of regular elements are examined. This turns

out to be useful in the study of certain properties of transformations in δ ( X ).

In § 3 the inverse image π~ιC$ι) of the radical is characterized. One formula-

tion for this is that T Γ ' H ^ I ) is the set of all U G & ( I ) such that (T + ϋ) ( X )

i s closed and ( T + U ) " 1 ( 0 ) is finite-dimensional for all T which are regular in

(?(X).

A well-known result of Schauder [ 1 3 ] asser t s that if / is the identity in

S ( X), and V E S ( X), then / + V and its adjoint /* + £/* have the same ( f ini te)

nullity. In § 4 we obtain a generalization of this result as a reflection of the

internal structure of & ( X) - π"ι(^χ). Let G be any subset of ® ( X ) containing
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/ such that ( 1 ) 7r(G) is a multiplicative group and ( 2 ) the closure of the com-

ponent of G containing / intersects 7 r " ι ( ^ i ) . Then there is a subring Gt of & ( X)

where the images of S and Gj are geometrically related in (S ( X ) — π"ι( V>χ)

such that ( a ) S 1 3 77" ι ( 5S1), ( b ) π(Qι) is a group under the circle operation

( s e e § 4 ) where for each T G S, (/ E S t the quantities nul Γ, nul T*, and

nul ( Γ + Ό), nul ( Γ* + ί/*) are all finite and

nul ( T* + ϋ* ) - nul ( T + U) = nul ( T*) - nul ( T).

For δ the set of nonzero scalar multiples of / this result already improves

Schauder's, for there

and since

nul (/) = nul (/*) = 0

we have

nul (/* + i / * ) = nul ( / + £ / )

for every U G π'ιC§ι).

Let

This is known [ 1 , 15] to be defined (f inite) for the inverse image under π of

the set of regular elements of S ( X ) — Sΐ(X). Atkinson [ l ] has shown that the

equation f (TU) = f {T) + f (U) is satisfied. In § 5 this is obtained as an

application of the theory of functionals on an abstract semi-group. These con-

siderations lead in § 6 to a detailed study of the relation of the se t s in ® (X )

of elements with a one-sided or two-sided inverse to the corresponding s e t s ,

2. Notation and preliminaries. Let X be an infinite-dimensional Banach

space and let S ( X ) be the algebra of all bounded linear transformations defined

on X into X made into a Banach algebra by the usual definition of the norm of a

transformation [ 7 , p. 32] and with identity /. Let ® ( X ) be the subset of ® ( X )

consisting of the completely continuous transformations in 5 ( X ) . It is well

known [ 2 , p . 96] that ® ( X ) is a closed two-sided ideal in S ( X ) . Thus under

the usual definitions [7 , p . 472] the difference algebra S ( X ) - f ? ( X ) is a



LINEAR TRANSFORMATIONS ON A BANACH SPACE 617

B a n a c h a l g e b r a . L e t π be t h e c a n o n i c a l homomorphism of C? ( X ) i n t o © ( 3 6 ) —

S ( X ) . L e t ^ be the r a d i c a l of ( S ( X ) - S ( X ) [ 7 , p . 4 7 6 ] , a n d l e t 32 ( X ) be

any c l o s e d t w o - s i d e d i d e a l of S ( X ) c o n t a i n e d in T Γ Ή ^ I ) a n c ^ c o n t a i n i n g f ? ( X ) .

L e t τ be t h e c a n o n i c a l homomorphism of 6 ( X ) o n t o ( § ( X ) - 3 S ( X ) .

2 . 1 . LEMMA. Γ G S ( X ) has a left (right) inverse modulo 5£(36) if and

only if T has a left {right) inverse modulo H ( X ).

Proof. Suppose that T has a left inverse modulo 552(36). Thus there exis ts

t / G ® ( X ) , F G S ( X ) such that ί/Γ = / + F. Now F G τ 7 " ι ( ^ ) SO that / + F has

a two-sided inverse W modulo S ( 36 ). Hence WU is the desired left inverse of

T modulo ® ( X ) .

It may be noted that since ^ is closed in ® ( X ) - ® ( X ) then π"i{^>ί) i s a

closed two-sided ideal in © (X ).

2.2. LEMMA. Γ G S ( X ) Aαs ίλe properties that T (X) is closed and its

null-space is finite-dimensional if and only if T takes each bounded set which

is not conditionally compact onto a set which is not conditionally compact.

Lemma 2.2 is a rewording of [ 15, Lemma 3.1].

If the null-space of T is finite-dimensional, its dimension is designated by

nul T. A transformation with the properties of Lemma 2.2 is said in [15] to

have property A.

2.3. LEMMA. T G S ( X ) has a two-sided inverse modulo SB ( X ) if and only

if both T and Γ* have property A.

Proof. By Lemma 2.1 we may take S (X) for 1 (X ). The result then follows

immediately from the results of [ 15, § 5] (see also [ 1, Theorem 1] and [ β ] ) .

If both T and Γ* have property A we define

/ C Γ ) = n u l Γ * - n u l T.

Here Γ* is the adjoint of T Let ξ> be the set of all such transformations. By

Lemma 2.3, § is a semi-group.

2.4. L E M M A . T h e function f ( T ) is a continuous function on § . If T and U

lie in the same component o / ' § , then f { T ) = / ( U ) .
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Proof. The continuity of / follows from the work of Dieudonne' [ 4 , propo-

sition 4 ] ; see also [ 15, Theorem 3.8] and [ 1, Theorem 4 ] . Since / is integer-

valued, the second statement follows.

2.5. LEMMA. // T E § and if ϋ - T G S ( Ϊ ) then ϋ G'S and f (T) = / (£/).

Proof. It is clear that U has a two-sided inverse modulo f? (X ) if T does,

by Lemma 2 .1 . That f (T) - f(U) follows from Lemma 2.4 since the set

T + 32 ( X ) is a connected subset of § .

We adopt the following notation used by Rickart [ 1 2 ] for a Banach algebra.

An element is left {right) regular provided that it p o s s e s s e s a left ( r ight)

inverse in the algebra. If the element is both left and right regular then it pos-

s e s s e s a unique two-sided inverse and is said to be regular. For (5 ( X ) we

designate the se t s of left regular, right regular, and regular elements by ® ,

@Γ, and (3, respectively. The corresponding s e t s in ® (3C) — 38 ( X ) are designated

by S r , ®|", and @1, respectively. In the foregoing notation, S3 = τ~ι(® ) .

Thus, by Lemmas 2.3 and 2.4, / defines a mapping of ®L into the se t of

integers. This mapping will also be designated by /.

2.6. L E M M A . Let T G " § , f{T) = O. Then T can be expressed as the sum

U + V where U G @, F G S Ϊ ( X ) .

Proof. This is given in [ 15, Corollary 3.11].

3. On the radical of ® (X) - 32 (X). In view of Lemma 2.1 and the definition

of the radical of ® (X) — ffi(X), the inverse image under T of the radical of

( S ( X ) - l ( X ) is the same set as π"ι{^ι\ where ^ is the radical of ® (X) -

S(X). In this section we determine the nature of π"ι{^ι).

3.1. LEMMA. Let Γ G ® ( X ) be an isomorphism between X and a proper

closed linear manifold of X. Then there exists a sphere in (§(X) with center

T each of whose elements have this property.

Proof. By [4, proposition 1] there is a sphere S about T such that for all

U in S, U is bi-continuous. But T is in the interior of the set of elements of

©(X) which are not regular [14, Corollary 2.2]. Hence for each U G S there

is a proper closed linear manifold ϊl of X such that U is an isomorphism of X

onto 5ί if the radius of S i s sufficiently small.

3.2. LEMMA. Let j G δ ( X ) have range X where T is not one-to-one. Then
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there is a sphere in © ( X ) with center T each of whose elements has these

properties.

Proof. This is shown in the same way by use of [4, Theorem l ] and [ 14,

Corollary 3.12].

3.3. LEMMA. Let Γ e S ( X ) . Suppose that T(T*) has property A while

T*{T) does not. Then T can be expressed in the form 7\ + V where V G K (X )

and Tγ is bi-continuous ( Tι (X ) = X ) .

Proof. This is contained in [15, Theorem 3.13].

3.4. THEOREM. Let Te®. Suppose that for each Cί ( 0 < α <_1) either

T + aϋ or Γ* + aϋ* has property A. Then T + Cί U G § ( 0 < Gt < 1) and

/ ( Γ + ί / ) = 0 .

Proof. Note that / ( T) = 0. The set '§ = ττ" ι (@i) is open in S (X ). Thus

either all the T + OiU ( 0 < _ C ( < _ l ) are in § or there is a smallest number β

(0 < β < 1) such that T + β ϋ £ S). In the latter case one of T + βί/, 71* 4- βU*

has property /4 but not the other. Suppose that T + βJJ has property A. Then,

by Lemma 3.3, T + βU can be written in the form Tι + F, where Tί G © ( X ) is

bi-continuous and F G S ( X ) . If Tt ( X ) = X then 7\ G ® and thus Γ + j8 ί/G'§,

contrary to the above. Thus 7\ = T + βU - V an isomorphism between X and a

proper closed linear manifold of X. Consequently, by Lemma 3.1, if 0 < OC < β,

and β - α is sufficiently small, then T + dU - V has this property. But for such

α, T + aϋ G'ίρ. Also, by Lemma 2.5, T + aϋ - V G '§ and

f ( T +

Since

nul ( Γ + α67 - V) = 0, nul (71* + αί/* - F*) > 0,

then

/ ( Γ + αί/) > 0.

However, since f (Γ) = 0, by Lemma 2.4 we have

/ ( Γ + αt/) = 0.

This contradiction establishes the result iί T + βU has property ,4. If Γ* +

has property 4̂ then we proceed in a same way using dual results (Lemmas 3.2
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and 3.3) to see that for Cί < β and close to 8,

/ ( Γ + αί/) = 0, f ( Γ + αί/) < 0 .

Thus we conclude thaj; T + OίU G 6 (0 < (X < 1). That

/ ( Γ + U) = f ( T ) = 0

follows from Lemma 2.4.

3.5. THEOREM. The following formulas for π"1 {^>ι ) hold:

( a ) 7 r " 1 ( Ώ 1 ) = { ί / G ( ξ ( X ) | for each T G 0 eiiAer T + V or T* + U* has

property A }

( b ) 77"1 ( ^ ) = ί U G ® ( X ) I T + U has property A for each T G & }

( c ) TΓ" ι ( S i ) = ί U G S ( 1 ) I Γ* + U* has property A for each T G @ }.

P r o o / . If Γ G @ a n d ί / G TΓ"1 ( S t ) t h e n τr( Γ ) G @ t a n d

by the definition of 5j3ι# Then Γ + ί/ G '§ and it follows that 77"ι (^i) is contained

in each of the sets on the right.

Let the set on the right side of ( a ) be denoted by S. Then if T G ©, U G S,

α ^ 0 a scalar, then G.T + ί/ or αΓ* + ί/* has property /4. Hence, for each

scalar α, T + αί/ or J * + αί/* has property 4. Theorem 3.4 shows that T + aΌ G §

for all scalars α. Next we show that if W G @, ί/ G S then UW G δ . Both IF and

W* have property /4. Hence, by the nature of S and [15, Theorem 3.4], for each

T G @ either

(7TF-1 + i/)IΓ = Γ + ί/ίF

has property 4̂ or

ψ*[(TW'1)* + [ / * ] = 7* + ( W ) *

has property A. Hence UW G S.

Next let Ut G G, i = 1,2. For each TG®, by the above Γ + Gtί^G'ίρ for

0 < a < 1 and, by Theorem 3.4, / ( T + Uγ) = 0. By Lemma 2.6, T + Uγ can be

expressed in the form 7\ + F, where ^ G © and F G fi(3G). Likewise 7\ + ί/2 G §

and so, by Lemma 2.5,
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is in :SS. This shows that G is a linear manifold in (5 ( X ) with the further property

that if TUT2£® and U G δ then U ( 7\ - T2) G G. However, s ince 5 (X ) is

a Banach algebra, an arbitrary element W G (§ ( X ) can be expressed as the dif-

ference of two regular elements. Thus G is a right ideal in © ( X ) . Consequently

π (G ) has the property that, for each π(U) G 77 ( 6 ) and each V in S (X ) - ® ( X ),

τr(/) + 7 r ( T ) F G ® r Thus τ r ( S ) C 5βt. This completes the proof for formula

( a ) .

The same argument shows that the right s ides of ( b ) and ( c ) are contained

i r i T Γ - H ^ ) .

3.6. COROLLARY. Let Q be a {left or right) ideal in $ ( X). Suppose that

for each T G 3, either I + T or I* + T* has property A. Then for each T G C,

nul (I + T) and nul (/* + 71*) are finite and equal.

Proof. By Theorem 3.5, 2 C T Γ ' H ^ ) . Thus / + 7 G '§ for each 7 G 2. Since

Q is a linear manifold,

by Lemma 2.4.

This is a direct generalization of Schauder's well-known result [13, p. 189]

that if U is completely continuous then

nul (/+ ί/)= nul (/* + ί/*)

since the two-sided ideal $ ( X ) fulfills the conditions of Corollary 3.6.

3.7. COROLLARY. The following statements are equivalent:

(1) S ( X ) — ff ( X ) is semi-simple;

(2) /or ί/€ ® (X ), U eft(l) if and only if {T + V) {!) is closed in 1 and

either nul ( Γ + Ό) or nul ( Γ* + £/* ) is finite for each T regular in S (X ).

Proo/. Note that ® ( X ) - S ( X ) is semi-simple if and only if π'ι{ \ ) = ® ( X ).

Also (Γ + ί/) (X) is closed if and only if (Γ* + £/*) (X*) is closed in X*

[2, Chapt. 10]. Then Corollary 3.7 follows from Theorem 3.5 and Lemma 2.3.

If X is a separable Hilbert space then since, as shown by Calkin [3, Theo-

rem 1.4], $ ( X ) is a maximal, two-sided ideal in S (X), (1) holds. For spaces

satisfying (1), (2) gives a necessary and sufficient condition for complete
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continuity which seems to be new (for sufficiency) even in the Hubert space

case.

4. A generalized Schauder nullity theorem. We give here the result (Theo-

rem 4.5) discussed in § 1. The preliminary material, it is felt, is of independent

interest and is presented in greater generality than is absolutely necessary for

our purposes.

We adopt the following notation. B is a ring with an identity element e. G

is the set of regular elements of B (the elements with a two-sided inverse). For

each subgroup Go of G let 3 ( G 0 ) be the set of "invariant translations" of

Go, namely the set of x G B such that Go + x = G o . It is clear that

9f( Go) = { x G B I y ± x G Go for every y G Go ].

In the ring B we consider along with the usual algebraic operations also the

"circle operation''

X o y — x + y — xγ.

For information on this operation see [7, Chapter 22]. It is evident that Go n

3 (G o ) is empty.

4.1. THEOREM. For any subgroup Go of G9 3 ( G 0 ) is a subring of B which

is a group under the circle operation. Conversely if R is a subring of B which

is a group under the circle operation then there exists a subgroup Go of G such

that R = 3 (G o ). If B is a Banach algebra then 3 (G) is the radical of B.

Proof. It is clear that if x G 3 (G o ) then so does — x. Thus if xx and x2 lie

in 3 (G o ), and γ G G o, then both

(y + xx) + x2 and ( y - ^ i ) - ^ 2

lie in G o, so that xx + x2 G 3 (G o ). Next we show if x G 3 (G o ), y G G o, then

yx G 3 ( G 0 ) . For let z eG0. Then

* ± Ύz =y(y~ιz ± x) eG0.

Similarly xγ G 3 (G o ). Since

γ + x{x2 = (y + * i ) (e + %2 ) + yx2 - * ι

it follows from the above that xγx2 G 3 (G o ) if # t and Λ;2 G 3 (G o ). Thus 3 (G o )

is a subring of B.
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To see that 3 ( G 0 ) is a group under the circle operation note first that for

xl9 x2 E 3 (G o ) we have

%ι o x2 ~ xt + x2 - x>\%2 € 3 (Go ) .

Now the set of all elements of B with an inverse under the circle operation is

a group with the zero element 0 of B as the identity element [7, p. 456]. Thus

it is sufficient to show that xί has an inverse in 3 ( G 0 ) under this operation.

Since e — xι GG 0 C G there exists an element w E B such that

(e -xγ) {e -w) = ( e ~w) ( e ~ Xχ) = e.

Then clearly w is the inverse of xx under this operation. Let y E G o . Then,

since

X γW ~ WX ι = Xι + W

we have that

( y ± w ) ( e - % ! ) ~ y ± w - y x x + w x ι = y ( e — x ι ) + x ι

is an element of G o . Since (e - xL ) E Go it follows that w; E 3( Go ).

Next consider a subring R which is a group under the circle operation. Let

Go be the set of all elements of the form e - x, x E R. If xu x2 E R then

( e — X γ ) ( e — x 2 ) = e — Xι o x2 £ Go ,

There exists z E R such that

xχ o z = z o %χ = θ.

Then

so that Go is a group. We show that 3(G 0 ) = /?. Take x E 3 ( G 0 ) . Then e -x E G o ,

and, by the definition of Go, Λ; E /?. On the other hand if x E /?, y GG 0 then we

may write y ~ e — xx, where

xt E β and y +_ % = e — x t + x E G 0

since R is a ring. Thus x e%(G0) and 3 (G o ) = R.
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Finally let B be a Banach algebra. If z is an arbitrary element of B then

since, for a sufficiently small scalar λ,

e - λz = w G G*

we may write z as the sum of two elements in G. By the above we see that for

x G 3 ( G ) , we have zx G 3 ( G ) and thus e - zx EG. Hence x lies in the

(Jacobson) radical Q of B. Conversely if x E Q$ then for each w E G,

w ± x = w {e ± w'ιx) E G,

so that x G 3 (G). This completes the proof.

4.2. COROLLARY. In the notation of Theorem 4 .1, 3 ( G 0 ) is a two-sided

ideal in the subring R(G0) of B generated by G o and lies in the radical Q of

R ( G o ). Examples exist for which 3 ( G o ) = Q and also for which 3 ( G o ) Φ- Q

Proof. By the arguments of Theorem 4.1, if y G R (G o ) fefeen yx9 xy G 3 (G o )

for each % G 3 ( G 0 ) so that 3 ( G 0 ) is a two-sided ideal of R(G0). Since

e - yx E Go for every γ E R(G0), and Go is contained in the set of regular

elements of R(GQ), 3 ( G 0 ) C <?. By Theorem 4.1, if B is a Banach algebra

then 3 ( G ) = Q. Take next for B the ring of integers modulo 9. For Go take the

set consisting of 1 and 8. Here R(G0) = B and the radical Q of B is the set

ί 0, 3, 6 ! . On the other hand 3 (Go ) consists of the zero element alone.

Following Kaplansky [8, p. 153] we call B a metric ring if to each element

x there is associated a real number | x | such that

I # I = 0 r I > O i f r ^ f l I - JC I = I r I I Λ; + v I < I r I + I v I I Λ V I < I Λ; I I v I

Here | x — y | is the metric of B. In this context the sets 3 (G o ) possesses

certain topological properties. (The metric ring to which the theory is applied

is S (X ) - S

4.3. LEMMA. // G o is open then 3 ( G 0 ) is closed. The following statements

are equivalent.

( 1 ) 3 ( G 0 ) c G 0 .

( 2 ) 0 = i n f | y | , y € Go .

(3 ) 3 ( G 0 ) n G 0 is nonempty.

Proof. Let Go be open. Suppose that % e S ( G 0 ) ( n = l , 2 , 3 , ) and
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that xn —» x. Given any y G G o there exis ts a sphere S of radius, say, r > 0

about y such that S C G o . Consequently S -ι- %„ C G 0 for each rc. Take n so large

that I x — xn I < r. Then for such an integer n, y ±{x — xn) G S and thus

y ± x = y + (x -χn) + % e Go .

Hence % G 3 ( G 0 ) .

If ( 1 ) holds then so does ( 2 ) s ince 6> G 3 ( G o ). If ( 2 ) holds then ( 3 ) is

clear for the same reason. Suppose that ( 3 ) holds. Let

w G 3 ( G o ) n G o , w = lim yn$ yn G G o .

By Theorem 4.1, w o * G 3 ( G 0 ) for each Λ G 3 ( G o ). But

w o x - lim (# + γn - y^Λ;),

and by Theorem 4.1, yn+x-ynxEG0. Hence woχ£G0. By Theorem 4.1

again there exists an element z in ^(Go) such that w o z = θ. Inasmuch as

z ox G 3 ( G o ), by the above

M; o (z o Λ ) = {w o z) o x — x

l ies in G o

For the group G o in the metric ring B let GOp be the principal component,

that is , that which contains e. Arguments of Hille [7 , p. 93] show that Gop is

a subgroup of G o .

4.4. LEMMA. // 3 (G O p ) C Gop then 3 ( G o ) is connected and 3 ( G o ) C G O p .

// 3 ( G o ) is connected, then 3 ( G o ) C 3 ( G o p ).

Proof. Suppose that 3 ( G o p ) c G O p . Then by Lemma 4.3, 0 G G O p . Take

% G 3 ( G 0 ) . The set Λ;GOp, being a continuous image of a connected set, is

connected; moreover, xGOp l ies in 3 ( G 0 ) by Corollary 4.2. Since θ l ies in the

closure of # G o p , the set

is a connected subset of 3 ( G 0 ) which contains x and θ. Hence each element

of 3 ( G o ) l ies in a connected subset containing θ. Thus 3 ( G o ) is connected.

Suppose that 3 ( G 0 ) is connected. Then for each z £GOp, z + 3 ( G 0 ) is a

connected subset of G o containing z. Hence
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z + 3 ( G o ) c G o p and S ( G o ) c S ( C o p ) .

In the statement of the following theorem, the group to which the symbol 2 is

applied lies in the Banach algebra S (X ) - π'l( ^ ).

4.5. THEOREM. Let S be any set in © ( X ) containing the identity I. Let

π and τ be the canonical homomorphisms of © ( X ) onto ® ( X ) - $ ( X ) and

© ( X ) - π"l(^ι), respectively. Suppose that π ( S ) is a multiplicative group in

© ( X ) - $ ( X ) and that the closure of the component of S containing I contains

an element of z r ' H ^ ) . Then for each T G S , f/ G τ " 1 3 [ τ ( S ) ] we Ziαt e

Furthermore^ τ~ι 3 [ r ( S ) ] 3 77"1 (5βt), α ώ zs ίΛe inverse image under π of a

subring 0/ © ( X ) - ffi (X) which is a group under the circle operation.

Proof. Consider τ ( S ) . By Lemma 2.1 it is a subgroup of the se t of regular

elements ® t of © ( X ) - 77"ι ( ^ ). Since r is continuous, by our hypothesis the

principal component of r ( S ) contains the zero element of (S(X) — 77*I(S51) in

its closure. Hence in this algebra, by Lemmas 4.3 and 4.4, 3 [ τ ( 6 ) ] is con-

nected. By Lemma 2.4, / is continuous on @ t; and if 7\ G r ( S ) , Ut G 3 [ r ( S ) ]

then s ince 71! and 7^ + ί/χ lie in the same component of ®ί9 we have

T h u s / ( Γ + ί / ) = / ( 7 1 ) i f T G δ and t / G T - H 3 ( T ( S ) ] .

L e t

τ - 1 3 [ τ ( b ) ] = S 1 and W ( S 1 ) = S 2 .

C l e a r l y 7 r " ι ( δ 2 ) = S ι s i n c e S x D S ( X ) which i s the kerne l of 77. By T h e o r e m

4 . 1 , 3 [ r ( G ) ] i s a subr ing of ® (X ) - 7r"1 (S3X ) which i s a group under the c i r c l e

O p e r a t i o n . T h e n S 1 i s a s u b r i n g of © ( X ) , and S 2 a s u b r i n g of © ( X ) - & ( X ) .

We next show t h a t S 2 i s a group under the c i r c l e o p e r a t i o n . As 6 2 i s a s u b r i n g ,

i t i s c l o s e d under that o p e r a t i o n . L e t Tι G S 2 , Tγ = π(T), T E S P T h e n t h e r e

e x i s t s F G S x s u c h t h a t

T h e n by Lemma 2 . 1 , I—T h a s a two-s ided i n v e r s e I-W modulo K ( X ) . S i n c e

7 r ( I f ' ) o Γ ι = 0
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it suffices to show that π(W) G δ 2 . Now τ{W)-τ{V) s ince the two-sided

inverse of τ ( / - Γ ) in ® (3£ ) - π " 1 ( ? i ) is unique. Therefore W G G t and thus

π(W)eQ2.

5. Functionals on semi-groups. Atkinson [ l ] has shown that on ξ> the

equation

f{TU)=f(T)+f(U)

is valid. By an entirely different analysis we show how such functionals can be

obtained in a semi-group and tfyen apply the results to 'ίo.

5.1. NOTATION. Let S be any semi-group, the product of two elements

x$ y in S being denoted by xy. Let g and g* be real-valued functions defined on

5, where

# ( * 2 ) < g ( * l * 2 ) < g U l ) + g(χ2 )

(1)

g * ( * l ) < g * ( * l * 2 ) < g*(χl ) + g*(χ2 )

for all xl9 x2 in S. Let

and let S + ( 5 . ) be the subset of S for which A ( Λ ) >̂  0 (h(x) < 0 ) . Suppose

that there is a reflexive and symmetric relation ~ on S defined for certain pairs

of elements of 5 such that x ~ γ implies h (x ) = h (y ), and where for each x G S

there exis ts y G 5, Λ; ~ y with either g (y ) = 0 or g* ( y ) = 0, The relation ~ need

not be transit ive. Since g and g* are nonnegative on S it follows that the ex-

istence of y, x ~ y, where g (y ) = 0 (g* (y ) = 0 ), is equivalent to x G S + (% G S_).

5.2. THEOREM. Suppose that, in the notation of 5.1,

(a) x ι ~ z ι ( i = l , 2 ) i m p l i e s t h a t h ( x γ X 2 ) — h ( z 1 z 2 ) h o l d s . T h e n t h e

f o r m u l a

( 2 ) A U t * 2 ) = A ( ^ ! ) + A ( Λ 2 )

is valid either for all x^ G 5 + or for all x2 £ S. . If also

( b ) there exist y., y in S9 where h(y. ) > 0 and h(y2 ) < 0, then formula

{2) is valid on S.

Formula ( 2 ) is valid on S if (a) holds and
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( c t ) for each x G S+ there exists γ G S such that xγ G 5. $

( c2 ) for each x G S . there exists y G S such that yx G S+.

Proof. We r e m a r k t h a t ( a ) i s a n e c e s s a r y c o n d i t i o n for ( 2 ) s i n c e , from ( 2 ) ,

h{xιx2 ) = h(xι ) + h(x2 ) = A U i ) + h{z2 ) = A ( z t z 2 ) .

F r o m ( 1 ) we o b t a i n

or

( 3 )

Now s u p p o s e t h a t ( a ) h o l d s . T h e n

( 4 ) h(xγ) <h(Xίx2) < A U i

( 5 ) h { x ι ) + h ( x 2 ) < h { x t x 2 )

( 6 ) h(xιx2 ) = h(xι ) + h(x2 )

To show (4) we may assume that

T h e n ( 4 ) f o l l o w s from ( 3 ) . F o r ( 5 ) w e may a s s u m e t h a t

-g{xi) = h(xi\ g*Uέ) = 0 ( i = 1 , 2 ) ,

and again use ( 3 ) . In the las t s i tuat ion, ( 3 ) yields

+ h(x2) <_h{xγx2) <^h{xχ) + h(x2).

N e x t we o b s e r v e t h a t ( c t ) a n d ( c 2 ) c a n n o t both be f a l s e . If, for e x a m p l e ,

( c t ) i s f a l s e t h e n for s o m e xγ G S + w e h a v e x ί γ G S + for a l l y E S , w h i c h y i e l d s

( c 2 ) .

S u p p o s e now t h a t ( a ) a n d ( c 2 ) h o l d . We s h o w t h a t ( 2 ) h o l d s for a l l xl9 x2

w h e r e x2 £S.. By ( 6 ) we may s u p p o s e t h a t Xι £S.» T h e r e e x i s t s w ES s u c h

t h a t hiwx^) >_ 0 . F o r c a s e 1 we t a k e w eS.. T h e n by ( 5 ) ,

h ( w ) + h { x ι ) < h ( w x x ) < h ( x x ) < 0 .
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T h i s i m p l i e s t h a t h(xι) = 0. T h e n ( 2 ) fo l lows from ( 6 ) . F o r c a s e 2 we t a k e

w E S + . T h i s g i v e s , by ( 6 ) ,

( 7 ) h(wxi) = h{w) + h{xι)9

( 8 ) h {wxίx2 ) = h {wxι ) + h {x2 ) .

Now (5) shows that x^x2 £ Sm . Then, by (6) ,

( 9 ) h(wxιx2 ) = h{w) + h(xιx2).

A c o m b i n a t i o n of ( 7 ) , ( 8 ) , and ( 9 ) y i e l d s ( 2 ) .

S u p p o s e n e x t t h a t ( a ) and ( c t ) h o l d . E n t i r e l y a n a l o g o u s a r g u m e n t s u s i n g

( 4 ) in p l a c e of ( 5 ) s h o w t h a t ( 2 ) h o l d s for a l l x u x2 w h e r e x t E S + .

Now a s s u m e ( a ) and ( b ) . We s h o w t h a t ( c t ) a n d ( c 2 ) h o l d . If ( c t ) d o e s

not h o l d t h e n ( c 2 ) m u s t h o l d and t h e r e e x i s t s x ES+ s u c h t h a t xy &S+ for a l l

y £ S. S e l e c t γ s u c h t h a t h(y) < 0. By ( a ) a n d ( c 2 ) and the a b o v e , h{yn)-

n h(y) for a n y p o s i t i v e i n t e g e r n and t h u s yn E S. . A l s o

0 < h(xγn) = h(x) + nh(y).

This is impossible if n is chosen sufficiently large. Thus ( c t ) holds. Similarly

( c 2 ) holds.

To conclude the proof we show that ( a ) , {cί ), and ( c 2 ) imply ( 2 ) . By the

above our assumptions give the validity of ( 2 ) for any pair xί9 x2 where either

Xι ES+ or x2 E S. . The remaining case involves xι £ S_ and x2 ES+. We may

select , by ( c 2 ) , w E S such that wxγ E S + . If M; E S. then, as shown above,

^ ( ^ ^ = 0 so that ( 2 ) is valid for χ u x2. Supposing that WES+, we obtain

( 7 ) , ( 8 ) , and ( 9 ) , which again yield ( 2) for xi9 x 2 .

We return to ® ( X ) and start with the following simple resul t :

5.3. LEMMA. Let Tι E S ( X ) {i = 1, 2) have finite nullity. Then

( 1 0 ) n u l ( Γ 2 ) < nul ( 7 \ T2 ) < nul ( 7\ ) + nul ( T 2 ) .

T h i s fol lows from the fact , r e a d i l y e s t a b l i s h e d , t h a t

nul ( Γ 1 T 2 ) = n u l ( 7 1

2 ) + d i m [ Γ 2 ( X ) n T[ι(0)].

5.4. LEMMA. Suppose that T E ;ξ> ατi(/ / ( Γ ) >̂  0 ( < 0 ) . Then there exists

F G $ such that V-Te®{l),f{T) = f{V),and n u l ( F ) - 0 ( n u l ( F * ) = 0 ) .
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The existence of the transformation V with the indicated property of the

nullity follows from [ 15, Theorem 3.13]. That f{T) = f(V) follows from Lemma

2.5.

5.5. C O R O L L A R Y . Let Tt e<§ ( i = l , 2 ) . Then f (7\ T2) = / ( T ι ) + / ( Γ 2 ) ,

and f defines a homomorphism of the group of regular elements o/ ® (X ) — 5ί (X)

into the additive group of integers.

We show that this result of Atkinson follows from the above. In the notation

of 5.1, set

Since

Lemma 5.3 shows that formula (1) is valid. For the relation 7\ ~ T2 we take

Tι - T2 G f i ( ϊ ) . Lemmas 3.2, 2.4, and 5.4 and the relation

/ ( T) = nul ( Γ* ) - nul ( T )

show that Theorem 5.2 may be applied to give the first conclusion. The second

conclusion is an immediate consequence.

Following ideas of Mackey [ 10, p. 171] we shall say that the Banach space

X is stable if there exists a continuous isomorphism of X onto a closed subspace

X t of deficiency one. We say that X is stable-like if there exists a continuous

isomorphism of X onto a closed subspace Xj_ of finite deficiency.

5.6. THEOREM. The functional f is non-trivial if and only if X is stable-

like.

Proof. If X i s stable-like, consider the isomorphism T of X onto Xi of de-

ficiency n. Then nul ( T ) = n and nul ( T) = 0, so that / (T) = n.

Suppose that / is non-trivial. Then there exis ts T £ ^ such that / ( T ) £ 0.

Since T has a two-sided inverse V modulo £5 (X ), and / (V') = - / ( T ) by Corol-

lary 5.5, we may assume / (T) = n > 0. By Lemma 5.4, there exists a bi-

continuous isomorphism U where nul (£/*) = rc. Then £/(X) is a closed sub-

space of deficiency n.

Whether or not every infinite-dimensional Banach space must be stable or

even stable-like seems to be an open question ( s e e [ 10, p . 2 0 5 ] ) . This subject
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is pursued a bit further in Theorem 6.7 and 6.9.

If X is finite-dimensional then (10) can be replaced by the more specific

rule, known as Sylvester's law of nullity [9, p. 11] which states that

max [mil ( Ti), nul (T2)] < nul ( 7\ T2 ) < nul ( 7\ ) + nul ( T2 ) .

We show that the validity of Sylvester's rule for all Γj G'§ where X is infinite-

dimensional implies that X is not stable-like. For suppose otherwise. Consider

T2e^9 f(T2) = n > 0, nul ( Γ 2 ) = 0 .

Then by [ 14, Theorem 3.15] there exists 7\G(§(X) such that TιT2-l. Since

/ and T2 G !S), by [15, Theorem 5.4] we see that 7\ £'§• By Sylvester's rule,

nul ( Ίγ) = 0, so that 7\ is regular in ® (X) and therefore so is T2, which is a

contradiction.

Another generalization of Schauder's theorem may be obtained as follows.

Yosida and Kakutani [ 16] have considered the collection Ω (X ) of all quasi-

completely continuous transformations in ®(X) i.e. the class of all T G ® (X)

such that there exists V G S (X) and an integer n such that 11 Tn - V \ \ < 1.

5.7. THEOREM. Let T G § , and let V be a two-sided inverse of T modulo

® ( X ) . Suppose that there exists W G 7r" ι(5βi) and an integer m such that

VmU ~W G Q ( X ) . Then Γ m + t/G'S5, and

Proof. Let VmU = Rx and Rt - BF = /?2. By hypothesis there is an integer n

such that I - R2 is of the form S\ + S2, where Sχ G ® and S2 G®(X). Since

π'1 (SPt ) is a two-sided ideal, there exists S3 G π"1 ( ϊ! t ) such that

But, by Lemma 2.5, S t + S3 G '§. Therefore / - β " has a two-sided inverse modu-

lo fi ( X ). Since

then / - Rί G § . Since the hypothesis on U is satisfied by all α ί/, |θί | < 1, it

follows from Theorem 3.4 that
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Applying Corollary 5.5, we obtain

6. On the images of left and right regular elements. We make here a detailed

study of the images of the sets ®, ®l, and ®Γ under π. In view of Lemma 2.1,

the results also hold for the mapping r . In particular, we show the following:

6.1. THEOREM. The canonical homomorphism π has the following proper-

ties :

( 1 ) 77

( 2 ) π

( 3 ) the sets π{®)9 77 ( ® ) , and π(®r) are open and closed in the sets ® t ,

®j, and ®J, respectively;

( 4 ) π{®) is a normal subgroup of ® t ; either TT(@) = ® t or ®t/π{®) is

isomorphic9 as a topological group, to the additive group of integers in the

discrete topology.

The interest of ( 1 ) l ies in the fact that if X is stable-ίike, then π(®1) £ ®[

and π(®Γ)^®[ ( s e e Lemma 6.3) . And for ( 2 ) , even though ® = ® Z n ® Γ this

does not of itself imply that

In the course of the proof the following notation is used. 'ξ>0 is the subset

of § consisting of those T for which / ( T ) = 0 and § + ( § . ) of those T for which

f(T)>0 (/ (T) < 0 ) . The minus sign for s e t s in ® ( X ) - R ( X ) is used in

the set-theoretic sense . From the definitions we have 77('ξ>) = ® t .

The following lemmas are part of the proof of Theorem 6.1.

6.2. L E M M A . π{®) = { Tt e ® ( X ) - S ( X ) | π'1 ( T ί ) c § 0 1 , and *(©) = *(ξ> 0)

Proof. The second statement follows immediately from the first. Suppose that

Tχ!sπ(T)9 T e®. Then 7 7 " 1 ( Γ ι ) = Γ + fi(X), so that for each [/ G 77"1 ( 7\ ),

f (U) = f (T) by Lemma 2.5. Since f ( T ) = 0, we see that 77 ( ® ) i s contained in

the right-hand set . Next assume that 7\ is in the right-hand set . L e t π(T) = Tί.

Then Γ G ' § 0 , and / ( Γ ) = 0. By Lemma 2.6 there exis ts F G S ( X ) such that

Γ + F G Θ . But 77(7+ F ) = 71!.
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6 . 3 . L E M M A . π(®1) = ®[ - π{'$.).

Proof. Clearly π( ®l) C ®[. We shall show that π{®1) n 77( S . ) is empty. Sup-

pose contrariwise that 7\ Eπ(® )n 7r('ίξ).). Then there exis ts Γ G @̂ , # £ ' § . such

that 7r(Γ) = τ r ( ί 7 ) = 7\. Then there exis ts IF £ £ ( X ) such that Γ = U + W. Hence,

by Lemma 2.5, / ( 7 ) = / (U ) < 0. But from the definition of / , mil (T) > 0.

Therefore T cannot be one-to-one and this contradicts T G ® . We conclude that

Suppose that 7\ G ©[ - π ( S - ) and 77 ( T) = Γ l β By [ 15, Theorem 5.4], T has

property A. Since T ^ 'ξ>., either nul ( Γ * ) is not finite or nul ( Γ*) < oc and

f(T) >_0. Then by [ 15, Theorem 3.13] there exis ts V G S ( X ) such that Γ + F

is a bi-continuous mapping of X into X. Moreover, by [ 15, Theorems 5.3 aad

5.4], there exists a projection of X onto (T + V) ( X ) . Therefore, by [ 14, Theo-

rem 3.15], T + Ve®1. However, π( T + V ) = ττ( T) = 7\. Thus ®ι-π{§-)C

(®1)

6.4. L E M M A . T Γ ( O Γ ) = ®[ - τ r ( § + ).

In references cited in the proof of Lemma 6.3, dual results exist to those

used in 6.3 which enable one to conduct the proof in the same way.

6.5. LEMMA. * ( ' £ . ) C π(®Γ) and π(§ + ) C π(®1).

Proof. S u p p o s e t h a t T G § . . By [ 1 5 , T h e o r e m 3 . 1 3 ] t h e r e e x i s t s V G S Ϊ ( X )

s u c h t h a t ( I + F ) ( X ) = X. A l s o , by Lemma 2.4, nul ( Γ + V) < 00. H e n c e

[14, Theorem 3 . 1 8 ] s h o w s t h a t T+Ve®r. However , π{ T + V) = π( 7 ) . T h e

other s t a t e m e n t i s proved u s i n g dual r e s u l t s .

6.6. LEMMA. ίθ0> §+, S- are open and closed as subsets of ίξ>. These sets

are disjoint.

Proof. Since f (T), by Lemma 2.5, is a continuous integral-valued function

on ξ), the se t s are open and closed subsets of § .

We turn now to the statements of Theorem 6.1.

Consider ( 1 ) . By Lemmas 6.3 and 6.4,

π{®1 υ @Γ) = π(®1) u π(®r) =

By Lemma 6.5,
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SO that

As for (2) , note first that π(®) = 77 ( S o ) by Lemma 6.2. By Lemmas 6.3 and

6.4,

But ®[ n ®r

ι =@ i = τ τ ( ξ ) . Also the sets 77 ("§ + ), 77 ( § . ) and 7r(§ 0 )are disjoint

since if, for example, 7\ e 77(§ + ) n 77 ( ξ . ), Γ ι S = τ r ( T ) , T 6 § + and Γ1 = τ7(F),

J / e f x , then 77(Γ-ί/) = O so that T - F G S ( 1 ) ; whence, by Lemma 2.4,

f (T ) ~ f (V) which is impossible. Uence

The mapping 77 is a continuous linear mapping of the Banach algebra S (X)

onto the Banach algebra S(3C)-ffi(3C). Consequently it takes open sets into

open sets. Since (3, ® , ®r, ®ι9 Sr and 0^ are open (see, for example, [12])

the statement of (3) on openness follows. Likewise, from Lemma 6.6, π('§-)

is open in ® C ® . Since

by Lemma 6.3, π{® ) is closed in ®|. Similarly 77(®Γ) is open and closed in

®Γ. Now

and (as noted above) the latter sets are disjoint and also open by Lemma 6.6.

But 77 (®) = 77(§o) by Lemma 6.2. Thus π{®) is open and closed in ®ι and the

proof of (3) is complete.

Only (4) remains to be shown. Either 77 (@ ) = @i or 77(®) is properly con-

tained in ®ι. Suppose that the latter holds. By Lemma 6.2, 77(ξ o) = π(®). But

τ r ( ' § ) = ® 1 . Thus § ^ § 0 a n ( l t n e function / defined on ξ> (and on π(§)) is

not identically zero. Since / is integral valued there is an integer m > 0 and

T e ' ξ such that \f (T)\ = m and m is minimal with respect to this property.

By Corollary 5.5, / is a homomorphism of π(§) = ®x into the additive group /

of integers. If we define / on ® t by the rule fχ = m*1/then fχ is a homomorphism
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of ® t onto /. The kernel of this homomorphism is π(ξ)0 ) = π(®) (Lemma 6.2).

If / is given the discrete topology then f is an open mapping. Since the kernel

is open in ® t by ( 3 ) , the inverse image under / of any subset of / is open in

@ι# Hence, [ l l , p. 64] , ®ι/π(®) is isomorphic, as a topological group, to / .

This completes the proof of Theorem 6.1.

6.7. THEOREM. The following statements are equivalent:

(1) X is not stable-like; (2) ' § = ' § 0 ; (3) τr(@) = ® 1 .

Proof. The equivalence of (1) and (2) is given by Theorem 5.9. In the

course of the proof of Theorem 6.1 it was shown that if 7r(®) φ- ®χ then if) ^ § 0

so that (2) implies (3) . If π{®) = ® t then, by Lemma 6.2, π(§0) = π{'§). This

shows that any element T of § differs from an element of §o by a completely

continuous transformation in ® (3C). Therefore, from Lemma 2.4, '§ = §o

6.8. DEFINITION. We say that X is projection-stable if there exists an

isomorphism in ®(X) of X onto a proper closed linear manifold ?l where there

is a ( continuous ) projection of X on ϊl.

Clearly if X is stable-like then X is projection-stable. Whether or not the

converse is true is an open question. The notion just defined is connected

with the notions of Theorem 6.1 by the following result.

6.9. THEOREM. The following statements are equivalent:

(1) X is not projection-stable;

( 2 ) ® Z = ® Γ = ® ;

( 3 ) τ r ( @ ) = @! and ® x = ®[ = ® [ .

Proof. If X is not projection-stable then, by [ 14, Theorem 3.15], ® C ® so

that ®l = ®. But then also ® = ®Γ; for if T G ®Γ, TU = /, then U G ® and

T =U~ι £®. Thus ( 1 ) implies ( 2 ) . Assume ( 2 ) . By Theorem 6.1 we see that

But 7 7 ( ® ) C ® 1 . Hence

®{ =®[ = ® ! and τr(

Assume (3) . If X were projection-stable then by [ 14, Theorem 3.15] there
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e x i s t s T E ®l, T £ <S. But π(T) e ®[= @ t . H e n c e T G § . By i t s n a t u r e

f (T) > 0. H o w e v e r , from T h e o r e m 6 .7 , ξ> = ί § 0 , w h i c h i s a c o n t r a d i c t i o n .
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