A CLASS OF GENERALIZED WALSH FUNCTIONS

H. E. CHRESTENSON
A CLASS OF GENERALIZED WALSH FUNCTIONS

H. E. CHRESTENSON

1. Introduction. Let α denote a fixed integer, α > 2, and put \(\omega = \exp \left(\frac{2\pi i}{\alpha} \right) \).

Definition 1. The Rademacher functions of order \(\alpha \) are defined by

\[
\phi_k(x) = \omega^k \text{ if } k/\alpha \leq x < (k+1)/\alpha, \quad k = 0, \ldots, \alpha - 1;
\]

and for \(n \geq 0 \)

\[
\phi_n(x + 1) = \phi_n(x) = \phi_0(\alpha^n x).
\]

Definition 2. The Walsh functions of order \(\alpha \) are defined by

\[
\psi_0(x) = 1,
\]

and if \(n = a_1 \alpha^{n_1} + \cdots + a_m \alpha^{n_m} \) where \(0 < a_j < \alpha \) and \(n_1 > n_2 > \cdots > n_m \), then

\[
\psi_n(x) = \phi_{a_1}^{n_1}(x) \cdots \phi_{a_m}^{n_m}(x).
\]

For convenience we let \(\Psi_\alpha \) denote the set of Walsh functions of order \(\alpha \). We may observe that \(\Psi_2 \) is the orthonormal system of functions defined by Walsh [4]. R.E.A.C. Paley's proof that \(\Psi_2 \) is orthonormal and complete in \(L(0,1) \) may be modified by the reader to establish the same properties for \(\Psi_\alpha, \alpha = 3, 4, \ldots \) [3; pp. 242-244].

It is the purpose of this paper to study Fourier expansions in the sets \(\Psi_\alpha \). The results obtained here will include known results for ordinary Walsh Fourier series, most of which are contained in a paper of N. J. Fine [1]. In fact, most
of the properties of Fourier expansions in \(\Psi_2 \) are shared by expansions in \(\Psi_\alpha \).

The system \(\Psi_\alpha \) is in fact the character group of \(G_\alpha \), the countable product of cyclic groups of order \(\alpha \), transferred to the unit interval. The operation +, introduced in §2, is precisely the image of the group operation. Some of our results and many of our methods readily admit interpretations in \(G_\alpha \), although little mention of these will be made in the text. For example, in Lemma 1 we prove that the Haar integral in the group corresponds to the Lebesgue integral on \((0,1)\).

Using an obvious abbreviation, we summarize our most important results:

(i) The \(\mathcal{W}_a FS \) of \(f(x) \) converges to \(f(x) \) a.e. if \(f(x) \) is of bounded variation, and the convergence tests of Dini and Dini-Lipschitz are valid. (ii) If \(f(x) \) has variation \(V \) and if \(c_k \) is the coefficient of \(\psi_k(x) \) in the \(\mathcal{W}_a FS \) of \(f(x) \), then \(|c_k| \leq V k^{-1} \csc \pi/\alpha \). (iii) The continuity of \(f(x) \) is a sufficient condition for the uniform \((C,1)\) summability of the \(\mathcal{W}_a FS \).

2. Notation and preliminary results. Define

\[
l_{n,k} = l_{n,k}(\alpha) = \{ x : k \alpha^{-n} \leq x < (k + 1) \alpha^{-n} \},
\]

\(k = 0, \ldots, \alpha^n - 1, n = 1, 2, \ldots \). Then if \(\phi_n(x) \) is the \(n \)th Rademacher function of order \(\alpha \), \(\phi_n(x) = \omega^k \) if \(x \in l_{n+1,k} \).

The term, \(\alpha \)-adic rational, will denote any number of the form \(k \alpha^{-n} \) where \(k \) and \(n \) are integers. Thus if \(x \) has the base \(\alpha \) expansion

\[
\sum_{j=1}^{\infty} x_j \alpha^{-j}, \quad 0 \leq x_j < \alpha,
\]

where the terminating expansion is taken in case \(x \) is an \(\alpha \)-adic rational, we see that \(\phi_n(x) = \omega^{x_n+1} \).

We introduce a binary operation, denoted by \(\dagger \), and defined as follows: If \(0 \leq a < 1 \) and \(0 \leq x < 1 \), and if \(a \) and \(x \) have base \(\alpha \) expansions

\[
\sum_{j=1}^{\infty} a_j \alpha^{-j} \quad \text{and} \quad \sum_{j=1}^{\infty} x_j \alpha^{-j}
\]

respectively, then \(a \dagger x \) will denote the number
where \(y_j = a_j + x_j \mod \alpha \), \(0 \leq y_j < \alpha \). If we agree to take the terminating expansions for \(\alpha \)-adic rationals whenever possible, it follows that for any fixed \(a \) and all \(n \geq 0 \), \(\phi_n(a + x) = \phi_n(a) \phi_n(x) \), a.e. The exceptional values occur when \(a + x \) is the infinite expansion of an \(\alpha \)-adic rational. It is also true that \(\psi_n(a + x) = \psi_n(a) \psi_n(x) \), a.e.

Lemma 1. If \(f(x) \in L(0,1) \) then \(f(a + x) \in L(0,1) \) and

\[
\int_0^1 f(x) \, dx = \int_0^1 f(a + x) \, dx.
\]

The reader will have no difficulty in modeling a proof after the proof in the case \(\alpha = 2 \) [1, p. 379].

If \(f(x) \in L(0,1) \) and if

\[
c_n = \int_0^1 f(t) \, \bar{\psi}_n(t) \, dt
\]

we say that \(\sum_0^\infty c_n \psi_n(x) \) is the \(W_\alpha \) FS of \(f(x) \). Let \(s_k(x) \) denote the \(k \)th partial sum of this series, so that

\[
s_k(x) = \int_0^1 f(t) \sum_0^{k-1} \psi_j(x) \, \psi_j(t) \, dt = \int_0^1 f(t) \, D_k(x,t) \, dt
\]

where the kernel \(D_k(x,t) \) is defined accordingly. We will write \(D_k(t) = D_k(0,t) \). Observe that for all \(k \leq \alpha^n \), \(D_k(x,t) = D_k(x',t') \) provided only that \(x \) and \(x' \) are in the same \(l_{n,r} \) and that \(t \) and \(t' \) are in the same \(l_{n,r} \).

Let \(z = z(x,n) \) be that number satisfying

\[
(2.1) \quad x + z = 0
\]

except when this relation determines \(z \) as the nonterminating expansion of an \(\alpha \)-adic rational. In these cases let the first \(n \) digits in the expansion of \(z \) be determined by (2.1), and let the remaining digits be zeros. For all \(k \leq \alpha^n \) we have for almost all \(t \)
(2.2) \[D_k(x, t) = \sum_{0}^{k-1} \psi_j(x) \bar{\psi}_j(t) = \sum \bar{\psi}_j(z) \bar{\psi}_j(t) = \sum \psi_j(z + t) = D_k(z + t). \]

If we use Lemma 1 we have the following useful result.

(2.3) \[s_k(x) = \int_0^1 D_k(z + t) f(t) dt \]

\[= \int_0^1 D_k(x + z + t) f(x + t) dt = \int_0^1 D_k(t) f(x + t) dt. \]

Unless otherwise stated all functions will be assumed to be periodic and integrable on \((0, 1)\).

3. Convergence.

Lemma 2.

\[D_{\alpha n}(t) = \begin{cases} \alpha^n & \text{if } t \in I_{n, 0}, \\ 0 & \text{otherwise}. \end{cases} \]

Proof. We have from the definitions

(3.1) \[D_{\alpha n}(t) = \sum_{r=0}^{\alpha n-1} \bar{\phi}_r(t) = \prod_{r=0}^{n-1} \left[1 + \bar{\phi}_r(t) + \cdots + \bar{\phi}_{\alpha-1}(t) \right]. \]

If \(t \in I_{n, 0} \) each \(\phi_r(t) = 1 \), while if \(t \notin I_{n, 0} \) at least one factor in the product vanishes. (The \(p \)th factor is zero if \(\phi_p(t) \neq 1 \).)

By translating under \(\dagger \) we see that Lemma 2 has the following equivalent form: If \(\rho = \rho(x, n) \) is such that \(x \in I_{n, \rho} \) then

\[D_{\alpha n}(x, t) = \begin{cases} \alpha^n & \text{if } t \in I_{n, \rho}, \\ 0 & \text{otherwise}. \end{cases} \]

As an immediate consequence we have

Theorem 1. If \(f(x) \in L(0, 1) \) then \(\lim_{n \to \infty} s_{\alpha n}(x) = f(x) \) a.e. In particular, \(s_{\alpha n}(x) \to f(x) \) at a point of continuity of \(f(x) \) and the convergence is uniform in a closed interval of continuity. If \(x \) is an \(\alpha \)-adic rational then \(s_{\alpha n}(x) \to f(x) \) provided \(x \) is a point of right hand continuity of \(f(x) \).
Additional usefulness of Lemma 2 is seen from the identity

\[D_n(x, t) = \sum_{j=1}^{m} \left\{ \phi_{n_1}^{a_1}(x) \overline{\phi}_{n_1}^{a_1}(t) \cdots \phi_{n_j}^{a_j-1}(x) \overline{\phi}_{n_j}^{a_j-1}(t) \right\}, \]

where the base \(\alpha \) expansion of \(n \) is given in Definition 2. To prove (3.2) notice that

\[D_{\alpha n_1}(x, t)\left[1 + \phi_{n_1}(x) \overline{\phi}_{n_1}(t) + \cdots + \phi_{n_1}^{a_1-1}(x) \overline{\phi}_{n_1}^{a_1-1}(t) \right], \]

By using (3.3) recursively we obtain (3.2).

The usual method of establishing convergence of the full sequence of partial sums of the \(W_\alpha FS \) will be to reduce the convergence of \(s_n(x) \) to that of \(s_{\alpha n_1}(x) \) by showing that \(s_{\alpha n_1}(x) - s_n(x) \rightarrow 0 \) as \(n \rightarrow \infty \), where \(\alpha^{n_1} \leq n < \alpha^{n_1+1} \). In the following lemma we use the notation of Definition 2, with the additional convention of writing \(N \) for \(n_1 \).

Lemma 3. Let \(\nu \) be a fixed positive integer and let \(x \in l_{\nu, \rho} \). Then if \(\sigma \neq \rho \)

\[\lim_{n \rightarrow \infty} \int_{l_{\nu, \sigma}} [D_n(x, t) - D_{\alpha N}(x, t)] f(t) dt = 0. \]

If also \(\gamma \in l_{\nu, \rho} \) and \(N \geq \nu \), then

\[\left| \int_{\gamma} (\rho + 1) \gamma^{-\nu} [D_n(x, t) - D_{\alpha N}(x, t)] dt \right| < \alpha, \]

and in case \(\gamma = \rho \gamma^{-\nu} \), the integral (3.5) vanishes.

Proof. In proving (3.4) we may suppose \(N \geq \nu \). Let \(r \) be chosen so that \(n_r \geq \nu > n_{r+1} \); in case \(n_m \geq \nu \) take \(r = m \). By Lemma 2 all \(D_{\alpha k}(x, t) = 0 \) for \(t \in l_{\nu, \sigma} \) and \(k \geq \nu \). Thus \(D_n(x, t) = D_n(x, t) - D_{\alpha N}(x, t) \) and by (3.2) this is a sum of \(m - r \) terms, each of which is, for \(t \in l_{\nu, \sigma} \), a constant multiple of
say. A careful inspection of (3.2) shows that the sum of the moduli of the coefficients of \(\tilde{\psi}_{M(n)}(t) \) is bounded independent of \(n \). Also, \(M(n) \to \infty \) as \(n \to \infty \). We have now reduced (3.4) to a theorem of Mercer [2, p. 17].

The inequality (3.5) is proved by writing \(l_{\nu,\rho} \) as a sum of \(l_{N,s} \). On each \(l_{N,s} \) the integrand is a linear combination of \(\phi_N^b(t) \), \(0 < b < \alpha \). On each complete \(l_{N,s} \) contained in \((y, (\rho + 1)\alpha^{-\nu}) \) the integral vanishes. The remainder of the interval of integration has length less than \(\alpha^{-N} \), and from (3.3) we see that the integrand is numerically less than \(\alpha^{-N+1} \).

Theorem 2. If \(f(x) \) is of bounded variation and continuous from the right on \([0, 1) \), then as \(n \to \infty \), \(s_n(x) \to f(x) \) at every point of continuity and at every \(\alpha \)-adic rational. If \(x \) is an \(\alpha \)-adic irrational which is a point of discontinuity, \(s_n(x) \) does not converge.

Proof. To prove convergence it is sufficient to show that for \(f(t) \) monotonic

\[
s_n(x) - s_n(x) = \int_0^1 [D_n(x, t) - D_{\alpha N}(x, t)] f(t) dt \to 0.
\]

Write this integral as

\[
\int_{l_{\nu,\rho}} + \int_{C l_{\nu,\rho}} [D_n(x, t) - D_{\alpha N}(x, t)] f(t) dt = J_1 + J_2,
\]

where \(C \) denotes the complement taken with respect to \((0, 1) \). By the second theorem of the mean, there is \(\gamma \in l_{\nu,\rho} \) such that

\[
J_1 = f(\rho \alpha^{-\nu} + 0) \int_{\rho \alpha^{-\nu}}^\gamma [D_n - D_{\alpha N}] dt
\]

\[
+ f((\rho + 1)\alpha^{-\nu} - 0) \int_{\gamma}^{(\rho + 1)\alpha^{-\nu}} [D_n - D_{\alpha N}] dt.
\]

By (3.5)

\[
|J_1| \leq \alpha |f((\rho + 1)\alpha^{-\nu} - 0) - f(x)| + \alpha |f(x) - f(\rho \alpha^{-\nu} + 0)| < \varepsilon/2
\]

for \(\nu \) sufficiently large and for \(n \geq \alpha^{-\nu} \), since \(f(x + 0) = f(x) = f(x - 0) \). If
x is an α-adic rational, first choose ν large enough so that $p^\nu = x$, so that only right hand continuity is involved in (3.6). With ν fixed, $J_2 \to 0$ as $n \to \infty$ by (3.4).

Notice that for convergence at x, the hypothesis of bounded variation is needed only in a neighborhood of x.

The proof of the second part of Theorem 2 will be omitted, except to note that it is sufficient to consider the W_a FS of $f(x)$, $f(x) = 0$ if $0 \leq x < a$, $f(x) = 1$ if $a < x \leq 1$, where a is an α-adic irrational. The partial sums of the W_a FS of $f(x)$ may be explicitly written in terms of the digits in the base α expansion of a, and the assertion follows directly.

Lemmas 2 and 3 provide a direct proof of the theorem of localization for W_a FS.

Theorem 3. If $f(x) = g(x)$ a.e. for $a - \epsilon < x < a + \epsilon$, then the W_a FS of $f(x)$ and $g(x)$ are equiconvergent at a. If a is an α-adic rational it is sufficient that $f(x) = g(x)$ a.e. for $a < x < a + \epsilon$.

Lemma 4. The kernel $D_k(x, t)$ satisfies

\[\int_0^1 D_k(x, t) dt = 1, \]

and for $0 < t < 1$

\[|D_k(t)| < \alpha / t. \]

Proof. The first assertion is obvious.

For a proof of (3.8) the reader is referred to Fine's paper [1; pp. 391, 392].

Theorem 4. If for a fixed x,

\[\frac{f(t) - c}{t - x} \in L(x - \delta, x + \delta) \text{ for some } \delta > 0, \]

then $s_n(x) \to c$.

Proof. Suppose the base α expansion of x does not end in an infinite sequence of ones. Let z be determined by (2.1). Then we have, using (2.2) and (3.7)
One may verify that
\[|x - t| \leq \alpha (z + t). \]
Thus, with (3.8), we have
\[|J_1| \leq \alpha^2 \int_{|t-x| < h} \frac{|f(t) - c|}{|t-x|} \, dt < \varepsilon \]
for \(h \) sufficiently small. With \(h \) fixed, \(J_2 \to 0 \) by Theorem 3 and the remark below equation (3.6).

In case \(x \) is of the form excluded in the argument above, the proof must be modified. We put \(z = z(x, n) \) where \(z(x, n) \) is defined in §2. Inequality (3.9) may not be satisfied on a set \(F_n \subset (x - \delta, x + \delta) \). One may show that \(F_n \) is a subset of an interval of length \(\alpha^{-n} \), so
\[
|J_1| \leq \alpha^2 \int_{|t-x| < h} \frac{|f(t) - c|}{|t-x|} \, dt + n \int_{F_n} |f(t) - c| \, dt = J'_1 + J''_1.
\]
\(J_1' < \varepsilon \) as before, and with \(h \) fixed,
\[
J_1'' \leq n \alpha^{-n} \int_{F_n} \frac{|f(t) - c|}{|t-x|} \, dt \to 0
\]
and \(J_2 \to 0 \) as \(n \to \infty \).

Lemma 1 and equation (2.2) provide a proof that
\[\int_{0}^{1} |D_k(x, t)| \, dt = \int_{0}^{1} |D_k(t)| \, dt \quad \text{for all } x \in (0, 1). \]
We put \(L_k = \int_{0}^{1} |D_k(t)| \, dt \), the \(k \)th Lebesgue constant of the system \(\Psi_{\alpha} \).

Lemma 5. The Lebesgue constants satisfy \(L_k = O(\log k) \), where the \(O \) depends upon \(\alpha \).
Proof. By Lemma 4, \(|D_k(t)| \leq \min (\alpha/t, k)\). Thus

\[
L_k \leq \int_0^{a/k} k \, dt + \int_{a/k}^1 \alpha/t \, dt = O(\log k).
\]

In the statement of the next theorem, \(W(\delta; f)\) is the modulus of continuity of \(f(x)\);

\[
W(\delta; f) = \sup_{|h| \leq \delta, 0 \leq x < 1} |f(x + h) - f(x)|.
\]

Theorem 5. If \(f(x)\) satisfies \(W(\delta; f) = o((\log \delta^{-1})^{-1})\) as \(\delta \to 0\), then \(s_n(x) \to f(x)\) uniformly.

Proof. For this proof, write \(n = \alpha k + k'\) where \(0 < \alpha < \alpha, 0 \leq k' < \alpha^k\).

Since

\[
s_n - s_{\alpha k} = (s_n - s_{\alpha k}) + (s_{\alpha k} - s_{\alpha k}) = S_1 + S_2,
\]

it is sufficient to show that \(S_1 \to 0\) and \(S_2 \to 0\) uniformly. By using Lemma 2 and (3.3) we obtain

\[
S_2 = \int_{l_k, \rho} \left[\phi_k(x) \Phi_k(t) + \cdots + \phi_{a-1}^a(x) \Phi_{a-1}^a(t) \right] \alpha^k f(t) \, dt,
\]

where \(\rho\) is chosen so that \(x \in l_k, \rho\). Since \(f(x)\) is uniformly continuous, \(S_2 \to 0\) as \(k \to \infty\). Again using (3.3),

\[
S_1 = \int_0^1 \phi_k^a(x) \Phi_k^a(t) D_k^* (x, t) f(t) \, dt.
\]

Replacing \(t\) by \(t + b\alpha^{-k-1}\), we have

\[
S_1 = \omega^{ab} \int_0^1 \phi_k^a(x) \Phi_k^a(t) D_k^* (x, t) f(t + b\alpha^{-k-1}) \, dt,
\]

so by subtraction

\[
S_1(1 - \omega^{ab}) = \phi_k^a(x) \int_0^1 D_k^* (x, t) \Phi_k^a(t) [f(t) - f(t + b\alpha^{-k-1})] \, dt.
\]

If \(b\) is chosen so that \(|1 - \omega^{ab}| \geq 3^{1/2}\), this becomes
where we have used Lemma 5.

4. Fourier coefficients.

Theorem 6. If

\[f(x) \sim \sum_{0}^{\infty} c_n \psi_n(x), \]

then

\[f(a + x) \sim \sum_{0}^{\infty} d_n \psi_n(x) \]

where \(d_n = c_n \psi_n(a) \).

Proof. This is a consequence of Lemma 1 and the relation \(\psi_n(a + x) = \psi_n(a) \psi_n(x), \) a.e.

By using Theorem 6 and the scheme from the proof of Theorem 5 we may establish the following.

Theorem 7. If

\[f(x) \sim \sum_{0}^{\infty} c_j \psi_j(x), \]

then

\[|c_n| \leq 3^{3/2} W((\alpha - 1)/n; f). \]

There is a similar result with \(W \) replaced by the integral modulus of continuity.

As a corollary to Theorem 7 there is the following.

Theorem 8. If \(f(x) \in \text{Lip}(\eta) \), then \(c_n = O(n^{-\eta}) \) where the \(O \) depends upon \(\alpha \).

For the next lemma we define
and we write \(n = a \alpha^k + k' \), where \(0 < a < \alpha \), \(0 < k' < \alpha^k \).

Lemma 6. For \(n \geq 0 \) and all \(x \),

\[
|I_n(x)| < n^{-1} \csc \pi/\alpha.
\]

Proof. If \(x \in I_{k,p} \) we have, from elementary properties of \(\psi_n(x) \),

\[
(4.1) \quad |I_n(x)| = \left| \int_{\rho \alpha^{-k}}^{x} \psi_n(t) dt \right| = \left| \psi_k', (\rho \alpha^{-k}) \int_{\rho \alpha^{-k}}^{x} \phi_k^a(t) dt \right|
\]

If \(\tau \) is defined by the relation \(x \in I_{k+1,\tau} \), we have by a direct calculation

\[
\left| \int_{\rho \alpha^{-k}}^{x} \phi_k^a(t) dt \right| \leq \max \left\{ \left| \int_{\rho \alpha^{-k}}^{\tau \alpha^{-k-1}} \phi_k^a(t) dt \right|, \left| \int_{\rho \alpha^{-k}}^{(\tau + 1)\alpha^{-k-1}} \phi_k^a(t) dt \right| \right\}
\]

\[
\leq \max \left\{ \alpha^{-k-1} \left| \frac{1 - \omega^{a\tau}}{1 - \omega} \right|, \alpha^{-k-1} \left| \frac{1 - \omega^{a(\tau + 1)}}{1 - \omega} \right| \right\}
\]

\[
\leq \alpha^{-k-1} \csc \pi/\alpha < n^{-1} \csc \pi/\alpha.
\]

Theorem 9. If \(f(x) \) has total variation \(V \) then

\[
|c_n| \leq V n^{-1} \csc \pi/\alpha.
\]

Proof. Since \(I_n(0) = I_n(1) = 0 \),

\[
(4.2) \quad c_n = -\int_{0}^{1} I_n(x) df(x),
\]

and the theorem is now seen to be a consequence of Lemma 6.

For \(\alpha = 2 \), Theorem 9 was proved by N. J. Fine [1, p. 383] and in this case \(\csc \pi/\alpha = 1 \). That this factor is necessary when \(\alpha > 2 \) is seen from the following example. For an arbitrary positive integer \(k \) define \(n = \alpha^{k+1} - 1 \). Let \(\beta \) denote the integral part of \(\alpha/2 \) and put \(\zeta = \beta \alpha^{-k-1} \) and \(\xi = \zeta + \beta/\alpha \). Let \(f(x) \) represent the characteristic function of the interval \([\zeta, \xi] \). By using (4.1) and (4.2) we may calculate \(c_k \). It turns out that
\[|c_k| = \left[B(\alpha)/2 \right]^2 \alpha^{-n-1} \csc \pi/\alpha \ V, \]

where \(B(\alpha) = \max_{0 < b < \alpha} |1 - \omega^b| \) so that \(3^{1/2} \leq B(\alpha) \leq 2. \)

5. \((C,1)\) summability. Let \(\sigma_k(x) \) represent the \(k \)th \((C,1)\) mean of \(\{s_n(x)\} \), and define the kernel,

\[F_k(x, t) = k^{-1} \sum_{1}^{k} D_r(x, t). \]

We will write \(F_k(0, t) = F_k(t) \).

Lemma 7. For \(k \geq 1, \int_{0}^{1} F_k(x, t) \, dt = 1, \) and for \(0 < t < 1, \) \(|F_k(t)| < \alpha/t. \)

Proof. These properties follow directly from the corresponding properties of \(D_k(x, t) \).

Lemma 8. There is a constant \(M \) such that for all \(k \geq 0 \)

\[\int_{0}^{1} |F_{\alpha k}(x, t)| \, dt \leq M. \]

Proof. Write \(n \) in the form \(n = a \alpha^k + k' \) where \(0 < a < \alpha \) and \(0 \leq k' \leq \alpha^k \).

By a somewhat tedious calculation involving repeated use of (3.2) we obtain

\[(5.1) \quad nF_n(t) = \left[1 + \cdots + \bar{\phi}_k^{a-1}(t) \right] \alpha^k F_{\alpha k}(t) + \bar{\phi}_k^{a}(t) k' F_{k'}(t) \]

\[+ \left[1 + [1 + \bar{\phi}_k(t)] + \cdots + [1 + \cdots + \bar{\phi}_k^{a-2}(t)] \right] \alpha^k D_{\alpha k}(t) \]

\[+ \left[1 + \cdots + \bar{\phi}_k^{a-1}(t) \right] k' D_{k'}(t). \]

If we take \(k' = \alpha^k \) and \(a = \alpha - 1 \) in (5.1) we obtain

\[(5.2) \quad \alpha^{k+1} F_{\alpha k+1}(t) = R_k(t) \alpha^k F_{\alpha k}(t) + Q_k(t) \alpha^k D_{\alpha k}(t) \]

where

\[(5.3) \quad R_k(t) = \begin{cases} \alpha & \text{if } \bar{\phi}_k(t) = 1, \\ 0 & \text{otherwise} \end{cases} \]

and
(5.4) \[Q_k(t) = \begin{cases} \alpha(\alpha - 1)/2 & \text{if } \phi_k(t) = 1, \\ \alpha/(1 - \phi_k(t)) & \text{otherwise}. \end{cases} \]

By applying a simple induction argument to (5.2) we obtain

\begin{equation}
\alpha^{k+1} F_{\alpha k+1}(t) = Q_k(t) \alpha^k D_{\alpha k}(t) \\
+ \sum_{r=1}^{k} R_k(t) R_{k-1}(t) \cdots R_r(t) Q_{r-1}(t) \alpha^{r-1} D_{\alpha r-1}(t) \\
+ \prod_{r=0}^{k} R_r(t). \tag{5.5}
\end{equation}

Let

\[S = \sum_{r=1}^{\alpha-1} |1 - \omega_r|^{-1}, \]

then equations (5.3)-(5.5) enable us to show that

\[\alpha^{k+1} \int_0^1 |F_{\alpha k+1}(t)| \, dt \leq \alpha^k \left[\left(\frac{\alpha - 1}{2} + S \right) + 1 + \left(\frac{\alpha - 1}{2} - S \right) \right] \sum_{r=1}^{k} \alpha^{r-1}, \]

from which the lemma follows.

Observe that by setting \(k = 0 \) in (5.2) we see that for \(\alpha > 2 \) the kernels \(F_{\alpha k}(t) \) are not positive. Fine showed that in case \(\alpha = 2 \), \(F_{\alpha k}(t) \geq 0 \) [1, p. 396].

Lemma 9. If \(t \) is not of the form \(t = d\alpha^{-m}, m \geq 1, 0 < d < \alpha \), then \(\lim_{k \to \infty} F_k(t) = 0 \).

Proof. Let \(t \) be given and choose \(n \) so that \(\alpha^{-n} < t < \alpha^{-n+1} \). Write \(k = p\alpha^n + q \) where \(0 \leq q < \alpha^n \). Then

\[k F_k(t) = \sum_{r=0}^{p-1} \sum_{s=1}^{\alpha^n} D_{r\alpha^n+s}(t) + \sum_{s=1}^{q} D_{p\alpha^n+s}(t). \]

One can show that \(D_{r\alpha^n+s}(t) = D_{\alpha^n}(t) D_r(\alpha^n t) + \psi_r(\alpha^n t) D_s(t) \). This gives

\[D_{r\alpha^n+s}(t) = \psi_r(\alpha^n t) D_s(t), \]
so that
\[kF_k(t) = \alpha^n F_{\alpha^n t}(t) D_p(\alpha^n t) + \psi_p(\alpha^n t) qF_q(t). \]

Put \(b \) equal to the integral part of \(\alpha^n t \). Since \(0 < \alpha^n t - b < 1 \), we have by Lemma 4
\[|D_p(\alpha^n t)| \leq \alpha(\alpha^n t - b)^{-1}. \]

Using Lemma 7 we obtain
\[|kF_k(t)| \leq \alpha^{n-2} t^{-1}(\alpha^n t - b)^{-1} + q \alpha t^{-1}, \]
from which the conclusion follows.

Theorem 10. If \(f(x) \) is continuous then \(\sigma_{\alpha-k}(x) \to f(x) \) uniformly.

Proof. It follows from (2.3) and Lemma 7 that
\[\sigma_n(x) - f(x) = \int_0^1 F_n(t) [f(x + t) - f(x)] dt. \]

By applying Lemmas 7-9 together with a standard argument we can show that
\[\int_0^1 |F_{\alpha-k}(t)| |f(x + t) - f(x)| dt \to 0 \text{ uniformly.} \]

Theorem 11. If \(f(x) \) is continuous then \(\sigma_n(x) \to f(x) \) uniformly.

Proof. Let the base \(\alpha \) expansion of \(n \) be given in Definition 2. From (5.1) we obtain the estimate
\[|nF_n(t)| \leq \sum_{r=1}^m \left| a_r \alpha^{nr} F_{\alpha^{nr} t}(t) \right| + \frac{1}{2} a_r (a_r + 1) \alpha^{nr} D_{\alpha^{nr} t}(t). \]

Let \(\epsilon_k = \epsilon_k(x) \) represent the larger of
\[\int_0^1 |F_{\alpha-k}(t)| |f(x + t) - f(x)| dt \]
and
\[\int_0^1 D_{\alpha k}(t) |f(x + t) - f(x)| \, dt, \]

so that by Theorems 1 and 10 \(\varepsilon_k \to 0 \) uniformly. Using (5.6) and (5.7)

\[|s_n(x) - f(x)| \leq \alpha \sum_{r=1}^m a_r \alpha^{n_1} n^{-1} \varepsilon_{n_1} = \delta_n, \text{ say.} \]

One may readily verify that the transformation which sends \(\{ \varepsilon_k \} \) into \(\{ \delta_n \} \) is regular, so that \(\delta_n \to 0 \) uniformly, and the theorem is proved.

It is interesting to note that by virtue of a well known consequence of the Banach-Steinhaus theorem [5, p. 99], Theorem 11 implies that \(\int_0^1 |F_n(t)| \, dt \leq M. \)

\textbf{References}

Pacific Journal of Mathematics
Vol. 5, No. 1 September, 1955

Frank Herbert Brownell, III, *Flows and noncommuting projections on Hilbert space* .. 1
H. E. Chrestenson, *A class of generalized Walsh functions* 17
Jean Bronfenbrenner Crockett and Herman Chernoff, *Gradient methods of maximization* ... 33
Nathan Jacob Fine, *On groups of orthonormal functions. I* 51
Nathan Jacob Fine, *On groups of orthonormal functions. II* 61
Frederick William Gehring, *A note on a paper by L. C. Young* 67
Joachim Lambek and Leo Moser, *On the distribution of Pythagorean triangles* .. 73
Roy Edwin Wild, *On the number of primitive Pythagorean triangles with area less than n* .. 85
R. Sherman Lehman, *Approximation of improper integrals by sums over multiples of irrational numbers* .. 93
Emma Lehmer, *On the number of solutions of $u^k + D \equiv w^2 \pmod{p}$* 103
Robert Delmer Stalley, *A modified Schnirelmann density* 119
Richard Allan Moore, *The behavior of solutions of a linear differential equation of second order* .. 125
William M. Whyburn, *A nonlinear boundary value problem for second order differential systems* .. 147