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J E A N B R O N F E N B R E N N E R C R O C K E T T AND HERMAN C H E R N O F F

1. Introduction. We shall consider the computational problem of finding a

point

2 ,-• -,cn)

for which a given function of n variables

fix) = / ( * i , % 2 , , * Λ )

attains its maximum. Frequently, the form of the function and the number of

independent variables involved make it prohibitively difficult to determine the

point c by direct methods, and methods of successive approximations are ac-

cordingly used.

Suppose that

is an approximation to the point c. Assuming that x ( 0 ) is sufficiently close to c,

we may obtain an improved approximation to c by considering the first few terms

of the Taylor expansion of fix) about # ( 0 ) . Presumably, the greater the number

of terms of the expansion that we consider, the better will be our improved

approximation and the more rapidly will the corresponding iterative procedure

converge. On the other hand, increasing the number of terms of the expansion

involves the calculation of higher order derivatives and increases considerably

the computational cost of each iteration.

The methods of successive approximations to be discussed in this paper are

(1) gradient methods using the first order derivatives only, and (2) the Newton

method which uses first and second order derivatives. In both cases, it is pos-

sible to obtain, from the successive approximations, certain relevant information

about terms of order higher than those actually computed, and to conveniently

use this information to improve the rate of convergence.
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2. Assumptions and notation. We shall assume that f (x) and its derivatives

are sufficiently "well behaved" to permit the use of Taylor's expansions of

sufficiently high order. (For most arguments the use of third or fourth order

expansions will suffice.) We also assume that fix) has an isolated maximum at

x - c, and that

(i9j = 1, 2, ,n)

is positive definite. In the proof of convergence we shall assume that our initial

approximation # ( 0 ) is in a sufficiently small neighborhood of c.

A vector x may be considered as a matrix consisting of one column. The

transpose x' of x then consists of one row. Thus x 'y would represent the scalar

product Σ j = ι χι y. of x and y.

The large and small o notation will be occasionally used. The equation

y-oix) will indicate that as x—» 0, | y | / | * | — » 0. The equation y=0ix)

will indicate that there is a constant k such that \y\ <_k\x\. This notation

extends in an obvious fashion to vectors. For the benefit of those readers not

accustomed to this notation the equations will be written so that the terms in-

volving the small and large o are small compared to the remaining terms; that

is, the equations are approximately correct if the terms involving the o9s are

neglected. The expression x « γ should be read "x and y are approximately

equal.'

3. Gradient methods. In this section the gradient method is introduced. In

order to determine a convenient computational procedure we shall study, in

particular, the rate of convergence and the behavior of the successive iterations

when this method is used.

For a given initial approximation x to c it is natural to select the next

approximation x* ' in such a way that the step from x^ ' to JC Ms in the direc-

tion of "steepest ascent" or gradient. The direction of steepest ascent depends,

however, on the way in which one measures the distance between two points

x and y in n-dimensional space. In general there is no reason to assume that a

unit of distance along the x\ axis is equivalent to a unit of distance along the

x2 axis. The definition of distance (that is, metric) to be used implies a parti-

cular system of weighting these units.

Let us suppose that the distance d from x to y is defined by
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where B = \\bij \\ is a positive definite symmetric matrix. The locus of points

at distance k from # ( 0 ) is given by the ellipsoid

with center ΛΛ % ΓAe direction of steepest ascent in the It neighborhood of x

may be defined as the direction from % ( 0 ) to that point of the above ellipsoid

for which the value of the function / is greatest. In Appendix 1, it is shown

that, as k — * 0, this direction approaches a limit which is the direction of the

vector

(2) 8(xw) = B-ιl(xw),

where l(x) represents the column vector whose ίth component is df/dxι, and

Z(% ( 0 )) is assumed to be different from zero. Hereafter we shall call

the gradient vector (at x relative to B). One may ask what advantages one

metric has over another. This question will be treated in § 5.

One would naturally expect that fix) increases as x moves from % ( 0 ) in the

direction of the gradient. Indeed, the proof of the following theorem is left to

the reader.

THEOREM 1. For positive h small enough,

The problem now arises as to how large a step may profitably be taken in

the direction of the gradient. If h is taken too small, x ^ + hδ(χ^ ') will not

be much closer to c than % ( 0 ) . If h is taken too large, # ( 0 ) + hδ(x^°^) may over-

shoot c and even lead to diminishing the value of /. Clearly an optimal pro-

cedure should depend at least in part on how fast the slope of f (x) changes as

x moves from Λ; ( 0 ) in the direction of the gradient, and thus cannot be determined
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without some consideration of second order derivatives. To help solve the

problems of selecting B and h we shall now study the rate of convergence and

the behavior of the successive approximations when the gradient method is used.

Let x^°\x^l\ 9x , be a sequence of approximations formed so that

( 3 ) m m ) ,

and let

(4) e(m)=x(m)-c

represent the error of the mth approximation. We abbreviate 8(x^m') to δ^m' and

set

(5) L(x) = - | | p - ^ - ) | | (L=L(c)).
II d ||

The following theorem is establ ished in Appendix 2.

T H E O R E M 2.

(6) e{m+i) = (! -hmB-ιL)e{m) + o(e{m)),

( 7 ) δ{m) = -B-ιLeU) + o(e(m)),

( 8 ) S ( m + l ) = ( / - / * m / T l L ) S U ) + o ( e ( m ) ) .

The results in Theorem 2 may be written in another form. A classical result

of matrix theory [ l ] tells us that since B~ι and L are positive definite symmetric

matrices, B"ιL has n positive characteristic values which we may label λt in

order of magnitude; that is,

λi > λ2 > >_ λn > 0.

There is also a linearly independent set μ ι ? μ2, , μ of corresponding charac-

teristic vectors satisfying

(9) ZHLμ^λ./V

(It is important to realize that the λ; depend on L which is unknown.) Then any
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rc-dimensional vector may be uniquely represented as a linear combination of

the μ., and we may write

(10)

Thus Theorem 2 gives us

(11) A^m + ι^ - ( 1 ~h λ )k^ + o(e^)

i ί 'i ° '

i m i i

Theorem 2 suggests conjectures of the following sort. If the Am are selected

so that

the

- 1 < 1 - hm λι < 1 - hm λ2 < « < 1 - hm λn < 1,

> 0 and x —» c. If in addition the hm are selected so that

2
0 < Λm < ,

then

1 > | l - Λ m λ n | > for a l i i ,

and of all the coefficients k\m>) (i = 1, 2, . . . , n) the coefficient k^ of μn is

diminished least rapidly. After a large number of iterations the coefficient of

μn becomes dominant and we have

and

δ(m+ιK(i-hmλn)δ(m).

The precise results are proved in Appendix 3 and stated in Theorems 3 and 4.
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Since the proofs are involved and not of especial interest, the authors suggest

that readers with an elementary background in mathematics leave this appendix

for last.

THEOREM 3. For any e > 0, there is a neighborhood of c such that if # ( 0 )

lies in this neighborhood, and

- hm λj I < 1 - e

for all m and i, then limm

Let

x = c.

(14)

R(m) =

where r is defined by

(15) ^i >, λ Γ > λΓ+ 1 =

Rim) and Rim) measure those parts of e and

characteristic values which are greater than λn.

which correspond to

THEOREM 4. For any € > 0, and η > 0, there is a neighborhood of c such

that i / x ( 0 ) lies in this neighborhood^ RiO) < 1 — 77, and

2 - e
> hm > —-

for all m9 then

(16)

lim 7 ? ( m ) = 0 ,
n-* 00

lim R ( m ) = 0 .
m -* 00

4. Selection of st^) size, hm. In this section we shall apply the results in

§ 3 to investigate the problem of finding a good choice of Am. We mentioned

previously that an intelligent choice of hm should depend on some information

regarding higher order terms in the Taylor expansion of fix). From (11) it

seems apparent that the relevant information would be the λ;. For a good choice
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of A's would be one where the hm take various values close to the various

1/λj, thus diminishing

very rapidly. It should be noted that if 1/λj is large compared to 1/λ; the use

of hm = 1/λj will tend to magnify the coefficient of μ^ Knowledge of λi and

λn would be especially valuable since good choices of h should be between

l/λi and l/λn.

Theorem 4 furnishes us with a procedure for approximating λn. For if a

small value of h, that is,

is used for many approximations, 8 m will be approximately proportional to

δ ( m ) and the ratio will be 1 - fcTO λn. Since hm, δ ( m ) , and 8 ( m + l ) are known or

computed, λn may be approximated. This method would seem to be inapplicable

without some knowledge of what constitutes a small value of A. Fortunately,

Theorem 2 may be invoked to tell us that if hm is very small, then 8 « o"m.

If hm is very large, S will tend to have the direction opposite to that of

δ , and § ^ m + l ' may possibly be of larger magnitude than 8^m . Hence a very

large or small value of hm will be revealed by the results obtained from using

this value.

The value of λί may be estimated by a similar approach. However, the esti-

mate of λι so obtained is very sensitive to higher order terms, and it is very

difficult to obtain a good estimate with a reasonable number of iterations.

In view of these remarks, the following system of choosing the A's seems

to have merit. Begin with a small value of h and gradually increase h. Note

that h should increase slowly if the δ ^ + ι^ are in very different directions

from the δ . Note also that it is not efficient to repeat values of h. Contin-

ue until <5̂ m + 1 ) « p δ ' m , where p is not close to one. Then use

: i

1 - p

the reciprocal of the estimated λn. Since this Λm + i may be so large as to re-

vitalize components corresponding to large λ;, start a new round by applying

a small value of h and repeating the above procedure.
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One will frequently find that the last h of the round tends to increase from

round to round. For an example see [6, p. 284 or p. 294], This "effect" may be

explained by the following type of argument. Suppose that initially & ( 0 ) is very

small compared to k^m\ After several iterations, k may become large com-

pared to k^2)9 Ar™3', , and so on, and k may still be small compared to

k^l In that event we will have 8^m ι ' « pδ , where p « 1 - hm λn+ι. The use

of

K 1
«

will then tend to make k^t

 l small. In the next round the kn may come to

dominate all other k's, and the last h of this round will be close to

5. Selection of B, Newton method and modification. In this section we shall

consider a measure of the efficiency of a metric B. It will be evident that the

Newton method may be considered as a most efficient gradient method. The

high computational cost of computing second order derivatives leads one oc-

casionally to make use of a simple modification of the Newton method. These

concepts are of special interest in a large class of statistical problems.

To construct a measure of the efficiency of a metric B, let us suppose that

for some reason or other it is desirable to use a constant value h of hm In this

case, the rate of convergence obviously depends on

(17) M= max 11 - h λt | .
l < i < n

Thus the best value of h would be that for which M is the smallest possible.

Then

(18)

(19)

From this point of view, λ n /λ ι can be considered as an indication of the

convergence rate per iteration when the metric β is used. The closer this ratio

is to one the more rapid the rate of convergence. (Note that n, the number of
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components of x, is relatively unimportant in measuring the convergence rate

per iteration although it influences greatly the amount of work per iteration.)

If B" L is close to the identity matrix then the characteristic values λt are

all close to unity (and λn/λx is close to one). Theorem 2 tells us that in this

case a value of hm close to one will make e very small.

With this in mind, we see that it would appear to be desirable to set B -

L(x ), since in the neighborhood of c we may expect L'ι(x^m')L to be close

to the identity matrix. Then we have

(20) xlm + ι)=x{m) + hmL-ι(xlm))l(x{m))

which is Newton's method if hm = 1 (see Appendix 4).

It should be noted that the speed of convergence per iteration of Newton's

method increases as * r m ' gets closer to c. This is obvious since the character-

istic values λj are pushed close to one as L~ι (x )L approaches the identity

matrix. In fact it can easily be shown that

(21) e

( m + l ) = O ( | e ( m ) | 2 ) .

This property makes the Newton method especially valuable when Λ; is very

close to c. The Newton method seems to differ from the gradient method not

only in regard to the rate of convergence but also in that B does not remain

fixed. However, the results obtained for the gradient methods can easily be

extended to those cases where B varies from iteration to iteration, the variations

being subject to certain mild restrictions.

The great speed of convergence of the Newton method is offset by the cost

of computing second order derivatives, which is often extremely high. To lessen

this cost while still retaining some of the advantages of the Newton method, the

following modification has often been used. Instead of using B =L(x ) for

the mth iteration, we may use B - L (x ) for the r, r + 1, , r + k iterations,

thus avoiding the calculation of L ( Λ Γ Γ ι ' ) , « , L ( x ). However, the ten-

dency of the λj to get closer to one, thereby accelerating the convergence, will

not be present during these interludes when the metric is not changed.

Ίhe notions used in this section are of special relevance to statisticians.

To employ their language, in problems of maximum-likelihood estimation where

fix) is the logarithm of the likelihood function, -L'i(c) represents an esti-

mate of Σ , the covariance matrix of the maximum-likelihood estimate c. Fre-

quently, the statistician can use this fact to find an easily computed matrix
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R(x) which is close to L(x) for reasonably large samples. For example, the

information matrix may be applied for this purpose. This idea has been used

in probit analysis [ 2 ] .

6. The adjustment of hm in the Newton method. Much of our discussion of

gradient methods centered about the size of the step to be taken in the direction

of the gradient. The Newton method in its ordinary form implies the use of A m « l .

So long as hm = 1 is used, it will be found that the iterations tend to under-

shoot the mark in a systematic fashion depending on third order derivatives. By

observing successive iterations we may correct for this systematic tendency

without actually computing the third order derivatives. The following procedure

is applicable to the modified Newton method.

Using B-L{x,') for the r, r + 1, , m, iterations and assuming that

e is small compared to e for m > r, we show in Appendix 5 that

•"*"-M'-Ϊ)1 W'
( 2 2 )

( m = r + l , r + 2, • • • ) ,

where U is a matrix whose elements are homogeneous linear functions of the

elements of e , indeed ί / = O ( e ). The one-dimensional case is fundamen-

tally simpler than the n-dimensional case, and additional results have been

established for this case in Appendix 6.

In equation 22, the terms multiplied by h replace the B'ιL of the standard

gradient method (see ( 6 ) ) . Hence the role of the characteristic values of B" L

is here replaced by those of I - ί//2 and I - U for m =r and m > r, respectively.

Since ί / = O ( e ^ Γ ' ) , the λt will be close to 1. The treatment of the modified

Newton method differs from that of the standard gradient method in that immedi-

ately after the rth iteration, the λ, tend to double their distance from one. This

tendency may be taken into account as follows. If hr = 1 is used, and

δ ( r + ι ) ~ 0 . 1 S ( r ) ,

the standard gradient method would suggest

1 10

l - . l 9

But the spread of the λ; imply that the h should correspondingly spread, and

hΓ + ι = 11/9 would be preferable.
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7. Bibliographical remarks. The gradient method with Euclidean metric

was suggested by Cauchy [ 3 ] . This method and extensions to functions on more

general spaces was treated by Curry [ 4 ] , who mentioned that the method was

not invariant when changes in scale are made on the variables. (Such changes

in scale correspond to a change in the metric.)

In 1946, gradient methods with non-Euclidean metrics were found appropriate

and applied by Koopmans, Rubin, and Leipnik [5, pp. 153-238] to several

problems at the Cowles Commission for Research in Economics. The authors

found bounds on the λ; and used the fact that a fixed value of h < 2/λχ leads

to convergence. Apparently they were not aware of the fact that these methods

were gradient methods, nor of the possibility of using the successive iterations

to accelerate convergence. They experimented with a variation where, in each

iteration, h was selected so as to maximize the quadratic approximation to the

function along the gradient vector. This variation, lately called the optimum

gradient method, did not work particularly well. (This method lacks optimality

because it ignores the relevance of the λj .) In 1948 and 1949, Bronfenbrenner

and Chernoff developed and applied the results in the present paper to the

problems of the Cowles Commission. Some typical computations were presented

by Chernoff and Divinsky [6, pp. 236-302],

In 1939, Temple [7] applied the optimum gradient method with Euclidean

metric to maximizing quadratic functions (or equivalently to solving linear

equations). He also extended this approach from ^-dimensional space to Hubert

space.

An extensive bibliography on the extensions and developments of this ap-

proach for solving linear problems is contained in a paper by Forsythe [8] ,

In particular, there is a method due to Forsythe and Motzkin of accelerating

the optimum gradient method by using the results of previous iterations. Also

discussed is the con jugate-gradient method, an important variation in the case

of linear problems. This method is due to Hestenes, Lanczos, and Stiefel.

Appendix 1. We apply the method of Lagrange multipliers to maximize

/ ( # ( 0 ) + δ), subject to the restriction

obtain

df(x(0>+8)
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= - l B-ιl(xw+δ), δ'Bδ = —
2λ 4λ2

!cB-ιl(xw+δ)

Letting lc —* 0, we have

Since

l(xw) ί 0, B-ιl(χ(0)) £ 0,

we get

y/l(x<0))'B'ιl(χ(0))+O(k)

and the direction oί B'1 l(x(0)) +O(k) approaches that of B'11 ( x ( 0 ) ) .

Appendix 2. Proof of Theorem 2. Expanding the first derivative of / in a

Taylor expansion about c, we obtain

l(x(m)) = He + e{m)) = lie) -Le(m) + o(e(m)).

Since c is the point at which / attains its maximum, we have He) =0 and

5 U ) = β-1 Hxlm)) = - B-ιLe(m) + o(e{m)),

β(m+ι) = χ(m+l) _ c = Λ(m) _ c + A m δ ( m ) , = e ( m ) - hmB-lLe{m) + o(e{m)),

Finally,

() = ( / _ hmB-ιL){-B-ιLeU)) + o(e(m))

= (l-hmB-ιL)δ{m) + o
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This completes the proof of Theorem 2.

Appendix 3. Proof of Theorem 3. Let

k{m) = k\m)2 + k(

o

m)

From (11), we have

/ . Ί \ y ( i Ί \ \ 2 j \m ) . „ ( J ( ^ \\

it \m + i / = £-*\ x. — nm Λj/ K- + o v fc Km ))

Under the conditions of Theorem 3, we obtain

k ( m + l ) < ( l - e ) 2 k ( m ) + o ( k ( m ) ) .

It follows that there is a number a such that, for k ( m ) < α , we have

M m + 1) < ( l - - ) k(m) <a.

Hence if k(0) < a, then

( y 2 Til

l - - ) Mo),

e(m)—>0andxim)—> c.

Proof of Theorem 4. Let

V* t(m) 2

and

2 7,(m)2 _ ,,2 v - ,,(m)2

=r+l ι=r+l

Then
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1 - Vλi
-M>0,y m λ m n , β y m

1 + Λ ^ !

0 < βm < m a x (1 - ^m λr> 11 - A,,, λ t I) < max (1 - Am λΓ, γm - e).

It follows that βm/ym is bounded away from 1; that is, there is an e* > 0 such

that

Now

l=Γ + l ί = Γ + l

Dividing numerator and denominator by kim), we get

w h e r e τ m and vm a p p r o a c h z e r o a s kim) a p p r o a c h e s z e r o . T h u s

Rim + D = φmR(m) + ψm,

w h e r e

φm = -
β2

mR(m) + γ2

mn-R(m)) + v(

ψ =
π) + γ2 (l-R(m))+v{m)



GRADIENT METHODS OF MAXIMIZATION 47

If

then

m

and

The expression

is monotonic increasing in Rim) and in βm/Ύm Therefore this expression is

bounded by

( 1 - 6 * ) 2

— < 1.

It follows that there is a number b <a ia occurs in the proof of Theorem 3)

such that for k (m) < b, there is an η* > 0 such that

Φm < i - τ * . Φm < i i - v ) v * ,

and thus

Rim + 1 ) < 1 -η.

H e n c e , if /? ( 0 ) < l ~ i 7 a n d k(0) < b9 i t f o l l o w s t h a t for a l l m , w e h a v e

Rim) < 1 - 7 7 , kirn) < b, φm < 1 - r/*, ψm < (l~η)η*,

a n d t h u s him) — » 0 a n d ψm — > 0 . N o w

* U ) = <Am-l + Άm-2 ^ - l + ^ m - 3 ̂ m . i ^ m - 2 + + ( ^ o Φm.ι ••• Λ >
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+ ( φ m m l . . . φ t ) R ( 0 ) .

The right side may be decomposed into the sum of the first s terms and the re-

maining m — s terms. Each of these sums approaches zero as s —» oo and m —

s —> QQ. Applying equation 12 we readily show that Rim) —> 0.

Appendix 4. The Newton method is ordinarily introduced as the method

where x is obtained by finding that value of x which maximizes

f(xU)) + (x -x(m))Ί(x(m)) - - (x-x{m))'L{x(m))(x -x{m)),

the second-order Taylor expansion of / about x .

Appendix 5. Error term in the modified Newton method. We use subscripts

with / to d e n o t e p a r t i a l d e r i v a t i v e s . L e t e - x - c. T h e n

L e t f*Hx) r e p r e s e n t the (i9j) e l e m e n t of the i n v e r s e of the matr ix \\f-ix)

T h e n

s,k,t

_ £ f i ( c ) f t { c ) e ( 2 e t - e (

t

m ) ) + o ( \ e ( r ) \ . \ e ( m ) \ ) .
2 ikt

Let
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Then

2

and assuming that e is small compared to e for m > r, we get

δ (m) s ; __ e (m) + ϋe(m) {QT m > ^

Equations 22 are thus established.

Appendix 6. The modified Newton method in the one-dimensional case.

There is an advantage in the one-dimensional case that derives basically from

the fact that for n > 1 the directions of the characteristic vectors may vary,

while for n = 1 there is only one possible direction. We indicate for n - 1 a

relatively sensitive application of the notion that the results o* previous itera-

tions may be used to obtain relevant information concerning higher order deriva-

tives and to obtain good values of hm. It should be noted that the less sensitive

method suggested in §6 is also applicable and easier to apply. We have

8 M = - eU)[l - (2e(r) - e{m) f'" (c)/2f"(c)] + o(\e(r) \ . |β<™>|).

The desirable value to use for hm would be approximately

A / x

Suppose that hm.\ were used in place of Λm.i, and δKm) is computed using

L(x ). We now make use of the basic approximations

Then

U m - ι-Λ M . i )δ ( m - l ) «e ( m ) «-δ ( m ) .

hm-ι ~ 1 =
Am-l)
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2e
(r)
-e

(m)

Now

2
e

(r)
 - e

(m)
 = 2e

(r)
 - 2e

( m )
 + e

(m)
 » 2x

(r)
 - 2x

(m)
 - δ

( m )
,

2β
(r) _

 e
(m-l)

 = 2β
(r) _

 e
(m-i) _

 g
(m)

 + e
(m)

 β 2 Λ
> > _

 %
U-l) _

 χ
U ) _ g(

m
)

>

Hence

Am = 1 +

We may treat the case where 8 is computed using L (x ') in place of

L(x ) in a similar manner, to obtain

δ ( m ) S ( l w ) + Um-i - l)δU'ι)
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