ON THE NUMBER OF SOLUTIONS OF $u^k + D \equiv w^2 \pmod{p}$

EMMA LEHMER
ON THE NUMBER OF SOLUTIONS OF $u^k + D \equiv w^2 \pmod{p}$

EMMA LEHMER

Introduction. The number $N_k(D)$ of solutions (u, w) of the congruence

\begin{equation}
 u^k + D \equiv w^2 \pmod{p}
\end{equation}

can be expressed in terms of the Gaussian cyclotomic numbers (i, j) of order $\text{LCM}(k, 2)$ as has been done by Vandiver [7], or in terms of the character sums introduced by Jacobsthal [4] and studied in special cases by von Schrutka [6], Chowla [1], and Whiteman [8]. In the special cases $k = 3, 4, 5, 6, \text{and } 8$, the answer can be expressed in terms of certain quadratic partitions of p, but unless D is a kth power residue there remained an ambiguity in sign, which we will be able to eliminate in some cases in the present paper. Theorems 2 and 4 were first conjectured from the numerical evidence provided by the SWAC and later proved by the use of cyclotomy. They improve Jacobsthal’s results for all p for which 2 is not a quartic residue. Similarly Theorem 6 improves von Schrutka’s and Chowla’s results for those p’s which do not have 2 for a cubic residue. Only in case $k = 2$ and in the cases where k is oddly even and D is a $(k/2)$th but not a kth power residue is $N_k(D)$ a function of p alone and is in fact $p - 1$. This result appears in Theorem 1. In case $k = 4$, Vandiver [7a] gives an unambiguous solution, which requires the determination of a primitive root.

1. Character sums. It is clear that the number of solutions $N_k(D)$ of (1) can be written

\begin{equation}
 N_k(D) = \sum_{u=0}^{p-1} \left[1 + \left(\frac{u^k + D}{p}\right) \right] = p + \sum_{u=0}^{p-1} \left(\frac{u^k + D}{p}\right),
\end{equation}

or

\begin{equation}
 N_k(D) = p + \left(\frac{D}{p}\right) + \psi_k(D),
\end{equation}

Received July 10, 1953.

Pacific J. Math. 5(1955), 103-118

103
where the function

\[\psi_k(D) = \sum_{u=1}^{p-1} \left(\frac{u^k + D}{p} \right) \]

is connected with the Jacobsthal sum

\[\phi_k(D) = \sum_{u=1}^{p-1} \left(\frac{u}{p} \right) \left(\frac{u^k + D}{p} \right) \]

by the relations

\[\psi_k(D) = \left(\frac{D}{p} \right) \phi_k(D), \quad k \text{ odd and } D \equiv 1 \pmod{p}, \]

and

\[\psi_{2k}(D) = \psi_k(D) + \phi_k(D). \]

Other pertinent relations are

\[\phi_k(m^kD) = \left(\frac{m}{p} \right)^{k+1} \phi_k(D) \quad (m \not\equiv 0 \pmod{p}) \]

\[\psi_k(m^kD) = \left(\frac{m}{p} \right)^k \psi_k(D) \]

and

\[\phi_k(D) = -\left(\frac{D}{p} \right) \phi_k(D) \quad (k \text{ even}) \]

\[\psi_k(D) = \left(\frac{D}{p} \right) \psi_k(D). \]

Also, for \(k \) odd and \(\rho \) a primitive root,

\[\sum_{\nu=0}^{k-1} \phi_k(\rho^\nu) = -k. \]

These relations are either well known or are paraphrases of known relations.
and are all easily derivable from the definitions. If \(k \) is odd, it follows from (5) and (6) that

\[
\psi_{2k}(D) = \phi_k(D) + \left(\frac{D}{p} \right) \phi_k(D).
\]

If \(D \) is a \(k \)th power residue, then so is \(\overline{D} \) and hence by (7) for \(k \) odd \(\phi_k(D) = \phi_k(\overline{D}) = \phi_k(1) \), and we have

\[
\psi_{2k}(D) = \phi_k(D) \left[1 + \left(\frac{D}{p} \right) \right] = \begin{cases} 2\phi_k(D) & \text{if } \left(\frac{D}{p} \right) = +1 \\ 0 & \text{if } \left(\frac{D}{p} \right) = -1. \end{cases}
\]

Hence from (2) we obtain:

Theorem 1. If \(k \) is odd and if \(D = m^k \), where \(m \) is a nonresidue of \(p = 2kh + 1 \), then the number \(N_{2k}(m^k) \) of solutions \((u, w)\) of

\[
u^{2k} + m^k \equiv w^2 \pmod{p}
\]

is exactly \(p - 1 \).

Since \(\phi_1(D) = -1 \), it follows from (11) that \(\psi_2(D) = -2 \), if \(D \) is a residue, and zero otherwise. Hence by (2), \(N_2(D) = p - 1 \) for all \(D \). This is a well known result in quadratic congruences. We will next discuss the case \(k = 4 \), which is connected with Jacobsthal’s theorem.

Jacobsthal [4] proved that if \(D \) is a residue and if \(p = x^2 + 4y^2 \), then

\[
\phi_2(D) = -2x \left(\frac{\sqrt{D}}{p} \right), \quad x = 1 \pmod{4};
\]

but if \(D \) is a nonresidue then he was able to prove only that

\[
\phi_2(D) = \pm 4y.
\]

Hence for \(D \) a residue, it follows from the fact that \(\psi_2(D) = -2 \), using (6) and (2), that

\[
N_4(D) = p - 1 - 2x \left(\frac{\sqrt{D}}{p} \right), \quad x = 1 \pmod{4}.
\]
However, the corresponding result for D nonresidue would read

\[(15) \quad N_4(D) = p - 1 \pm 4y.\]

In order to eliminate this ambiguity in sign at least for some cases we now turn to the cyclotomic approach.

2. Cyclotomy. If we define as usual the cyclotomic number $(i, j)_k$ as the number of solutions (ν, μ) of the congruence

\[(16) \quad g^{k\nu+i} + 1 \equiv g^{k\mu+j} \pmod{p}\]

then if D belongs to class s with respect to some primitive root g (that is, if $\text{ind}_g D = s \pmod{k}$), we can write the number of nonzero solutions of (1) for k even as follows:

\[(17) \quad N_k^*(D) = 2k \sum_{\nu=1}^{k/2} \left(k - s, 2\nu - s \right)_k.\]

We now assume that 2 is a nonresidue and choose g so that 2 belongs to the first class, or $s = 1$; then

\[(18) \quad N_4(2) = N_4^*(2) = 8[(3, 1)_4 + (3, 3)_4].\]

These cyclotomic constants have been calculated by Gauss [3] in terms of x and y in the quadratic partition $p = x^2 + 4y^2$ and are for $p = 8n + 5$

\[(19) \quad 16(3, 3)_4 = p - 2x - 3, \quad 16(3, 1)_4 = p + 2x - 8y + 1.\]

Substituting this into (18) we obtain

\[(20) \quad N_4(2) = p - 1 - 4y, \quad \left(\frac{2}{p}\right) = -1.\]

To determine the sign of y we recall a lemma of our previous paper [5] which states that $(0, s)$ is odd or even according as 2 belongs to class s or not. Hence in our case $(0, 0)$ is even, while $(0, 1)$ is odd. These numbers have been given by Gauss as follows,

\[(21) \quad 16(0, 0)_4 = p + 2x - 7, \quad 16(0, 1)_4 = p + 2x + 8y + 1.\]

Hence
ON THE NUMBER OF SOLUTIONS OF $u^k + D \equiv w^2 \pmod{p}$

$p + 2x - 7 \equiv 0 \pmod{32}$ and $p + 2x + 8y + 1 \equiv 16 \pmod{32}$.

Subtracting the first congruence from the second we have, dividing by 8,

(22) $y \equiv 1 \pmod{4}$.

This makes (20) unambiguous, and returning to (2) we find by (6), since $\psi_2(2) = 0$, that for $(2/p) = -1$

(23) $\psi_4(2) = \phi_2(2) = -4y, \quad y \equiv 1 \pmod{4}$.

Hence by (7)

(24) $\phi_2(2m^2) = -4y \left(\frac{m}{p} \right), \quad \left(\frac{2}{p} \right) = -1$.

This gives a slight strengthening of Jacobsthal's theorem, namely:

Theorem 2. If 2 is a nonresidue of $p = x^2 + 4y^2$, where $x \equiv y \equiv 1 \pmod{4}$, then

$$\phi_2(D) = \begin{cases} -2x \left(\frac{m}{p} \right), & \text{if } D \equiv m^2 \pmod{p} \\ -4y \left(\frac{m}{p} \right), & \text{if } D \equiv 2m^2 \pmod{p}. \end{cases}$$

Hence by (2) we have:

Theorem 3. If 2 is a nonresidue of $p = x^2 + 4y^2$, $x \equiv y \equiv 1 \pmod{4}$ then the number of solutions of $u^4 + D \equiv w^2 \pmod{p}$ is given by

$$N_4(D) = \begin{cases} p - 1 - 2x \left(\frac{m}{p} \right), & \text{if } D \equiv m^2 \pmod{p} \\ p - 1 - 4y \left(\frac{m}{p} \right), & \text{if } D \equiv 2m^2 \pmod{p}. \end{cases}$$

We now suppose that 2 is a quadratic residue but a quartic nonresidue, hence we may choose g such that $\sqrt{2}$ belongs to class 1 and calculate $N(\sqrt{2})$ by (18). The cyclotomic constants of order 4 for $p = 8n + 1$ are

(25) $16(3,1)_4 = p - 2x + 1, \quad 16(3,3)_4 = p + 2x + 8y - 3$.
Hence by (18)

\[N_4(\sqrt{2}) = p - 1 + 4y; \]

but in this case \(y \) turns out to be even, so that it is not sufficient to determine \(y \mod 4 \) and it is necessary to introduce the cyclotomic numbers of order 8 to determine the sign of \(y \). It also becomes necessary to distinguish the cases \(p = 16n + 1 \) and \(16n + 9 \).

Case 1. \(p = 16n + 1 = x^2 + 4y^2 = a^2 + 2b^2, x \equiv a \equiv 1 \mod 4 \).

Since \(\sqrt{2} \) belongs to class 1, 2 belongs to class 2 and by our lemma \((0,0)_8\) is even, while \((0,2)_8\) is odd. Dickson \[2\] gives

\[6^4(0,0)_8 = p - 23 + 6x. \]

Since \((0,0)_8\) is even, we have

\[6^4(0,0)_8 = p - 23 + 6x \mod 128. \]

In order to complete our discussion it was necessary to calculate \((0,2)_8\) and \((1,2)_8\) by solving 15 linear equations involving the constants \((i,j)_8\) given by Dickson, which we list in the Appendix. We obtained

\[64(0,2)_8 = p - 7 - 2x - 16y - 8a, \quad 64(1,2)_8 = p + 1 - 6x + 4a. \]

Substituting \(p - 23 \) for \(-6x\) from (28) into \(64(1,2)_8 \) we obtain

\[2a \equiv 11 - p \mod 32. \]

Since \((0,2)_8\) is odd we have, multiplying (29) by 3,

\[3p - 21 - 6x - 48y - 24a \equiv 3p - 21 + (p - 23) - 48y - 12(11 - p) \]

\[\equiv 64 \mod 128; \]

or, dividing out a 16 and solving for \(y \), we get

\[y \equiv 3(p + 1) \equiv -2 \mod 8. \]

Case 2. \(p = 16n + 9 \). In this case Dickson gives

\[64(0,4)_8 = p + 1 + 6x + 24a, \]
ON THE NUMBER OF SOLUTIONS OF $u^k + D = w^2 \pmod{p}$

while we have calculated [see Appendix]

(34) $64(0,2)_8 = p + 1 - 2x + 16y$

(35) $64(2,0)_8 = p - 7 + 6x$

(36) $64(1,2)_8 = p + 1 + 2x - 4a$

From (35)

(37) $6x \equiv 7 - p \pmod{64}$.

Substituting this into (36) we find

(38) $12a \equiv 2p + 10 \pmod{64}$.

Since $(0,4)_8$ is even we obtain, using (38),

(39) $p + 1 + 6x + 24a \equiv p + 1 + 6x + 4p + 20 \equiv 0 \pmod{128}$.

This gives an improvement of (37), namely,

(40) $6x \equiv -(5p + 21) \pmod{128}$.

Finally substituting all this into $(0,2)_8$ which is odd, we have, after multiplying (34) by 3,

$$3p + 3 - 6x + 48y \equiv 3p + 3 + 5p + 21 + 48y \equiv 8p + 24 + 48y \equiv 64 \pmod{128},$$

or dividing out an 8 and noting that $p \equiv 9 \pmod{16}$ we obtain

$$y \equiv 2 \pmod{8}.$$

Hence the sign of y in (26) is now determined as follows if $(\sqrt{2}/p) = -1$:

(41) $N_4(\sqrt{2}) = p - 1 + 4y$, where $y/2 \equiv -(-1)^{(p-1)/8} \pmod{4}$.

From this we have as before by (2) and (6) for $(\sqrt{2}/p) = -1$:

(42) $\psi_4(\sqrt{2}) = \phi_2(\sqrt{2}) = -4y$, where $y/2 \equiv (-1)^{(p-1)/8} \pmod{4}$,

and we can write a slight improvement of Jacobsthal's theorem in the case in which 2 is a quadratic but not a quartic residue of p:
Theorem 4. If 2 is a quadratic residue, but a quartic nonresidue of \(p = x^2 + 4y^2 = 8n + 1 \), then

\[
\phi_2(D) = \begin{cases}
-2x \left(\frac{m}{p} \right) & \text{if } D \equiv m^2 \pmod{p} \\
-4y \left(\frac{m}{p} \right) & \text{if } D \equiv \sqrt{2}m^2 \pmod{p},
\end{cases}
\]

where \(x \equiv 1 \pmod{4} \) and \(y/2 \equiv (-1)^n \pmod{4} \).

Theorem 5. If 2 is a quadratic residue, but a quartic nonresidue of \(p = x^2 + 4y^2 = 8n + 1 \), then the number of solutions \((u, w)\) of \(u^4 + D \equiv w^2 \pmod{p} \) is given by

\[
N_4(D) = \begin{cases}
p - 1 - 2x \left(\frac{m}{p} \right) & \text{if } D \equiv m^2 \pmod{p} \\
p - 1 - 4y \left(\frac{m}{p} \right) & \text{if } D \equiv \sqrt{2}m^2 \pmod{p},
\end{cases}
\]

where \(x \equiv 1 \pmod{4} \) and \(y/2 \equiv (-1)^n \pmod{4} \).

In order to obtain an improvement on Jacobsthal’s theorem in the case in which 2 is a quartic residue, or to improve the results for \(\phi_4 \) and \(\psi_4 \) in order to obtain \(N_8 \), it appears necessary to examine the cyclotomic constants of order 16, or to go through a determination of a specified primitive root as in Vandiver [7a]. The known results for \(\phi_4 \) and \(\psi_4 \) are as follows:

\[
\phi_4(D) = \begin{cases}
-4a \left(\frac{m}{p} \right) & \text{if } D \equiv m^4 \pmod{p} \\
0 & \text{if } D \equiv m^2 \neq m_1^4 \pmod{p} \\
\pm 4b & \text{otherwise},
\end{cases}
\]

and

\[
\psi_4(D) = \begin{cases}
-2x \left(\frac{m}{p} \right) - 2 & \text{if } D \equiv m^2 \pmod{p} \\
\pm 4y & \text{otherwise}.
\end{cases}
\]

It follows from this that
ON THE NUMBER OF SOLUTIONS OF $u^k + D = w^2 \pmod{p}$

\[N_3(D) = \begin{cases}
 p - 1 - 2x - 4a\left(\frac{m}{p}\right) & \text{if } D \equiv m^4 \pmod{p} \\
 p - 1 + 2x\left(\frac{m}{p}\right) & \text{if } D \equiv m^2 \neq m_1^4 \pmod{p} \\
 p - 1 \pm 4b \pm 4y & \text{otherwise.}
\end{cases} \]

3. Case $k = 3$. The known results for the case $k = 3$ can be stated as follows:

\[\phi_3(D) = \begin{cases}
 -2A - 1 & \text{if } D \text{ is a cubic residue} \\
 A \pm 3B - 1 & \text{if } D \text{ is a cubic nonresidue},
\end{cases} \]

where $p = A^2 + 3B^2 = 6n + 1$, $A \equiv 1 \pmod{3}$.

This can be obtained either by summing the appropriate cyclotomic constants of order 6, or by using the results of Schrutka or Chowla, as was done in Whiteman [8]. From this it follows by (2) and (5) that

\[N_3(D) = \begin{cases}
 p - \left(\frac{D}{p}\right) 2A & \text{if } D \text{ is a cubic residue} \\
 p + \left(\frac{D}{p}\right) (A \pm 3B) & \text{if } D \text{ is a cubic nonresidue.}
\end{cases} \]

We are again faced with an ambiguity in sign in case D is a cubic nonresidue, which can be resolved in case 2 is a cubic nonresidue. For in this case by (9)

\[\phi_3(1) + \phi_3(2) + \phi_3(4) = -3. \]

By (44), $\phi_3(1) = -2A - 1$, while Chowla proved that $\phi_3(4) = L - 1$, where $4p = L^2 + 27M^2$, $L \equiv 1 \pmod{3}$. Hence by (46)

\[\phi_3(2) = 2A - L - 1 \quad (2 \text{ a cubic nonresidue}). \]

Hence by (7) we can write a slight generalization of Chowla's or Schrutka's theorem:

Theorem 6. If 2 is a cubic nonresidue of $p = A^2 + 3B^2$, and if $4p = L^2 + 27M^2$, $A \equiv L \equiv 1 \pmod{3}$, then
\[\phi_3(D) = \begin{cases} -(2A + 1) & \text{if } D \equiv m^3 \pmod{p} \\ 2A - L - 1 & \text{if } D \equiv 2m^3 \pmod{p} \\ L - 1 & \text{if } D \equiv 4m^3 \pmod{p}. \end{cases} \]

Using (5) and (2) we obtain the corresponding theorem for \(N_3(D) \):

Theorem 7. If 2 is a cubic nonresidue of \(p = A^2 + 3B^2 \), and if \(4p = L^2 + 27M^2 \), \(A \equiv L \equiv 1 \pmod{3} \), then

\[N_3(D) = \begin{cases} p - \left(\frac{D}{p} \right) 2A & \text{if } D \equiv m^3 \pmod{p} \\ p + \left(\frac{D}{p} \right) L & \text{if } D \equiv 2m^3 \pmod{p} \\ p + \left(\frac{D}{p} \right) (2A - L) & \text{if } D \equiv 4m^3 \pmod{p}. \end{cases} \]

For \(k = 6 \), it follows from (10) by substituting the values for \(\phi_3(D) \) from (44) (remembering that \(D \) and \(\overline{D} \) are either both cubic residues, or both nonresidues), that:

\[\psi_6(D) = \begin{cases} -(2A + 1) \left[1 + \left(\frac{D}{p} \right) \right] & \text{if } D \text{ is a cubic residue} \\ (A - 1) \left[1 + \left(\frac{D}{p} \right) \right] \pm 3B \left[1 - \left(\frac{D}{p} \right) \right] & \text{otherwise}. \end{cases} \]

Substituting this into (2) we have

\[N_6(D) = \begin{cases} p - 2A \left[1 + \left(\frac{D}{p} \right) \right] - 1 & \text{if } D \text{ is a cubic residue} \\ p + A \left[1 + \left(\frac{D}{p} \right) \right] \pm 3B \left[1 - \left(\frac{D}{p} \right) \right] - 1 & \text{otherwise}. \end{cases} \]

In case 2 is a cubic nonresidue, however, we can substitute more exact values for \(\phi_3(D) \) from Theorem 6 into (10) to obtain:

Theorem 7. If 2 is a cubic nonresidue of \(p = A^2 + 3B^2 \) and if \(4p = L^2 + 27M^2 \), \(A \equiv L \equiv 1 \pmod{3} \), then
ON THE NUMBER OF SOLUTIONS OF $u^k + D \equiv w^2 \pmod{p}$

\[\psi_6(D) = \begin{cases}
-(2A + 1) \left[1 + \left(\frac{D}{p} \right) \right] & \text{if } D \equiv m^3 \pmod{p} \\
2A + L \left[\left(\frac{D}{p} \right) - 1 \right] - \left[1 + \left(\frac{D}{p} \right) \right] & \text{if } D \equiv 2m^3 \pmod{p} \\
\left(\frac{D}{p} \right) 2A - L \left[\left(\frac{D}{p} \right) - 1 \right] - \left[1 + \left(\frac{D}{p} \right) \right] & \text{if } D \equiv 4m^3 \pmod{p}.
\end{cases} \]

Substituting these values into (2) we obtain:

Theorem 8. If 2 is a cubic nonresidue of $p = A^2 + 3B^2$ and if $4p = L^2 + 27M^2$, $A \equiv L \equiv 1 \pmod{3}$, then the number of solutions of $u^6 + D \equiv v^2 \pmod{p}$ is given by

\[N_6(D) = \begin{cases}
p - 1 - 2A \left[1 + \left(\frac{D}{p} \right) \right] & \text{if } D \equiv m^3 \pmod{p} \\
p - 1 + 2A + L \left[\left(\frac{D}{p} \right) - 1 \right] & \text{if } D \equiv 2m^3 \pmod{p} \\
p - 1 + \left(\frac{D}{p} \right) 2A - L \left[\left(\frac{D}{p} \right) - 1 \right] & \text{if } D \equiv 4m^3 \pmod{p}.
\end{cases} \]

4. Congruences in three variables. In conclusion we can apply our results to the number of solutions of congruences in three variables. We have:

Theorem 9. The number $N_{k,k}(D)$ of solutions (u, v, w) of

\[u^k + Dv^k \equiv w^2 \pmod{p} \]

is

\[N_{k,k}(D) = \begin{cases}
p^2 & \text{if } k \text{ is odd} \\
p^2 + (p - 1) \left[1 + \left(\frac{D}{p} \right) + \psi_k(D) \right] & \text{if } k \text{ is even}.
\end{cases} \]

Proof. Replacing D by Dv^k in (2) and summing over $v = 1, 2, \ldots, p - 1$, we obtain

\[\sum_{\nu=1}^{p-1} N_k(Dv^k) = p(p - 1) + \left(\frac{D}{p} \right) \sum_{\nu=1}^{p-1} \left(\frac{v}{p} \right)^k + \sum_{\nu=1}^{p-1} \psi_k(v^kD). \]
By (7) this becomes
\[\sum_{\nu=1}^{p-1} N_k(D\nu^k) = p(p - 1) + \left(\frac{D}{p} \right) \frac{p-1}{2} \sum_{\nu=1}^{p-1} \left(\frac{\nu}{p} \right) + \psi_k(D) \frac{p-1}{2} \sum_{\nu=1}^{p-1} \left(\frac{\nu}{p} \right). \]

But
\[\sum_{\nu=1}^{p-1} \left(\frac{\nu}{p} \right)^k = \begin{cases} 0 & \text{k odd} \\ p - 1 & \text{k even}, \end{cases} \]

while the number of solutions with \(\nu = 0 \) is \(p \) for \(k \) odd and \(2p - 1 \) for \(k \) even.

Hence
\[N_{k,k}(D) = \begin{cases} p(p - 1) + p = p^2 & \text{for } k \text{ odd} \\ p(p - 1) + (p - 1) \left[\left(\frac{D}{p} \right) + \psi_k(D) \right] + 2p - 1, & \text{k even}. \end{cases} \]

Hence the theorem.

Using the expressions derived for special values of \(k \) earlier we can write down the following special cases:

\[N_{2,2}(D) = p^2. \]

By (14),
\[N_{4,4}(D) = p^2 - 2x \left(\frac{\sqrt{D}}{p} \right) (p - 1) \quad \text{if } \left(\frac{D}{p} \right) = +1, \ x \equiv 1 \text{ (mod 4)}. \]

By (24),
\[N_{4,4}(2m^2) = p^2 - 4y(p - 1) \quad \text{if } \left(\frac{2}{p} \right) = -1 \text{ and } y \equiv 1 \text{ (mod 4)}. \]

By (42),
\[N_{4,4}(\sqrt{2}m^2) = p^2 - 4y(p - 1) \quad \text{if } \frac{\sqrt{2}}{p} = -1 \text{ and } y/2 \equiv (-1)^{(p-1)/8} \text{ (mod 4)}. \]

By (48),
ON THE NUMBER OF SOLUTIONS OF $u^k + D = w^2 \pmod{p}$

By Theorem 7,

$$N_{6,6}(m^3) = p^2 - 2A \left[1 + \left(\frac{m}{p}\right)\right] (p - 1).$$

By (43),

$$N_{6,6}(2m^3) = p^2 + \left\{ 2A + L \left[\left(\frac{m}{p}\right) - 1 \right] \right\} (p - 1)$$

if 2 is a cubic nonresidue.

$$N_{6,6}(4m^3) = p^2 + \left\{ \left(\frac{m}{p}\right) 2A - L \left[\left(\frac{m}{p}\right) - 1 \right] \right\} (p - 1)$$

By (43),

$$N_{8,8}(m^4) = p^2 - \left[2x + 4a \left(\frac{m}{p}\right) \right] (p - 1).$$

We note that $N_{6,6}(m^3) = p^2$ if m is a nonresidue. It can be readily seen that this is a special case of a general theorem, namely:

Theorem 10. If k is oddly even and D is a $k/2$th power residue, but not a kth power residue, then

$$N_{k,k}(D) = p^2.$$

This follows from Theorem 9 and the fact that the corresponding $\psi_k(D)$ is zero in this case by (11).

We hope to take up the cases $k = 5$ and $k = 10$ in a future paper.

Appendix: Cyclotomic constants of order 8.

The 64 constants $(i, j)_8$ have at most 15 different values for a given p. These values are expressible in terms of p, x, y, a and b in

$$p = x^2 + 4y^2 = a^2 + 2b^2, \quad (x \equiv a \equiv 1 \pmod{4}).$$

There are two cases.

Case I. $p = 16n + 1.$
Table of \((i, j)_8\)

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(0,2)</td>
<td>(0,3)</td>
<td>(0,4)</td>
<td>(0,5)</td>
<td>(0,6)</td>
<td>(0,7)</td>
</tr>
<tr>
<td>1</td>
<td>(0,1)</td>
<td>(0,7)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>2</td>
<td>(0,2)</td>
<td>(1,2)</td>
<td>(0,6)</td>
<td>(1,6)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,4)</td>
<td>(1,3)</td>
</tr>
<tr>
<td>3</td>
<td>(0,3)</td>
<td>(1,3)</td>
<td>(1,6)</td>
<td>(0,5)</td>
<td>(1,5)</td>
<td>(2,5)</td>
<td>(2,5)</td>
<td>(1,4)</td>
</tr>
<tr>
<td>4</td>
<td>(0,4)</td>
<td>(1,4)</td>
<td>(2,4)</td>
<td>(1,5)</td>
<td>(0,4)</td>
<td>(1,4)</td>
<td>(2,4)</td>
<td>(1,5)</td>
</tr>
<tr>
<td>5</td>
<td>(0,5)</td>
<td>(1,5)</td>
<td>(2,5)</td>
<td>(2,5)</td>
<td>(1,4)</td>
<td>(0,3)</td>
<td>(1,3)</td>
<td>(1,6)</td>
</tr>
<tr>
<td>6</td>
<td>(0,6)</td>
<td>(1,6)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,4)</td>
<td>(1,3)</td>
<td>(0,2)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>7</td>
<td>(0,7)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,2)</td>
<td>(0,1)</td>
</tr>
</tbody>
</table>

These 15 fundamental constants \((0,0), \ldots, (2,5)\) are given by the relations contained in the following table.

<table>
<thead>
<tr>
<th></th>
<th>If 2 is a quartic residue</th>
<th>If 2 is not a quartic residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>64(0,0)</td>
<td>(p - 23 - 18x - 24a)</td>
<td>(p - 23 + 6x)</td>
</tr>
<tr>
<td>64(0,1)</td>
<td>(p - 7 + 2x + 4a + 16y + 16b)</td>
<td>(p - 7 + 2x + 4a)</td>
</tr>
<tr>
<td>64(0,2)</td>
<td>(p - 7 + 6x + 16y)</td>
<td>(p - 7 - 2x - 8a - 16y)</td>
</tr>
<tr>
<td>64(0,3)</td>
<td>(p - 7 + 2x + 4a - 16y + 16b)</td>
<td>(p - 7 + 2x + 4a)</td>
</tr>
<tr>
<td>64(0,4)</td>
<td>(p - 7 - 2x + 8a)</td>
<td>(p - 7 - 10x)</td>
</tr>
<tr>
<td>64(0,5)</td>
<td>(p - 7 + 2x + 4a + 16y - 16b)</td>
<td>(p - 7 + 2x + 4a)</td>
</tr>
<tr>
<td>64(0,6)</td>
<td>(p - 7 + 6x - 16y)</td>
<td>(p - 7 - 2x - 8a + 16y)</td>
</tr>
<tr>
<td>64(0,7)</td>
<td>(p - 7 + 2x + 4a - 16y - 16b)</td>
<td>(p - 7 + 2x + 4a)</td>
</tr>
<tr>
<td>64(1,2)</td>
<td>(p + 1 + 2x - 4a)</td>
<td>(p + 1 - 6x + 4a)</td>
</tr>
<tr>
<td>64(1,3)</td>
<td>(p + 1 - 6x + 4a)</td>
<td>(p + 1 + 2x - 4a - 16b)</td>
</tr>
<tr>
<td>64(1,4)</td>
<td>(p + 1 + 2x - 4a)</td>
<td>(p + 1 + 2x - 4a + 16y)</td>
</tr>
<tr>
<td>64(1,5)</td>
<td>(p + 1 + 2x - 4a)</td>
<td>(p + 1 + 2x - 4a - 16y)</td>
</tr>
<tr>
<td>64(1,6)</td>
<td>(p + 1 - 6x + 4a)</td>
<td>(p + 1 + 2x - 4a + 16b)</td>
</tr>
<tr>
<td>64(2,4)</td>
<td>(p + 1 - 2x)</td>
<td>(p + 1 + 6x + 8a)</td>
</tr>
<tr>
<td>64(2,5)</td>
<td>(p + 1 + 2x - 4a)</td>
<td>(p + 1 - 6x + 4a)</td>
</tr>
</tbody>
</table>
ON THE NUMBER OF SOLUTIONS OF \(u^k + D \equiv w^2 (\mod p) \)

Case II. \(p = 16n + 9 \).

Table of \((i, j)_8\)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(0,2)</td>
<td>(0,3)</td>
<td>(0,4)</td>
<td>(0,5)</td>
<td>(0,6)</td>
<td>(0,7)</td>
</tr>
<tr>
<td>1</td>
<td>(1,0)</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(0,5)</td>
<td>(1,3)</td>
<td>(0,3)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>2</td>
<td>(2,0)</td>
<td>(2,1)</td>
<td>(2,0)</td>
<td>(1,7)</td>
<td>(0,6)</td>
<td>(1,3)</td>
<td>(0,2)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>3</td>
<td>(1,1)</td>
<td>(2,1)</td>
<td>(2,1)</td>
<td>(1,0)</td>
<td>(0,7)</td>
<td>(1,7)</td>
<td>(1,2)</td>
<td>(0,1)</td>
</tr>
<tr>
<td>4</td>
<td>(0,0)</td>
<td>(1,0)</td>
<td>(2,0)</td>
<td>(1,1)</td>
<td>(0,0)</td>
<td>(1,0)</td>
<td>(2,0)</td>
<td>(1,1)</td>
</tr>
<tr>
<td>5</td>
<td>(1,0)</td>
<td>(0,7)</td>
<td>(1,7)</td>
<td>(1,2)</td>
<td>(0,1)</td>
<td>(1,1)</td>
<td>(2,1)</td>
<td>(2,1)</td>
</tr>
<tr>
<td>6</td>
<td>(2,0)</td>
<td>(1,7)</td>
<td>(0,6)</td>
<td>(1,3)</td>
<td>(0,2)</td>
<td>(1,2)</td>
<td>(2,0)</td>
<td>(2,1)</td>
</tr>
<tr>
<td>7</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(0,5)</td>
<td>(0,3)</td>
<td>(1,6)</td>
<td>(1,3)</td>
<td>(1,0)</td>
</tr>
</tbody>
</table>

where

If 2 is a quartic residue

64(0,0)	\(p - 15 - 2x \)	\(p - 15 - 10x - 8a \)
64(0,1)	\(p + 1 + 2x - 4a + 16y \)	\(p + 1 + 2x - 4a - 16b \)
64(0,2)	\(p + 1 + 6x + 8a - 16y \)	\(p + 1 - 2x + 16y \)
64(0,3)	\(p + 1 + 2x - 4a - 16y \)	\(p + 1 + 2x - 4a - 16b \)
64(0,4)	\(p + 1 + 18x \)	\(p + 1 + 6x + 24a \)
64(0,5)	\(p + 1 + 2x - 4a + 16y \)	\(p + 1 + 2x - 4a + 16b \)
64(0,6)	\(p + 1 + 6x + 8a + 16y \)	\(p + 1 - 2x - 16y \)
64(0,7)	\(p + 1 + 2x - 4a - 16y \)	\(p + 1 + 2x - 4a + 16b \)
64(1,0)	\(p - 7 + 2x + 4a \)	\(p - 7 + 2x + 4a + 16y \)
64(1,1)	\(p - 7 + 2x + 4a \)	\(p - 7 + 2x + 4a - 16y \)
64(1,2)	\(p + 1 - 6x + 4a + 16b \)	\(p + 1 + 2x - 4a \)
64(1,3)	\(p + 1 + 2x - 4a \)	\(p + 1 - 6x + 4a \)
64(1,7)	\(p + 1 - 6x + 4a - 16b \)	\(p + 1 + 2x - 4a \)
64(2,0)	\(p - 7 - 2x - 8a \)	\(p - 7 + 6x \)
64(2,1)	\(p + 1 + 2x - 4a \)	\(p + 1 - 6x + 4a \)
REFERENCES

BERKELEY, CALIFORNIA
Frank Herbert Brownell, III, *Flows and noncommuting projections on Hilbert space* ... 1
H. E. Chrestenson, *A class of generalized Walsh functions* 17
Jean Bronfenbrenner Crockett and Herman Chernoff, *Gradient methods of maximization* ... 33
Nathan Jacob Fine, *On groups of orthonormal functions. I* 51
Nathan Jacob Fine, *On groups of orthonormal functions. II* 61
Frederick William Gehring, *A note on a paper by L. C. Young* 67
Joachim Lambek and Leo Moser, *On the distribution of Pythagorean triangles* .. 73
Roy Edwin Wild, *On the number of primitive Pythagorean triangles with area less than n* .. 85
R. Sherman Lehman, *Approximation of improper integrals by sums over multiples of irrational numbers* 93
Emma Lehmer, *On the number of solutions of* \(u^k + D \equiv w^2 (\mod p) \) 103
Robert Delmer Stalley, *A modified Schirelmann density* 119
Richard Allan Moore, *The behavior of solutions of a linear differential equation of second order* ... 125
William M. Whyburn, *A nonlinear boundary value problem for second order differential systems* ... 147