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1. Introduction. We define a modified Schnirelmann density for an infinite
sequence of positive integers and prove two theorems about this density which

are analogous but not identical to well-known results for Schnirelmann density.

Henceforth we assume all sequences are infinite. Let 4 be a sequence of
positive integers a; < a; <.+, let A(n) be the number of integers of A not
greater than n, and let / be the sequence of all positive integers. Then the well-
known asymptotic density 8(A), the Schnirelmann density ¢, and the modified

Besicovitch density &y, of 4, are defined as follows:

A(n)
5(A4) = lim inf " ;
n
A(n)
o= glb ;
n
A (n)
Gi= gb —2,
n> s n+1

where 4 #1 and s is the smallest positive integer missing from A. We define
the modified Schnirelmann density or more briefly the modified density «* of A

as follows:

i
o* = glb — .,
a;

Thus the modified density may be defined by merely restricting to 4 the n occur-

ring in the definition of Schnirelmann density.

Let B be the sequence of positive integers by < by <++.., The sum C=4 + B

of the sequences A and B is defined as the sequence of integers of the form
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a; or b; or a; + bj. The well-known o + B theorem [1; 3] states the following:
(1) if o+ B >1,theny=1;
(2) if o+ B <1, theny > o+ B.

That neither part of this theorem holds with Schnirelmann density replaced by
modified density is shown by the examples 4 =B ={1,3+;} (j=1,2,...),
and A =B={1,4+j} (j=1,2,...), respectively. Theorems 1 and 2 for modi-
fied density are analogous to (1) and (2), respectively.

2. The analogue of the « + 3 theorem.
THEOREM 1. If o* + B* > 1, then y* = 1.

Proof. We must prove C = I. Suppose n is missing, let n + ¢ and n + u be the
next larger members of 4 and B respectively, and let A(n) =r. First,
Aln+¢t) r+1  r+1
= <

a* <

n+t n+t  n+1l

Next, B lacks at least the integers n —ap, n —@r.1,°++yn—a1, Byeooyn +u—1,

and SO

B(n+u) n—r n—r
< <

p* <

n+u  n+u  n+l

Therefore

r+1 n-r

o* + B* < +
n+l n+l

a contradiction, and the theorem is proved.

Simple examples show that (1) and Theorem 1 give independent conditions
for C = 1.

THEOREM 2. Ifa*+ B* < land 1,2,+++, k €A, then

k

* >
Y T k+1

a* + B*,

Theorem 2 is a best possible result in the sense that there exist sequences
A and B such that equality holds and such that 0 < * <1 and 0 < B8* < L.
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This is shown by the following example.
ExampLEl. A=B={1,2,---,k, 4k + j} where j =0,1,2,...,

Example 1 together with Example 2 show that the hypothesis 1,2,...,k € 4

of Theorem 2 is necessary.

ExaAMPLE 2. A={s+j}and B=1{1,2,¢¢.,r =1, s+j}, where j=0,1,2,...
and 1 <r <s.

In order to prove Theorem 2 we first prove Lemmas 1 and 2. Lemma 1 de-
pends on the following result of H. B. Mann [4]: If n; is the ith positive integer

missing from C, and n is an arbitragy positive integer missing from C, then

(3) C(n)> cayn+B(n)+ min {A4(ny) - oyn;d.

n; <n

LEmMMA 1. If o* + B* < land A # 1, then y* > o1 + B*.
Proof. 1f C =1, then by hypothesis

yr=12> o+ B5> oy + B,

and we are through.

If C #£1, we restrict n so that n £ C but (n + 1) € C. For n fixed, (3) yields
(4) C(n) > ayn+B(n)+A4(ng) - otyng
for fixed ng £ C. By definition, &, < 4 (ng)/(ng+ 1), or equivalently

oayn+Alng)—aing > &y(n+1),
and so (4) may be written
C(n) > o (n+1)+B(n).
Therefore
Crn+1)=Cr)+1>c(rn+1)+B(r)+1=0c(n+1)+B(n+u)

where n + u is the smallest member of B greater than n. Hence

Cln+)> o+ D)+ B*(n+u) > (n+1)+p*(n+1),

and division by n + 1 yields
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(5) —— _>_ 0(1 + ,B* .
Finally, (5) yields

y*=glb ——— > «, + B,

and Lemma 1 is proved.

LEmMMA 2. IfA#1land 1,2,---,k €A, then

oy > a*,

T k+1

Proof. We restrict n so that n € A but n + 1 € 4. Clearly

Al 1) A(n)
o =gl —— " and o, =glb —— .
n+1 n+1

Hence

A A A 1
o e alb ("i=glb[ (n) Aln+ )‘
n

+ Aln+1) n+1
S b A(n) b A(n+1)> k .
_ ok,
=8 TG+ DT Tarl Tkl

Proof of Theorem 2. If C = I, then by hypothesis

k
E+1

y¥*=1> o*+ B* > oa* + 3%,

and we are through. If C # I then 4 # I, and so Lemmas 1 and 2 yield

YE> a2 o+ BF.

k+1
This completes the proof of Theorem 2.

It is striking that while these results for modified density differ considerably
from the analogous results for Schnirelmann density, they differ very little from

the following results for asymptotic density due to H.-H. Ostmann [5]:
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(6) If6(4)+8(B) > 1, then 8(C) = 1.

(7) 1£6(4)+8(B) <1 and x, x+ 1,++-,x+ k€A v 0,

then 8(C) Zkk 3(A)+8(B).

+1

If asymptotic density is replaced by modified density, (6) becomes Theorem 1,
and (7) for x = 0 becomes Theorem 2.

3. The density of a sum. If the hypothesis 1,2,...,% € 4 of Theorem 2 is
completely removed, then, according to Example 2, y* > max { a*, B*} is the
strongest inequality obtainable for the density of C. However, the question
arises as to the existence of a stronger inequality when this hypothesis of
Theorem 2 is replaced by some different assumption. The following theorem is

an example of such a result.

THEOREM 3. If y* < i/c; for all i > 0, and there are k consecutive integers
in A, then

k-1

*
>
YT

o* + B*.

Proof. First we note that y* = lim inf i/c; and hence y* = §(C). Next since
y* < 1then 8(C) < 1, and so 8(4) + 8(B) < 1 by (6). Therefore (7) yields

k-1 k-1
y=3(0) 2 — 8(4)+3(B) > w* + 8%,

and the theorem is proved.

Further light is shed on the relation of y* to &* and 3* by use of a result
of L. P.-H. Cheo [2]. He showed that for given nonnegative values of «, 8,
and y satisfying 1 > y > « + 3 there exist sequences 4, B, and C=4 + B
having Schnirelmann densities «, {3, and y, respectively. Cheo’s proof is con-
structive, and for his sequences o* = o, 8* = 3, and y* = y. Therefore Cheo’s
result holds for modified density. The interval of possible values for y* cannot
be lengthened to the larger interval [%(% + 1)7' a* + B*, 1], as suggested by
Theorem 2, for we cannot have

y =k(k+ 1) o + B*

when 8* = 0 and o* > 0.
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Finally, if the modified density of a finite sequence is defined to be zero,
then all results and discussions in this paper clearly hold without the restriction
that the sequences be infinite.
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