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SAMUEL KARLIN

Introduction. Recently Chung and Pollard [3] considered the following
problem: Let X;(i=1,2,...)denote independent identically distributed random

variables having the distribution function F(x) with mean

m=/xdF(x) (0 <m)

and let

n
Su= 3 X,
k=1

Define

u(l)= 2 Pril <S, <{+hi,

n=1

if X is not a lattice random variable then they show that limy _, o u(l)=h/m.
The above authors imposed the restriction that the distribution F possess an
absolutely continuous part. T.E. Harris by written communication and inde-
pendently D. Blackwell {2] show that this restriction was unnecessary. Of

course, as can be verified directly, u ({) satisfies a renewal type equation

(*) u<g)~/°°u<g_t>dp<t)=[;“hdp(t)=g<4).

o

The existence of solutions and the limiting behavior for bounded solutions of
such renewal type equations which involve positive and negative values of ¢

has not been treated.

Feller [10] and later Tédcklind [12] have developed many Tauberian results
for the cases where all the functions u(¢), F({) and g({) conslered are
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zero for { negative. This reduces (*) to the classical renewal equation where
Laplace transform methods can be exploited. Doob [6] and Blackwell [1]
discussed the same type of renewal equation from the point of view of prob-
ability theory and appealed to the ergodic theory of Markoff chains.

In this work we shall show that most problems of the general renewal equa-
tion can be reduced to an application of the general Wiener theorem and the
properties of slowly oscillating functions. Our methods are thoroughly analytic
and apply to situations which do not necessarily correspond to probability
models. Moreover, a complete analysis of (*) shall be given concerning ex-
istence and asymptotic behavior of solutions with results describing rates of
convergence under suitable assumptions. Erdss, Pollard and Feller [7] and
later Feller [9] in the study of recurrent events did apply the Wiener theorem
to some discrete analogues of (*) and these examples have served to suggest
to this writer this general unified approach. Most of the results of T&cklind
who dealt with the classical renewal equation use deep methods of Fourier
analysis. These results are illuminated and in many instances subsumed by
our methods. Finally, in the course of revising this paper it has come to our
attention that W.L. Smith very recently [11] independently has discussed the
classical one-sided renewal equation from the point of view of Wiener’s general
Tauberian theorem. His treatment and this investigation supplement each other
in many respects. We employ the basic properties of slowly oscillating functions

while Smith uses Pitt’s extension of the Wiener theorem.

Some fundamental differences appear between the general renewal equation
(*) and the type of renewal equation studied in [8], [13] and [11]. For ex-
ample, solutions to (*) need not exist and when they do exist there are, in
general, infinitely many bounded and unbounded solutions. This complicates
the analysis of the asymptotic behavior of solutions of (*). In fact, solutions
u(¢) can be found for certain examples which oscillate infinitely as |{ | — w.
Even when we restrict ourselves to bounded solutions to (*), the abundance of
such solutions necessitates a careful analysis which does not occur in the

handling of the one-sided renewal equation. (See the beginning of $3)

In §2 we present a complete treatment of the discrete renewal equation

[><]

(**) Uy — Z an.pup =bp.

k=00

In this case necessary and sufficient conditions are given to insure the ex-

istence of bounded solutions to (**). Asymptotic limit theorems for bounded
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solutions to (**) are obtained and appropriate conditions are indicated which

yield results about the rates of convergence of such solutions as n — .

The general equation (*) is treated in §3 where the existence and limit
theorems for bounded solutions of (*) are given. The Plancherel and Hausdorff-
Young theorems are used to establish the existence of bounded solutions to
(*). Limit theorems are analyzed and rates of convergence are obtained. Some

applications are made to the classical renewal equation.

The relationship of Wiener’s Tauberian theorem to ideal theory motivated
the content of § 4. This last section indicates a new avenue of approach to the

meaning of the renewal equation,

Finally, I wish to express my gratitude to James L. McGregor for his helpful

discussions in the preparation of this manuscript.

2. Discrete renewal equation. This section is devoted to a complete analy-

sis of the renewal equation

(1) Up — Z an-kuk':bn'

k== oo
The convolution of two sequences {x, } and {yn } is denoted by

(>

xky= Z Xn-k Y

k== oc

This product operation is well defined whenever, for example, at least one of
the sequences is an absolutely convergent series while the other sequence is

uniformly bounded. Equation (1) can thus be written as
(2) u—a*u=>b,

We suppose hereafter, that the sequences {a,} and {4, } have the property that
an >0, Za,=1and 2|b,| <« and that u, represents a solution of (2).
In general, there exist many solutions of (2) which complicates the study of
the asymptotic behavior of solutions {u,} of the renewal equations. We first
investigate the general problem of the existence of solutions of (1). To this
end, we introduce the linear operation T which can be applied to any sequence

{c, } which forms an absolutely convergent series. Precisely, let

T{c,t=1(Te),}
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where

—-Zci n < 0.

Let

and define the linear functional ¢ (c) = ZZO:_ o Cn+ We note the following re-

lation for future use

(3) ¢y(c)o~axc=Tec.

The operation T can be repeated provided that the resulting sequence { Tc} is
an absolutely convergent series. If, for example, Z oo (nk cn| < w, then

T¥¢ is well defined. Moreover, we observe for later reference that if

2:lnkcnl < o,

then

lim [nk(Tc)n|=0.

|n|-soo
We now impose two very fundamental assumptions.

AssuMPTION A. The greatest common divisor of the indices n where
a, >0 is 1.

AssuMPTION B. The series 2 |nap| < @ and 2 5=-c nap =m #0. (For
definiteness we take m > 0.)

Many of the following results can be extended to the case where the g.c.d. of
the indices n where a, > 0 is d > 1. We leave this task to the interested reader.
However, Assumption B is indispensible for the validity of many of the sub-
sequent results, Some results can be extended by suitable modifications to

m = Q.
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An important tool to be used frequently is the following lemma.

LeMMA 1. If Assumptions A and B are satisfied, then there exists a se-

quence {1y § with

2l <ocand r+Ta=25

where 6 ={ 82 J. (The sequence & is the identity element with respect to the

* multiplication.)

Proof. For the sequence {a,} let a(6) =22 a, ¢"% The relation (3)
implies for 0 < 6 < 27

- g * ,
I-ILM) = 3 (Ta), €™ = Ta(0).
—-e

- 00

Assumption A implies that Ta(6) #0for 6 #0 and | 0| < 27 Assumption B
yields that Ta(0) £ 0 and the fact that 22 |(Ta)| < . By virtue of Wiener’s

Tauberian theorem

(Ta)(6)

1 e .
_ in6
m €
-0

defines an absolutely convergent Fourier series, The conclusion of Lemma 1 is

now evident from this last relation,

We now proceed to discuss the existence of solutions to (1) or (2).

THEOREM 1. If Assumptions A and B are satisfied, then there exists a
bounded solution of (1). Any two bounded solutions of (1) differ by a fixed

constant.
Proof. We seek a bounded solution of
(2) u—a*xu=>b.

Multiplying formally (2) by o and using (3) we obtain u * (Ta) =0 * b and
hence by Lemma 1

u=r*xo*b,

The sequence r * 0 % b is a bounded sequence and it is easily verified
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provides a solution for relation (2). To establish the second half of the theorem

it is sufficient to show that

(4) u—a*u=0

possess only constant bounded solutions. Let (Au) = (u, —up+1). It follows
readily that (4) implies (Ta) * Au = 0. Multiplication by r yields that (Au) =0
and hence the result sought for.

We now show that in general, nonbounded solutions of (4) and therefore of
(1), can be found. This is illustrated by the following example. Although the
example is special, the technique is general and the reader can easily construct

many other such examples.

Leta; =1/2, a; =1/2 and a; = 0 for i £ 1,2, Equation (4) becomes

1 1
Up =§ Up.y + '2- Up-2 all n.

We can prescribe uo and u; arbitrarily and therefore we obtain a two-dimensional
set of solutions. However, by virtue of Theorem 1 only a one-dimensional set of
bounded solutions exists. Hence, unbounded solutions also exist. The unbound-

ed solution oscillates infinitely as n — — cc.

It is worth showing that a converse to Theorem 1 can be obtained.
THEOREM 2. If

Z bk>09 zlnan‘ < but Znan=0,

f==eo

then there exists no vounded solutions to (2) provided that
o0

Z b, >0, a; >0 and a.; > 0.

n=—00

Proof. Suppose to the contrary that {u,} is a bounded solution to (2). Let

A=1lim, _, c up, then there exists a subsequence up, —» A. By virtue of a stand-
ard probability argument (see [16, p.2601), it follows that limp; e up;. = A
for each integer k. A similar subsequence m; can be found such that lim,._,_
Um;-k =U, where u=limp _, _ o um. As in Theorem 1 we obtain that (Ta)* Ay =b.

Summing from m; to n; gives
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o n;
> Cupp—umpp) (Tadp = 3 by
=— 0 k:mi

Allowing n; — w and m; — — o, it follows readily since 2 |(Ta);| < o that

0 <z by =(A—u) Z(Ta)k=()\—u) Z na, =0
P k

n=— o
a contradiction.

REMARK., Theorem 2 can be established using the weaker Assumption A
in place of the hypotheses that a; > 0 and a_; > 0. We omit the details

Having discussed the question of existence we now turn to investigate the
asymptotic properties of bounded solutions to (2). Throughout the remainder of
this section we assume that Assumptions A and B are satisfied. A useful result
which we state here for later purposes is the following well known Abelian

theorem.

LEMMA 2. If {r,} is such that Z;o,,_w Ira | < w, {o,} is bounded and

lim,, , 0 «, =0, then

lim Z Cup Tk =0,
- 00

n— oo

The following theorem is a simple Tauberian result for solutions of (2).

THEOREM 3. If u, is a bounded solution to (1), then lim,_, o u, and

limy, o un exist.

Proof. By Theorem 1, it is sufficient to prove the result for the special

solution
u=r*xbxo.
For this special solution, we have
n

up = Z (r*b)k.

k=- oo

Hence the limit exists, in fact,
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% @, (b)
lim u,=0, lim up = 3 (r*b)y =
n—— o n— o -0 m
Q.E.D. To obtain more precise results let
¢,(b)

v=u-—
m

where u =7 * b * 0 is the unique bounded solution for which u, — 0 as n — «.
From the proof of Theorem 3 it is clear that v, — 0 as |n| — w. It is easy
to show that

¢y ()

m

(5) Ta *v=—Tb+ T2

or

(5)
v=—r*[Tb—-¢0 T2a].

m

Hence if we assume in addition to A and B that

Zl(Tza)nl < and 2|(Tb),;]| < 0,

then it follows that 2-|v, | < w. These new assumptions enable us to obtain
further results about the rate of convergence of v, and hence of u,. To this end,

we define the operation S on any sequence {t,}, St ={nt,}. The hypothesis
2 |(T%),| <o and 22|(Th), | <
or the equivalent assumptions
Zn%a, <o and Z|nb,| < o,

respectively imply easily that STa defines an absolutely convergent series and
ST%a constitutes a bounded sequence which tends to zero as |n| —a«. A

direct calculation using (5) gives that

¢, (b)

m

(6) S(Ta xv)-ST(a)*v==STbh + ST%q =STa * v.
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The left side of (6) is identical componentwise with Ta * Sv. Multiply (6) by
Ta, then with the aid of (5), we obtain

)
(7) Ta * Ta * Sv =—Ta % STh + — {Ta * ST}
m
¢, (b)
—STa x| -Tb + T2 |.
m

On account of the hypothesis and Lemma 2, we find that the right side is a
bounded sequence which tends to zero at £, Employing L.emma 1, we conclude

that Sv is bounded and lim,_, o |nv, | = 0.

Although it might appear as if the relation (7) is rather fortuitous, a simple

method to deduce the formula begins with the Fourier series relation

fo

)
(8) Ta(0)v(0)=-TH(0) + 7% (6)

m

which is well defined and is an alternative way to express (5). Differentia-
tion of (8) with multiplication by Ta(6) and use of (8) gives a formal repre-
sentation of (7)., The preceding argument was in essence a justification of

this differentiation process.

The preceding analysis extends with the aid of an induction argument. The

details are omitted and we sum up the results in the following theorem.

THEOREM 4. Let a, > 0, 2 0 a, =1, satisfying Assumptions A and B.
Let uy represent the unique bounded solution of (2) for which lim, _, o up =0
(see Theorem 3). If

o

Z |nkbn[<oo and Z lnk+1an{<oo)

n =—o00 n=-—o00

then

+Z lnk-lunl <o

m n<o0

c;SO(b)]

and
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¢, (b)
lim n* Up — 2 = lim nkun=0.

n—o oo m n—s =00

A first classical application of Theorem 1 can be obtained from the theory
of Markov chains. Let E represent a recurrent state from an irreducible non-
periodic chain. Let u, represent the probability of starting from E and returning
to £ in n steps. Let a, denote the probability that the first return occurs at the
nth step (n > 0). Put ug =1, u., =0 and a., =0 (for n > 0), then

n
Up — Z Qn.j; uf = by
k=0

where b, =0 for n #0 and by = 1. Since £ describes a recurrent state, 2 a; =1
and trivially m = 2720 ia; > 0. As an immediate consequence of Theorem 4,

we infer that if

Up — —

o< o0
> n**'a, < o, then > nk-!
o m

n=1

1
<o and lim n® [u,l——-]=0.
m

n— oo

A second application deals with the following problem treated by K.L.
Chung and J. Wolfowitz [4]. We generalize their result in obtaining stronger
rates of convergence by assuming further conditions on the moments. Let X
denote a random variable which assumes only integral values and define for all

n
a, =Pr{X =n} n=0,+1, 2 ...,

Let X;(i=1,2,...) denote an infinite sequence of independent events with the

same distribution as X. Define
j 00
Sj = Z X; and u, = Z Pr{Sj =n} = Expected number of sums where S]- =n.
i=t j=t

Let m = E(x) be the expectation of X. Suppose the greatest common divisor of
the indices n such that a, > 0 is 1 and 0 < m < ». Chung and Wolfowitz in
[4] allow m = o, but the present method does not apply. The restriction on the
greatest common divisor is not essential but the requirement that m #0 is very

crucial and in fact in the contrary case u, = cc as is shown by Chung and Fuchs
[5]. We obtain that if 2, __ o |nk‘H an| < o, then
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1
n'lc'l [un -
m

Indeed, it follows from the definition of u, that

1
+ lnk'lan\and lim nk[un——]= lim n*u,=0.

n<o n— o0 m N —»= 00

oo

Up — Z Qpf Ul =Qp s

k:— o

It can be seen that the sequence u, is uniformly bounded and lim, _, .0 u, =0
(see [5]). The conditions of Theorem 4 are met and the conclusion follows from

the results of that theorem, Summing up, we have

CoROLLARY. Let X; be identically distributed independent lattice random
variables with distribution given by Prix =n}=a, and u, = Z]"l=1 Prisj =n}
where s; = 2?:1 x;. If the expected value of x =m > 0 and g.c.d. n =1, then

Z |nk+l an| <

n=-=o00

implies

n> 0

while

1
lim nk[un——]: lim nkun=0.

n— oo m = 00

3. Continuous renewal equation. This section is devoted to an analysis of

the existence and asymptotic properties of solutions for each ¢ of the relation

(9) u<§>-f°° W& —0)df (1) = g(€).

The convolution of two functions x(¢) and y (¢) is defined as

x*y=f_‘: ot = Ey(£)dE
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which exists if, say, x is integrable and y is bounded. We shall be concerned

only with bounded solutions of (9). It is assumed that

df(¢) >0, f

" df=1 and f|g| < .

The following hypotheses are now imposed:

AssuMPTION A’ The distribution f is a non-lattice distribution, that is,

the points of increase of f do not concentrate at the multiples of a fixed value.

ASSUMPTION B’.'/.N [t]df (¢) <o andfw tdf (¢)=m#0 (saym > 0)

These two assumptions constitute the continuous analogues of Assumptions

A and B and hereafter we suppose these assumptions satisfied.

We introduce the operation 7" defined for any function of bounded total varia-

tion A (¢). Let

1 ¢t>0 .
o(t) = and ¢, (1) =[ ™ anto)
0 t<0 e

and
Th:qSo(h)o—a*h

or

fwdh(t) £ >0
t
(Th) (¢) =

~ft dh(¢) t<0

T is also defined for integrable functions k(t) as follows:
¢
Tk = Tk*(t) where k*(t)=[ E(EYAE.

Let

un(f) =n./g;5+l/nu(t)dt
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with g defined similarly. Equation (9) can be converted to

unl &) = [ 7wy (€= df () =g,(8)

Since the derivative of u, is essentially uniformly bounded, we obtain on inte-

gration by parts that
(10) Moo= [T ui =0 17 0dr =g, (6.

The finiteness of [[% |t] df (¢) is equivalent to the integrability of Tf (¢) and
thus (10) is well defined. Integrating (10) from a to ¢ gives

[T tintemn) utamtp W ae= [© g (e,

[~ a

Letting n go to o, we have almost everywhere

(11) /°° [u(g-n-u(a_t)}Tf(zwc:ffg(c)dz.

Since both the right and left hand sides of (11) are continuous this identity
holds everywhere in ¢ and a. Allowing @ — «c, we find from (11) that

lim f°° wla —¢)Tf($)de =c.

a—=00

Adding to any solution of (9) a constant produces a new solution u of (9).

Therefore, we may suppose that ¢ =0, Thus,

o0 £
(12) / W(E— 1) TF(0) de :/ 2 () de.

o0

We define for this u satisfying (12),

¢O(g) bie
S/,

(12-a) v(&)=ul(é) -

m

It follows directly that

(g)

¢
(13) v# Tf=—Tg + ——— T2,
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We now present a series of lemmas needed in the sequel.

LemMA 3. Under the assumptions stated above, the Fourier transform

(Tf)*(@):f“ I Tf (1) de

oo
vanishes nowhere.

The proof is similar to that of Theorem 1, and is based on the identity

ie(Tf>*<e)=-1+f°° 0 4 (1),

LEMMA 4. Any two bounded solutions of (9) differ by a constant.

Proof. It is enough to show that the only bounded solution of

u<§>—f°° w(E—0)df (1) =0

are constants. Using a reasoning similar to that of deducing (12), we get

(13a) f‘” w(E—0) Tf (1)dt =c.

[

By subtracting an appropriate constant from (13a), we have for v =u — ¢’ that
v* If =0, Lemma 3 and the general Wiener’s Tauberian theorem yields that
v *r =0 for every integrable r(¢). It follows readily from this last fact that

’
v =0 almost everywhere or u = ¢’ a.e.

LEMMA 5. If r(t) is integrable and w(t)— O as |t| —> w, then

lim | w(é=t)r(t)de=0.
& | I

This last Abelian theorem is well known and straightforward.

LEMMA 6. If v is bounded and satisfies (13), then

lim [ r(E=t)v(e) =0
| & l~+°<=f'°“

for any integrable function r.
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Proof. The hypothesis and the character of the operation 7 imply that

lim Tg(&)= lim T (&) =0.
[ & ] l€]se

Consequently,

lim f” v (E—0) Tf (1) de =0.
| €] o0 "™

An application of the general Wiener Tauberian theorem leads to the conclusion

of the lemma,

COROLLARY. Under the assumptions of Lemma 6 we have

x+A
lim / v(e)det =0.
x

e
Indeed, choose

1
— for 0 <K £E<A
A or ,_é:_

r(&) =

0 elsewhere

We now establish the fundamental asymptotic limit theorem for bounded
solutions of (9). The basic Tauberian theorem used is the Wiener theorem

coupled with the properties of slowly oscillating sequences.

THEOREM 5. If u is a bounded solution of (9), and f has a decomposition
f={f, +f, where f, is absolutely continuous and the total variation of f, = A<1,
and limlf | - o g( &) =0, then lim;_, o u(t) and lim,_ .o u(t) both exist.
If limy .00 u(t) =0, then limy _, 0o u(t) = ¢ (g)/m.

Proof. Tt is enough to assume that v defined by (12-a) from u satisfies
(13). This can be achieved if necessary by altering u by a fixed constant (see

the discussion preceding I.emma 3). As before, we find that

(14) Lim /“ w(E=0) TF (1) de =0

It will now be shown that v(¢) is slowly oscillating as {t]| — a« (v (¢) is
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said to be slowly oscillating (s.0.) if

lim |o(&+n)-0(&)]| =0,
f-_;oo

n—0

A similar definition applies at t =—w. The general Wiener theorem and the

s.o. character of v (¢) implies the stronger conclusion over I.emma 6 that

lim »(¢) =0

ltl—»oo

which is our assertion., It thus remains to establish that v (&) is s.0. and we
confine our argument to the situation where £ — 0. A similar analysis applies
at —cc. Remembering that the convolution of an absolutely continuous distribu-
tion and any other distribution remains absolutely continuous, we obtain upon

n fold iteration of (9) that

u(g)=f°° u(f—t)d/cl(t)+/m u(§~t)dk2(t)+f°° g (&= ) k(1)

o -

=1 (&) + L&) +15(€)

where %, is absolutely continuous, %, is the n fold convolution of f, with itself
and k3 (z) is of bounded total variation. Since g(&)— 0 as || — a« by

Lemma 5

lim  [;(&) =0,

Next, we observe that |I,(£)]| < A" ¢ where ¢ is the upper bound of u. Finally,

(Es ) =1 < [lulE=01 1k (v &) =k () |de

Sc/\k{(t+n)~ixt{(t)ldt—)0 as n —0

by virtue of a well-known theorem of Liebesgue. Combining these estimates, we

get that

Tim Jv(€am) —v(E)] < 26"
é__,oo

mn-—0
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which by proper choice of n can be made as small as one pleases. This com-

pletes the proof.

REmMARK. Theorem 5 is valid if we merely assume that some iterate of

f has an absolutely continuous part.

COROLLARY. Under the conditions of Lemma 6, if v(t) is uniformly con-
tinuous for t > O and t < 0, then

lim »(¢)=0.

]~
Proof. The function v (¢) is s.o. from which the conclusion follows as in

Theorem 5.

In many examples, we deal with a solution u of (9) which is by physical
considerations bounded while in other cases boundedness for certain solutions
has to be verified. Our next object is to give sufficient conditions so that we
can establish the existence of bounded solutions of (9). From now on we as-

sume that f is absolutely continuous and let

f<§>=[i a()ds,

LEMMA 7. If u is a solution of (9) which belongs to LP(p > 1), a€L’
also belongs to LP” where p’ is the conjugate exponent to p and g is bounded,

then u is bounded.

Proof. Applying Hélder’s inequality to (9) and an obvious change of vari-

e <([7 ) ()

THEOREM 6. If a(¢) belongs to L' and L?, g(t) is bounded,

able, we obtain

f\x\2 alx)dx < o

and

flxlg(x)dx < o,

then a bounded solution u(t) of (9) exists.
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Proof. The Fourier transform of any integrable A(¢) is denoted by A* ().

Consider the expression

g*(0) = (Ta)*(0) [¢(g)/m]

(0 1-a*(0)

It will now be shown that (14) is the Fourier transform of a function in L2, To
this end, by the Riemann Lebesgue lemma a*(0) — 0 as |0] — « and
la*(8)| <1 for 6 # 0 with a*(6) continuous. Since the first moment of a
exists, Ta is bounded and in L. Hence, Ta belongs to L2 and Ta*(6) € L2
A similar argument shows that g*(6) € L%, Thus for |6} > « > 0, w*(6) is in

L? for any fixed positive constant ¢. But,

tg*(0) —(Ta)*(0) [&(g)/ml}/i6

wr¥(8) =
(15) () (1-a*(0))/:0

—(Tg)*(0) + [¢(g)/m1(T?a)*(9)
B (Ta)* (6)

The existence of the second moment of a implies that ( T2a)* () is continuous.
Analogously, (Tg)* () is continuous by virtue of [|x]g(x) < co. Since
Ta*(0) =m > 0, we find that w*(6) is continuous in the neighborhood of zero
and hence w* (6) is in L2, Consequently, w(¢) in L? exists which is the Fourier

transform of w* (6) and conversely. Moreover, (14) yields

¢o(g)

m

w<.f)-f°° w(t)a(E=t)de = g(€) = Tal &)

for almost all &,

As a convolution of two elements of L? the integral on the right is bounded
and continuous. Hence the right side is bounded and remains unaltered, if w is

changed on a set of measure zero.

As in Lemma 7, it follows that w ( £) is bounded. Putting

¢, g)

m

u(&)=w(é)+ o(§),

we find that u is bounded and satisfies (9).
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REMARK. Theorem 6 can be established under the weaker conditions that

/|x|1+aa(x) <

and

fie17 s <o

for some ¢ > 0. These assumptions are sufficient to imply the boundedness of

w* () in the neighborhood of zero.

Other sufficient criteria can be obtained for the existence of bounded solu-
tions to (9) involving use of the Hausdorff-Young inequalities in place of the

Plancherel theorem.

THEOREM 7. If a(t) belongs to L' and LP (1 < p < 2),

/ltl1+aa(t)dt <o

with o > 0,

/ig*(&)lpdé? < o

and g is bounded, then a bounded solution of (9) exists.

It is worth noting that the solutions u guaranteed by Theorems 6 and 7 have

the property on account of Theorem 5 that lim|;| _, o u(t) exist,

Our next objective is to find conditions which imply conclusions about the
rate of convergence of w(¢) of Theorem 6 as | €| — w and thus of u( &),
To this end, we differentiate (14) and 15), we get

a* () w*(0) + g% (0) = Ta*"(0) [ (g)/m]

16 *¥2(0) =
(16) Y 1-~a*(0)

Ta*’ () w* () - Tg**(60) + [¢(g)/m1(T%)*" ()

17 *7(0) =
(17) w*’(6) T 0

Relation (17) can be derived from (16) by dividing numerator and denomina-
tor by i0 similar to the method of obtaining (15) from (14),

Under the assumptions that
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/|t|3a(t)dt < @

and

/t2g(t)dt <ow

with g bounded and monotone decreasing as |t | —» @ we now show that w*’(6)
belongs to L,. Indeed, for | 8] > ¢ > 0 we use (16) to estimate w*’(6) and

we use (17) to analyze w*’(0) in the neighborhood of the origin.

For £ >0
ETa( &) 5/; ta(t)dt < ¢

and similarly | £ Ta (&) ] < c for £ negative. Also,

foc t2Ta?(t) Sc'/‘OQ |t Ta(t)] _<_c'/t2a(t)a’t < o

o0

and

fw t? g% () _<_c/t2g(t) < .

Since g(¢) is monotone decreasing as |t| — w, we obtain easily that
ltg(£)] < c. As a*’(0) is the Fourier transform of ¢ a(¢) in L' (except for a
fixed constant factor) we know that a*“(0) is uniformly bounded. By Theorem
6, w*(0) is in L? and therefore a*’(6) w*(6) is in L% g*’(6) is in L? by
virtue of ¢ g(¢) € L? and Ta*’(6) is in L? as a consequence of ¢t Ta(t) in L?
which were established above. Since |a*(6)| < 1 for 0 # 0 and tends to zero
as | 0| — w, we find, collecting all these cited facts, that w*’(6) is in L?
for 10| > « > 0. The assumptions of the existence of the third and second
moments of a and g respectively yield as in the proof of Theorem 6 using (17)
that w*”(6) is continuous at zero. Thus w*’(6) is square integrable through-
out and as a result of standard Fourier analysis is the Fourier transform of

tw{t) in L2 Relation (16) gives

(18) tw(t)—fw alt = &) éw(&)dé

=f°° wlt—&E)éa(€) +1g(t) - ¢(g) tTa (t)

oo m
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The fact that tg(¢) and ¢(Ta) (¢) are bounded imply by an argument completely
analogous to the proof of Lemma 7 that tw (£) is bounded. It follows as before
that tw (t) is s.o0. (see Theorem 5). The relation (17) leads to

(19) f°°\ Ta(&—t) ow(t)ds

¢(g)

m

=f°° (&—1) Ta(é—0)w(e)de— ETg (&) + ET%(£).

Since w(t) — 0, { Tg(£) — 0 and E(T?%) (£)— 0 as lt] —> w0, we obtain
by Lemma 5 that the right side of (19) tends to zero as | { | — . Combining
the s.o. character of tw(¢), its boundedness and the Wiener Tauberian theorem

leads to the conclusion that

lim  ww(¢) =0.

]

Proceeding inductively we can obtain higher rates of convergence by imposing
the requirement of the existence of higher moments using this same method. We

sum up the discussion in the following theorem.

THEOREM 8. Let

foo 1™ 2 a(t)dt < o0

with a in L' and L2 Let g(t) be bounded monotone decreasing for t > to > 0
and nondecreasing for t < —to < 0 with

fltl"“ g(t)dt < ,

then
lim t"w(t)=0
o]~
where
¢ (g)
u=w + o




250 SAMUEL KARLIN

is a solution of (9), and w(t) is the Fourier transform of w*(60) (see (14)).
(We recall that Lemma 4 shows that u(¢) as given above is the only bounded
solution for which u(¢) —0ast — - w®.)

We now append some remarks about the classical renewal equation
(20) wle) =g (o) + [T ule - £)df (£) x> 0.
0

The assumptions made are that

>0, g0, /“’g(f)df:b <o
0

and f is the distribution of a non-lattice random variable. The function Tf ( ¢)
is introduced as before. If the first moment of f exists, then Tf € L' and

m=-/;°°xdf(x)>0.

Thus, we deduce as before that Tf possesses a Fourier transform which is
never zero. Lhroughout the discussion of this case it is no longer necessary to
assume any boundedness condition on u( ¢), the nonnegativeness of u suffices

to enable us to obtain all the results of Theorems 5- 8.

To indicate the simplicity of our methods we now show how Wiener’s
Tauberian theorem can be used directly to establish a slight generalization of
one of the fundamental results of Técklind on the classical renewal equation.

His procedure involves complicated estimates.

TBEOREM 9. Let ®(x) denote a monotonic solution to the integral equation

(21) @(x)=Q(x)+fx¢‘(x—y)df(y) x>0
0

where ®(x) is continuous and ®(0) =0, Q(x) is a distribution on (0, ) with

finite first moment and f is a non-lattice distribution continuous at zero with

finite second moments, then

1 a
lim [@(x)——x+ﬁ~— =0
X —> 00 m m 2m?

where
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m=./;°oxdf(x), a=/:° x*df (x) and ,u=./;m xdQ(x).

Proof. Define

1
¥(x)=q(x) - —x,

m

then it follows from (21) that

x 1 x
(22) ‘P(x)—/ \I’(x—t)df=Q(x)——/ Tf(£)dé.
0 m JoO

Integrating (22) over the interval (0,y) and then performing an integration by

parts we obtain
y N I fy .,
(23) _/:)Tf(y—t)tb(t)dt——/; [1~Q(§)]d+;/; T2 (£)de.

By an elementary calculation as y —» oo the limit of the right side tends to

We now collect the facts needed to employ the Wiener theorem. That the Fourier
transform of 7f never vanishes has been shown previously, It is easy to show
that ¥(¢) =0(1) see [12]. Finally, we verify that ¥(¢) is slowly decreasing
(s.d.) that is,

lim [(W(E+n) -w(E] > 0.

f_.oo
n—-0
In fact,
L
Y(E+n) —V(E)=B(E+n) —B(E) + —> —.
m_ m
Thus,

lim [¥(&4n) —¥(&)] > 0.
5_.00

77—’0
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As Tf is nonnegative and W(¢) > - C a sharp form of the Wiener theorem be-
cause of the (s.d.) character of ¥ implies that

lim ‘P(z)=—E + = .

t— o0 m Im2

We continue with a brief examination of the example discussed in the in-
troduction, Let X; denote independent identically distributed non-lattice random
variables with cumulative distribution f which has an absolutely continuous

component. We assume the first moment exists and

/xdf:m >0,

Put

]' n
sj=5 X;and u(é)= 3 Prié<s; < &+h)

i=1 j=t

where % is a fixed positive number. The intuitive fact that u ( ¢) is bounded can
be proved directly from probability considerations. We do not present the details.

The function u is readily seen to satisfy the renewal equation (1).

u<x>—f°° w(x— E)df () =g(x)=fx+h af ().

The hypothesis of the corollary to Theorem 5 can be shown to be satisfied by
probability analysis and we obtain lim;_ e u(t) = h/m and lim; .o u(t) =0,
the result obtained by Chung and Pollard by other methods [3]. We close this
section by presenting some extensions of these results by imposing further
conditions of the existence of higher moments of f to secure some results about

the rate at which »(¢) converges.

TaeoREM 10, If X; are independent identically distributed non-lattice
random variables with density function a(t)dt such that a € L, and

f‘t\"” al(t)dt < w

and

foo ta(t)dt=m >0, u(€)= 3 Prié <sj <& +h}
-0 j=1
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where
J
sj= 22 X,
i=1
then
h
lim t"|u(t) ~=]= lim " u(s) =0,
t—o00 m L — =00

Proof. This is an immediate consequence of Theorem 8.

4. Abstract renewal equation. The purpose of the subsequent analysis is
to present an abstract approach to some of the fundamental ideas involved in the
analysis of the renewal equation. Altbough some of the results are formal and
simple, it is felt that this study sheds some light on the real nature of the re-

newal equation,

Let T denote a linear operator which can be viewed as a bounded operator
from (m) into (m) or from (1) into (1). The spaces (m) and (1) designate the
Banach spaces of bounded sequences and absolutely convergent series re-
spectively, Suppose furthermore that the operator T is of norm one viewed in
either space. Let @, >0, 2a,=1 (r=0, £1,...) and we assume that the
g.c.d. of the indices r for which @, > 0 is 1. Suppose also that 2-|n | a, exists
with 2na, =m # 0. I a, =0 for r < 0, then automatically 2 na, is not zero
provided a; # 1. In this case we consider the operator 2?:0 a; T" where T° =1,
This operator is linear and has norm bounded by 1 as || 77|| < 1 and 2Za, = 1.
If 7-' exists and is of norm 1, then we can deal with the general case where

a, is given not necessarily zero for both r positive and negative. We consider

then the operator Z e an T™ As a generalization of the renewal equation,
we set
]
(+) Su:[l— > anTn]uzv.
r=-o0

It is given that the operator S applied to u produces the element v. In many
examples, u is a bounded sequence, that is, an element of (m) while v is an
element in (). Put,

o0 n
rp = Z a; for n >0 and r, =~ Z a; for n <0,

i=n+1 [=—0C
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then Z|r,| < as 2|na,| < w. It is important to note on account of 2|r,| <,

the series

o0

2 rn, T"

n=—o0c

defines a bounded linear operator which can be viewed acting either on (m) or

(1) into itself. By a summation by parts, we obtain that

n=-~0o

( Z Tn Tn)(l-T)u=v.

. 00 . . -
Since 2 =-co rps™ with |s | =1 has an absolute convergent reciprocal ( Wiener’s
theorem is used here analogously to the analysis of section 1), we secure that

(Z r, T")"! exists as a bounded operator over (m) and (1) and that
(I-T)u=(2Xr,T") 0.

Since v € (1) we conclude that (I — T)u € (1) although u itself might only be an
element of (m). This represents the basic abstract conclusion obtained from
(+). Further results are obtained by specializing 7. A particular example is
obtained by (m) = the set of all bounded sequences u ={u,{n=0,+1, +2,...,
where T is the shift operator which moves each component one unit to the right.

Whence, (+) reduces to

(I-2Zap T u=1{u, - D G Ukt

f=—oc

If all the hypothesis on a, are met and v, € (1), then the abstract theorem tells
us that (I = T)u €(1) or

o0

Z: lup —up+1| < oo

n==00

This implies that both lim, _ e u, and lim, _,_s u, exist. Similar results are
valid for the circumstance where T-' does not exist. Then we deal only with

the case where a, =0 for n < 0. Considering the same shift operator leads to

o0 n
(]— > anT") u=u, - Zan_kuk
k=0

n=0
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and we deduce as above that lim, _, « 1, exists.

We turn now to examine some continuous analogues of (+). Let T (¢) denote
for 0 >t > 0 a strongly continuous semi-group of operators acting either on
the space of bounded functions (M) or integrable functions (L) with || T(¢) || < 1.
Let A denote the infinitesimal generator of T(¢) and let df (¢) define a non-
lattice distribution with finite first moment on [0, w]. If u belongs to (M) we

consider

u(t)——[/;oo T(t)df(t)]u=v

where v belongs to (L ). The linear operator

/;‘” T(2)df (t)

is well defined either over (M) or (L) into itself. Put r(z) =1 ~f(¢), then
r €L and the Fourier transform of r never vanishes. Since r is monotonic de-

creasing and in L it can be easily shown that

[fw r(t)T(t)dt]u
0

belongs to the domain of the infinitesimal generator 4 and
4 /;” r()T(8)ds u=v.

Formally, we also obtain upon commutating 4 and the integral operator
[fo“’ AT e u = .

We note that if

/mr(t)T(t)dz
0

is multiplied by any other operator of the form

fws(t)T(t)dt,
0
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we obtain the operator

pr(L)T(t)dt
0

where

p(t)=/;tr(t—§)s(f)d§.

Since the Fourier transform of r does not vanish, then Wiener’s theorem in a

formal sense, furnishes an inverse to

f”r(t)f(t)dt
8]

which takes v € L into L. Thus, Au belongs to L. Specializing T () to the
translation semi-group T (¢) u(x) =u(x —¢), then Au = du(x)/dx whenever the
derivative exists and belongs to the proper space. The fact that Au € L yields
[ ldu/dx | exists from which we infer that lim, _, o u(t) exists. Thus we obtain
the limit behavior of Theorem 5 for the one-sided case. The justification of
these last formal considerations is very difficult and can only be carried through
in certain cases as is shown in § 2. The full renewal equation is generalized

by taking 7(¢) a group and proceeding as above.
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