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METHODS IN AFFINE CONNECTION THEORY

HARLEY FLANDERS

1. Introduction. The paper before us is a continuation of the author's recent

work [7] on affinely connected spaces. The content of the paper is best set

forth by brief summaries of the various sections. Section 2 gives some properties

of the curvature operator d 2. In § 3, a contraction operator is introduced into

the spaces of p-vectors with q-ίorm coefficients; and in § 4 this is used to

obtain the Ricci tensor in an operator form. In § 5 there is defined an extension

of a linear transformation which is analogous to, and consistent with, the cor-

responding definition for an affine connection; this is shown in §6, where also

certain combinations of connections are discussed. In § 7, a new contraction

operator is introduced; this has the advantage of setting up a duality in certain

of the linear spaces involved, allowing one to define the adjoint of a linear

transformation. This leads to invariant characterizations of symmetric and skew

transformations and to decomposition theorems in this and the following § 8 .

The duality is extended in §9, where the adjoint of a connection is defined

and relations between it and the connection are given. In §§ 10 through 12, the

theory of a series of invariants of a connection introduced by S. S. Chern is

developed. After a number of special results, we give a version of an ingenious

proof of A. Weil. In the final § 13, we discuss the invariance of the Weyl tensor

under projective change of connection and some related tensors which are

meaningful for nonsymmetric connections.

2. The linear property of Θ. Let us consider the result

(7, Formula 9.5), and especially the case r = 1:

d 2 e = Θ e .

From this we deduced that the transformation law for Θ under a change of frame

e* = Ae is given by
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392 HARLEY FLANDERS

1-1

(7, Formula 11.5). This means that Θ transforms as a mixed tensor of order

two and hence represents a linear transformation. We can make this precise as

follows. Let V G 3^ SO that d2v G 3 P

+ 2 * If f is any function, then

d 2 (fv) = dU/v + fd\) = d2f\-dfdx + dfύ\ + /d2v, d 2 (/v) = fd 2v.

Thus the mapping

d 2 : 3P _ >
9

is linear. In the special case p = 1, <? = 0, the matrix of d2 with respect to the

frame e is exactly Θ. In other cases, the matrix of the operator d2 is fairly

complicated, but there is no point in writing it down. We remark that the relation

d2e = Θe

clearly displays the curvature as a second derivative, which is how it appears

in elementary geometry.

If we do not restrict attention to a single space 3^, we can deduce more

than the fact that d2 is linear.

THEOREM 2.1. The operator d2 is linear and is a derivation. This latter

assertion means that if v G a? and w G σ , then

(2.1) . d2(vw) = d2vw + vd2w.

The necessary computation is easy:

d2(vw) = d[dvw + (-l) < ? vdw]

= d2vw + ( - l ) ? + ι dvdw + (-l)^dvdw + (- l ) 2 ^ vd2w

= d2vw + vd2 w.

3. Contraction. The space 3^ of one-forms is the dual of the space 3Q

ι of

one-vectors. As in [7], we shall let [ω, v] denote the effect of the form ω

(considered as a functional) on the vector v. Contraction, in tensor analysis, is

based on the application of this operation to one covariant and one contravariant
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component of a mixed tensor. Our space 3 P can be considered as the subspace

of the space of p-contravariant, ^-covariant tensors whose elements are skew in

all contravariant indices and skew in all covariant indices. Having this, we

could apply the contraction operator to the elements of 3^ and, with a little

modification, obtain the operator that we seek on 3^ into 3 ^ " ^ It seems best

however to construct this operator directly, within the framework of the spaces

we are using.

We begin by looking at the mapping

(3.1) Ξ ( ω ; . . , ω ? + ι ; v l l . . . , v p + ι )

where σGSp+ι, the (p + l)-symmetric group, τESq + ίy and eσ denotes the

sign of cr. The domain and range of £ can be indicated as follows:

It is evident that £ is multilinear and that it is alternating in each set of vari-

ables separately. We use the results of Bourbaki [ l , Scholia, p. 7 and p. 64] to

deduce the existence of a unique linear transformation C,

such that

C ( ω ι . - ω^ + 1 v t •••Vp + 1 ) = Ξ ( ω ι , . . . , ω ? + ι ; v l f , vp + ι ) .

It is this C that we shall call the contraction operator.

If n denotes the dimension of our underlying manifold 3K, then we have

(3.2)

For dP = σ ιβj and so

C U P ) = Σ [σ ι > , e ; ]= Σ

If v E 3°, the divergence of v may be defined by



394 HARLEY FLANDERS

(3.3) div(v) = C(dv).

If we use the notation of [7, § 12 ], and if v = λι e;, then

(3.4) Λλ,. + λ Γ . Λ

In fact we have

div(v) = C(dv) j *

= C(λ\. σUf + λ' Γ.ikσ
kei) = λ',. + λ' ΓV .,

as asserted.

4. The Ricci tensor. The operator Cd2 carries 3^ into 3°. We shall com-

pute its matrix and for this shall need the notation of [7, §§10,12], With

v = λe, we have

i kl j 9

i λiRJkl{ίσl,ej]σk-{σk,Bj]σ1}

'Λ

Thus the matrix is given by | | / ? ^ | | , where R^ = R. ^p the known Ricci tensor.

We may summarize in the formulas:

(4.1) Cά2ei

Cd 2 v = λ ι Rik σk, when v = λ e .

The transformation formula for β = | | / ? . ^ | | follows immediately from the

fact that Cd2 is linear. If e* = Ae is a change of frame, then we have

(4.2) R* = A R ιA.
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If C is a closed curve in ίffi which bounds a piece of surface Σ, then by

Stoke's theorem.

JJd[Cd2v].

It is an interesting problem to characterize by local geometrical conditions

when this expression vanishes identically, that is, when d[Cd 2 v] = 0. When

this is the case, then Cd v taken over a chain γ is a cocycle.

5. Extension of a linear transformation. An affine connection is, by defini-

tion, a certain kind of additive transformation on 3J to 3*. Given an affine

connection d, we showed that it has a natural extension on c)P to c3^+ l β In this

section we shall do the same for a linear transformation. Thus we shall deal

with the manifold 531, the derived spaces 3^, and shall not assume an affine

connection is given.

We suppose given a linear transformation B on c3Q to cĴ  Thus

(5.1) B(/v+gw)=/B(v)+gB(w)

for v, w £ 3J, / and g functions. We shall write

We wish to extend B to 3^. Of course this can be done in several ways, but

we shall do it in a manner consistent with the way of extending an affine con-

nection—the precise relationship will be clear in the next section.

First we extend B to 3^ by the formula

(5.2) B(V! ...Vp) = Σ v t • Vy_1(Bv;) Vy+ι Vp ,

where v̂  , , Vp £ 3J, and by linearity. That this really defines B on 3£ is

proved the same way as Theorem 7.1 of [ 7 ] was.

Next we set B(ω) = 0 for ω G 3°. Finally, if ω € T° and v G 3g, we set

(5.3) B ( ω v ) = ( - l ) 9 ω B v .

Again applying linearity, we have defined B on 3^.
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THEOREM 5.1. The transformation B defined above is linear on 3^ to

B€Hom(3PfSj+ι).

r

s, then

(5.4) B(vw) = (Bv)w + ( - l ) ^ v B w .

It remains to prove the identity (5.4). First let

V = V t V p , W = W! . . . WΓ ,

with Vj , Wy in 3Q

ι. Then

B ( v w ) = B ( v ι , ,VpW1 ••• wΓ)

= Σ,\ι ••• v i β l (BVj ) vί + ι ••• v p w t ••. wΓ

+ Σ Vi ••• Vp Wt . . Wy.! ( B Wj) W; + ! WΓ = B ( v ) W +V B W.

Next, let

v = ωv*, w = ηvί',

where ω and 77 are q and s forms respectively and v ' and w ' are p and r vec-

tors, respectively. Then

ω i j B ( v ' w ' )

BίvOi/w' + ί - l ^ ω v ' ί - l ) * r/Bw'

= B(v) w + (-l)? v B w.

The general case follows, as usual, by linearity.

6. Algebraic combinations of affine connections. We begin this section

with the following result.
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THEOREM 6.1. Let d t be an affine connection and B a linear transformation:

Then the operator d2 defined by

(6.1) d2 = dt +B

is an affine connection. The extension of d2 to 3 P is the sum of the extension

of ύι to S p and the extension of B to c3£. Thus (6.1) is valid when applied to

any of the spaces o?

Proof. We have

d 2(v + w) = d2 v + d2 w,

d 2(/v) = d 1(/v) + B ( / v ) = d / v + / d ι \ + fB\ = df\ + fά2 v;

hence d2 is an affine connection.

Next we apply the uniqueness part of Theorem 7.1 of [7]. This asserts that

in order to prove that (6.1) is valid when applied to 3 p , it suffices to show that

(άί + B) (vw) = [(d t +B) γ]w+ ( - ! ) * v[(d t + B) w],

for v G 3^, w G 3 Γ , But this is evidently the case.

It will be convenient to have a space which includes both the affine con-

nections and the linear transformations.

DEFINITION 6.1. The space 21 of additive operators consists of all opera-

tors A on 3^ to 3^ satisfying the single condition

(6.2) A(v + w) = Av + Aw.

It is clear that ?I is a linear space over the ring E(3R) of infinitely differenti-

able functions on 3)1. Next, we let Q denote the space of all linear transforma-

tions on SQ to 3*. Thus Q consists of all elements B of 21 which satisfy (5.1),

and we see that Q is a linear subspace of 21. Finally, we denote by 2) the space

of all affine connections. The elements d of S satisfy (6.2) and

(6.3) d(/v)=dfv + /dv.
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THEOREM 6.2. The space S is a linear variety of 21. What is more, 2) is a

coset of Q in ?I.

Proof. If d t is an affine connection and B E Q, then di + B G S , by Theorem

6.1. Conversely, if d2 G 5), then B = d2 - di £ Q since

d 2 ( / ' v ) - d l ( / v ) = (rf/ v + / d 2 v ) - U f v + / d i v)

= / ( d 2 v - d t v ) = / B v .

This shows that 5) is indeed a coset of Q .

COROLLARY 6.3. / / d ι , ,dΓ are affine connections, / 1* >/Γ are /imc-

tions9 and f + + fr = 1, ίλerc d = / d t + + fτ dΓ is an affine connection.

We can get further results for combinations of connections with constant

coefficients. For simplicity, we shall restrict our attention to two summands.

LEMMA 6.4. Let d t and d2 be affine connections,

d = ίi d t + ί2 d2 ,

where t± and ί2 are constants such that t\ + ί2 = 1 . Then

(6.4) r = tι Ti + t2τ2

Ω = ίi Ωi + £ 2 Ω 2

Θ = ί ι Θ ι + ί t ί 2 ( Ω t - Ω 2 ) 2 + ί2 Θ 2 .

Here we have used the notation of [ 7, § 8 ]• The first formula is a result of

the computation

r e = d (c/P) = ί i di (dP) + ί2 d 2 U P ) = ί i rx e + t2 τ 2 e .

The second one is obvious, and the third follows from

\ 2 ~ ίi ί2 ( Ω i Ω 2 + Ω2

= ί ι ( © ι + ί 2 Ω 2 ) + ί 2 ( Θ 2 + ί i Ω 2 ) - ί ι ί 2 ( Ω i Ω 2 + Ω 2 Ω

= ίi Θi + ί i * 2 ( Ω i - Ω 2 ) 2 + t2 Θ 2 .
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This result will be used in § 10, below.

If d is a fixed affine connection, then as B runs over all linear transforma-

tions, d + B runs over all affine connections. This tells us how to construct

all of the affine connections on SL In effect, assume that 31! is an τι-dimensional

infinitely differentiable manifold satisfying the second countability axiom. By

a theorem of de Rham and Kodaira [5, p. 2], there is an open covering { U{ J of

coordinate neighborhoods, and a corresponding partition of unity Σ,φ. = 1, such

that on each Uj, all but a finite number of the φ. vanish. To construct the most

general linear transformation B, we select linear transformations B^ on Uj (this

part is a local problem) and set

B φ. B { .

To construct a single affine connection d on Λ/, we select Riemannian metrics

ds2 on 111 and set

i ds2.s

Then ds2 is a metric on 3K; hence it induces a (symmetric) connection d on SI.

We close this section with the following remark. If do, dι are affine connec-

tions, then so is

άt = t d 0 + (1 - t) d t

for 0 < t <C 1. This linear family of connections suggests the machinery used

in the invariance proofs in homology theory. One is led to conjecture that any

topological concept which can be defined with respect to a given affine con-

nection will be the same for all affine connections. This opinion is supported

by a recent theorem of A. Weil [4, p. 57] to be discussed below.

7. Algebraic results. A standard result states that a given connection can

be decomposed into the sum of a symmetric connection and a skew-symmetric

tensor and that the decomposition is unique. Before analyzing this statement

in terms of our calculus, we shall need certain preliminary results.

Let us examine the formulas in [7] which define the torsion tensor. They

are (12.3) and (8.4):

r^iη.σia^ wiΛ Γ/Λ + I * , - 0,
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τ - dσ ~ σΩ.

In case e is a local coordinate frame, we have

and so

Thus in this case the skew-symmetric quantities ( Γ ^ —Γ^.) are the com-

ponents of a tensor, while the symmetric quantities

i ( rλ +iy.)-F.Λ
2 i k k i i k

are the connection coefficients with respect to the frame e of a symmetric con-

nection. In the general case, where e is not necessarily a coordinate frame,

the term dσ is present in r and so something more complicated is to be ex-

pected.

Let us consider an element B of

Q-Hom(30

ι, 3 r ').

With respect to a given frame e we may write

(7.1) Bβj-&/'***•/*

If e* is another frame, then we have

(7.2) δe* = 6*Λ σ*ke*.
I IK J

The relation between the frames being e* = aJ e , we shall set

4 - l l α / H , C = i - ι = | | c . / | | ,

so that
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and we have

It follows that the quantities hJ ^ - b^ i satisfy the same transformation law

and hence the transformation B* defined by

(7.4) B*e. = bJ.σke.
i k i j

is in Q. We shall call this the adjoint of B.

The purpose of the last paragraph was to motivate the intrinsic procedure

which will follow. We begin by introducing a new contraction operator K de-

fined by

(7.5) K(v, w) = C(w) v-C(vw),

LEMMA 7.1. The mapping w — » K ( »w) is an isomorphism on <5* onto

End ( 3 Q ), the space of linear transformation on OQ into itself.

Proof. First we note a formula. If w = ωι V; E 3* and v E 3^, then

K(v, w) = C(w) v - C(vw) = C(w) v - C ( ω ι v Vj )

= C(w) v«-C(ω* Vj) + C(ω1 ' v) V; =C(ω 1 ' v) v^.

That the mapping of Lemma 7.1 is linear is clear. We shall next prove that it

is one-to-one For suppose w E 3* and K(v, w) = 0 for all v. Then (ωι v) V; = 0

for all v We may assume the v t are linearly independent and deduce that for

each i, C( ωι v) = 0 for all v. Hence each ωι = 0, w = 0. Finally,

and so the mapping must be an isomorphism onto.

THEOREM 7.2. Let B G ϋ . Then there exists a unique B* E Q such that
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(7.6) K(v, Bw) = K(w, B* v)

for each v, w G 3Q

ι. This defines the adjoint B* of B. The mapping B —»B* is

an involuntary automorphism of Q.

Proof. Uniqueness is readily proved. If K( w, B* v) = 0 for v, w G 3J, then

by the lemma, B* v = 0 for all v; hence B* = 0. To prove existence, let v be

fixed. Then w — > K ( v , B w) is an endomorphism of SQ

ι. By the lemma, there

is a unique element (which we denote) B* v in 3* such that K(v, B w) =

K(w, B* v) for all w G 3Q

ι. It is easily seen that the thereby defined B* is

linear. The rest of the theorem is clear.

We can express this in terms of a frame e. The elements σ! ek form a basis

of 3*. We find the formulas

(7.7) K(e i f σi ek) = 8ii ekf

K( v, w) = λ1^. k ejς, for v = λι e f , w = μ.h σi e^.

Suppose B and B* are given by

We apply (7.7) to the equality

K(eΓ, B e f ) = K ( e i f B* e r)

to obtain

b.ί kK(er, σk e,) = b*r

s

tK(eit σι es),

bi =ό*Λ.
i r T i

This is what we anticipated in (7.4).

We shall call B symmetric if B* = B and skew-symmetric if B* = — B. The
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symmetric transformations B are characterized by the following theorem.

THEOREM 7.3. The mapping B—>B(dP) is a linear transformation on

onto 3 2 # Its kernel is precisely the space of symmetric elements of Q. Thus

B is symmetric if and only if H(dP) = 0. In general,

N O T E . The transformation B is defined on 3J. When we write B(dP) we

mean the extension of B given by Theorem 5.1 applied to the displacement

vector dP = σι β; of 3*.

Proof. It suffices to compute B(c?P) with respect to a frame. Let

By (5.3) we have

ei b k e j ( b

From this, everything follows. The result implies that

y
since

where S y denotes the space of symmetric transformations. But this is evident

dim [Q] = n Λ

2 = n 3 , dim [3, 1 ] = n (" \ = n2 (n - l )/2,

and

dim

Let us agree to denote by S y the space of symmetric transformations and by

Qjt the space of skew ones. For the skew transformations we have the following

result.



404 HARLEY FLANDERS

THEOREM 7.4. B is skew-symmetric if and only if

(7.8) K(v, Bv) =0 for all v .

This has a familiar proof. If B* = - B, then

K(v, Bv) = K(v, B* v ) = - K ( v , Bv);

hence K(v, Bv) = 0. Conversely, if K(v, Bv) = 0 for all v, then

K(v + w, Bv + Bw) = 0 = K(v, Bw) + K(w, Bv),

K(v, Bw) = - K ( w ; Bv) = K(w, B* v ) ;

hence B* = ~ B.

The following is easily derived.

CoOLLARY 7.5. The spaces S y and S^ are supplementary in Q:

The mapping B—> B(c?P) is an isomorphism on S^ onto S2
l.

We note that this is correct from the point of view of dimension since

8. Symmetric connections. We recall that a connection d is called symmetric

if

We can now state the decomposition theorem referred to at the beginning of the

last section.

THEOREM 8.1. If d is an affine connection, then there exists a unique

symmetric connection d and a unique skew-symmetric B € ? such that

(8.1) d = <F+B.

Proof. If

Ϊ + B = di + B l f
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then

F = B ι ~B = ϊ - d !

is symmetric since

F(dP) = d(dP) ~dx(dP) = 0,

and skew since

hence F = 0. This proves uniqueness. The decomposition is obtained in this

way: If d is given, then by Corollary 7.1, there is a unique skew-symmetric B

such that

Setting d = d — B, we have

d U P ) = d 2 P - d 2 P = 0

so that d is symmetric.

We shall now express this decomposition in terms of a frame. For this we

use the formulas of [7, § 12]. We have

hence

where

1 j k ~ h j k U / k l k j } >

*>i-\ht

ikσiσk

t A^ + A^.-O.

In the decomposition d = d + B we set

dei = ΓJkσ
kej, B e( = b. \ σk e; .
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We require that

and bJ, + V a 0.
IK rC I

Since

BUP) = - ff/ B e;- = - σi bj

i

kσ
k e£ = - bf k σ' σk e t ,

we deduce the relations

(8 2 ) *Λ — 5 r /

Wexlose this section with the following evident result.

THEOREM 8.2. The space §)s of symmetric connections is a linear sub-

variety of the space 2) of all connections. In fact$ S s is a coset in 21 of the

space Sy of symmetric transformations.

9. Adjoint of a connection. We have the following result.

THEOREM 9.1. If ά is a given connection then there exists a unique con-

nection d*, the adjoint of d, such that

(a) d* - d is skew,

(b) d * U P ) + d U P ) = 0 .

Proof. To prove that d* exists, we use the decomposition of Theorem 8.1,

and set

d* = d - B ;

to prove that d* is unique, we assume that d* is another. Then (d* - d*) is

skew and also symmetric since

( d * ~ d * ) U P ) = 0.
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Thus

d* - d* = 0, d* = d*.

On going back to the definition of a skew transformation and using ( 7 . 8 ) , we

see that either of the following are equivalent to ( a ) above:

( a ' ) K ( v , dw) + K ( w , dv) = K ( v , d* w) + K ( w f d* v ) ,

( a " ) K ( v , dv) = K ( v , d* v ) .

We now have the following result.

THEOREM 9.2. The adjoint operation obeys the following rules:

(1) ( d * ) * = d.

(2) [ ί d ι + ( l ^ ί ) d 2 ] * = ί d * + ( l - ί ) d * .

(3) ( d ι ~ d 2 ) * = d * ~ d * .

A connection d is symmetric if and only if d* = d.

We shall prove (3) only, the rest being evident. We set

B = d i ~ d 2 ,

so that B is a linear transformation and we have

d i = d2 + B.

Then

K(v, (d* + B*) v) = K(v, d* v) + K(v, B* v)

= K ( v , d 2 v ) + K(v ,Bv) = K ( v , d 2 v + B v ) = K ( v , d ι v ) .

Since ύι - (d* + B*) is skew, it follows by Theorem 9.1 that

d* = d* + B*.

Let us now express the connection coefficients of d* in terms of those of

d. Using the notation of the last section we may write

(9.1) d * e ί
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and have

since d* = d - B. By (8.2) we have

In the special case of a local coordinate frame

we have

σi^dui

% ί/σ' = 0,

and

77 (Γ ί -Γ i ) Γ*i - Γ /

There is another way to prove Theorem 9.1 which, in view of Formula (9.2),

gives additional information. We go back to the assertion in Corollary 7.5 that

the mapping B—>B(dP) is an isomorphism on the space of skew-symmetric

linear transformations onto Si^Since d2 P is in 3^, it follows that there exists

a unique skew transformation H such that

(9.3) H U P ) = - 2 d 2 P.

We now assert that

(9.4) d*=d + H.

For the Conditions (a), (b) of Theorem 9.1 are met since on the one hand

(d + H ) - d = H

is skew, and on the other hand by (9.3)

If we set
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(9.5) H β i - l / . / e y

then according to (9.2) we have

(9.6) ηJ = T'.kσ
k, * ' , . / - 2 r>.

We shall now get some relations between the invariants of d* and those of

d. We first may rewrite (9.6) in the form

(9.7) σ # = 2 τ , with //= | | τ j . ' Ί | .

Thus H is an n x n matrix of one-forms.

Before proceeding, let us note that the adjoint operation of Theorem 7.2 has

a matric analogue. If

is an n x n matrix of one forms, we may set

where

Having this, we call such a matrix skew if K* +K = 0, and symmetric if X* = K.

We can now say that the matrix H is characterized by the properties ( a )

H is skew and (b) σH = 2 τ . For this is the same as saying that H is skew

and that (9.3) is valid, so Corollary 7.5 applies. Let us denote by Ω*, r* , Θ*,

and so on, the quantities associated with d* which correspond to Ω, r , Θ, and

so on. By (9.4) we have

(9.8) Ω* = Ω + //.

From (9.3) we obtain

hence

(9.9)
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We shall next compute Θ*. We begin with the relation

d*2 = ( d + H ) 2 = d2 + (dH + Hd) + H 2 .

Next,

(dH + Hd) e = d(#e) + H ( Ω e ) = d # e - # d e - Ω / / e

H 2 e = H ( ί ί e ) = . ί ί ( H e ) = . i ί 2 e ,

But

d*2 e = β* e and d 2 e = Θ e ;

hence

(9.10) Θ* = Θ + ί / / / - # Ω - Ω / / - t f 2 .

Now let us differentiate (9.7) and make use of Formulas (8.4) and (8.5) of [7]:

dσH - σdH = 2 dτ,

(τ+σΩ)#-σe/tf = 2(σΘ-τΩ),

(9.11) σd H = σΩH + rH

Multiplying (9.10) by σ, substituting for σdH this last expression, and using

(9.7) yields

(9.12) σβ* = - σ β - τ f f .

Since it may be of interest, we shall also give this relation in tensor notation.

Let

Then

( 9 1 3 ) Rfkι + RVu + RVik — *Λ/~RJu -R/ik - ̂ ,, r ; z - rklnri- ru



METHODS IN AFFINE CONNECTION THEORY 411

One easily verifies that differentiation of (9.10), (9.11), or (9.12) yields noth-

ing new.

10. The induced two-form. Given an affine connection d, let us take any

moving frame e and consider the matrix Θ of curvature forms. If e is another

frame and if, in their common region of definition, e and e are related by e = A e,

then by [7, § 11] we have the relation

(10.1) Θ = 4 ®A ι .

The elements of the n x n matrices Θ,, Θ are two-forms and we have as a con-

sequence of (10.1) the relation

(10.2) S ( Θ ) = S ( Θ ) ,

where S denotes the trace.

DEFINITION 10.1. If d is an affine connection on SK, then

(10.3) £ ( d ) = S ( Θ ) .

is the induced two-form associated with d. It depends only on d, and not on the

particular frame used to define it locally.

T H E O R E M 10.1. //de = Ωe, then

(10.4) £ ( d ) = S U

Consequently ξ ( d ) is a closed two-form:

(10.5) d

For Θ = ί/Ω-Ω2; hence

If Ω = | | ωJ' \\ as usual, then

hence S ( Ω 2 ) = 0. Also
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We next investigate the relation between the induced two-forms for dif-

ferent connections.

It is interesting to observe that the mapping ζ is linear in the following

sense,

THEOREM 10.2. // άι and d 2 are connections, and d = ί i d t + £2 d 2 for

constants ί i and £2 such that ί 1 + ί2 = 1> then

(10.6)

This follows from Lemma 6.4: since the matrix (Ωi ~ Ω 2 ) is a matrix of

one-forms, the trace of its square vanishes.

THEOREM 10.3. If άι, d 2 are two affine connections on 3Jί, then there is a

one-form λ on 351 such that

(10.7) ξ(ό2)-ξ(άι)=dλ..

If B is the linear transformation d 2 — d l f then λ may be taken to be the trace

S(B), which is the differential one-form defined locally by

(10.8) Bei=β.iej9 S(B)^β.i.

Consequently ζ(άι) and ζ(d2) define the same two-dimensional cohomologγ

class.

Proof. Locally, Ω2 - ilt = | | βJ | | ; hence

It suffices to prove that λ = β^ is intrinsic. But B is linear; hence a change of

frame e " = i e yields

\\β.>\\-A \\βJ\\A-1 so that β.i-βf.

We next examine some special cases of this theorem. It is known [6, p. 30]

that the most general change of connection which preserves parallelism is given

by

(10.9) d 2 v = di v + σ 0 v,

where σ 0 is a fixed one-form. We may write σ 0 = σψ with σ = (σ , , σ / ϊ ) a s
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usual, and φ — (φ , »9φ ) for functions φ.. We define H E Q as follows:

(10.10) H v = σ o v .

Our change of connection is given by the equations

(10.11) d 2 = d ! + H , Ω 2 = Ω ι + σ 0 / ,

where / denotes the rc-rowed identity matrix. We deduce

dΩ2 =dΩί+d σol, Q2

2 = Ω J +σ0Qί + Qι σ0 + σQ

2 / = Ω\

hence

(10.12) ®2=®ι+dσ0I, d®2=d®ι.

Consequently if σ 0 is closed then Θ2 = 6 ^

LEMMA 10.4. The adjoint H* ofU is given by

(10.13) H* v = C ( σ 0 x) d P.

For we have

K(v, H w) = K(v, σ 0 w) = C ( σ 0 v) w = C ( σ 0 v) K(w, d P)

= K(w, C ( σ 0 v) dP).

THEOREM 10.5. Consider each of the changes of connection

( a ) d s ^ d t + H , ( b ) d 2 = d 1 + H * ,

where H v = σ0 v for/a fixed one-form σ0. Corresponding to these we then have

( a ' ) ξ(d2) = ξ(di)+ndσ0, ( b θ £ ( d 2 ) = ξ ( d t ) + d σ0 .

The proof is based on Theorem 10.3. For the change ( a ) the result is evi-

dent by (10.11). To prove (b) we observe that

Ω 2 = Ω t + φσ

when σ 0 = σφ as above. Hence

S(φσ) = φ. σj• = σ 0 , ^ ( d 2 ) = ξ ( d t ) + dσ0 .
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Now let us go back to the linear transformation C d2 of §4 which served to
define the Ricci tensor:

1 ik

Using the ideas in § 5 on extending a linear transformation to the various

spaces 3j\ we shall apply C d2 to the element d P of S ι . (Note that

whereas in § 5 we only considered B: <3J —*'^*5 consequently we are not

applying the results of that section now, but are only drawing an analogy.)

We have

(10.14) C d 2 ( ( / P ) = C d 2 ( σ ί ' e ι ) = - α ι C d 2 ( e i )

1 . ,

Thus by skew-symmetrizing the Ricci tensor we obtain another two-form in-

variantly associated with the connection d. Unfortunately, this is usually not a

closed two form. However we do have the following result (cf. [6, p. 9]).

THEOREM 10.6. If d is a symmetric connection, then

(10.15) ξ(d)=-^(Rik-Rki)σiσk.

Proof. Since d is symmetric we have τ = 0 , σ Θ = 0 [ 7 , (8.7).] Thus

We contract on / and I to obtain

ik ki I ik

But
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hence

It is known [6, p. 31] that the most general change of connection which

preserves the paths of symmetric connections is the so-called projective change

of connection [ 6, p. 87 ] defined by

(10.16) d f = d + H + H*, H v = σ o v ,

for a fixed one-form σo Since (H + H*) is a symmetric linear transformation,

this sends a symmetric connection into another such. It is an immediate con-

sequence of Theorem 10.3 that in case of (10.16) we have

(10.17) ξ(d) = ξ(d) + (n + l)dσ0.

Still one more remark in this connection. If we set B = II + H*, then B is

symmetric and

so that

B 2 v = B ( σ 0 v + C ( σ 0 \)dP) = -σ0 Bv + C ( σ 0 v) Bid P)

= - σ0 Bv = - σ 0 C (σ0 v) d P

hence

(10.18) B 2 v = - C ( σ 0 \) σodP.

If ds2 is a metric on ϊ ! and d is the induced affine connection, then d is

symmetric and the corresponding Ricci tensor is symmetric. This implies the

following:

THEOREM 10.7. // d is the connection induced by a Riemannian ds , then

In view of this last result, Theorem 10.3, and our remarks at the end of

§6, we have the corollary:

THEOREM 10.8. If ά is any affine connection on 5Dζ then ξ(d) is an exact
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differential form; in other words, £(d) is the trivial two-dimensional cohomology

class.

Chern [2, 3] proves this result by showing that the periods of ζ(d) all

vanish, but his proof requires orientability. It is interesting that the essential

formulas are substantially on page 9 of [ 6 ] .

11. Higher dimensional cases. We now form ΘΓ, the rth power of the curva-

ture matrix, and consider its trace

(11.1) £ r = £ r ( d ) = S(ΘΓ).

By virtue of (10.1), this defines a 2r-form on St. Chern [2] conjectured that

this is a cohomology class and yields a topological invariant of 31 alone. In

this section we shall obtain partial results towards this conjecture.

First we ned a few elementary results on products.

LEMMA 11.1. // A = | | α ^ | | is a matrix of p-forms and B = | | j 8 . Λ | | is a

matrix of q-forms, then

For S(AB) = OL.i β * = (-l)P* β * cc/ = (~l)pq S(BA ).

COROLLARY. If AB = BA and p = q = 1 (mod 2), then S(AB) = 0.

LEMMA 11.2. If Ai9 9Ar are matrices of forms of degrees pi9 iPr$

respectively, then

where

c= Σ Pi Pj'
l < ί < / < Γ

This is easily checked by induction. In particular we have the following:

COROLLARY. If Ai9 ,Ar are matrices ofone-forms, then
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where er - + 1 if r s 0, 1 (mod 4) and eΓ = — 1 if r Ξ 2, 3 (mod 4).

In [7] , we proved the formula (9.1):

which is a generalization of the Bianchi identity. From this we deduce that

ξr is indeed a cohomology class. In fact,

d £ r = ) ]

= S(ΩΘΓ)~S(ΘΓΩ)=S(ΩΘΓ)-S(ΩΘΓ)=O.

THEOREM 11.3. The 2r-form ζ is closed and hence defines a cohomology

class on 50!.

In the remainder of this section we shall concentrate on the case r = 2. We

shall begin by expressing ξ2 locally as an exterior derivative—thus obtaining

a new proof of the foregoing theorem for this special case. In the computations

which follow we shall make free use of Lemma 11.1:

Θ - c / Ω - Ω 2 ,

Θ2 = dίίdΩ - dΩ Ω2 - Ω2 dQ + Ω4

But

c/(Ω3)=o;ΩΩ2 -ΩrfΩΩ

and

c/UΏΩ) =

hence

LEMMA 11.4. Locally we have
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where

Now we shall compare results for two connections d and d. We write d = d + B

defining the linear transformation B. We write

d e = Ωe, de = Ωe, Be = Be ,

with β = | | βJ | | a matrix of one-forms. Thus

Ω = Ω + β.

We have

Φ 2 =c/ΩΩ-(2/3)Ω 3 = UΩ W β ) ( Ω + β ) - ( 2 / 3 ) (Ω + β ) 3

+dBQ. + dB β ) - ( 2 / 3 ) (Ω3 + Ω 2 β +ΩBΩ

+ ΩS 2 + β Ω 2 + J S Ω β + ^ Ω + δ 3 ) ,

β - ( 2 / 3 ) β 3

We make the substitution

in this to obtain

S ( Φ 2 ) = S ( Φ 2 W S U β β ~

By differentiating we arrive at:

LEMMA 11.5. Locally we have

here

Ψ2 = (dB - BΩ)B - (2/3) δ 3 + 2 Θ δ - Ω β 2 .
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It is to be emphasized that in these formulas, although we deal with several

connections, everything is expressed in terms of one moving frame e. We shall

now investigate what happens under a change of frame,

e = A e.

From Formula (11.4) of [ 7 ] we have

Ω ^ Ω ^ ^ ^ A'1;

and from the fact that B is linear,

B = A BA 1.

Since d is linear,

Θ = A &A'1.

Thus

Ψ2 =
3

BA'1 +AdBA'1 + ABA-1 dAA-1 - AB QA'1 - ABA"1 dAA"ι)ABA'1

-(2/3) AB3 A'1 + 2A ® BA'1 -AQB2 A"1 -dAB2 A'1

= AdBBA~ι -ABQBA"1 -(2/3) AB3 A"1 + 2A®BA"1 -AίlB2 A"1

= A [(dB - δ Ω) B - (2/3) δ 3 + 2Θβ - Ω β 2 ] A'1 = A Ψ2 A'1.

It follows that Ψ2 represents a linear transformation on 3 Q to 3 3

l . To see this

directly we observe that

de = Ωe, Bde = -Ωβe, B2de = - Ω β 2 e ,

Be = βe, dBe = Uβ - β Ω ) e , BdBe = (ί/β - δ Ω ) Be;

hence

Ψ2 e = (BdB 4- B2d + (2/3) B 3 + 2Bd2) e .

It is clear that B3 and Bd2 are linear since B and d2 are so (see §2);
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consequently it remains to verify that

is linear, and obviously it suffices to show that the (Jordan) product dB + Bd

is itself linear. As usual we let / be a function, v G 3Q

ι, and compute:,

(dB + Bd) (/v) =d(/Bv) + BU/v+/dv)

= dfB\ fdB\-dfB\ + /Bdv = / (dB + Bd) v,

exactly what is needed.

As a result of this we have proved:

LEMMA 11.6. If e and e are two frames related by e - Ae9 then

Ψ2 = AΨ2A'1.

THEOREM 11.7. // d and d are two affine connections on ϊί, then ^ 2 ( d )

and ζ2(d) define the same ^-dimensional cohomologγ class on 2$. More pre-

cisely, there is a three-form λ 2 on ίθΐ such that

We merely set λ2 =S(Ψ 2 ) . By Lemma 11.6, this is intrinsic and so the

theorem follows from Lemma 11.5.

Let us return to the case of a single connection d. It is interesting to see

how the matrix Φ2 of Lemma 11.4 and its trace transform under change of frame.

As above, we let e = Λe and have

A A A

Φ2 =c/ΩΩ-(2/3)Ω 3

-1 +AΩA'ιdAA-1 + dAA'1 dAAmi){AQA'1 +dAA'1)

-1 +dAA'1)3

'ι+AΩA ιdAΩA'1 + dAA'1 dAίlA'1

dAΩA'ιdAA"1 + AdΩA'1 dAA'1 +AΩA'1 dAA'ιdAAml +{dAA'1)3]
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-(2/3) [AΩ3A-1

 +AQA-ldAQA-1 + dAΩ2A-1 + dAA'1 dAΩA'1

+ AQ2A'ldAA-1 +AΏA'1dAA-idAA-1

 +dAΩA-ιdAA-1 + (dAA 1)3],

=S[2dAΩ2A ι +dQΩ + 3ΩA-1 dAA-1 dA + dΩA'ιdA + (dAA'1)3]

- (2/3) S[Ω3 + 3 Ω2 A'1 dA +3dAA'1 dAΩA'1 + (dAA'1)3];

hence

(11.2) S(Φ2)=S(Φ2)+S[ttA-ιdAA'1 dA + dA Ω/Γ1 + (1/3)(Λ4/Γ1)3].

Theorem 11.7 is Chern's conjecture for the case r = 2. It says in effect that

ξ2 is a 4-dimensional cohomology class dependent only on the differentiable

structure of SI. To compute it for a given differentiable structure, it suffices to

compute it with respect to a suitable Riemannian ds2. Lemma 11.2 may be of

help in this. Evidently, if M admits a locally euclidean metric, then ξ2 is trivial;

this is also the case for the 4-sphere. However in general ξ2 is not trivial. *

Also, we may point out that it is not clear that if the same topological manifold

is endowed with two inequivalent differentiable structures, then the same co-

homology class will result.

We shall now give some formulas for the cases r = 3 and r = 4. To begin

with we have

β 3

-(dΩ)2 Ω2 + Ω2dΩΩ2 +dΩΩ4 - Ω 6 ,

Next we have

U Ω ) 2 Ω2 -

XSee [8] where this is shown for the case of the complex projective plane by em-
ploying its elliptic metric. We are grateful to the referee for this reference.
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hence

dS[(dΩ)2Ω] =

It follows that

(11.3)

where

(11.4)

Next we have

observe the relations

Ω + dΩ.Ω2{dΩ)2,

-dΩΩdΩΩ3 +dΩΩ2dΩΩ2 -dΩΩ3dΩΩ + dΩΩ.4dΩ,

- ΩdΩΩ5 + ..- + Ω6dΩ,
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from which we deduce

<mUΩ)3Ω]=S[UΩ)4],

α!SUΩΩ5]=S[2UΩ)2Ω4

From all of these relations we now obtain

(11.5) ξ 4 A ,

where

(11.6) Φ4 = U Ω ) 3 Ω - ( 4 / 5 ) [ 2 U Ω ) 2 Ω 3 + ̂ ΩΩ2ί/ΩΩ] + 2JΩΩ 5 - (4/7) Ω7.

12. Final solution. The general result that ζr defines a cohomology class

independent of the given connection has been obtained by A. Weil in a more

inclusive theorem [4, p. 57]. We shall present Weil's proof for our case in an

operational form which has certain points of interest in itself.

First we need some remarks on transformations and spaces. We previously

defined the space 3 = 5° of q-forms and now we introduce the Grassmann ring

α = Σ e a,
<7=o

of all differential forms on ϊ l . This ring has an involution ω—»ω' which is

defined for ω E 3 ^ by ω ' = ( — l ) ^ ω . The operation of exterior differentiation is

then a semi-derivation in the sense that

d(ωη) = dωη + ω'dη.

Now let us consider the tangent space SQ1. This is a linear space over the ring

3 = 3 0 of functions. If we extend the ring of scalars to (J we obtain the space
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which may now be considered as a linear space over the ring with involution Q.

A linear transformation C is a mapping on U into U such that

C(v + w) = C ( v ) + C ( w ) , C ( ω v ) = ωC(v)

for v, wGU, ω £ Q. A semi-linear transformation C is a mapping on U into U

such that

C(v + w) = C(v) + C(w), C ( ω v ) = ω ' C ( v ) .

In either case, the trace S(C) is perfectly well defined and may be computed as

usual by the rule

S ( C ) = S ( C ) , Ce = Ce,

where C is a matrix with elements in Q. Our extension theorem for linear trans-

formations says in part that a linear transformation B over 3 on 3Q

ι to 3* may

be extended uniquely to a semi-linear transformation of &. The same for affine

connections says that an affine connection d on 3Q

ι to 3* may be extended

uniquely to a semi-derivation d of 3έ, this- latter signifying that

d(ωv) = dω\ + ω 'dv .

We note the following: If d and d are affine connections, then d 2 and dd + dd

are linear on &, If Bt and B 2 are semi-linear on U9 then B t B 2 is linear. If d

is an affine connection and B is semi-linear on U, then dB + Bd is linear. This

last is proved by first observing that

(dω)'~-dω'

and making the computation

(dB + Bd)(ωv) =d(ω /Bv) + B((Zωv + ω'dv)

= dω'Bv + ωdBv -cίω'Bv + ωBdv = ω(dB + Bd)v.

We want to show that if d and d are affine connections, then, for each k,

S(ύ2ίc) - S(ά2ίc) is an exact differential form. As usual, we set d = d + B and

we have:

LEMMA 12.1. dS(ά2kB) = S[d2/c(dB + Bd)].

Proof. We have
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, S(ά2kB) = S(B © 2 / c )

hence

= S [ U β - β Ω - Ω β ) Θ 2 / c ] .

On the other hand,

(dB + Bd)e = d ( β e ) + β ( Ω e ) = U β - β Ω - Ω β ) e ,

which gives the result.

Now we follow the device of Weil in considering the linear series of affine

connections

d, = d + £B, 0 <t <l,

which leads from d = do to d = di We hold B fixed and replace d by d̂  in the

lemma to obtain:

C O R O L L A R Y 12.2. dS(ά2kB) = S{ ύ2ki(ύB + Bd) + 2tB2]}.

On replacing d̂  by d + tB and expanding, we see that the right side of the

last formula becomes a polynomial in t with coefficients traces of certain

operators. Such polynomials may be manipulated formally in order to derive

relations. One must, of course, pay attention to the noncommutativity of pro-

ducts of operators. In this way we may write

((9/(9ί)(d2 + ί(dB + Bd) + ί 2 B 2 ) = (dB + Bd)

ά]ά

hence

which gives us:

COROLLARY 12.3. (d/dt)S(ά2

t

k+2) = U + DdS(d2

t

k B).
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One now integrates out t in these polynomials to obtain

(12.1) S ( d 2 / c + 2 ) - S ( d 2 / c + 2 ) =d[(k + 1) s ( £ d2k B d t ) ] ,

THEOREM 12.4. The cohomologγ class S(®k) - ξ^ is independent of the

affine connection for each k = 1, 2, .

These manipulations lead to certain invariants of a pair of affine connections

d, d = d + B. Let us write

2k-l

Thus F2k; ( d , B ) is the sum of all monomials in d and B in which B appears /

times. Since S ( B ) = 0 we have

_ 2/c-l

S(ά2k)=S(d2k)+Σ, S[F2kJ(ύtB)].

The theorem tells us that the sum on the right side is an exact differential. If

for convenience we also set

F 2 M ( d , B ) = d 2 / c and F2k>2k(d, B) = B2k,

then we have:

THE ORE M 12.5. For each k = 1, 2, • , and j = 1, 2, . . , 2k - 1, we have

S[F2k9J(dtB)]=dS[{k/j)F2k.2fhι(dtB)Bl

Proof. By Formula (12.1) we have

2kΊ

r r i 2 k ' 2 • l

dSlkJ ^ F2k.2tj{d,B)Bt'dt\=d

2k-2
, + l))S[F2 A.2 ( / (d,B)B]

hence
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2/c-l 2/c-l

Σ, S [ F 2 ^ (d,B)]= £

One replaces B by ίB in this relation and equates coefficients of the various

powers of t to obtain the desired result.

It could have been mentioned earlier that each F2}ίfj(dtB) is a linear trans-

formation on ίί. This can be seen by writing

and observing that the linearity of the left side implies that of the right. Again

one "equates coefficients" to obtain the linearity of the individual terms.

Here is a problem suggested by the above investigations. Let A be a non-

singular n-hy-n matrix of functions, Δ = dAA" , and

\ t l - A \ = t n - a ι t n ' i + -*.±an.

One easily verifies the relations

(12.2) ( ί ( Δ 2 r - ι ) = Δ 2 r , ( i ( Δ 2 r ) = 0 ,

< / ( Δ 2 r i 4 ) 4 - ι = Δ 2 r + ι , S ( Δ 2 r ) = 0 .

We a l s o h a v e

S ( Δ ) =dan/an.

The problem is to find expressions for the traces S(A2r~ι) of odd powers of Δ

in terms of the invariants a l9 , an.

13. Protective invariants. We now return to some of our earlier considera-

tions. In this section, σ 0 will denote a fixed one-form, H the transformation of

(10.10), H* its adjoint, as given in Lemma 10.4, and B = H + H*, so that

(13.1) Bv = σov-f C(σ o v) ί fP,

where v denotes, as it always shall in this section, an element of oQ. According

to (10.18) we have
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(13.2) B
2
v = -C(σ

o
v)σ

o
</P.

We now let d denote a symmetric connection and shall prove the formulas

(13.3) dBv = dσ0 v - σ0 dv + dC (σ 0 v) dP 9

Bdv = σ o dv + C (σ0 dv) dP - C (dv) σ 0 dP .

The first is evident since

To prove the second, one notes that each member is linear in dv, so that it

suffices to prove the analogous formula in which dv is replaced by an arbitrary

element of S t , or, indeed, by a generator. Thus let

z = λw G 3 t

ι , where λ G 3°, w G 3J .

Then

Bz = B(λw) = - λBw = - λ σ o w - λ C ( < 7 o w ) d P

= σ 0z-[C(λσow) + C(λw)σo]dP =σoz + C{σoz) dP - C(z) dP .

Having this, we form the new connection d = d + B, also symmetric, and have

d 2 = d 2 + dB + Bd + B 2 ,

so that

(13.4) d 2 v = d 2 v + ί/σov + U c ( σ o v ) + C(σ o dv) - C ( d v ) σ 0 - C(σov)σo]fl?P.

To proceed, we need the following result:

LEMMA 13.1. // λ is a one-form, then C ( λdP ) = (n - 1) ^

For

It now follows that (13.4) implies the following formula:

(13.5) d2v C(ύ2\)dP
1
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1 7 X l

C(d \)dP + dσo\ C(dσo\)dP .
n—l n—l

According to (10.17) we have

(13.6) ?=

hence

(13.7) ξ v=
+1

ξ v
n+1 n + l

Combining (13.5) and (13.7) yields

(13.8) d 2 v - — C(d2v)dP - — ^v + — — C ( ξ v ) d P
τι-1 n + l τ ι 2 - l

= d

2 v C(d 2 vHP ^v-f C(ξv)dP.
1 l 2

The operator

(13.9) v _ > d 2 v C{ά2\)dP ξ v + C(ξ\)dP
n-l n+l n2-l

defined on 3J to 32

l by means of the given connection d is the well-known Weyl

projective curvature tensor [6, p. 88] expressed in operator form. The equation

(13.8) states that it is invariant under a projective change of connection.

Another invariant of this type can be obtained for the changes of connection

which preserve parallelism. Let d be an arbitrary connection, Hv = σov as above,

and note

(13.10) R 2 v = 0 ,

dHv = dσo\ - σoά\

Hdv = σodv.

Thus if d = d + H is a connection for which parallelism has the same meaning
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as for d, then

d~2v =d 2 v + dσ ov.

By Theorem 10.5, we have ζ- ζ+ ndσ0; hence

(13.12) d 2 v - i fv = d 2 v - - ξy.
n n

This shows that the transformation on oQ to 3 2 defined by

(13.13) v—>Pv = d 2 v - - ξx
n

is invariant under any change of connection which preserves parallelism. Ex-

pressed in terms of coordinates, this defines a tensor which may be called the

parallel curvature tensor; it is given by

To complete this section, we shall also find an invariant tensor for the class

of transformations H*. We first have

(13.15) H*UP)=-σodP.

For

H*(dP)=H*(σiei)=-σiC(σoei)dP=-σΰdP.

It easily follows that for d = d + H* we have

(13.16) ά2P = d2P-σ0dP,

C(d 2 P)=C(d 2 P)-U-l)σ 0 ;

hence

(13.17) d 2 P - — C(d2P)dP = d2P~ — C(ά2P)dP.
rc-1 τι-1

A given affine connection d defines an element z = z(d) of T* given by
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(13.18) z = d 2 P - - l - C(ά2P)dP.
n — 1

We have shown that z is unchanged when d is replaced by d + H*. To compute

the components of the tensor which z defines, we set

(13.19) z= - Zi.kσJσkei

and have

(13.20) Zi. = P . (Tι. δi'- Tι 8\)

which is the case because

ά2P = - Γ. σJ σkei9 C(ύ2P) = Tι.,σL

C(d2P)dP = Tl

μ σ'σUi = Γ^δj σ'σkei

Here T is the torsion tensor as given in § 7.
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