THE REFLECTION PRINCIPLE FOR POLYHARMONIC FUNCTIONS

ALFRED HUBER
1. Introduction. In this paper the reflection principle for harmonic functions is extended to the more general class of \(p \)-harmonic functions. The case \(p = 2 \) has already been treated by R. J. Duffin [1] whose method of proof will be used in part. The formula for the reflection of a biharmonic function at a straight line segment in the plane was even previously known to H. Poritsky [3]; but he did not indicate under which conditions such a continuation would have to exist.

A function \(w(x_1, x_2, \ldots, x_n) \) is called \(p \)-harmonic in a region \(D \) of the \(n \)-dimensional space, if it is of class \(C^2 \) and satisfies the differential equation \(\Delta^p w = 0 \). We shall make use of the following well-known properties:

(I) \(w \) is analytic throughout \(D \).

(II) The following representation always exists:

\[
 w = \sum_{\nu=0}^{p-1} x_\nu u_\nu(x_1, x_2, \ldots, x_n),
\]

the functions \(u_1, u_2, \ldots, u_{p-1} \) being harmonic in \(D \); conversely such a sum is always \(p \)-harmonic. As a consequence, the following decompositions are also possible

\[
 w = f(x_1, x_2, \ldots, x_n) + x_1^{p-k} g(x_1, x_2, \ldots, x_n), \quad k = 1, 2, \ldots, p - 1,
\]

\(f \) denoting a \((p - k)\)-harmonic, \(g \) being a \(k \)-harmonic function.

2. Reflection principle.

Theorem. Let \(G \) denote a region of the \(n \)-dimensional space, the boundary of which contains an open subset \(S \) of \(x_1 = 0 \). If the function \(w(x_1, x_2, \ldots, x_n) \) is \(p \)-harmonic in \(G \) and if \(w/x_1^{p-1} \) assumes the boundary value 0 on \(S \), then \(w \) can be continued analytically across \(S \) into the reflected domain \(G' \) by putting

Received October 10, 1953. This research was supported in whole by the United States Air Force under Contract No. AF18(600)-573 monitored by the Office of Scientific Research.

Pacific J. Math. 5 (1955), 433-439

433
(2.1) \(w(-x_1, x_2, \ldots, x_n) = (-1)^p \sum_{k=0}^{p-1} (-1)^k (k!)^{-2} x_1^{p+k} \Delta^k \left(\frac{w(x_1, x_2, \ldots, x_n)}{x_1^{p-k}} \right) \).

REMARKS. In the boundary condition for \(w \), \(x_1^{p-1} \) cannot be replaced by any smaller power of \(x_1 \). This is clearly indicated by the example \(x_1^{p-1} \log(x_1^2 + x_2^2) \). This function is \(p \)-harmonic in \(x_1 > 0 \), but cannot be continued analytically into the origin.

For \(p = 1 \) (2.1) reduces to \(w(-x_1, x_2, \ldots, x_n) = -w(x_1, x_2, \ldots, x_n) \), that is, the classical reflection principle of H. A. Schwarz.

In the case \(p = 2 \) we obtain the continuation formula of R. J. Duffin [1]:

\[
w(-x_1, x_2, \ldots, x_n) = -w + 2x_1 \frac{\partial w}{\partial x_1} - x_1^2 \Delta w.
\]

3. Proof.

We proceed in two steps:

(a) \(w \) can be continued analytically beyond \(S \),

(b) the continuation can be extended to the whole of \(G' \) and is given by (2.1).

We can prove (a) by complete induction with respect to \(p \). It is well known that (a) is true for \(p = 1 \). It remains to be shown that (a) holds for any positive integer \(p \), provided it is known to be valid for \(p - 1 \). R. J. Duffin [1] has carried out this step for the special case \(p = 2 \). His reasoning can be extended to the general case without essential change, although there arise some technical complications (for example, the averaging operation has to be iterated \(p \) times). Therefore, we refer to Duffin's work for the proof of (a).

For the proof of (b) we introduce the notation \(v(x_1, x_2, \ldots, x_n) \) for the right hand side of (2.1).

From (a) we know that \(w \) is analytic on \(S \), and from the boundary condition we conclude further that the functions \(w/x_1^{p-k} (k = 0, 1, \ldots, p - 1) \) are also analytic on \(S \). Therefore \(v \) is analytic on \(G \cup S \).

Moreover, each term \(x_1^{p+k} \Delta^k (w/x_1^{p-k}) \) is a \(p \)-harmonic function. For we have, indicating by superscript the degree of harmonicity,

\[
\Delta^p \{ x_1^{p+k} \Delta^k [w(x_1^{p-k})] \} = \Delta^p \{ x_1^{p+k} \Delta^k [(f^{(p-k)} + x_1^{p-k} g^{(k)})/x_1^{p-k}] \}
\]

\[= \Delta^p \{ x_1^{p+k} \Delta^k [f^{(p-k)}/x_1^{p-k}] \} = \Delta^p \{ x_1^{p+k} (h^{(p)}/x_1^{p+k}) \} = 0.
\]
Consequently, v is p-harmonic.

Now we shall prove that the Taylor developments of the functions \(w(-x_1, x_2, \ldots, x_n) \) and \(u(x_1, x_2, \ldots, x_n) \) are identical in an arbitrary point of S. This will complete the proof of the theorem. For then we can immediately draw the conclusion that $w(-x_1, x_2, \ldots, x_n)$, being identical with $v(x_1, x_2, \ldots, x_n)$, can be continued into the whole of G. Therefore, (2.1) yields in fact a continuation of $w(x_1, x_2, \ldots, x_n)$ into the reflected domain G'.

Let

\[
(3.1) \quad w = \sum a_{\nu_1 \nu_2}^{x_1 x_2 \ldots x_n} x_1^{\nu_1} x_2^{\nu_2} \ldots x_n^{\nu_n}
\]

be the Taylor development of w at an arbitrary point of S, which we may assume to be the origin of the coordinate system without losing generality. We are left to prove that the development of v at the same point is given by

\[
(3.2) \quad v = \sum (-1)^{\nu_1} a_{\nu_1 \nu_2}^{x_1} x_1^{\nu_1} x_2^{\nu_2} \ldots x_n^{\nu_n}
\]

First we demonstrate a lemma which we shall use in the sequel:

\textbf{Lemma.} (see [2, problem 137]). Let r, s, t denote arbitrary positive integers, such that $t \neq r$. Then the identity

\[
(3.3) \quad \sum_{l=0}^{r} (-1)^l \binom{l + s}{t} \binom{r}{l} = 0
\]

holds. (We define $\binom{l + s}{t} = 0$ for $l + s < t$).

\textbf{Proof of the lemma.} Differentiating the identity

\[
(1 - x)^r = \sum_{l=0}^{r} (-1)^l \binom{r}{l} x^l
\]

times with respect to x, putting $x = 1$ and dividing by $t!$ we get (3.3) for the special case $s = 0$. By complete induction with respect to s and making use of the relation

\[
\binom{l + s}{t} = \binom{l + s - 1}{t} + \binom{l + s - 1}{t - 1}
\]
the general case is easily established.

As a first step in the proof of (3.2) we now verify that the operator (2.1) transforms the function

\[x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n} \]

being arbitrary positive integers and \(p \leq \nu_1 \leq 2p - 1 \). Putting this function into (2.1) we obtain

\[
(-1)^p \sum_{k=0}^{p-1} (-1)^k (k!)^{-2} x_1^{p+k} \Delta^k \left(x_1^{\nu_1-p+k} x_2^{\nu_2} \cdots x_n^{\nu_n} \right) = S_1 + S_2
\]

where

\[
S_1 = (-1)^p \sum_{k=0}^{\nu_1-p} (-1)^k (k!)^{-2} x_1^{p+k} \sum_{k_1 < k} \frac{k!}{k_1! k_2! \cdots k_n!} \frac{\partial^2 k \left(x_1^{\nu_1-p+k} x_2^{\nu_2} \cdots x_n^{\nu_n} \right)}{\partial^2 x_1^{k_1} \partial^2 x_2^{k_2} \cdots \partial^2 x_n^{k_n}}
\]

and

\[
S_2 = (-1)^p \sum_{k=0}^{p-1} (-1)^k (k!)^{-2} x_1^{p+k} \sum_{k_1 + k_2 + \cdots + k_n = k} \frac{k!}{k_1! k_2! \cdots k_n!} \frac{\partial^2 k \left(x_1^{\nu_1-p+k} x_2^{\nu_2} \cdots x_n^{\nu_n} \right)}{\partial^2 x_1^{k_1} \partial^2 x_2^{k_2} \cdots \partial^2 x_n^{k_n}}.
\]

We have

\[
(3.4) \quad S_1 = (-1)^p \sum_{k=0}^{\nu_1-p} (-1)^k (k!)^{-2} \frac{(\nu_1 - p + k)!}{(\nu_1 - p - k)!} x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}
\]

\[= (-1)^{\nu_1} x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}
\]

because of

\[
\sum_{k=0}^{\nu_1-p} (-1)^k \frac{(\nu_1 - p + k)!}{(k!)^2 (\nu_1 - p - k)!} = \sum_{k=0}^{\nu_1-p} (-1)^k \binom{\nu_1 - p + k}{k} \binom{\nu_1 - p}{k} = \sum_{k=0}^{\nu_1-p} (-1)^k \binom{\nu_1 - p}{k} \sum_{l=0}^{k} \binom{k}{l} \binom{\nu_1 - p}{l}
\]
since the inner sum in the last expression vanishes for \(l < \nu_1 - p \) and equals \((-1)^{\nu_1-p}\) for \(l = \nu_1 - p \) (see solution of problem 141 in [2]).

In order to prove that \(S_2 = 0 \) we consider now the sum \(\sigma \) of all terms in \(S_2 \) belonging to an arbitrary but fixed set of values \((k_2, k_3, \ldots, k_n) \neq (0, 0, \ldots, 0)\). In the following we shall denote by \(A_1, A_2 \) and \(A_3 \) factors which do not depend on the summation index. Putting \(k^* = k_2 + k_3 + \cdots + k_n \), we have

\[
\sigma = A_1 \sum_{k = k^*}^{\nu_1-p+2k^*} (-1)^k \binom{k}{k^*} \frac{k!(\nu_1-p+k)!}{k!(\nu_1-p-k+2k^*)!} x_1^{\nu_1+2k^*} x_2^{\nu_2-2k_2} \cdots x_n^{\nu_n-2k_n}
\]

\[
= A_2 \sum_{k = k^*}^{\nu_1-p+2k^*} (-1)^k \binom{k}{k^*} \binom{\nu_1-p+k}{k} \binom{\nu_1-p+2k^*}{k} \sum_{l=0}^k \binom{\nu_1-p}{l} \binom{k}{l} = \sigma' + \sigma'',
\]

where

\[(3.5) \quad \sigma' = A_2 \sum_{l=0}^{k^*-1} \binom{\nu_1-p}{l} \sum_{k = k^*}^{\nu_1-p+2k^*} (-1)^k \binom{k}{k^*} \binom{\nu_1-p+2k^*}{l} \binom{\nu_1-p+2k^*}{k} \]

and

\[(3.6) \quad \sigma'' = A_2 \sum_{l=k^*}^{\nu_1-p+2k^*} \binom{\nu_1-p}{l} \sum_{k = l}^{\nu_1-p+2k^*} (-1)^k \binom{k}{k^*} \binom{\nu_1-p+2k^*}{l} \binom{\nu_1-p+2k^*}{k} .
\]

But since

\[(3.7) \quad \sum_{k = k^*}^{\nu_1-p+2k^*} (-1)^k \binom{k}{k^*} \binom{\nu_1-p+2k^*}{l} \binom{\nu_1-p+2k^*}{k} = A_3 \sum_{k = k^*}^{\nu_1-p+2k^*} (-1)^k \binom{k}{l} \binom{\nu_1-p+k^*}{k-k^*} = 0
\]
by means of (3.3), we conclude that $\sigma' = 0$. Furthermore, we observe that the summation over k in (3.6) may be extended from $k = k^*$ to $k = \nu_1 - p + 2k^*$ because $\binom{k}{l} = 0$ in all terms with index k lying in the interval $k^* \leq k < l$. Therefore $\sigma^{''} = 0$. Consequently $\sigma = 0$ and, finally, $S_2 = 0$. Combining this with (3.4), we obtain the stated property of the operator (2.1).

We now apply the transformation (2.1) to the series (3.1). This may be carried out term by term. Putting

$$v = \sum b_{\nu_1 \nu_2 \cdots \nu_n} x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n},$$

we have to prove that

$$(3.8) \quad b_{\nu_1 \nu_2 \cdots \nu_n} = (-1)^{\nu_1} a_{\nu_1 \nu_2 \cdots \nu_n}.$$

From the boundary condition we infer that $\partial^k w / \partial x_1^k = 0$ ($k = 0, 1, \ldots, p - 1$) on S. Since this holds in all points of S it follows that $a_{\nu_1 \nu_2 \cdots \nu_n} = 0$ for $\nu_1 \leq p - 1$ and arbitrary $\nu_2, \nu_3, \ldots, \nu_n$. On the other hand, it is easy to see that the operator (2.1) never decreases the number of factors x_1 in a term. Therefore we have also $b_{\nu_1 \nu_2 \cdots \nu_n} = 0$ for $\nu_1 \leq p - 1$ and arbitrary $\nu_2, \nu_3, \ldots, \nu_n$. This proves (3.8) for $\nu_1 \leq p - 1$.

We have verified above that the term

$$a_{\nu_1 \nu_2 \cdots \nu_n} x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}$$

is transformed into

$$(-1)^{\nu_1} a_{\nu_1 \nu_2 \cdots \nu_n} x_1^{\nu_1} x_2^{\nu_2} \cdots x_n^{\nu_n}$$

for $p \leq \nu_1 \leq 2p - 1$ and arbitrary $\nu_2, \nu_3, \ldots, \nu_n$. Since (2.1) never decreases the number of factors x_1, terms of order $\geq 2p$ in x_1 cannot contribute to the coefficients $b_{\nu_1 \nu_2 \cdots \nu_n}$, where $p \leq \nu_1 \leq 2p - 1$, and (3.8) is thus demonstrated for $p \leq \nu_1 \leq 2p - 1$.

Finally, we observe that both $w(-x_1, x_2, \ldots, x_n)$ and $v(x_1, x_2, \ldots, x_n)$ are p-harmonic functions. Using the differential equation (and eventually differentiating it) any derivative of order $\geq 2p$ in x_1 can be expressed as a linear combination of derivatives of the orders $\nu_1 - 2, \nu_1 - 4, \ldots, \nu_1 - 2p$ in x_1. If the equality of the latters has already been shown, it follows that the first ones
also have to be equal. By complete induction we thus are able to assert the validity of (3.8) in the remaining range \(\nu_1 \geq 2p \). This completes the proof.

References

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, Alfred Horn, at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back numbers (Volumes 1, 2, 3) are available at $2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

During the absence of E.G. Straus.

UNIVERSITY OF CALIFORNIA PRESS • BERKELEY AND LOS ANGELES

COPYRIGHT 1955 BY PACIFIC JOURNAL OF MATHEMATICS
Nesmith Cornett Ankeny and S. Chowla, *On the divisibility of the class number of quadratic fields* .. 321
Cecil Edmund Burgess, *Collections and sequences of continua in the plane* ... 325
Jane Smiley Cronin Scanlon, *The Dirichlet problem for nonlinear elliptic equations* ... 335
Arieh Dvoretzky, *A converse of Helly’s theorem on convex sets* 345
Branko Grünbaum, *On a theorem of L. A. Santaló* 351
Moshe Shimrat, *Simple proof of a theorem of P. Kirchberger* 361
Robert E. Edwards, *On factor functions* 367
Harley M. Flanders, *Methods in affine connection theory* 391
Alfred Huber, *The reflection principle for polyharmonic functions* 433
Geoffrey Stuart Stephen Ludford, *Generalised Riemann invariants* 441
Ralph Gordon Selfridge, *Generalized Walsh transforms* 451