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1. Introduction. Let > be an irreflexive binary relation defined over a
domain 9 of elements a, b, ¢, -+ +. We represent the system (9, >) by an oriented
graph G by regarding the elements of © as vertices of G and inserting an arc
ab of the graph, oriented from a to b, if and only if @ > b. The sentence ‘“‘a > b’
is read “‘a dominates b’’, A set V of vertices is termed internally satisfactory®
if and only if x €V and y € V implies x ¥ y. A set V of vertices is termed ex-
ternally satisfactory if and only if y € © — V implies that there exists an x € V
such that x > y. A set V of vertices is termed a solution of G, or of (9, >), if
and only if it is both internally and externally satisfactory. In [4], various suf-
ficient conditions for the existence of solutions were established.

By a subsystem (9g,>) of the system (,>) is meant a system where
95 C9Y and the relation > for the subsystem is merely the restriction of the
relation > for the supersystem (9, >). Let Go be the graph of the subsystem
(D4,>) and let ¥y be a solution of Go. A solution V of G is termed an extension
of Vo if Vn 9y =Vy; in this case Vy is also said to be relativized from V. In
this paper, some sufficient conditions for the existence of relativizations and
extensions of solutions are presented. More elegant and more effective extension
theorems, especially with a view toward possible applications to the theory of
n-person games, remain to be desired. It is hoped that the present paper may

serve to stimulate interest in this apparently difficult problem.

2. A theorem on relativization. If 7 is a subgraph of the graph G, then the
graph obtained by adding to / all the arcs of G which join pairs of vertices of
H will be termed the juncture of H (relative to G) and will be denoted by H.

' [2], internally satisfactory is called satisfactory with respect to non-domination,
and in [4] it is called M -satisfactory.
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H is termed a conjunct subgraph of G if and only if H = H.

The graph Go of a subsystem (94, >) of the system (9, >) having the
graph G is a conjunct closed subgraph of G. If I is any subgraph of G, proper
or not, and x is any vertex of G, then D~!(x, H) shall denote the set of all
vertices y of H such that y > x. If X is any set of vertices of G, let

DNX,H)= U DNx,H),
xS X

and let

D™X,H) =D D™ NX,H), H)

for n > 1. Let D°(X, ) = X by definition.

TueorEM 1. If Gy is a conjunct subgraph of G and V is a solution of G,
then a sufficient condition for Vn 94 to be a solution of Gy, where 9q is the

set of vertices of Gy, is that

(1) D 'y, G)C Dy for every y € 85— V'n 9.

Proof. We must prove that V' n 9, is both internally and externally satis-

factory with respect to Gy. That is we must prove that
(a) %,y €V n9gimplies x H y relative to Go, and

(b) y €9y -Vn9, implies that there exists an x € V'n 9, such that
x > y relative to G,.

But (a) follows immediately from the facts that G, is a conjunct subgraph of
G and that V is a solution of G. To prove (b), consider any y € Dg -V n Dy,
There exists an x € V such that x > y relative to G since V is a solution of G.
Then x € D-'(y,G) C 9y by hypothesis. Thus x,y € 9, and the oriented arc
xy C G. Since G, is a conjunct subgraph of G, arc xy C Go. This completes the
proof.

REMARK. It would suffice to replace Condition (1) by the weaker condition:
y €99~V n Yy implies that there exists a vertex x € V'n 9 such that x > y.

3. An extension theorem. If X C 9, let the predecessor-set of X relative to
G — Gy denote the set
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P(X,G-Goy)= U D™MX, G-Gy).

n=1

By a predecessor-sequence p(xo,G —Go) of xg € 9y relative to G -G, is
meant a maximal regression® %o, x1, %, +++, of finite or infinite length, such
that all its vertices except possibly x, itself are in G — Gg; that is, such that
one vertex x, is chosen from the set D" 'x,.;, G - Go) for each n > 0, all
x,’s being distinct. Let p*(x9,G ~ G, ) be the set of all vertices of the pre-
decessor-sequence p(xg, G — Gg) other than x, itself. A predecessor-sequence

is termed trivial if and only if p* (%o, G — Gy) is empty. We have

P(x0,G = Go) = Up*(xo,C = Go)

for all predecessor-sequences p(x9, G ~ Go) of xo relative to G — G,. Note
that the elements of the predecessor-set of x, or of a predecessor-sequence of
%o are not necessarily ancestors of xg, although every ancestor of x, belongs to
at least one predecessor-sequence of x, (all relative to G — Go). If > is not
asymmetric then a source, which has no ancestor, may have non-trivial pre-

decessor-sequences.

Throughout the sequel we suppose that G, is the graph of a subsystem
(Dg,>) of the system (9, >) the graph of which is G, that V, is a given
solution of Gy, and that®

Wyo =D (Vo, Go) = Dg = V.

THEOREM 2. Suppose that:

(1) All non-trivial predecessor-sequences p(x9,G —Go), %9 €Yy, are

either infinite or, if finite, of odd length if xo €Woo and of even length if xo € Vo

(2) D(Vo, G)n D"2"(Vo, G =Go) =D (Vo, G)nn D3 (W0, G =~ Go) =0 for
all n > 0;

(3) Ifh > 0and k > O are of the same parity then
DM (VoG = Go)n DR (Woo, G - Go) =0,
and if h > 0 and k > 0 are of different parities then
DM (Vo G = Go)n DF (¥, G = Go) =D (W0, G = Go ) n D5 (Wyo, G = Go) =0

2See [4] for definitions omitted here.

3This is a slight modification of the notation of [4 1.
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(4) 9-9,CP(94,6-6Gy).
Then a solution V of G which is an extension of Vy exists.

Proof. Let

8

V=VOU(

nCc

D™ (Vy, G = Gy )) u(

" C g

D=2 (W, G = G, )) ’

n=1 n=1

W:Woou( U D-2n+l(V0,G—Go)) U(
n

n=1

nC 8

D" (Woo, G - Gy )).

1

We shall show that V is a solution of G. Since G, is a conjunct subgraph of G

and V, is a solution of Gy, it follows that V, is internally satisfactory relative
to G. By (4), 9=V uW. By (3), VnlW =0; hence W =9 — V. We have only

to prove:

(a) VaD(V,G)=0;
(b) WcD(V,G).

Proof of (a). If x €V,, y € Vo, then x %y since V, is internally satis-

factory relative to G.
If x € Vo, y €D2"(Vo, G - Gyg), then x ¥ y by (2).
If x € Vo, y €D2"* 1 (Wpo, G = Gy ), then x 3y by (2).

If x€D2"(Vy,G~Gy), y €V, then x ¥ y; for x >y would imply that
x €D"Y(V,, G~ Gy) contrary to (3).

If x €D°*"(Vo, G = Go), y ED2™(V,, G — Gy ), then x M y; for x > y would
imply that x € D-2™1(V,, G = G) contrary to (3).

If x €D (Vo,G=Go), y €D 2™ 1 (W0,G = Go), then x Y y; for x >y
would imply that x € D"*™ (W0, G — G, ) contrary to (3).

If x€D 2™ Y (Wo0,G - Go), y € Vo, then x ¥ y; for x >y would imply
that x € D"'(V,, G - G, ), contrary to (3).

If x €D (Wyo, G - Gy), y €D (Vy, G = Gy), then x Y y; for x >y
would imply that x € D" '(V,, G - G, ) contrary to (3).
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I x €D 2™ Y (Wy0, G ~Gy), y €D Y (W0, G = Gy ), then x ¥ y; for
x > y would imply that x € D=?"(Wy, G — Go ) contrary to (3).
Proof of (b). If y €Wy, then there exists an x € V; such that x >y.

If ye D-2nti( Vos G = Gg), then there exists an x € D"2"*(V,, G — G4 ) such
that x > y, since y belongs to some predecessor-sequence p(xo, G — Gy) of

some xo € Vg and such a predecessor-sequence is infinite or of even length by

(1)

If y € D"2"(Wy0, G — Gg), then there exists an x € D21 (Wy,, G — Gy ) such
that x > y, since y belongs to some predecessor-sequence p(xg, G —G,) of
some %o € Wyo, and such a predecessor-sequence is infinite or of odd length by

(1). This completes the proof.

COoROLLARY. Suppose Conditions (1) and (4) of the theorem above, and
that:

(a) No vertex of any P(x,,G = Gy), x0 € Dy, is adjacent to any vertex of

D¢ other than xo; and if %y and xg are distinct vertices of O then
P(x0,G -Go)nP(x4,G~Go)=0;
(b) No P(x4, G-Gy) ulxg), xo €9y, contains an odd unoriented cycle.
Then a solution V of G which is an extension of V, exists.

Proof. We have to show that the hypotheses of the corollary imply those of
the theorem. It will suffice to show that if either (2) or (3) are false then
either (a) or (b) will be violated.

If (2) were false, there would exist either a vertex
x €D (Vo, G)a D2 (V,, G = Gy)
or a vertex
y €D (Vo, G)n D27 1 (Wo0,G =~ Gy).

In either case, the first part of (a) or (b) is contradicted.

If (3) were false there would exist either

(i) a vertex
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xED'h(vg,G—GO)nD'k(wf

00?

G -Gy)

with % and % of the same parity or

(ii) a vertex y such that either

y €D (v}, G = Go)a D (], G - Gy)
or

y €D (wi G ~Go) aDF(wl

00° 00 *

G- Go)

with & and k of different parities.

In Case (i), Condition (a) would be violated. In Case (ii), (a) implies
i =j. But then P(vé,C -Go)u (vé ) or P(wfm,C ~Go)u (wgo) would contain
an unoriented cycle of odd length 4 + k& contrary to (b).

4. Sinks and inverse bases. We suppose henceforth that 9 -~ 9, CP (9,

G - Gy ). If H is any conjunct subgraph of G, and x is a vertex of G, let

C'(x,H)= U D™(x,H).
n=0
That is, C'l(x,H) denotes the set of all vertices y of H which chain-dominate
x by means of a chain all the vertices of which, except possibly x, lie in H,

together with x itself; in symbols

CYx,H)=P(x,H)u (x).

If yeC'(x,H) and x € C'(y,H), x #y, then x and y are termed cyclically
related relative to H. If y € C"'(x, H) but x £ C-'(y,H) then x is termed a
descendant of y relative to H. A sequence xj, %3, %3, +++ of vertices of H is
termed a descending sequence of H if x,+, is a descendant of x, for all n
(except the last n if the sequence is finite) and if there exists no vertex y
which is a descendant of all x,. If a vertex x of H has no descendant relative
to H then C-'(x,H) is termed an inverse basic set of H and x is termed a sink
of this inverse basic set. A subgraph H is termed descendingly finite if every
descending sequence of H is finite. The same inverse basic set may contain

more than one sink; all sinks of the same inverse basic set are cyclically
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related relative to H, and any vertex cyclically related to a sink is a sink of

the same inverse basic set of H.

LemMA 1.* If H is descendingly finite then every vertex of H belongs to

some inverse basic set of H.

Proof. Let x, be any vertex of H. Each descending sequence x;, x5, %3, ++

of H beginning with x; has a last element x). Then

X1 eC“(Xz,H), X2 EC-I(X;;,H),"',X)\-I EC'.l(xA,H)

but
%y & C (o, H), x5 £ C (xg, H), o ooy £ C My HD.
Hence
CMxyyH) CC M (g H) Cone CC M (ay, H)
and

A
CH(ap, H) = U € (g H)

i=1
is an inverse basic set containing x; of which x, is a sink.

LEMMA 2. If H is descendingly finite, no proper subset B of an inverse

basic set A is an inverse basic set.

Proof. Suppose contrarywise that B were an inverse basic set and a proper
subset of 4. Let b be a sink of B and a a sink of 4. Then B = C-'(b,H) and
A = C'(a,H). Since B is a proper subset of 4, b#a and b € C"'(a, H). Since
the sink b can have no descendant relative to H, we have a € C ' (b, H), other-
wise @ would be a descendant of 5. Then C~'(a,H) CC-'(b,H), or A CB.
Therefore A = B contrary to hypothesis.

By an inverse basis of H is meant a set S of vertices of H such that (a)

x €S, y€S, x#y, implies that x is not chain-dominated by y relative to H,

4Lemmas 1-5 are duals, in an obvious sense, of Lemmas 1-5 of [4] which are in turn
generalizations of theorems of K&nig [1, pp.88-90], for finite graphs. Lemma 2 of [4,
p-581] should be corrected by adding to its statement ‘‘if B has a source’’, and de-
leting from the proof all mention of Case (c); this change does not affect the rest of [4].
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and (b) y € Hn 9 —~ S implies that there exists a vertex x of S such that x is
chain-dominated by y relative to H (that is, y € C*'(x, H)).

LEMMA 3. Every descendingly finite subgraph H has an inverse basis.

Proof. Let the distinct inverse basic sets of H be B, B, +++, where B; # Bj
for i #j. (The range of i and j is any lower segment of ordinal numbers, finite
or not.) By Lemma 1, every vertex of H belongs to at least one B;. Let b; be a
sink of B;. Then no b; chain-dominates b;, i #j. For, if so, b; € C'l(b]',H).
Then b; has b; as a descendant unless b;j € C*'(b;, H); that is, unless b; and

bj are cyclically related relative to H. In this case,
C' (b, H) CC*(bj,H) and C'(bj,H) CC ' (b, H);

that is, B; =B, a contradiction. Let S be the set of b;’s just chosen, con-
sisting of one sink from each inverse basic set B;. It has just been shown that
Condition (a) of the definition of inverse basis is satisfied by S. That Con-

dition (b) is satisfied follows immediately from Lemma 1.

LEMMA 4. If H has an inverse basis S and b; €S, then C'(bj,H) is an

inverse basic set of which b; is a sink.

Proof. If not, b; has a descendant p in H. That is,
b;€C*(p,H) but pgC (b, H).

Since p EHn 9, there exists a vertex b; of S such that p € C-'(b;, H). Now,
p j P js

b; # b; since p & C*'(b;, H). Hence b; chain-dominates p which chain-dominates
j i P i i P

bj, so that b; chain-dominates b; since chain-domination is transitive. This

contradicts the fact that b; and b; both belong to the inverse basis S.

LEMMA 5. Every inverse basis S of a descendingly finite subgraph H con-

sists of one sink from each inverse basic set of H.

Proof. By Lemma 4, each vertex of S is a sink of some inverse basic set.
Two distinct vertices of S cannot both be sinks of the same inverse basic set
since, if so, they would be chain-dominated by each other. There remains only
to show that every inverse basic set has a sink in the given basis S. Suppose
B were an inverse basic set none of the sinks of which were in S. Let b be a
sink of B. Since b is not in S, there exists a vertex b’ of S such that b chain-
dominates b’ Hence C'(b,H) C C'(b%H). But b has no descendant relative
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to H since b is a sink. Therefore 6” and b must be cyclically related relative
to H since, if not, b’ would be a descendant of b. Therefore C*'(b’, H)C
C-'(b,11), so that C* (bJH )= C~"(b,H) = B. Then b’ is a sink of B which does

lie in S.

5. Progressively finite graphs. A graph H is termed completely descend-
ingly finite if and only if all its closed subgraphs are descendingly finite. A
sequence {x,} of vertices of H is termed a progression of H if and only if
%p > %n+1, and Cl(x,x,+1) CH for all n (except the last if the sequence is
finite ). / is termed progressively finite if and only if all the progressions of

} are finite,

LEMMA 6. A necessary and sufficient condition that H be completely de-
scendingly finite is that H be progressively finite.

Proof. 1t H is progressively finite then it is descendingly finite. If # is
progressively finite then every closed subgraph of H is progressively finite.

Hence if H is progressively finite then it is completely descendingly finite.

If H is completely descendingly finite, there can exist no infinite progression
Xy P> Xy >=sse >=xp, > ++0, For, if so, the subgraph consisting of the vertices
x; and the oriented arcs x;x;+; (i =1,2,3,+++) would constitute a closed sub-

graph which would not be descendingly finite. This completes the proof.

For example, the graph G of Figure 1 is descendingly finite but not com-

pletely descendingly finite since G — St(y) is an infinite progression.

We suppose henceforth that C1(G — Gy ) is progressively finite, where Gq is
a conjunct closed subgraph of G having the solution Vo. Let®

Woo =D (Vo, Go) and Wo=D(Vy, G) uD"*(Vo,G - Gy).
Let
G_[ =G—St(V0 leo)-

Let V_; be an inverse basis of G_; which exists by LLemma 3. For each finite

ordinal number £ > 1, let

W-k =D(V_k,G_k) V] D-I(V.k, G-k)r

5This is a slight modification of the notation of [4 ]
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*1 *2 *3 x4 ad inf.

A4
Vv
y
‘
AN

y Figure 1
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and

Gopey =G =St u (V.iUW.L‘) =G.k—St(V.~kUW.k)
0< i<k

and let V.;_, be an inverse basis of G ..
LEMMA 7. G.p.y is a conjunct subgraph of G for all k > 0.

Proof. Any arc of G not in Gj_y lies in

St U (V.iU W-L)]
i<k

and hence has at least one endpoint in this star. Thus if x and y are vertices
of G_j., and x > y relative to G then x > y relative to G.j.; since arc xy

cannot lie in the star while both endpoints are in G_j.,.

LEmMMA 8. Forall k > 0,

0< i< kt1
is internally satisfactory.
Proof. We prove the lemma by mathematical induction.

For & = 0, we must prove that
(VoU V_l)nD(VoU V_l,G)=0.

(1) x, y €V, implies x » y relative to G; for x ¥ y relative to G, since
V, is a solution of Gy and G, is a conjunct subgraph of G.

(2) x €Vy, y €V.y implies x ¥ y relative to G; for D(Vy, G ~ Gy )n Gy =0
by definition of G while V., CG.,.

(3) x €V.q, y €V, implies x ¥ y relative to G; for "' (Vy, G ~ G, ) nG. =0
by definition of G.; while V., C G_;.

(4) x, y € V., implies x M y relative to G; for V., is an inverse basis of
G., which implies x > y relative to G.; while G_; is a conjunct subgraph of G
by Lemma 7.

Assuming that Ui_<_k V.; is internally satisfactory, we complete the proof by
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showing:
(a) Virn DU 1,,6\=0;
i<k
(b) V-k—lnD(V-k-l’G)=0;
(c) U V;|\nD(Vy,G)=0.
i<k
If

x€ U Vyy€Vyu,
i<k

then x H- y; for if x > y then

and y & G_j. 1, while V_j4.; CG.j.1. This proves (a). Since G.;.; is a conjunct
subgraph of G, x >y relative to G, where x, y € V.;.1, would imply x >y
relative to G.j.;, contrary to the definition of inverse basis. This proves (b).

If

% € Vgt ye U V-i9
i<k

then x 3 y; for if x > y then

x€ U DYV, G;)c U W,
i<k i<k

so that x € G_j., a contradiction. This completes the proof.

It may happen that G., =0 for no finite ordinal n, in which case we may let

Gow=G-St| U (V;u W_i)],
i<w

V., = any inverse basis of G__, and

W.w=D(V.w, G-w) u D-l(V-w, G-w)’

and so on. Transfinite induction shows that if B8 is an ordinal number for which



RELATIVIZATION AND EXTENSION OF SOLUTIONS OF IRREFLEXIVE RELATIONS 563

V.o is nonempty for all oo < 3 then

U V.
a<p

is internally satisfactory. Let the cardinal number of the set © be K ,+ Let Abe
the next largest ordinal after those of 5 ( Ku) where 5( K#) is the set of all
ordinal numbers of well-ordered sets having cardinal number x,. Then no
matter how we well-order the elements of 9, its ordinal number is < A. Well-

order them as follows:

i
VO WO V_l u/_[
X1y X2y *e XasXatry*** xﬁnxﬁ+l:"' Xy g Xy +149*°°
/
I/-a) W-w
xs’x8+l’... XesXetlsy®*®

Then every vertex of 9 is in some V.; or some W.; with { < A. Let « be the
lowest ordinal for which G.x = 0. Then every vertex of G is ultimately used up
in some Vg or W.¢r, { < k. We have then the following theorems in which we
let

V= U Vog:
0< a<k

TuEOREM 3. If V,y is a solution of the subsystem (Do, >) of the system
(9,>), and if the graph C1(G ~ Gy ) is progressively finite, and every vertex
of G =Gy is in the predecessor-set P (94, G — Go), then V is a maximally in-

ternally satisfactory set.

THEOREM 4. If, in addition to the hypotheses of Theorem 3, there exist
inverse bases V.4 for each 0t with 1 < o <k such that

D' (Vo,G —Go)CD(V,G) and D' (V.4,G.0) CD(V,G),

then V is a solution of G and an extension of V.

THEOREM 5. If, in addition to the hypotheses of Theorem 3, > is sym-

metric, then V is a solution of G and an extension of V.

The proofs of Theorems 4 and 5 are immediate. ®

6 As to Theorem 5, the fact that if > is symmetric then every maximally internally
satisfactory set is a solution is established in [2].
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THEOREM 6. If the hypotheses of Theorem 2 are satisfied, then so are the
hypotheses of Theorem 4.

Proof. Let

Wo =D(Vo,G)uD ' (Vo,G=Go),

Vi =D"%(Vo, G =Go) u D" (Wy0, G = Gy),

W.y=D3(VoyG=Go)uD*(Wyo,G=Go) =D V.1, G =Go) uD(V.1, G =Gy),

Via=D*(V5,G=Go)uD3(Wyo,G -Gy,

and so on. Then

Ve U Vg=VoulUD?(Vo,G=Go)uUD 2 (Wy0,G = Go)
o< a

and

W= U Wa=WoouUD2""(V,, G- Go)ulUD?"(Wo,G - Gyo),

0<a

so that V is a solution.

There remains to show that V., is an inverse basis of G.,. Clearly, neither
of two distinct vertices x,y € V., chain-dominates the other by virtue of the
parity restrictions (2), (3) of Theorem 2. We must show now that every vertex
y of G.4 chain-dominates some x of V.,. This is obvious since by (4) every y
belongs to P (9, G~ Gy), that is, to some D™ (V,, G — Gy ) or to some D" (Wy,,
G - Gy), that is, to some V.4 or W.4 By (1) it is clear that every D" (V.q, G-o)C
D(V,G). This completes the proof.

The example of Figure 2 shows that Theorem 4 is less restrictive than

Theorem 2. For
w: ED-I(W()(),G—GQ)HD-Z(V(),G—-Go)nD-l(Vo,G—Go)

but an extension exists and the hypotheses of Theorem 4 are satisfied.

6. Some extension theorems. If H is a subgraph of G, let

K(x,H)=D(x,H) u D' (x,H), x €9,
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Figure 2
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let
K(X,H)= U K(x,H), XcC9;
x€X
let
K*"(X,H) =K(K"'(X,H), H) forn > 1.

That is, K* (X, H) denotes the set of vertices of H connected to vertices of X

by unoriented one-dimensional chains of length n.

LEMMA 9. If 9~93,CP(Vy,G —Gy), then every inverse basic set B of
G.;.1 has a sink in K*(V.;, G_;.y), i > 0.

Proof. Suppose i =0. Each sink y of B chain-dominates some vertex of
Vo since © -9, CP(Vy, G - Gy). Consider the chains of minimum length m by
which y chain-dominates vertices of Vy. Then m > 2 since K(Vy, G ~Ggo)n
G.y =0. Suppose the lemma were false, so that m > 2, and let ¥y, be a sink of
B for which this minimum length is attained. Then there exist distinct vertices

X15%2y %%y Xp-1 of G — Go such that

Yo > Xm-1 3> Xpme2 >= ¢+ > X1 > v(];
for some v{; € Vo. Then either
(1) 21 £G4,
or (2) xp,.1 €G.; and is a descendant of Yoo
or (3) x,.1€G_; and is cyclically related to y, relative to G_;.

In Case (1), xp-1 € Vo u Wy so that

xm_IEKl(Vo,G_x) and yO EKZ(VO,G_l)

contrary to the supposition that the lemma is false. In Case (2) y, is not a
sink of B since a sink can have no descendant. In Case (3), m is not the mini-
mum length since x,,.; would be a sink of B which chain-dominates v} by means

of a chain of length m - 1.

Now suppose i > 0. Let B be an inverse basic set of G_;.;. Each sink y of

B chain-dominates some vertex of V.; since V.; is an inverse basis of G.; D G_;.;.
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Consider the chains of minimum length m by which y chain-dominates vertices
of V.;. Then m > 2 since K(V.;,G_;)n G_;.; = 0. Suppose the lemma were false,
so that m > 2, and let y, be a sink of B for which this mintmum length is at-

tained. Then there exist distinct vertices xy, %3, ¢++,%p,.1 of G_; such that

Vo> Xmel D= Xmaz D=0 > X1 > v{i for some z,{l EV.;.
Then either
(1) xpey & Gojey,s
or (2) x,.,€G_;.; and is a descendant of Yoo

or (3) xp.; €G_;.q and is cyclically related to y, relative to G_;_y.
In Case (1),
Xm-1 € St(V_i u W_l)

and hence x,,.; € V.; u W.; and hence x,,.; € K} V.;,G_;) so that Yo € K*(V.;,
G.i.1) contrary to our supposition that the lemma is false. In Case (2), y, is
not a sink of B since a sink has no descendant. In Case (3), m is not minimal

since xp,.1 would be a sink of B which chain-dominates v/, by means of a chain

of length m — 1. This completes the proof.

The example of Figure 3 shows that we must take K" in the unoriented
sense; for here v_ll €P(Vy,G =Gy), in fact v_ll €D *(Vy,G -Gy) but v_ll ¢
D *(V,,G = Gy) although v_l1 € K*(Vy, G = Go).

A subgraph H of G is termed progressively bounded at the vertex y if all
progressions of [ beginning with y have lengths forming a bounded set of
natural numbers. H is termed progressively bounded if it is progressively bound-

ed at each of its vertices.

Lemma 10, If 9 -9, CP(Vy,G ~Gy) and if C1(G = Gy) is progressively
bounded then every vertex y of & — 9 is an element of V.; or W.; for some finite

ordinal i.

Proof. Every vertex y of 9 — 9, is an element of C'l(v{),Cl(G ~-Gy)) for
some v{) € V5 by hypothesis. Consider all progressions of C1(G — Gy ) beginning
with y and ending with elements of V,. Their lengths have a least upper bound
M (y) by hypothesis. By Lemma 9, we may select inverse bases

V_i_l(:Kz(V' G—G_i_l), 1 > 0.

-l



568 MOSES RICHARDSON

—e
v
— e

A \
‘f ~ & v_ll
(V4

og,_.
—-
\/

Figure 3



RELATIVIZATION AND EXTENSION OF SOLUTIONS OF IRREFLEXIVE RELATIONS 569

Since V., is an inverse basis of G_y, there exist progressions starting with y
and ending with elements of V., unless y is in V. or W., with & < 1. All such
progressions have lengths < M(y) — 2. For if there existed a progression from
y to some vfll € V.1 of length > M(y) -2, there would be a progression from y
to some element of Vy of length > M(y) since there exists some progression

h

from »7, to some element of ¥, and its length must be > 2 because V.; CG_;.

Similarly the lengths of all progressions from y to elements of V_; must be
< M(y) — 2. But this can be > 0 for only a finite number of values of ;. Hence
there exists a value of i for which y chain-dominates some element of V.; by

means of a progression of length 0 or 1; that is, y is in either V_; or W.;.

By a relative cycle (of C1(G — Go) mod ¥y with modulo 2 coefficients) shall
be meant an unoriented one-dimensional chain lying in C1(G —~ G, ) except for
its set of boundary vertices (possibly empty; that is, absolute cycles are in-

cluded among the relative cycles) which lies in V.
THEOREM 7. Suppose that Vy is a solution of Gy such that-
(1) CI(G - Gq) is progressively bounded,

(2)  each vertex of every K*™ ' (V,, G - Gy) is dominated by some element

of 9-9;
(3) C1(G = Gy) contains no relative cycle of odd length;
(4) 9-9,CP(V,G~Gyp).
Then there exists a solution V of G which is an extension of Vy.

Proof. Choose V.; as in Lemma 9. To show that V' =U , V.; is a solution
of G we have, by Theorem 4, only to show that N

D*'(V,,G = Go) CD(V,G) and D*(V.;,G.;) CD(V,G) for i > 1.

Let
weD N Vy,G=Go)uDMV.;,G)).
Then

w €K™ (v, 6 ~Go)
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for some j and n by virtue of the way in which the V.; were chosen. By (2), w is

dominated by some vertex x of &~ 9. If x €V, there is no more to prove. If
x €9 ~V, then

x Esz'l(véf,G—Go)

for some £ and m. Hence there exists a relative cycle of odd length, contrary to

(3). This completes the proof.

THEOREM 8. Let V be any maximally internally satisfactory set containing
Vo such that:

(1) every v €V belongs to K**(Vy,G - Gy) for some n > 0;

(2) each element of K*™ ' (Vy,G = Gy), for every m > 0, is dominated by

some element of O - Dy ;
(3) CI(G - Gy) contains no relative cycle of odd length.
Then V is a solution of G.
Proof. Let
y€(D=9)n(9-V).

We shall show that there exists an x € V/ such that x > y. Since V is maximally
internally satisfactory, ¥ u{y) is not internally satisfactory. Therefore either

(a) some v >y, or (b) some v <y. In Case (a), there is no more to prove.

In Case (b),
y €KY (V,, G - Gy) for some n > 0.

By (2), there exists an x € 9 — 9 such that x > y. If x €V, there is no more
to prove. If not, that is if x € (9 = 93)n (D = V), then ¥ u (x) is not internally
satisfactory. Therefore there exists a v € IV such that either x > v or x <.

In either case,

x €K2™ 1 (Vy, G ~Gy)

for some natural number m. But this together with

y €K 1(V,, G -Gy )
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and x > y imply that there exists a relative cycle of odd length contrary to
(3). This completes the proof.

CoROLLARY. The hypotheses of Theorem 8 imply that

V=UK*(Vy,G=Go) and W=3=V =UK>™"Y(V,,G - Gy).
Proof. We have
VCUK*™(Vy,G~Go) =E,
and
W=9-VcUK*™!(V,,G-G,) =Q.
Furthermore
K2™"(Vy,G - Go)a K*™ 1 (Vy,G -~ Go) =0,

for, if not, there would exist a relative cycle of odd length. Thus we have

EnQ=0,EuQ=9,VCE,WCQ, VuW=9,and VoW =0,

This implies £ =V, Q =W as follows. Let e € E. Then e € D which implies that
either e €V or e €W. But e € W would imply that e € Q contrary to £n Q =0,
Therefore e € V. Hence £ CV and therefore £ = V. Similarly Q C W and hence
Q =W. This completes the proof.

Thus Theorem 8 resembles Theorem 2, except that now the parity restric-
tions are on the unoriented chains rather than on the oriented ones, and we do

not restrict the sets K" (Wy0, G — Go ).

The examples of Figures 4-6 are covered by Theorem 8 but not by Theorem
2. In Figure 4,

Wé GD(V(),G)H D-I(WOQ,G—G())#O

violating hypothesis 2b of Theorem 2, but the extension exists under Theorem
8. In Figure 5,

‘U_l1 ED-z(Woo,G—Go)n D-l(Woo,G—Go)iéO

violating the second part of the hypothesis 3b of Theorem 2, but the extension
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Figure 4
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Figure 6
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exists under Theorem 8. Note also that an odd relative cycle exists mod Gy but
not mod Vo. In Figure 6,

‘l)_l1 ED-2(VO’G*Go)nD-z(Wloo,G—Go) #O
and

wg ED.l(Vo,G —Go)nD-l(Wroo,G -GQ) ;éO
both violating hypothesis 3a of Theorem 2, but the extension exists under
Theorem 8.

Let 1" (X, G = G,) denote the set of vertices of G — G, connected to X by
an unoriented chain of minimal length 4, where X C 9. Then

(X, 6= Go)n fF(X,6-Go) =0 for h £ k.
By p°(X, G = Gg) is meant X,
THEOREM 9. Let Vy be a solution of Gy where Gq is a conjunct subgraph

of G. Let Woo =99 = Vo and suppose that every vertex of 9 — Dy is connected
to 4 by some unoriented chain. Let

V=U " (Ve,G-Go)uv U p?™ 1 (Wo0,G=Go),
n=0 m=1
W-— U #zn.l(Vo,G—Go)U U ,uzm(Woo,G"-‘Go).

1 m=0
Suppose that:
(1) every element of W is dominated by some element of V;
(2) wh(Vo,G = Go)n pF(Woo, G =Go) =0
if h and k have the same parity;
(3) no two elements of the same ,uz"'l(Woo, G - Gy) are adjacent;
(4) no two elements of the same p*™(Vy, G - G, ) are adjacent.

Then V is a solution of G which is an extension of Vo .
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Proof. Clearly 9=V yW and WCD(V,G). Also (2) implies VnW =0.

There remains only to prove that no two elements of V' are adjacent.
If x, y € p**(Vy, G —~ Go) then x H- y by (4).
If %,y € 2™ (Wyo, G - Gy ) then x Yy by (3).
Let
x € 2" (Vy, G =Gyo), y € p*™(Vo,G - Gy), m#n.
Suppose m > n. If x and y were adjacent then y € K***'(V,,G - G,). But

2n + 1 < 2m, contradicting the minimal property of p?™(V,, G ~Go). A similar

proof is obtained if m < n.

If
xeﬂzn-l(Woo,G—Go),yEp.zm-l(WOOIG—GO)’ miéna

then x and y are proved non-adjacent as in the preceding paragraph.

Let
% € #2n(V0’ G- GO )’ Yy € FZP-I(WOO: G- GO)
and suppose x were adjacenf to y. Then

xEKZP(Woo,G—Go) or xEsz-z(Woo,G—Go).

Since x is connected to Wy, it is minimally connected to Woo. That is, either

(a) xelLZh(Woo,G—Go)
or
(b) xE[LZh-l(Woo,G—GQ)

for some h. In Case (a), Condition (2) would be violated. In Case (b), & =p
since either A <p or & > p would violate the minimal property of some p.

But £ = p contradicts Condition (3). This completes the proof.

THEOREM 10. Let V, be a solution of a conjunct subgraph Gy of G such
that every vertex of D — 9y is connected to Vy by some unoriented chain. Let:
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(1) no two elements of the same p**(Vy,G = Gy), i > 0, be adjacent;

(2) x€p* " (Vy, G = Go) imply that there exists a j >0 such that
x <y for some y € p¥ (Vy, G = Gy

Then
V=Up*(Vp,G=Gy)
i=0

is a solution of G which is an extension of V.

Proof. Every element of 9 —~ 9 not in V must be in

W=U *'(V,,6-Gy).

Clearly

D=V uW and VnW =0.

Also (2) implies W CD(V, G). There remains only to prove that V is internally

satisfactory.

Let

x € P (Vo, G =Go), y € p21(Vy,G - Go), ' i#].

Suppose i < j. If x were adjacent to y, then y € K2*1(Vy, G = Go). But 2 + 1<
2j, contradicting the minimal property of p2/(Vy, G —Gy). A similar proof
holds if § > j.

Let x, y € p®*(Vo,G =Go). If i >0, (1) implies that x and y are non-
adjacent. For i =0, this follows from the facts that V, is a solution of G and
that Gy is a conjunct subgraph of G. This completes the proof.

The conditions of Theorem 10 do not prohibit entirely the existence in
Cl1(G - Gy) of adjacent vertices of W, of odd unoriented cycles, or of transitive
triples. For example, the graph in Figure 7 permits an extension by Theorem 10
and includes the three cited phenomena. Theorems 7-10 may be regarded as

variants of Theorem 2.

7. Dual and alternating procedures. Let G; be a conjunct subgraph of G.



578 MOSES RICHARDSON

Figure 7
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If x€9, let D(x,G ~ G, ) denote the set of all vertices y of G — G; such that

x>y, fXCY, let

D(X,6~G)= U D(xGC-Gy).
x€EX

Forn > 1, let
D™(X,G -G,)=D(D" " (X,G-G,), G-G,).

By the successor-set of X relative to G — G, is meant the set

S(X,G—-G1)= U Dn(X,G-Gl).

n=1

THEOREM 11. Let G, be a conjunct subgraph of G, Vi a solution of G,

Wy=9,~V, where O, =9n G,. Suppose that:

(1) for every n > 0,
D(V,,6)aD*"(V;,G-Gy)=D(Vy,G)naD**"(W,,G -G,) =0,

and

Vin D™ YNV, 6-C)=VinD*™(W,;,G~G,)=0;

(2) ifh > O0and k > O are of the same parity, then

P (V6 -G )aDE(W,,G~G,)=0;

if h > 0 and k > 0 are of different parities then

DA (V,,G =G )aD¥(Vy,G~Gy)=D"(W,,G -G, )nD¥(W,,G~G,)=0;

(3) 9-9,¢cS(9,,6-6,).

Then there exists a solution V of G which is an extension of V.

Proof. T.et

V:VIU U Dzn(Vl,G—Gl)U U Dzm-l(Wl,G_Gl).
= m=1

n=l1
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We must show:
(a) VﬂD(V,G)=O;

(b) Q-VCD(V,G).

(a) Ifx€eV,, y€eV,, then x > y since V; is internally satisfactory rela-
tive to G.

Ifx €V, yeD?*(V,G~G,) then x ¥ y; for x >y would imply D(V;,G)n
D*™"(V,,GC -~ G) #0 contrary to (1).

If x €V, y€D*™ (W, G - G,;) then x ¥ y; for x > y would imply D (V,,
G)nD*™ YW, G -G,) #0 contrary to (1),

If xeD*™(V,,G-G,), y€Vy, then x ¥ y; for x >y would imply y €
D?"*'(Vy, G - G,) contrary to (1).

If x€D*™(V,,G~G,), y €D*™(V,,G —G,) then % Y y; for x > y would
imply y € D*** 1 (V{, G - G,) contrary to (2).

Ifx €D*™(Vy,G-Gy),y €D*™ ' (W,,G -G, ) then x ¥ y; for x > y would
imply y € D***1(V,, G - G, ) contrary to (2).

If xeD?*™Y(W,,G-G,), yeV, then x Yy; for x >y would imply y €
D?"(W,,G ~ G ) contrary to (1).

IfxeD?*™ Y (W,,G-G,),y €D*"(V,,G ~Gy) then x ¥ y; for x > y would
imply y€D2™(W,, G - G,) contrary to (2).

If xeD*™Y(W,,G-G,), yEDzn'l(W“G—Gl) then x H y; for x >y
would imply y € D*™(W;, G — G, ) contrary to (2).
(b) Let

o0

W=W1U UDzn-l(Vl,G—Gl)U UDzm(Wl,G-Gl)-

n=1 m=1
By (3),

9=9,uS(9,,6-6)=Vul.
By (1) and (2), VnW =0, Hence W =9 — V.

If y €Wy, then there exists an x € V; such that x > y.

If yeD? ' (Vy,G~G,) then there exists an x €VyuD*™(V,,G-G,)
such that x > y.
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If ye D?*™(W,,G ~ G, ), then there exists an x € D?*™ ' (W,,G - G;) such
that x 3 y. This completes the proof.

COROLLARY. Let G, be a conjunct subgraph of G, Vi a solution of G;.
Suppose that:

(a) no vertex of any S(x,,G ~G,), x1 €9y, is adjacent to any other

vertex of 91; and if x1and x| are any two distinct vertices of D then

S(x1,G-G1)nS(x/,6-G,y) =0;
(b) no
S(%1,6-G,)ulx,), x1 €9y,
contains an unoriented cycle of odd length;
(¢) 9-9,¢cS(9,6-6Gy).
Then there exists a solution of G which is an extension of Vy.

Proof. Condition (c) is identical with (3) of the theorem. We have only to
show that (a) and (b) imply (1) and (2); that is, that if either (1) or (2) were
false then (a) or (b) would be violated.

If (1) were false there would exist either

(i) a vertexx €D(Vy,G)n D*™"(V{,G -Gy),

or (ii) a vertex y € D(V,,G)n D*™ " (W,,G - G,),
or (iii) a vertex z € ¥y nD2** (1, G - G,),

or (iv) a vertex u € Vyn D** (W, G - Gy).

In Case (i)
x€S(v!,6-6)nS(],6-6y)

and by (a), i=j. But then there exists an unoriented cycle of odd length in
S(vf‘,G—-Gl) u (vi) contrary to (b). In Case (ii), the second part of (a)

is contradicted. In Cases (iii) and (iv), the first part of (a) is contradicted.

If (2) were false, there would exist either
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(i) a vertex

x€DM(V,6 ~G)a DE(W,, G -Gy)
for some &, k of the same parity,

or (ii) a vertex
y EDh(vi,G—G,.)n Dk(v{,G—Gl)

for some A, k of different parities,

or (iii) a vertex
z €D (wi, 6 - Gy )n D¥(wl, G - G,)

for some h, k of different parities. In Case (i), the second part of (a) is con-

tradicted. In Cases (ii) and (iii), (a) implies i = j and then (b) is contradicted.

Now suppose G, is a nonempty conjunct subgraph of G; and let ¥, be a
solution of Gy. For each natural number n, let G;,.; be constructed by adjoining
to Gap-o the vertices of P(9D;,.5,G = Gypoz), where 9, =9n G;, and taking
the juncture; that is,

GZn-l = G2n-2 v P( @271-2, G- GZn-Z ).
Similarly let

GZn = GZn-l u S(@2n-lsG - GZn-l)t

Then each G; is a conjunct subgraph of G;+;. For x,y €9;, x > y relative to
G;+1 implies x > y relative to G; since at least one endpoint of every arc in
Gi+l - Gi is not in Gi'

If G, intersects every component of G, then

9- U 9,

nc g

i=0

For then every vertex of G is joined to some vertex of Gy by a finite unoriented

chain and therefore lies in some G;. In particular, this is true if G is connected.

THEOREM 12, Let G, be a conjunct subgraph of G which intersects every
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component of G, let Vo be a solution of Go, and let G;, i > 1, be defined as
above. Suppose that for every even i, G; satisfies Conditions (1), (2), (3) of
Theorem 2 relative” to Gi+, and that for every odd i, G; satisfies Conditions
(1) and (2) of Theorem 11 relative to G;+1. Then there exists a solution of G

which is an extension of V.

Proof. The solution V, of Gy can be extended stepwise to a solution V; of
Giy Vyof Gyyevo, V; of Gy evv by Theorems 2 and 11 applied alternately. Hence

UTL, Vi is a solution of G.

. . . Ny
For example, in Figure 8, G; has the set of vertices 9; = [g“,giz,gis, eeel

Then
V1=[g12,514’ v du Vo, Ve =[<’>’21' 8252 ** "3 Baas 828> elul,
Vs =lgsys 8350 ** 5 Baas g38,“']u Va,
Vs =[g“,~--]u Vs.

Theorem 11 is a sort of dual to Theorem 2. Theorem 12 merely uses the
procedures of Theorems 2 and 11 in alternation. Similar processess dual to those
of other preceding theorems can be introduced so as to yield extensions in the
direction of successor-sets rather than predecessor-sets, and similar alternating
procedures can then be used.

"That is, with G;+; in the role of G in Theorem 2.
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