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1. Introduction. It is the purpose of this paper to obtain results in Cantor-
type uniqueness for multiple trigonometric integrals similar to those obtained
previously for multiple trigonometric series ([5,11,12]). As might be expected,

the results in the integral case are a bit more difficult to obtain.

Vectorial notation is used for the most part throughout this paper. Thus u
designates the point in n-dimensional euclidean space, E,, with coordinates
(ul,...,un), the scalar product (u, x) = uy %, + +++ + uy x,, with lul| = (ua”)l/z
and u + 0.x is the point (u; + Uxy, e, uy + Uy )

Previously the author [13], using equisummability between trigonometric
integrals and trigonometric series, has obtained in the special case of double

trigonometric integrals the following result:

Let c¢(u), in Ly on any bounded domain, be O(|u|"€), € > 0. Suppose the

e/ 8 o (y) du is circularly summable (C, 1)

double trigonometric integral [,
to f(x). Furthermore suppose f(x) is in Lip «, o > 0, on every bounded

domain (¢t depending on the domain). Then the double trigonometric integral

1 -i(x,u)
F £, e U () dx
m

is spherically summable (C,1) to ¢(u) for almost every wu.

Specializing f (x) to be the zero function (which is what is meant by Cantor-
type uniqueness, [ 15, p.274]) and using a more direct attack on the problem,
we are able in this paper both to weaken the hypotheses of the above theorem

as well as to extend the results to n-dimensional integrals.

2. Definitions and notation. The open n-dimensional sphere with center x
and radius r will be designated by D,(x,r), and the surface of the sphere by
C,(x,r).
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Following Bochner [1], we shall say that the multiple trigonometric integral
Je c(u)ei®®W gy is spherically convergent at the point x to the finite value
L (%) if the spherical partial integrals of rank R converge to L (x), that is if

(1) lR(x)=/l;(0 R)ei(x’”)c(u)du—-)L(x) (as R — .)

The integral

R
(2) Oéa)(x) =20(R'2a/ L(x)(R%* =r*)*1rdr, & >0,
0

is called the (C, «)-mean of rank R of the multiple trigonometric integral

e c(u)ei(""”)du, and this integral is said to be spherically summable (C,a)
n

to L (x) if 0} (x) — L (x) as R — w.

Given F(x) integrable on D,(xo,r), we designate the mean value of F in
this sphere by 4 (F;xq;r). ‘Given F(x) integrable on C, (x¢;r), we designate
the mean value of F on this surface by L (F;xq;t). Thus, designating the
volume of the unit n-dimensional sphere, 272 /0T (n/2), by Q, and the (n - 1)-

dimensional volume of its surface, 277"/2/F(n/2), by wp, we have

A(F;xo;r)=(Qnr")'1/ F(x)dx
D, Xo,r)

(3)

L(F;xogr)=w;l / F(xq +rx)dS,- (%)
c,(o,1)

n ’

where dS,., is the (n — 1) dimensional volume element of C,(0,1).

We set

Vi(F;xg;r) =L (F;x0;r) —F(x0) and Vy(F;x0;7) = A(F;x0;1) = F(x0)

and say that F(x) has a generalized Laplacian of the first or second kind at

the point x4 equal to &, or &y, respectively, if

lim 2n Vi (F;x0;r)/r? =0y

r—o0

or

lim 2(” + 2) VZ(F;xo;r)/rz = (g

r—0
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The generalized Laplacian of the first and second kind of F at xq will be
designated by A;F(xq) and AF (o), respectively. It is known, [6, p.261],
that if F(x) is in class C® on D,(xq, 7o), then AF (x0) = A{F(x0) = AyF ()
where AF(x) is the ordinary laplacian of F at x.

The closure of the set W is designated by W; and its characteristic function
by xp(x). The set Z is said to be a closed set of vanishing capacity if for
every r, ZD,(0,r) is a closed set of capacity zero. It is known, [4], that if
Z is a set of vanishing capacity then D, (xq,r) = ZD,(x,,r) is a domain.

ei(x,u)

The trigonometric integral fEn c(u)du is said to be of type (U) on

a domain G if

et o (y) fu| 2 du
E,-D,(0,1)
converges spherically on G to a function F(x) which is continuous on G.

Throughout this paper £, stands for n-dimensional euclidean space where
n>2 and p=(n-2)/2

The function /;(r) is the Bessel function of the first kind of order i.

3. Statement of main results. We shall prove the following two theorems

concerning Cantor-type uniqueness for multiple trigonometric integrals.

THEOREM 1. Given the multiple trigonometric integral [ e e (u) du
n
where ¢ (u) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity. Suppose that
(i) The integral is spherically summable (C,1) to zero almost everywhere.

(ii) The (C,1) spherical mean of rank R, 01({1)(x), is such that ER_,
]0,(?‘)(x)| <wink, ~Z.

(ii1) e(u)(Ju|?+ 1) is in Ly on E,.

(=]

Then c(u) vanishes almost everywhere.

THEOREM 2. Given the multiple trigonometric integral [ e () 0 () du
n
where ¢(u) is a complex-valued function which is integrable on every bounded

domain. Let Z be a closed set of vanishing capacity. Suppose that
(i) and (ii) The same as (i) and (ii) of Theorem 1.
(ii1) The integral is of type (U) on Ey.
(iv) e(u)(Jul|?+ D) is in Ly on E,,.

Then ¢ (u) vanishes almost everywhere.
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For the special case of the plane, we prove the following theorem.

THEOREM 3. Given the double trigonometric integral [ e %o () dy

n
where ¢ (u) is a complex-valued function which is integrable on every bounded
domain. Let Z be a closed set of vanishing capacity and W be a closed de-

numerable set such that WZ = 0. Suppose that
(i) The integral is spherically summable (C,1) to zero in E, — Z.
(ii) The integral is of type (U) on E, = W.
(iii) c(w)=o0(|u])as |u|—> ®
(iv) e(u)(u|?*+1) " isin L, on E,.

Then ¢ (u) vanishes almost everywhere.

4. Fundamental lemmas. Before proving the main theorems of this paper, it
is first necessary to establish a connection between the (C, 1) spherical sum-

ei(x,u)

mability of the integral [ c(u)du and the generalized Laplacians of

”

the ‘‘anti-Laaplacian’’ of this integral. In short, we shall now establish some

Riemann-type, [15, p. 270 ], results for the multiple trigonometric integrals.

We need prove the following lemma only for the plane, since the conclusion

is hypothesized for Theorems 1 and 2.

LeEmMMA 1. Let c¢(u) be a complex-valued function which is integrable on
every bounded domain in the plane, vanishes in D,(0,r9), ro > 0, and is o(|u|).
Suppose that 0(1)(x0)—0(R) where a(l)(x) is the (C,1) spherical mean of
rank R of fE e‘(x We(u)du. Then fE il u)c(u)lul 2du is spherically

convergent.

Without loss of generality, we assume x, to be the origin. Then with Ig(x)
given by (1) and oi(al)(x) by (2), we have

R
-2 23 2
'/L;Z(O’R)C(”)IH du =2 '/.Sz(O,R)C(U)du~/O' an(o,r)(”)r dr + R7*1z (0)
2 [*r2d / (u) (u)du + R2IR (0)
- 0 r g Dz(O,R)C u XDz(O,T) u u+ R
R
=2_/ r30,(0)dr + R-21 (0)
0

R
:4/0 ot (0)r 2 dr + of? (0)R™? + R721x(0).
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Since by assumption ol(el) (0) =0(R), to prove the lemma it only remains to
show that Iz (0) = 0 (R?). Dut

IR(0) =[(R +1)?5{P (0) = R*6{V(0)1(2R + 1)°!

—(2R+1)"/ (W IR+D*—|u|?1du = 0(R?),
D, (0,R+1)-Dy(0,R)

and the proof is complete.

LEMMA 2, Let ¢(u) be a complex-valued function which is integrable on
every bounded domain in k, and which vanishes in D,(0,r0 ), ro > 0. Suppose
that

(i) EER e laIgl)(xo) | = d where algl)(xo) is the (C, 1) spherical mean of
rank R of [, P o (4 dy and d is finite-valued.
n

(11) —/ ei(x’U)c(uHu |"2 du

is spherically uniformly convergent in Uy(xg, ty), to > 0, to F(x).

Then Ti;xt_,o |20V (F3 %05 £)/t* | < Kd where K is a constant independent of

xo and d.

Observing that for fixed u
L(ef ) voit) = 247 (ot 1) et %0 (1u [0 % 7, (Ju )
(see [1, p.1771), we have by assumption (ii) for ¢ sufficiently small that

L(F;x0;¢)

==28T"(p+1) Rlinw ./Dn(O'R)ei(xo’”)c(u) lu 27, (u o) (u | e) Hdu

and consequently that

(4) 2n) Vi (F;x05¢)/t2 = lim / ei("O’”)c(u)T](lu\t)du
. R - > Dn(OIR)

where

n(r) =4Cp+ D1 =2 (p+ DI () r*)/r? for r > 0, n(0) =1,



612 VICTOR L. SHAPIRO

and 7(r) is in cle),

Making the following observations:

(a) By the second mean-value theorem applied to the real and imaginary
parts of Ig (x) given by (1) and hypothesis (ii) we have Iz (x,) = 0 (R?),

(b) For fixed ¢, n(Re) =0(R™?) and 7’ (Rt) = O(R5/?) where n°(r) =
dn(r)/dr, we obtain from (4) that

(5) 2nV1(F;x0;t)/t2= 2-t '/.°Q rzar“)(aco)t3 a(rt)dr

0

where o(r) =drtn’(r)/dr.

From the fact that ¢(z) is an entire function of the form Zj‘io biz % we

have that there exists a constant K; such that

(6) la(r)| < Kir for r <1

From the fact that J, (r) =0(r"*/?) as r — 0, and
drrt ], (r)/dr == Jue (),
we obtain that there exists a constant K, such that
(7) la(r) | < Kol 4772) 4 o8] forr > 1

From (5), (6), and (7), the conclusion of the lemma follows readily. For
given an € > 0, choose Ry so large that |a§{”(xo)l <d+ €efor R > Ry. Then

for t < Ry, it is easily seen that
(8) |20Vy (F;x0,¢)/t% | < K(d +€)+0(t*)

where K is a constant independent of xy, d, and e. Taking the limit superior
of the left side of (8) as t —» 0 and then the limit of the right side as € — 0,

we have the proof of the lemma.

LEMMA 3. Let the hypotheses be the same as in Lemma 2 except that
limg _, 00 09 (x0) =d. Then AF (x0) = d.

For if d =0, the lemma follows immediately from Lemma 2. If d #£ 0, choose
c1(u) integrable on E,, vanishing for u in [E, - D,(0,2)] + D,(0,1), and such
that [ cy(u)ei®08) o g Set Fi(x)=-f, ci(u)lul2e!®")du, Then
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O=A1F(XO)—A1F1(X()) = AIF(xo)— AFl(xo)= AlF(xo)—d.

LeMMA 4. Let c(u) be a complexwalued function which is integrable on

every bounded domain in E, and which vanishes in D,(0,ry), ro> 0. Suppose that

(i) 0}(21)(96), the (C,1) spherical mean of rank R of fEn ei(x’")c(u)du,
is such thatﬁnR_,w log)(xo )| =d.

(ii) c(u)|ul?isin Ly on Ep.

(iii) -/ ei(xo’u)|u|'zc(u)du
E

n
is spherically convergent to F (xo). Set

F(x)=-lim. /;( R)ei(x’u)C(U)lul'Zdu.
R - o0 nlo,

Then

lim |2(n+1)Vy(F;x05¢)/t?| < Kd

t—0
where K is a constant independent of xo and d.

Setting

TR(x)=—/( )ei(x’”)c(u)lu|'2du,
D, (0,R

observing that A (F; x0;t) =limg _, 00 4 (T3 %03 t) and that for fixed u,
A(ei(x’u);xo;t) =w,/ &, t" /(;l r"'lL(ei(x’u); xo;7)dr
=P (e 2) (Ju |7y (Ju [ 0) e 00w),
we obtain
(9) A(F;x0;t)

—— lim 2“"1(p+ 2)/ e %0) 0 () 1|2 G | ) O ay (| 2) du
D, (0,R)

R 5o

and consequently



614 VICTOR L. SHAPIRO

2(n +2)Vy(Fix0;t)/t* = lim f ei(xo'“)y(luit)c(u)du
R — o Dn(O.R)

where
y(r) =4(p+2)[1—2(“+1)1*(;L+Z)r'(“ﬂ)]m»l(r)]/r2 for r >0, y(0)=1,
and y(r) is in ct>),

Since y(r) has the same form as 7(r) in Lemma 2 with p replaced by p+ 1,

we can proceed as in that lemma and obtain

2n + 20Ty (Fiwos )/t = 270 [ 202 oV () B (re)
0

where B(r) =dr ' y’(r)/dr. Then we can proceed in a similar manner to obtain
that for € > 0

lim 12(n +2)V, (Fyx0;¢)/t%| < K(d + €)

t— 00

where K is a constant independent of x¢, d, and €. Since ¢ is arbitrary the con-

clusion of the lemma follows.

LEMMA 5. Let the hypotheses be the same as in Lemma 4 except that
limg o 0%1)(950) =d, Then M F (xo) =d.

In the same manner that we obtained Lemma 3 from Lemma 2, we obtain

Lemma 5 from Lemma 4.

LEMMA 6. Let F(x) be real-valued and continuous on Bn(xo,ro ), ro > 0.
Suppose that

(i) A,F(x) =0 almost everywhere in D,(x0,1¢)

(ii)  lim |2(n +2)V(F;x;r)/r?| < o for all x in Dy (%, 70 ).

r— o0

Then F(x) is harmonic in D, (xq, 1o ).

Following the pattern of proof in [9], we give a proof for n > 3.

To prove the lemma, it is sufficient to show that F(x) is subharmonic in
D,,(xo, ro ).
Set
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f(x)=2(n+2)( lim Yy (F; x;7)/r? +liﬂ‘72(F;x;r)/r2]/2

r—o0 r—o0

for x in D, (%9, r9)s Then f (x) =0 almost everywhere in U, (x9; 70 ).

By the theorem of Vitali-Caratheodory [16, p.75], there exists a sequence
of nondecreasing upper semicontinuous functions {g, (x)} such that g (x) <
f(x) for all x in Dp(xg,ro), gm(x) —> f (x) almost everywhere in D, (xq, o ),

g,,(%) is integrable on U, (xo, 7o), and such that

lim /
D

m— 0o n(xo,’)

gm(x)dx=./]; f(x)dx forr <ry.

n \XQ, T

Set

Atg (x)==lawm(n - 2)]'1_/

(w)ju=-x|*"du.
Dn(xo,ro gm | l

Then A" lgm(x) is superharmonic, since gm(u) < 0 for almost all u in D, (xg, ro).

Furthermore, we observe that for fixed u
Allx —u|* ™ x057) = |x0 —u 2" if Jxo —ul| > r
=nr 27 P g xg —u |2 (2=n)n P A xg —u | <.
Consequently, for x; in Dy(xq,r) with r sufficiently small,

(11) vz(A-lgm;xl,r)=[wn(n-2>]-1/Dn(xhr)gm(u>{|u-xl|2-n

—r 2 2 E7 —-u|2(2—n)n'l]}du-

Suppose g (x;) is finite. Then by the upper semi-continuity of g, (u) at
x1, for € > 0 and r sufficiently small, we have from (11) that

vg(A"gm;xl;r) <lg,(x) + eMwy(n=2)TMaox(n-2)1r%/2(n + 2).
Consequently, we conclude that

(12) m2(n+2)V2(A'lgm;xl;r)/r2 < g xy).

r—o0

Similarly, in case g (x;) =~ 0, conclusion (12) remains valid.
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From the fact that A'lgm(x) is superharmonic, we have that F ~ A-lgm is

upper semi-continuous in D, (%o, ro). From (12) we conclude that

lim 2(n +2)Y,(F —-A’lgm;x;r)/r2 >0 for x in D(xq,r0) .

r—o

Therefore by [8, p.14], {F ~ A'Igm} is a nondecreasing sequence of sub-
harmonic functions in Dy (%o, ro ). But limp, _, o A’lgm(x) =0 almost everywhere.
Therefore F(x) is almost everywhere equal to a subharmonic function, G (x), by
[8, p.22). But A(F;x;5r) = A(G;x;r) — G(x) for all x in D, (%0, ro ). However
from the continuity of F we have 4 (F;x;r) — F(x), and the proof of the lemma
is complete for n > 3. For n = 2 a similar proof can be given with the Newtonian

potential replaced by the logarithmic potential.
For the case of the generalized Laplacian of the first kind, we have a similar

lemma with a similar proof, see [9].

LEMMA 7. Let F(x) be real-valued and continuous on En(xo, ro), ro > 0.
Suppose that

(i) AF(x) =0 almost everywhere in Dy(x¢, o).

(i) lim [2nVy (F5x5r)/r? | < o for all x in Dn(xo3r0).

r—o0

Then F(x) is harmonic in Dy(xo, ro ).

We now prove some lemmas concerning the spherical summability (C,n) of

Fourier transforms.

LEMMA 8. Let G(x) be a function in L, on E, which vanishes in D,(0,rq),

ro > 0. Suppose that F(x) = [, W G () du is in € on E,. Then for u in
Dn(o,ro/Q)—O

(13) /E [eri WP (x) = (= e8|y |2 AF () 1dx

n
is spherically summable (C,n) to zero.

For, by Green’s second identity, we have

(14) IR(u)=_/D o lei(mu) F () = (—ei®8) |4 |2 AF (%)) 1dx

=|u|? [R"'ll © 1)F(Rx)i(x,u)e’iR(x’")dSn_1(96)
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+Rn-1 / ( OF (Rx)/0R e'iR(x’“)dSn_l(x)J =|u|"2(4g + Bg)
C, (0,1

where dS,_;(x) is the (n —1) dimensional volume element on the unit sphere

Cn(0,1).

We shall now show that both Ag and By are (C,n) summable to zero. For,

by Fubini’s theorem, we have

= p2y-1 [ :_
(15) kD [* g, (2) drar

_ MR2)-1-f Gl )[/ . (_) Si(xyumy) ]
( ' ETL-Dn(O:rO) y E gDﬂ R € (x,u)rlx Y

n

where M=(2rr)"/2/2n'l(n——1)! and

1 for 0 <r <1 (1-r)"™'  for0 <r<1
¢1(r)= ¢)n(r)=

0 forr > 1 0 forr > 1

Since for fixed u #0, (x,u) is a homogeneous polynomial which is also a
harmonic function in x, we have by [2, p.806] and [14, p. 373 ] that the right
side of (15) is equal to

(y—u,u) ]nﬂtﬂ(kl)’"‘u‘)d)’
ly ~ul™'  (Rl|y ~u|)"#?

(16) —R"/ G(y)
En-—Dn(O,ro)

Clearly (16) tends to zero as R — w; so Ag is (C,n) summable to zero

for u in D,(0,ro /2) - 0.

We also observe after integrating by parts that

2y-1 [ R r
(17)  (MR*) /(; rqﬁn(R)B,dr

R d r .
- MR2 -1/ / o n r -Lr(x,u)] 4
( ) 0 dr C,(0,1) Fr) ar | % R)¢ - ().

From the above discussion concerning Ag and from [1, Theorem 1], to show
that Bg is (C,n) summable to zero for u in D,(0,ro/2) — 0, it is sufficient to
show that
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2
(18) (MR’)"/I; F(x) ¢, (%) lil?e'i(x'”)dx—-)o as R — .
n R

But by [2, p.806] and [ 14, p. 373] the expression in (18) is equal to

ntp(Rly=
(19) R-l/ G(y) [K In4p(Rly=ul)
E

n=Dn(0ro) |y —y |t 1(R[y—ul)n'u"l

Invat (R ly—u)
-K dy.
(Rly—a™52)

where K, and K, are two constants depending on n.

Clearly (19) tends to zero as R—w for u in D,(0,r0/2) = 0; so Bg is

(C,n) summable to zero and the lemma is proved.

LEMMA 9. Let G(x) be a function in L, on E, which vanishes in Dp(0,ry),

ro > 0. Suppose that [ !5 6 () dx is spherically convergent to a function
F(x) which is in C®) on E,. Then for u in D,(0,r,/2) =0

/[e-i<x’u)F(x)-(-e"'("’”)lul‘2>AF<x)]dx
En

is spherically summable (C,n) to zero.

For (14) also holds in this case, and as in Lemma 8, we have to show that

both A and Bi are (C, n) summable to zero.

Since both F(x) and ¢ (|x|/R)(x,u) are in L, on E,, Parseval’s formula
gives us both (15) and (16). We therefore conclude as before that A is (C,n)

summable to zero for u in D,(0,r/2) — 0.

To show that Bg is summable (C, n) to zero, we obtain (17) as in Lemma 8.
Then from the fact that Ag is (C,n) summable to zero and from [3, Theorem
551, it is sufficient once again to show that (18) holds.

But by Parseval’s formula, we obtain that the expression in (18) is equal
to (19). Observing that for u in D,(0,r4/2) =0 and for y in E, — D,(0,r;) there

exists a constant IZ,, such that
ntumr (Rly —u )| < Ka(R1y —u )2 for R > 1

and that for such u, |y - ul%'n is in L, on E, —=D,(0,ry), we conclude that
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(18) holds and consequently that Bg is (C,n) summable to zero, which proves
the lemma.

5. Proof of Theorem 1. To prove Theorem 1, it is sufficient to show that
for any rq > 0, ¢ (u) =0 almost everywhere in D,(0,rq/2). Set

i(x,u)__l .
PR B« i)l

D"(O,ro) |u12

Then, F;(x) is in =) on E, and

AF[(x)=4( )ei(x’”)c(u)du.
n\0,T0
Set
. c(u)
F =__/ i(x,u)
z(x) En-Dn(O,rO)e lul2 u

which is by (iii) continuous in E,. Then by Lemma 2 and (ii),

Tim IZnVl(Fg;ac;r)/r2 | <o

r—o0

in £, = Z and by Lemma 3 and (i), A; F,(x) =~ AF; (x) almost everywhere.

Set F(x)=F;(x)+ Fy(x). Take any xq in E, and consider D,(xq,r1),
ri > 0. From the definition of a closed set of vanishing capacity, we see that

there is a closed bounded set of capacity zero Z; such that

Tim 120V (F;%57)/r% | < |AF (x) ] + Tim 120V (Fy;257)/r%| < 0

r—0 r—0

for x in the domain G = D, (xg,r1) = Z1D, (%, r1). Furthermore almost everywhere
in G, A\F(x) = AF (%) + A F;(x) = 0. Consequently it follows from Lemma 7,
that F(x) is harmonic in the domain G = D,(x¢,7;) ~ Z D, (x0,71). But F(x)
is continuous in Dp(xg,ry). Therefore by [7, p.335], F(x) is barmonic in

Dp(xo,r1) and since %, is arbitrary, F (x) is harmonic in £,,.

From the fact that F(x) is harmonic in E,, we now have that F,(x) = F (x)
—Fi(x) is in c*) on E, and that AF,(x) = - AF;(x) for all x. Also by [1,
Theorem 1] we obtain that
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(2m) " / e'i(x'”)Fz (x)dx

n

is spherically summable (C,n) to zero for u in D,(0,ro/2) — 0. Therefore by

Lemma 8 for such u,

/ emi(x,u) [-AF,(x)1dx
E

n

is spherically summable (C, n) to zero. But for almost all such u, we have that

(27)™ / e U AR (x)dx

Ep

is spherically summable (C,n) to ¢ (u). Since AF;(x) =~ AF,(x), we conclude
that for almost all » in D,(0,r/2), ¢ (u) = 0, which proves the theorem.

6. Proof of Theorem 2. The proof is quite similar to that of Theorem 1.

Once again it is sufficient to prove that for any ry > 0, ¢ (u) =0 almost every-

where in D,(0,rq/2).

Set
Fl(x)=—f [ei(x,u) “l(x,u)] C(u) u’
D, (0,rg) ME
and
Fy(x)=— lim / eilx, u)C( )
R -0 D (0 rR)D (0 ro Iu‘z

By (iii), F, (x) is continuous. Then in a manner exactly analogous to the proof
of Theorem 1 except that LLemmas 4, 5, and 6 are used instead of 2, 3, and 7,
we obtain that F,(x) is in C'*) and that AF,(x) =— AF{(x). By Lemma 9
and [3, Theorem 55], we obtain that fE emilmu)[_ AF,(x)]dx is spherically
summable (C,n) to zero for u in D,(0, r0/2) — 0. But by [1, Theorem 1] for

almost all such u, we have that

(27)™" / e'i(x’u)AFl(x)

n

is spherically summable (C,n) to c(u). Since ~AF,(x) = AF;(x), we con-
clude that ¢ (z) = 0 almost everywhere in D,(0,7o/2) and the theorem is proved.



CANTOR-TYPE UNIQUENESS OF MULTIPLE TRIGONOMETRIC INTEGRALS 621

7. Proof of Theorem 3. Let Fy(x) be as in Theorem 2 with n replaced by
2, and let

(u)
clw) itxu

Fp(x) == lim
R oo ¥D3(0,R)=Dy(0,70) |ul?

where ro > 0. This limit exists for x in Z by (ii) and for x not in Z by (i),
(iii), and Lemma 1. Furthermore by (ii) F,(x) is assumed continuous in E, — W.
It is clear from the proof of Theorem 2 that to prove this theorem we need only
show that F,(x) is continuous in £, or what is the same thing that F(x) =

Fi(x) + F,(x) is continuous in £,.

By (ii) F(x) is continuous in £, ~ W, and by Lemmas 5, A,F(x) =0 in
E; —Z. Let Dy(xo,71) be any disc which has a null intersection with W, Then
as in the proof to Theorem 1, F(x) is harmonic in this disc and consequently
in £, — W. We also observe that now A,F(x) =0 in the whole plane and further-

more that F(x) is in L, on any bounded domain.

Let W, be the set of discontinuity points of F(x) and let x¢ be an isolated
point of W;. Then there is a closed disc Bz(xo,m) whose intersection with
W, is xo. Then by the above discussion we have that F(x) is in L, on D3 (%0, 72),
harmonic in Dy (%, r2) — %o, and satisfies the further condition that A,F (x,) = 0.
Consequently by [12, Lemma 4], F(x) is then harmonic in the whole disc and,

a fortiori, continuous at xg.

Therefore W, has no isolated points and W, is a perfect set. But Wy CWis
at most denumerable, and by [10, p.55], W; is then the empty set. Thus F(x)
is continuous in the whole plane, and, as mentioned above, the proof of this

theorem is reduced to that of Theorem 2.

8. Appendix. In closing we point out that the assumption W and Z have a
null intersection in Theorem 3 is a necessary one. For consider the double
trigonometric integral sz c(uw)e! W) gy with c(u)=1. (iii) and (iv) of
Theorem 3 are clearly satisfied. Observing that the spherical mean of rank R,

ag)(x), with x #0 is given by
og)(x) =4n],(|x|R)|x|"?=0(R""?),

we see that (i) is satisfied with Z equal to the origin. Furthermore, we observe

that for x #0

lim
R o5 00

/ lu]'2ei("'”)du=2n/w Jo(r)rtdr.
D2(0,R)'D2(0,l) lxl
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Consequently (ii) is satisfied with W consisting of the origin. But ¥ and Z do

not have a null intersection, and the conclusion of Theorem 3 does not hold.
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