Pacific Journal of
Mathematics

ON CLOSED DIFFERENTIABLE CURVES OF ORDER n IN

DOUGLAS DERRY




ON CLOSED DIFFERENTIABLE CURVES OF ORDER
n IN #-SPACE

DoucLAs DERRY

1. Introduction. Let C, be a closed curve in real projective n-
space S, whose coordinates x, (1<i<n+1) are given in the parametric
form

=), 1<i<n+1l, ¢<s<g+1,

where x,(s) are real continuous periodic functions of period 1, and ¢
is any real number. The point with coordinates z,(s) (1<i1<n+1) will
be designated by its defining number s.

The curve C, is to satisfy the following order condition.
No hyperplane of S, contains more than n pcints of C,.

A gsimple consequence of the above condition is that any k+1
(0<k<n) distinct curve points s,, s,,-+-, S;,; Span a linear k-subspace
[81, Ssye++, Sesa]- (The square-bracket symbol [A4, B, -.-] will be used
throughout to designate the linear subspace spanned by the sets A4,
B, «)

The curve C, is to satisfy the following differentiability condition.

For each point s of C, and for each integer k (0<k<n-1) a linear
k-subspace (k, s), known as the osculating k-space at s, exists for which
(81, 8, *o*, 8x,1] converges to (k, s) as 8,, 8,, *»+, 8.1 all approach s in
any way whatsoever.

The curves C; were considered by A. Kneser [2] who studied pro-
perties which are invariant to certain continuous displacements. One
of his results is that the set of planes of the projective space each of
which contains exactly & (k=1 or 3) points of a C; builds a connected
set. In the present paper the methods used by Kneser are adapted
to study the properties of the curves C,. All the proofs make use of
those lines ! each point of which is included in n distinet (n-—1, s).
Thus the paper is, in a sense, a study of this line system. Among
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the results is a generalization of the foregoing Kneser result to n
dimensions. This in turn leads to the result that those hyperplanes
which contain less than = points of C, are exactly those hyperplanes
which contain at least one line /. This result is related to a result,
implicit in a paper of Scherk [4], which states that the above hyper-
planes are exactly those hyperplanes which contain certain limiting
positions of the lines /.

2. Multiplicities. As all the ecritical boundary cases involve multi-
ple intersection points, these points will have special importance. In
this section we record the definition for multiplicity and note some
known results which we shall use.

DEFINITION 1. A linear subspace Q is defined to intersect C, ex-
actly k-fold (0<k<n-—1) at s if (k—1, 9)=Q, (k, s)%EQ, and n-fold if
(n—-1, s)=qQ.

A point P is defined to be included in (n—1, s) exactly k-fold
0<k<n-1) if Pe(n—k, 8), P¢(n—k—1, s), and n-fold if P=(0, s).

The following multiplicity convention will be assumed throughout.
Let s, 85, +-+, s; be any point system, and let s, occur k-times (1<0<j)
in this system. A linear subspace @ is said to contain this system
provided (k;—1, 8)<Q (1=<4+<j). A point P is said to be. included in-
the system (n—1, s), (n—1, s), ---, (r—1, s;) provided Pe(n—Fk;, s)
(1=<{i<{j). Unless otherwise stated the points of any given set are not.
necessarily all distinct.

For reference we state the easily proved:

LemMA 1. For n=2, the projection of C, from one of ils curve
points s’ is a C,_,. The space (k, s), s=s', 0<k<n—2, projects into
the space (k, s) of the projected C,-, and the space (k, s'), 1<k<n—1,
wnlo the space (k—1, s') of C,_,.

By use of Lemma 1, it can be proved by induction that C, satis-
fies the sharpened order condition, that no hyperplane cuts C, in more
than n curve points where multiple intersections are now counted with
their proper multiplicity. This leads to the fact that the system s,
Sy, oy Spa1 (0<Ck<n—1) is included in a unique k-space which we de-
signate by [si, s, -, Sp.1]. We note without proof that C, satisfies
the sharpened differentiability condition that [s), s, «-+, s,,,] converges
to (%, s) as s, 8, +-+, S; all approach s.

Use will be made of the duality theorem of Scherk [3] which
states that all the (r—1, s) build the dual of a C,. This implies that
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no point P is contained within more than n (n-—1, s) and also that the
intersection of (n—1, ), (n—1, 8, -+, (=1, 8,) (1<k<n) approaches
(n—k, s) as s, 8, --+, s, all approach s in any way whatsoever.

3. Notation. Throughout the paper the symbols I, I* will be
tacitly assumed to represent lines each of the points of which is with-
in n distinet (n—1, s) of a given C,; L, L* will be assumed to represent
the (n—2)-spaces with the property that every hyperplane through
such a space cuts C, in n distinet points.

Where a proof involves both C, and C,_; the symbol (k, s),-, will
be used to designate the osculating k-space of the curve C,_;.

4. A construction for the lines [.

THEOREM 1. If, for n=>2, A and B are any two distinct points of
a given line [, then curve poinls s, ¢, of C, ewxist so that Ae(n—1, s),
Be(n—1,t) 1<i<n) and $<6<8+<8,<lnl81+1 (=8,.1)-

Conversely if A and B are points for which Ae (n—1, s;), Be (n—
1, &), &<t,<ls,<ty<lr---<8,<t,<81+1 (=8u.1), then AB is a line [.

PROOF. Let P(s) be the intersection /(n—1, s). Note that I
(n—1, s); for otherwise { would contain a point of (2—2, s), which
point would be within (n—1, s) at least twice contrary to the defini-
tion of {. Therefore P(s) is defined uniquely for all s. As s moves
continuously on C, in a fixed direction, P(s) moves continuously on !
because (n—1, s) is continuous. Also, P(s) moves continuously in a
fixed direction; for if P(s) were to experience a reversal of direction
at P(s;) then, in every curve neighborhood of s, points s,, s, would
exist so that s,<ls;<ls., P(s;)=P(sz). Then, as P(s) is continuous,

P(s,) € lim (n—1, sp))n(n—1, szp)=(n—2, s))

87,->80, SR—$
and [ would contain a point not in % distinct (n—1, s) contrary to the
hypothesis. Let (r—1, s) (1<i<n; $<8,<-+<8,<8+1 (=8,,)) be the
complete set of (n—1, s) which contain A. As sincreases continuously
from s, to s,, P(s) makes one complete circuit of [ in a fixed direction.
Consequently it crosses the point B exactly once. Hence ¢, exists on
C, so that Be (n—1, &) (s,<t,<(s,). Likewise within each arc s<(s<C
83,1 (2<1<<m), a point ¢; exists on C, so that s<¢,<(s;,;,, Be(n—1, t).
Thus the theorem is proved.

To prove the converse, let C be any interior point of one of the
segments AB of the line through A4 and B, and D any interior point
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of the other segment. As P(s) is continuous and
P(s)=A, P@t)=B,

at least one solution P(s)=C, or P(s)=D must exist for which s§<(s<C
t,. Likewise each of the 2n arcs s,<7s<t,, t,<(s<s;,, (1<4<n) contains
at least one solution P(s)=C or P(s)=D. But as C is contained in at
most n (n—1, s) there must be exactly n solutions P(s)=C. As these
are all distinet and C is arbitrary, AB is a line /. The proof is now
complete.

This proof of the converse, due to Dr. P. Scherk, replaces a more
complicated one of my own. I should like to take the opportunity to
thank him for many helpful suggestions which have contributed to
the readability of the paper.

5. Hyperplanes with a given number of curve points.

LEMMA 2. If, for n=3, C,_, is the projection of C, from one of
its points s, then a line | of C, is projected into a line 1 of C,_,.

This is proved in [1].

LEMMA 3. For nz=3, the projection of a C, from a line l is a
Chz.

PrROOF. No hyperplane through [/ ecan cut C, in more than n—2
points. This is true for n=2 as it is equivalent to the fact that a
line [ of C, cannot contain any curve points. Assume the assertion
is true for C,., (r>2). Let H be a hyperplane which contains /.
The result is clear if H contains no points of C,. Let s be a point of
C, within H. Project from s. Then C, is projected into a C,_; by
Lemma 1, and [ into a line { of C,.;,, by Lemma 2, which is within

the projection H of H. By the induction assumption H contains at
most n—38 points of C,_,. Therefore H, which contains the points C, into
which these are projected together with s contains at most n—2 points
of C,.

The space of all 2-spaces through [ is an (n—2)-space S,., whose
hyperplanes are the hyperplanes of the original space which contain /.
The elements [/, s] of S,_, build a curve C, and C has order n—2 by
the result of the previous paragraph. This implies

[Z, s'l=<[l, s""] if s'=<s’’.
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Thus there is a one-to-one correspondence between the points of C,
and those of C. Where 0<k<n—2, let

[l) Sl]’ [ly 82], ccty [l; slc+]]

be given curve points of C. Because of the order condition these
points span a (k+2)-space @ which contains I. If s, s, =+, S, all
approach s, then Q—[l, (%, s)] because of the differentiability condi-
tion. Thus the set of elements [/, s] of S,_, is a C,_, with osculat-
ing k-spaces [I, (k, s)]. As this set is equivalent to the projection of
C, from [, the lemma is established.

Most induction proofs for the curves C, make use of Lemma 1; in
the following proof Lemma 3 is used for this purpose.

THEOREM 2. Where 0<k<n, k==n (mod 2), let s;, 8;, -+, 8;; b1,
«ee, b, be any points of C.,; then:

(a) If, for n=1, H,, H, be hyperplanes which contain s, S, +++, S ;
by, by ooyt Tespectively, and no additional points of C,, Lthen hyperplanes
H(p) (0<p<1) ewist, continuously dependent on p, each of which contains
exactly k points of C, and for which H(0)=H, H(1)=H,;

(o) If s;=t; (1=<i<k), then H(p) can be chosen so that it contairs

(e) if n=2, 0<k<n—2, for a given line I, a hyperplane H' exists
so that 1t contains exactly the points sy, S, ++-, Sy, together with the
line 1.

Proor. We first prove (c). If n=2 then k=0 and the result is
equivalent to the fact that H'={ does not cut C,. Assume the result for
for all curves C,_, (n>>2). Project from [. Thus C, is projected into
a C,_,, by Lemma 3, and s,, 8 -+, s, into points of C,_, with the
same numerical coordinates. If k=n—2, a unique hyperplane

Hl:[sly Sy y *ety Sk]

exists in the projected (n—2)-space through these points. If k<n—2,
then by the induction assumption a hyperplane H’' exists in the pro-
jected space which contains exactly the points s, 8, =+, 8 of C,_,.

Consequently, if H' is defined to be the hyperplane of the original
' space which is projected into H’, this hyperplane contains exactly the
points s, Sy ++, 8, of C,. As {SH', (c¢) is proved for C,. The proof
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can now be completed by induection.

To prove (a) and (b), consider first the case k=0. With this re-
striction neither H, nor H, contains points of C,. As the curve is
connected, it lies entirely within one of the two open regions of the
projective space whose boundary is the set of points of H; and H,.
Hence an affine coordinate system exists so that the equations of H,,
H, are x,=0, x,=1, respectively, and C, contains no points for which
0<z,<1. Now (a) and (b) follow for k=0 if H(p) is defined to be the
hyperplane with the equation z,=p, 0<p<1.

Now let k=n; (b) is trivial in this case. Let fi(p) (0<p<1, 1<
i<n) be any real-valued continuous functions for which f,(0)=s,, fi(1)
=t;. Then (a) follows if H(p) is defined to be the hyperplane spanned
by the points with coordinates f(p) (1<i<n).

In particular this establishes (a) and (b) for C, and C,. Assume
both results for all C,., (n>>2). We may assume 0<k<n—2. Let!
be arbitrary. By (c), hyperplanes H!, H} exist which contain exactly
the points s, s, *+«, S5 &, &3, =~ , &y, respectively, together with the

line . Let H,, H!, C,_, be the projections of H,, H!, C,, respectively,

from s,. By the induction assumption (b), hyperplanes H(p) (0<p<1)
exist in the projected space, continuously dependent on p, each of
which contains exactly the points s, :--, s, of C,_,, and for which

Let H(p) (0<p<(1/3)) be the hyperplane of the original space which is

projected into H(3p). Then H(p) depends continuously on p, contains
exactly the points s, s,, +-+, s, of C,, and H(0)=H,, H(1/3)=H!. Like-
wise H(p) ((2/3)<p<1) exists so that it depends continuously on p,
contains exactly the points ¢, ¢, -+, £, of C,, and for which

H2/3)=H}, H(1)=H,.

After a projection from I/, a similar argument can be used to con-
struct a hyperplane H(p) ((1/3)<<p<(2/3)) which depends continuously
on p, contains exactly %k points of C,, and for which

H(Q/3)=H!, H(2/3)=H:.

This proves (a) for C,. Also (b) is clear if H(p) is defined as above
with the additional conditions that

Hi=H:=H(p) ((1/3)=p=(2/3)).

The proof can now be completed by induction.
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6. Hyperplanes which do not contain 7 points of C, .

DEFINITION 2. S(C,) is the set of all points included in at least
one space L of the curve C, (cf. §3).

LEMMA 4. If, for n>>3, Pe S5(C,.,), where P is the projection of
a point P from a point s’ of C,, P=<s', and C,_, that of C,, then
Pe 3 (C,).

Proof. ]f?’e SUChy), then Dpoints sy, Sy, ovoy Spoyy biy Loy ooy Loy O
the projection C,_, exist so that

Fe [817 Syy *ee Sn~l]ﬂ[tl7 Z521 "ty tn—-l]=L

and

8;< 6y <(8y< oo <y <81+ 1,
by the dual of Theorem 1. Moreover,

[Sly Soy **0 Sn—l]y [tly tz: rt tn—]]

may be chosen to be any two distinct hyperplanes through L within
the projected (n—1)-space. Therefore these hyperplanes may be
chosen so that ¢,_,<7s'<(s;+1. Let the numbers

’
815 Szy *cy Sp-1y tU tz; oy tn-]y S

now represent points of C,. Then Pef{t, &, -, tuy, S'1. As &, &,

oo, bn-1, 8’ are represented by linearly independent vectors the inter-
section

i=n-1

1 [tly oy woe s b1y ti+1, ) tn-—l) S,]:S’°

i=t
Hence, because P=<s’, at least one value i exists with
Pélt,, &y oo, Eimyy binay ory tayy 8] 1<i<n—1).
For such a value ¢
[ty Eay ooy Cimry Py Eipny ooy bumyy 8'1=[E1, tyy oor, oy, ')
Let ¢, be a point of C, with ¢,>s’. Then
[ty tay oo s Eicsy P, Eiay, ooy tasy tal

approaches [¢,, t,, -+, t,_;, '] as t, approaches s’. Because of the con-
tinuity of the curve points of C,, [t, L, -+, ti1, P, i1, ==+, £,] will
contain a point ¢; of C, for which s,<t;<(s,,; provided ¢, is sufficiently
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close to s’. If t, is such a point, and s, is defined as s’, then

Pe [817 Sgy 0y Sn]m[tly tz: tety ti—-h t;r ti+1; ety tn]
and
81 <<y o+ <8<t <8111 8ntn<l81 + 1.

It follows from the dual of Theorem 1 and Definition 2 that Pe >(C,).
The lemma is thus established.

COROLLARY. If, for n=>3, P is a point for which Pel[(k, s), S
(si==s,, 0<k<n—3, P=<s,) Pé(k, s,), then Pe >(C,).

Proor. If n=3 then Pels,, s,] (si==8, P=<s;, P=<s,). Let ¢, t, be
points of C; for which s,<t,<ls,<t,<(s;+1. Then P¢[t, t,]; for other-
wise &, &, s, s, would be coplanar in contradiction to the order con-
dition. Hence [P, ¢, t,] is a plane. This plane must contain a third
point ¢ of Ci, as C; is closed. Now P=><t because [s;, s,] cannot contain

a third curve point. 1f P is the projection of P from ¢ then

Fe [Sl, Sz]ﬂ[tl» t2]9

where s,, s,, t,, &, now represent curve points of the projection C, of

C, from ¢. This implies, by the dual of Theorem 1, that Pe S(C,),
and so by the Lemma that Pe 3\(C,). Thus the corollary is true for
n=3. Assume it to be true for all C,_,, »>>8. The result for C, then
follows from the Lemma by a projection from s, if the least possible
ft=n—38 and otherwise by a projection from a point of C, different
from s, and s, .

LEMMA 5. (a) For n=>2, 3(C,) is open. (b) If a boundary point
P of SUCy) s approached by a sequence P* of points interior to >(Cy),
and L is the limit of a space sequence L* for which P*e L*, then (k, s)
(0=<k<n-—2) exists for which Pe (k, s)<L.

Proor. If Pe 3(C,) then a space L exists for which Pe L. By
the dual of Theorem 1, s;, 8,, -, 8, ; i, &, *-, ¢, exist so that

Lg[sla Sy y 00, sn]ﬂ[tlv tza oy tn] and sl<t1<sz<'“<tn<sl+ 1'

If P’ is sufficiently close to P then it is contained within an (n—2)-
space L’ which is so close to L that it has the form

[s1) 820 =5 saltn, 8y ee stn] (S<<E<lsiloe<tulsiH D).
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By the dual of Theorem 1, P'e 3(C,), and so (a) is proved.

To prove (b), let H¥, Hf be any two hyperplane sequences with
L*< HY, I*<HY which converge to two distinct limits H, and H,, re-
spectively. By the dual of Theorem 1, s¥, s, ..., s¥ ¥, t, -, th exist
so that si<{tt<lst<loee<tt<st+1 and

Hi=[st, sf, -, sk], Hy=[tr, ty, -, ts].

As Hy, HY converge, the sequences s¥, #* (1<{¢<n) also converge. If
8, t, are the respective limits of these sequences,

Z—‘—‘[31: Sgy *o0 sn]ﬂ[tlv oy oo, tn] and Slgtl_éSzg’"gt”S__Sl—*-l.

At least one equality sign must oceur in this system, for other-

wise Pe L and so Pe 3(C,); this is impossible as P is a boundary
point of the open set 3(C,). We may suppose, after a possible adjust-

ment in the notation, s,—=¢. Hence s,eL. If n=2 this proves the
Lemma, as

P=L=5=(0, s).
Assume it holds for all curves C,_,, n>>2. If P=s, then it is alreagiy
true for C,. If P><s,, project from s,. Let C,_, be the projection of
C, and P’ that of P. Then P¢3(C,.,), for otherwise, by Lemma 4,
Pe 3(C,). Moreover,
Pe [82) 83, ==+, Sul\[ss &5y =+, tn]zﬁ
and this space is approached by the system

[Sg, 3:«’)‘" *ey S#]ﬂ[té‘, 5y 0ee s t:t],

where all the numbers now represent points of C,.,. Thus P’ is a
boundary point of 3(C,_;). Therefore by the induction assumption
(k, 8),_. exists so that

Pe(k, 8)onSL  (0<k<n-—3).

Consequently, Pels;,, (k, s)J=L. Because P><s,, it now follows from

the Corollary to Lemma 4 that Pe(k, s), or s=s, and Pe(k+1, s).
Either of these possibilities shows the lemma to be true and so the
proof is complete.

LEMMA 6. If, for n>>3, I* is a sequence which converges to [, and

p an integer for which I<(p, 8), I£(p—1, ) 0<p<m—1) then [I* (g,
8)]—=(@+2, 8) (p—1=<g<n-—3).
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Proor. The space [I*, (g, s)] is a (¢+2)-space because ¢<m—1
while [* and (g, s) have no common points. Consider first the case
for which g=n—-3,p=n—2. If the lemma were false then a conver-
gent subsequence of [{*, (n—38, s)] would exist whose limit would be

a hyperplane @ for which Q<(n—1, s). As I*—[,
[l; (9’1,—3, S)]=(7’L——2, S);Q-

Consequently @ would cut C, in s at least (n—1)-fold. As C, is closed,
@ would cut C, in one additional point s’, and s'=<s as Q=<(n—1, s).
Hence, if I* is sufficiently close to I, [I*, (r—3, s)] would cut C, in
a point ¢’ so close to s’ that s'’=<s. Therefore the hyperplane [I*,
(n—38, s)] would cut C, in more than »—2 points in contradiction to
Lemma 3. Thus [I*, (r—38, s)] must approach (n—1, s), and the lemma
is proved in this case. In particular, it is completely proved for
n=3. Assume it is established for all C,_,, n>3.

Consider next the case for which ¢g<z—38. Project from any point
t of C, different from s. As t&(p, s), [ is projected into a line 7/,
and [* is projected into a line I’* defined for the projection C,_; of
C, by Lemma 2, Clearly

US(D, 8)a-r and U'sE(p—1, 8)uy, .
for otherwise
l;[(p-*l, S)’ t]ﬂ(p, S)=(p—17 S)'

Therefore, by the induction assumption, [I'*, (¢, 8)u_i]—(@+2, $)pn-1.
This implies [I*, (g, s), t]—>[(¢+2, s), t], and, because ¢ is arbitrary,
that [I*, (¢, s)]—>(¢+2, s). Thus the lemma is proved in this case.

Finally let ¢=n—38, p<n-2. 1f [I*, (-8, s)] does not converge
to (n—1, s) this set contains a convergent subsequence with limit @,
Q==<(n—1, s). Now 1<p<n—2, and so n=>4. Hence by the result of
the previous paragraph [l*, (n—4, s)]—>(nrn—2, s). Consequently (n—2,
8)=Q. This leads to the contradiction encountered in the first para-
graph. Thus [I*, (n—3, s)]—(n—1, s), and the lemma is proved for
C,.. The proof can now be completed by induction.

DEFINITION 8. o(C,) is the set of all hyperplanes each of which
contains at least one line ! of the curve C,.

a(C,) is the dual of the space >\(C,).

THEOREM 3.  For n=>2, o(C,) consists of all the -hyperplanes which
do not contain n points of C,.

Proor. By Lemma 3 each member of 4(C,) contains less than =
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points of C,. It remains to show that every hyperplane which con-
tains less than n points of C, contains at least one line [. Let H be
a hyperplane and s, s,, ---, s, be the points of C, contained in H,
where 0</<n. As C, is closed, A=n (mod 2). By Theorem 2 (c),
for a given line /, a hyperplane H' exists which contains [/ and ex-
actly the points s, sy, +-+, s, of C,,. By Theorem 2 (b), a system H(p)
(0<p<1) of hyperplanes exists, continuously dependent on p, each of
which contains exactly the points s,, s,, -+, s, of C, and for which

H(0)=H', H(l)=H .

By Definition 8, H(0) € 6(C,). Assume Héas(C,). By the dual of Lem-
ma 5 (a), o(C,) is open. Therefore a least value p of p exists for
which H(p)4s(C,). Let p* be a sequence for which p*—p, p*<p. As
H(p*) e 6(C,), I* exists for which *SH(p*). By replacing »* by an
appropriate subsequence if necessary we may assume (* converges. If
I be the limit of [* then, by the dual of Lemma 5 (b), (k, s) exists
so that

ISk, )SH(P)  (1<k<n-1).

We may assume (k+1, s)¢ H(p); for otherwise (k, s) may be replaced
by an osculating space of a greater dimension so that this relation
holds. Consequently s occurs exactly (k+1)-fold in the set s, s,, +++, sp,
and k+1<h<n—2. This is impossible if 2<1 in which case He 4(C,).
In particular this proves the theorem for 2<3. We assume therefore

n>3. As k<n—38 and I<(k, s), the number ¢ of Lemma 6 may be
specialized to k. It follows then from this Lemma that [*, (%, s)]—
(k+2, s). Hence, as [I*, (k, s)I=H(p"), (k+2, s)SH(p). This con-
tradicts the fact that s, s,, ---, s, are the only points of C, in H(p)
among which s occurs exactly (k+1)-fold. Therefore Heo(C,). Thus
the theorem is established.

7. A characterization of the lines L.

THEOREM 4. For n>2, a straight line is a line | if, and only if,
every hyperplane through [ contains less than n points of C, .

ProOF. Let m be a straight line which is not a line I. Then at
least one point P exists on s which is not within » distinet (n—1, s).
A sequence of points P* exists with P*—P for which each P*is within
less than n (n—1, s). (This can be conveniently proved by induction
in the dual formulation.) 1f A is a point of m for which A=<P then
[4, P“]->m. By the dual of Theorem 3, L* (cf. §3) exists for which
Pre L. Now [A4, L*] contains [A4, P*] and also »n points of C, by the
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definition of L*. The limit of a convergent subsequence of [4, L*] is
a hyperplane which contains m together with »n points of C,. This
proves that if every hyperplane through a straight line contains less
than n points of C, then every point of the straight line is within =
distinet (r—1, s) and so must be a line /.

No hyperplane through a line ! can contain n points of C, by
Lemma 3. Thus the proof of the theorem is complete.
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