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1. Introduction. Let the bounded, simply connected, open region
R of the (@, y)-plane have the boundary curve C. If a uniform ideal
elastic membrane of unit density is uniformly stretched upon C with
unit tension across each unit length, then 4, the square of the funda-
mental frequency, satisfies the conditions (subscripts denote differentia-
tion)

(1a) du=uypy+u,=—u In R,

J=minimum ,
with the boundary condition
(1b) u(z, y)=0 on C.

Variational methods of the Rayleigh-Ritz type are frequently used
to approximate 1. They always yield upper bounds for 2, and the up-
per bounds can be made arbitrarily close.

Another common practical method of approximating 1 is to calculate
the least eigenvalue 1, of a suitably chosen finite-difference operator
4, over a network with small mesh width 2. For one choice of 4, it
was shown by Courant, Friedrichs, and Lewy [3, p. 57] without details
that 4,—41 as 2—0. For convex regions R of a special polygonal form
the author has shown [4] that a special case of (11) below is valid for
a common choice of 4,, and hence that 2, is asymptotically a lower
bound for 2 as 2—0. For an unusual finite-difference approximation to
problem (1) when R is the union of squares of the network, Polya [12]
has found that 2,>>1 for all %, and also for the higher eigenvalues.
The author knows of no other study of the sign or order of decrease
of 1—4, to 0.

In the present paper the investigation of [4] is extended to a much
wider class of regions: those with piecewise analytic boundary curves
and convex corners. The new theorems are stated and proved in §§ 3
and 4. Theorem 2 contains the theorem of [4] as a special case.
Lemmas used in the proof of Theorem 1 are given in § 5. Identity
(31) of Lemma 7 is interesting in itself.
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When C is no longer made up of line segments of the network, it
is necessary when using finite-difference methods either to move C or
to alter 4, near the boundary. The latter procedure is potentially
more accurate, and has been adopted in deriving the rather delicate
results proved below. The definition of 4, given in § 2 is a self-adjoint
modification of Mikeladze’s approximation [10; 11], and is believed to
be new. The cruder approximations to 4 near C proposed by Collatz
in 1933 and expounded in [2, p. 857], while easier to compute in prac-
tice, appear to introduce an unmanageable term O(4*) into (19). It is
therefore doubted that Theorem 2 would remain valid for these cruder
operators.

The technique of the present paper could be applied to study the
asymptotic behavior of 2, also for other difference approximations to 4
in the interior of R—for example, for those associated with a triangular
net [2, p. 367].

It is not clear that one could revise the argument of the paper to
prove an inequality of the type

j <1+bh+o(h?) .

h

2. Definitions. Assume the bounded, simply connected, open region
R to have a closed boundary curve C: x(s)+y(s) (0<s<s,) which is
piecewise analytic. That is, x(s) and y(s) are real analytic functions of
the arc length s of C in each of a finite number m of closed intervals

OZSOS—SSSU Slgsgszv * Sm—IS;SgSm N

Moreover, we demand that the corners of C be convex; that is, at any
point x(s;)+4y(s;) (04 <m) where distinct analytic curves meet, the
interior angle of C must be less than =z.

For 2>0, let a net consist of the lines a=ph, y=1A (1, v=0, +1,
+2, - ..). The points (¢, vh) in R are the interior nodes R, of the
net. The boundary nodes C, of the net consist of (i) all points (ph, vh)
on C, and (ii) all 4solated points of intersection of the net with C.
Thus each node (p#, vh) of R, has two neighboring nodes in R,\JC,
on the line #=ph, and two in R,\JC, on the line y=vi. Moreover,
each node in C, has at least one neighbor in R,\/C,.

We now move toward a definition of the difference operator 4,.
Let.us denote the neighboring nodes of the node

(2) (SC, y) Of Rh, by (x"‘hl! y)r ($+h2, 2/), (Cl), y'—h's)’ and (xy y+k4)’

where 0<2,<h for i=1, 2, 3, 4. For nodes remote from C,, all h,=h.
Let v be any net function defined on the nodes of R,\/C, vanishing
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on C,. Define D{”v as the (constant) second derivative of the quadratic
polynomial function of x assuming the three values v(x—£h,, v), v(x, v),
and v(z+ A, y). That is,

(3)  D®u(x, y)— 2 [?’(“hm Y=o, y) _ vz, y)—v@—1, y)]_
) N /R

Also, D{v(x, y) is defined analogously. We next define

AMp(z, y)=DPv(x, y)+ DPv(z, y)

2 2
= — + )
(4) o) 9
2
+ '——}L, Y)+ +h2y
I i) V(@ —hy, Y) b 1) v(x Y)
v 2 w@y—h) 2 o, yrh) .
Ps(s + ) hy(h;+h,)

The operator 4% is the approximation to 4 recommended in [10].
It linearly transforms the net function v defined over R, into the net
funetion 4™y, also defined over R,. But 4™ is not a self-adjoint linear
operator ; that is, the matrix A® of the linear transformation of » in-
to 4™y is not symmetric.

We define the matrix A4, as the symmetric part of the matrix A™:

( 5 ) A/LZ%[A(”) s A(IL)T] ,

where T means transpose. Finally, we define 4, to be the self-adjoint
linear operator corresponding to A,.

The explicit expressions for 4, assume 16 different forms, depending
on the location of (x, y) with respect to C,. Although we shall not
need these expressions for the present paper, we describe them briefly.
If, in any of the four directions from (z, %), the neighboring node—say
(x—hy, y), for definiteness—is in R,, then 4,=#, and there is another
node (x—h—rn, y) in R\JC,. Then the term 2v(x—4h,, y)/h(h-+h,) of
(4) is to be replaced by

hy' +2h+h,

(' + W1y "E T V)

(6)

For any (z, y), the expression for 4, is obtained from (4) by making
replacements like (6) corresponding to all neighbors of (x, ¥) in R,.

When (x, y) is more than two nodes away from C,, so that all
h=h;=h, the values of both 4 and 4, reduce to the familiar form
used in [4]:
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(7))  dwl(z, y)y=4"v(z, y)
= @b, )+ 0@+, ) +0(@, y—h)+0(a, y+h) = oz, )]
Let 2, satisfy the following difference equation for a net function
v defined in R,\JC,:

(Sa) Ah/l)= —_ Z}b'v in R/L I
J,=minimum ,

where v is extended to satisfy the boundary condition
(8b) »=0 on C,.

It is readily shown that J, is the minimum over all net funections
v satisfying (8b) of the quotient

(This is simply the minimum principle for a definite quadratic form.)
By (5), we can write p,(v) in the following equivalent form, simpler to
use :

—h? S vd®y

( 9 ) ph(v)z"'”hz’”j;)fz"* .

The reason for not using the least eigenvalue p, of 4 in this
investigation is that p, does not have the foregoing minimum property
and, in fact, might turn out to be complex. On the other hand, it is
known [9, p. 27] that 2,<. (#,), so that when g, is real it could con-
ceivably be a better approximation to 2 than 1, is. The relative
magnitude of |1,—4| to |z, —4| is not known.

3. The results. The following new result will be proved in § 4:

THEOREM 1. Let R be a bounded, open, simply connected region
bounded by a piecewise analytic curve C whose corners are convex in the
sense of § 2. Let ¢ be the amgle between the tangent to C and the x
axis. Let u solve problem (1) for R, and let u, be the normal deriva-
tive of uw on C. Define A, as in § 2. Let

(U + i, )dawdy + Su,; sin® 2 de
(10) a=a(R)=-= Lo
12“(%2 +u,2)dady

R
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Then —oo<la<owo and, as h—0, one has

(11) ~§@$1—ah2+o(h2) (h—0) .

In Theorem 1 the quantity a can probably be negative for certain
nonconvex R, because dr in (10) will be negative at some points of C.
But if R is convex we get a stronger result, as an immediate con-
sequence of Theorem 1.

THEOREM 2. Under the hypotheses of Theorem 1, if R is also convex,
then 0<a<co, and there exists hy>0 such that 4,4 for all h<lh,.

For the operator 4, of § 2 the methods of [3] can undoubtedly be
followed to show that 1,—1 as 2—0; the author has not attempted to
carry through the details. When 1,—21 as 2—0, the lower bounds #,
can be made arbitrarily close by choice of %, sufficiently small. Thus
for these R the Rayleigh-Ritz methods and the finite-difference methods
(8) are theoretically complementary, and together could confine 1 to an
arbitrarily short interval if one knew an upper bound for 4.

The author has not developed an upper bound for %, in Theorem 2,
although it would be desirable to do so by estimating the term o(%?).
One could always make an intelligent guess based on the behavior of
2, for certain A.

The constant a of (10) is the best possible for certain rectangular
regions; see [4]. That the corners of C be convex seems essential to
the validity of Theorem 1. Indeed, for one nonconvex polygon some heuris-
tics and an experiment mentioned in [4] make it appear that 2,=i+
AR+ o(h*?), where A>0. It would be interesting to know the sign
of a for the general case of Theorem 1, or in particular when C is a
nonconvex analytic curve.

Corners of angle n are frequent in engineering practice, and it
would be desirable to know how 1, behaves when R has such corners.
For such corners Lemma 2 is no longer valid. Lewy [7] provides new
tools for an attack on corners of angle .

4, Proof of Theorem 1. Let u henceforth be the solution of
problem (1) for the fundamental eigenvalue 2. It is known that

(12) ASSR wdedy= SSR (ul+u)dedy .

The proof of Theorem 1, following [4], consists in setting the
values of the function » at the nodes of R,\JC, into the Rayleigh
quotient (9) of problem (8). It will be shown that
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(13) R’ig@=1—ak2+o(k2) (h—0) .

Since 2,<{p,(u), the theorem follows from (13).
The denominator %* > u* of p,(x) differs from a Riemann sum for

SS wdxdy at most by the terms corresponding to squares or part-squares
. .

at the boundary C. The total contribution of these terms does not
exceed the order of magnitude LA max,u?, where L is the length of
C. Hence a fortiori

(14) Py ”ZZSS wdady+o(l)  (h—0).
R R

Let the nodes of R, be divided into three classes:

R} : those within a distance 2 of some corner of C;
(15) R2: those not in R, but within a distance 4 of C;
R}: the other nodes of R, .

Split the numerator of p,(u) accordingly :

— 5 S ud Py = é (—]f > uA(")u>-—_— }3; Si(u) .

Rh =1 Ighi

There are a fixed number of corners, not exceeding m, and at
most two nodes of R,' per corner. Moreover |pu(x, y)I'—0 as (x, y)—a
corner of C, by Lemma 1 in § 5. At any node (x, y) of R, with
neighbors denoted as in (2), we find from (3) that

R (w—0) i lu—u; |
\

h2lud™ u| <=5
min h,; i=1 ¢ ;

< 4k* max jpul? ,

where the u, are the values of u at the four neighbors of (z, y), and
where the maximum of |pu|* is taken over all points within a distance
2h of some vertex. Hence

(16) 1S3 ()| <8mh* max |pul*=o0(h?) (h—0) .
Using the notation and assertion of Lemma 3, we have
2 2 253 , .
(17) Sh (u)= —h Z udu—== Z u(ﬁmuwm+ 01/”1/1/@) .
R},,‘z 3 Rlbz
Since u satisfies (1a),

(18) B S udu= S\
2 RBy*

By (17), (18), and Lemma 4,
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ISy () = 4?35 w|<3h° 3 u([Ual + [Ul) =0(R?)  (R—0) .
RBy? Ry?
Thus

(19) S (w) = 1;‘ w+o(h?) (A—0) .

Similarly, using the notation and assertion of Lemma 5, and by
(1a), we have

(20) Sw) = S, uP— o S U+ Uy -
Rh.3 12 R/13
Now
(21) RS w=h Sk S ut =0 S ut+o(h?) ,
ha U Rh,:‘ Rh. R 11,1 Rlz,

since u(z, y)—0 as (z, y)—C, and since there are at most 2m vertices
in B}. Adding (19) and (20), and using (21), we find that

Si(u) + S, u) =2k 3 i — 1’; S U+ Uiy) + 0()
Rh 3

h

= S U — EH U(U gz + Uy ) B2y + ()
r 12J)J=

h

by Lemma 6. Adding S,'(u) to the above, and dividing by (14), we
find that

(22) B

o V|, Wt t) iy
=i o)

SS wdady
R

Finally, dividing (22) by 4, and applying Lemma 7 and (12), one proves
(13) and hence Theorem 1.

5. Some lemmas. The following lemmas are basic to the proof of
Theorem 1. In all of them R satisfies the conditions stated at the
start of § 2, while u=u(x, y) solves problem (1).

LeMMA 1. The function u is an analytic function of x and y in
R\JC, except possibly at the corners of C. Let r be the distance of (x, y)
from a corner P with interior angle nja, 1<<a< oo. Then for m=0, 1,
2, « - ., any partial derivative of w of order m has the local representation
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o"u w-m .
(23) oy ful@, y)  (p+r=m),
where f, 18 continuous at P.

Proof. By [1, p. 179], » is analytic in R. The representation
(27') below shows that the interior normal derivative u, is integrable
on C. Then the analyticity of # on C (corners excluded) was shown
by Hadamard [5, p. 25].

Let t=¢+4y and z=x+iy. For each teR let w=2(, ) map R
conformally onto the circle |w|<1, with @(¢ t)=0. We may assume
without loss of generality that P is at z=0, and that @(0, t)=1.
Lichtenstein [8, pp. 255-256 and footnote 273] showed* that for m=0,
1, 2,.-.., and ze R,

(24) 0@ 1) _ ey, (i, 1)
azm

where ¢, is continuous at z=0. It follows from (24) that

(25) o 1,0% i(z’ t) =2""d,(2, t) ,
Z

where ¢,, is continuous at z=0. Let G(z, t)=G(&, 7; z, y) be Green’s
function for 4w in R. Since

Gz, t)=—2n)" log | f (2, t)I ,
it follows from (25) that for m=0,1,2, ... and ze R,

(26) ?ﬁq_(z_;/_tﬁ),—_—q-“'mwm(z, t) (/l+ y=m) ,

where ¥,, is continuous at z=0.
Now the function » has the integral representation [1, pp. 182-183]

u(x, y)=XSSRG(x, y; & pu(é, p)dedy .
Hence

u(x+dx, y)—u(x, y)
&) s

1 The author wishes to thank Professor Lewy for this reference.

2 Lichtenstein actually asserts that (24) is without question true for all «, but that his
proof is valid only for irrational «. Warschawski [13] has found a simple proof of (24),
valid for all « in the range }<a<oo.

Added in April 1954: For asymptotic expansions of ¢ at a corner, see R. Sherman
Lehmann, “ Development of the mapping function at an analytic corner,” Technical Report
No. 21, Applied Mathematics and Statistics Laboratory, Stanford University, California,
March 31, 1954, 17 pp.
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2 S S Gt 4z, y; é}l:(i@_y_;ﬁj), u(€, 7)dédy
R T

215 S 85% (w404, y; & Pul, )dedy

where 0<0=0(x, y, 4x)< 1. Since G(z, t)=G(¢, z), it is clear that 0G/ox
=2G[o¢ and, as a function of ¢, 0G/ox behaves like [t—¢,]*' at any
corner ¢, of R, uniformly in z for z bounded away from C. Hence
(3G [ox)u(&, ») in (27) is dominated by an integrable funection of &, 7,
uniformly with respect to 4z. By Lebesgue’s convergence theorem,
letting 4x—0 in (27) proves that

@7 ou =x” G (@, ; & poue, pdsdy.
ox R O

Setting the expression (26) for m=g=1 into the last equation proves
the case m=pu=1 of (23).

In a similar way one can prove all the cases m=0, 1, 2, 3, 4 of
(23), and the lemma is established.

LEMMA 2. The functions k., Uleem Ulammms Uy Wyllyy, AONA U,,,, AT

Lebesgue integrable in R. The Lebesgue integrals S Ul Y and
¢

S UMy de  exist.

e}

Proof. By Lemma 1 the functions 2, - - -, uu,,, are continuous
in R\JC except possibly at the corners, where they are O(r**"*). Since
0<«, the first sentence follows. The second sentence is proved analo-
gously.

REMARK. The proof of Lemma 2 breaks down for corners of angle
7 (@¢—1), as r~* is not integrable.

LEMMA 3. At any node (z, y) of R, whose neighbors are denoted as
in (2), one has
APy = Ay + 2h[0 )+ O,
where —1<6,<1, —1<60,<1, and where

ua’mmzuxzx(x’y y) y x_k1<x’<x+kz s

(28) . j )
Uy =y (@, YY), Y—Dy'y+h .

Proof. By Lemma 1, u,,, is continuous in the open line segment
from (x—h,, y) to (®+h,, y), but may become infinite if the endpoint is
a corner of C. Since u is continuous in R\JC, it nevertheless follows
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from Taylor’s formula as stated in [6, p. 357] that, if we fix y and
set o(@)=u(x, ),

Ffi(“’;"_@):qs(x)zw(x) + hng”(x) + h”¢>”’(x+ 0.h,) ,
h, 2 6
where 0<6,<1.
Writing a similar formula for A, and subtracting, we find in the
notation of (3) that

D;”>¢<w)=¢>"<w)+[’§¢/“(w+m>~ ;%'”(w—m](h1+hz>—1.

If one writes k=max (h, 2,)<h, the last term can be bounded in ab-
solute value by

:23’;‘ max [|¢" (@ +0.h,)], 16" (x— 0]

and hence can be written in the form (24/3)0.,... Addition of a
similar expression for D{"u(x, y) proves the lemma.

LEMMA 4. For each node (x, y) of R, defined in (15) use the nota-
tion of (28). Then, as h—0, one has

(29) k%}u(lu;wg + gy, )=0(1) (2—0) .

Proof. The lemma is proved much like Lemma 6 of [4]. The func-
tions u|#...] and ulu,,| are continuous in R\JC, except at a corner of
interior angle wa, where Lemma 1 states that they behave like 73
with 2a~8>—1. The sum (29) can be majorized by the Lebesgue
integral of a step function over a polygonal arc in B which converges
in length to C as 2—0. The integrability of #**-% in (0, 1) permits the
application of Lebesgue’s convergence theorem as 2—0. Since u=0 on
C, (29) follows. Details are omitted.

LEMMA 5. At each node in R}, defined in (15), one has
(h S 1 2 ’ rr
4 )u~Au+1—2~h (Urnwwst Upyy)

where

u;wxwzuwxzx(x_*"a’k’ ’!/) ’ _1<0,<1 ’
Wy = Uyyyy (T y+0"'h)y, —1<0"<1.

Proof. In [4]; the points of R, all have four neighbors in R,

(30)
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each at a distance 4.

LEMMA 6. At each node of R}, defined in (15), use the notation of
(80). Then, as h—0, one has

kz 2 u(u;mm:c + u;/yyu) = SSR u(u:v:c:n:c + uyyyy)dxd?/ + 0(1) (k’—)O) .
Rlbs

Proof. In [4].
LEMMA 7. Define u, and v as in Theorem 1. One then has
SSRM(%mer Uyyp)dady =SSR (w2, +ut)dady + SC u? sin? 2¢dr ,
where the latter is a Riemann-Stieltjes integral.

Proof. The proof repeats that of Lemma 7 in [4] down to (29) of

that paper. It then remains only to prove for smooth convex curves
C that

(31) SC uw(uydw+u_,dy)=g w,? sin® 2cd .
c

Let s denote arclength on C, and let primes denote d/ds. Differ-
entiating the relations u,= —u,sinr, u,=u,cosz, we find that, on C,

32) u,’ = —u," sin r—u,r’ cos r=u,, sin r+u,, cos r ,
w,’= u, cost—u,r’ sinr=u,, cos t+u,sinr.

Changing u., to —u,, by (1), we can solve (32) for u,, on C:
Uy =,  sin 2r+u,r’ cos 2z .

Since drx=dscost and dy=dssinz, we obtain
(33) SC Uyy (U, do +u.dy) = SC (u,’ sin 27 +u,z’ cos 27)(u,, cos 2r)ds
= SC u,'t' cos? 2rds + SC UM, cos 2rsin 2zds .
By partial integration, we have
(34) SC U U, €08 27 sin 2rds=1} SC (#,?)’ sindrds
=3}|u,’ sin 47r],— SC Ut cos drds .

Since cos® 27 —cos 4r==sin* 2r, substitution of (34) into (33) shows that
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S Uy, (U do + udy) :S w7t sin® 2r ds .
¢ c

Since r’ds=dr, the identity (31) is proved, and with it, the lemma.
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