NOTE ON NON-COOPERATIVE CONVEX GAME

HUKUKANE NIKAIDO AND KAZUO ISODA
NOTE ON NONCOOPERATIVE CONVEX GAMES

HUKUKANE NIKAIĐO AND KAZUO ISODA

1. Introduction. Nash's equilibrium-point theorem for many-person games can be approached by two methods: first, the Kakutani-type fixed-point theorem is very useful for this game problem; second, in case of finite-dimensional multilinear payoffs, J. Nash himself has given an elegant procedure [7] which is directly based on Brouwer's fixed-point theorem. In a previous paper [10] one of us proved a general minimax theorem in making use of a procedure analogous to that of Nash. The present note is a continuation of this paper, and its main purpose is to offer further improvements of Nash's method so as to treat noncooperative many-person games played over infinite-dimensional convex sets, based on a generalization of von Neumann's symmetrization method of game matrices. The results thus obtained contain further weakening of (especially topological) assumptions of the equilibrium-point theorem.

Next we shall discuss the equilibrium-point problem of some general noncooperative games by reducing them to suitable convex games. This will clarify the relevance of convex games to general games.

2. Definitions and notations. We mean by a convex game [3] a noncooperative n-person game with the following conditions:

a) The i-th player's strategy space is a compact convex set X_i of a topological linear space E_i.

b) The i-th player's payoff $K_i(x_1, \ldots, x_i, \ldots, x_n)$ is concave with respect to his own strategy variable $x_i \in X_i$.

c) The sum of payoffs $\sum_{i=1}^{n} K_i(x_1, \ldots, x_i, \ldots, x_n)$ is continuous over the cartesian product space $X_1 \otimes X_2 \otimes \ldots \otimes X_n$.

d) For each fixed x_i, $K_i(x_1, \ldots, x_i, \ldots, x_n)$ is a continuous function.
function of the \((n-1)\)-tuple \([x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n] \in X_1 \otimes \cdots \otimes X_{i-1} \otimes X_{i+1} \otimes \cdots \otimes X_n\) respectively.

Remark In view of the usual classification of games in terms of total gains, c) may be of interest. Indeed, in case of constant-sum games, c) is automatically fulfilled. If all the payoffs are continuous over \(X_1 \otimes \cdots \otimes X_n\), c) and d) are also fulfilled.

A point \([\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_n] \in X_1 \otimes X_2 \otimes \cdots \otimes X_n\) is said to be an *equilibrium point* if the \(x_i\)-function \(K_i(\hat{x}_1, \hat{x}_2, \cdots, \hat{x}_{i-1}, x_i, \hat{x}_{i+1}, \cdots, \hat{x}_n)\) assumes its maximum at \(\hat{x}_i = \hat{x}_i\) \((i=1, 2, \cdots, n)\).

Remark The notion of equilibrium points first appeared in the celebrated work of Augustin Cournot (see [2]) and was investigated by him by means of differential calculus. But the contemporary concern about it is to see the existence of these points in the global sense by topological methods. The equilibrium-point problem under conditions a)-d) cannot, however, be treated by the Kakutani fixed-point theorem, since the required upper semi-continuity is not always assured in these cases. Thus, the proof in the following section may deserve some general attention.

3. Generalization of von Neumann’s symmetrization and proof of the equilibrium-point theorem. To see the existence of equilibrium points for a convex game, we introduce an auxiliary function. To begin with, denote by

\[
x=[x_1, x_2, \cdots, x_n], \quad y=[y_1, y_2, \cdots, y_n]
\]

two mutually independent variables with the same domain

\[
X=X_1 \otimes X_2 \otimes \cdots \otimes X_n,
\]

which is again compact and convex.

Next put

\[
\Phi(x, y) = \sum_{i=1}^{n} K_i(y_1, y_2, \cdots, y_{i-1}, x_i, y_{i+1}, \cdots, y_n).
\]

It is noted that \(\Phi(x, y)\) is also concave with respect to \(x \in X\). The importance of this function is clarified by:

Lemma 3.1. A point

\[\hat{y}=[\hat{y}_1, \hat{y}_2, \cdots, \hat{y}_n] \in X\]

is an equilibrium point for the given game, if and only if \(\Phi(x, \hat{y})\) assumes
its maximum at \(x = y \).

Proof. The necessity is obvious. If, conversely,

\[\Phi(y, y) \geq \Phi(x, y) \]

for any \(x \in X \), setting

\[x = [\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_{i-1}, \hat{y}_i, \hat{y}_{i+1}, \ldots, \hat{y}_n] \]

gives

\[K(\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_{i-1}, \hat{y}_i, \hat{y}_{i+1}, \ldots, \hat{y}_n) \geq K(\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_{i-1}, \hat{y}_i, \hat{y}_{i+1}, \ldots, \hat{y}_n) \]

for any \(x_i \in X_i \).

Remark For a zero-sum two-person game, we have

\[\Phi(x, y) = K(x_1, y_2) - K(y_1, x_2) , \quad \Phi(y, y) = 0 , \]

where \(K(x_1, x_2) \) is the payoff from player 2 to player 1. This implies the functional form of von Neumann's symmetrization procedure\(^3\). We shall later present an interpretation of this function with regard to player's behavior.

With this setup, we next prove:

Theorem 3.1. A convex game always has at least one equilibrium point.

Proof. By Lemma 3.1., we have only to see the existence of a point \(\hat{y} \in X \) such that \(\Phi(\hat{y}, \hat{y}) \geq \Phi(x, \hat{y}) \) for any \(x \in X \). Suppose the contrary were valid. Then, to each \(y \in X \), there exists some \(x \in X \) such that

\[\Phi(y, y) < \Phi(x, y) . \]

Put \(G_x = \{ y; \Phi(y, y) < \Phi(x, y) \} \) then \(G_x \) is open by conditions c) and d), and

\[X \subset \bigcup_{x \in X} G_x \]

by (2). Hence, in view of the compactness of \(X \), we can find a finite

\(^3\)It is noted that \(\Phi(x, y) \) does not provide a real generalization of von Neumann's symmetrization, since \(x_i \)'s refer, in special cases, to mixed strategies. We can also construct, however, the function \(\Phi \) in terms of pure strategies, and this will give a real generalization of von Neumann's method symmetrizing game matrices; instead of the cartesian product of mixed strategy spaces we must, then, consider the mixed strategies over the cartesian product of pure strategy spaces. But in either cases the formal procedures in constructing \(\Phi \) are exactly the same.
set $A = \{a_1, a_2, \cdots, a_s\} \subset X$ such that

$$X \subset \bigcup_{j=1}^{s} G_{a_j}.$$

This implies $\Phi(y, y) < \max_j \Phi(a_j, y)$ for any $y \in X$. Now, put

$$f_j(y) = \max [\Phi(a_j, y) - \Phi(y, y), 0] \quad (j=1, 2, \cdots, s).$$

These s functions are all continuous by conditions c) and d), and satisfy $f_j(y) \geq 0$, $\sum_{j=1}^{s} f_j(y) > 0$ for any $y \in X$.

The continuous mapping

$$y \rightarrow \frac{\sum_{j=1}^{s} f_j(y)a_j}{\sum_{j=1}^{s} f_j(y)}$$

maps X into the convex hull $C(A)$ of A and therefore in particular $C(A)$ into $C(A)$. Since $C(A)$ is homeomorphic to a compact convex set in a Euclidean space, there exists a fixed point by Brouwer's fixed-point theorem.

Denote by \hat{y} one such point. We have then

$$\hat{y} = \frac{\sum_{j=1}^{s} f_j(\hat{y})a_j}{\sum_{j=1}^{s} f_j(\hat{y})} \in C(A) \subset X.$$

But for such a j that $f_j(\hat{y}) > 0$, we have, by definition, $\Phi(a_j, \hat{y}) > \Phi(\hat{y}, \hat{y})$. Since $\Phi(x, y)$ is x-concave, this implies $\Phi(\hat{y}, \hat{y}) > \Phi(\hat{y}, \hat{y})$, which is a contradiction.

REMARK The foregoing proof is essentially a repetition of the argument in [10]; the application of this argument to many-person cases is made possible by the use of $\Phi(x, y)$. It should be noticed, however, that despite the generality of Theorem 3.1, it does not contain the result of [10]. The main reason for this fact is: the quasi-concavity (see [10]) of the original payoff may be lost in constructing $\Phi(x, y)$. So the theorem in [10] needs separate discussion.

4. An interpretation of $\Phi(x, y)$. Lemma 3.1 can be rewritten as follows: An n-person game has an equilibrium point if and only if

$$\min_{y \in X} \max_{x \in X} [\Phi(x, y) - \Phi(y, y)] = 0.$$

Now (4) may be interpreted in the following way: Suppose there are n persons P_1, P_2, \cdots, P_n. We consider the cases where all the persons P_2, \cdots, P_n except P_1 cooperate. Denote the coalition consisting of only P_1 by Q_1 and that consisting of P_2, P_3, \cdots, P_n by Q_2. Q_1 and Q_2 play n original games simultaneously, conforming to the following new rules:

We denote these n games by G_1, G_2, \cdots, G_n, respectively. In $G_i (i = 1,$
2, \cdots, n), Q_1 participates in the \(n \) simultaneous games as the \(i \)th player, while \(Q_2 \) occupies all the other positions. Then
\[x = [x_1, x_2, \cdots, x_n] \in X \]
indicates the strategies of \(Q_1 \), and
\[y = [y_1, y_2, \cdots, y_n] \in X \]
indicates those of \(Q_2 \). If \(Q_1 \) chooses \(x \) and \(Q_2 \) chooses \(y \), \(Q_2 \) pays to \(Q_1 \) the amount
\[K(y_1, \cdots, y_{i-1}, x_i, y_{i+1}, \cdots, y_n) \]
as the outcome of \(G_i \). On the other hand, \(Q_1 \) pays to \(Q_2 \) the amount
\[\sum_{i=1}^{n} K(y_1, y_2, \cdots, y_n) \]
as the rent for gambling, after the game is over. Thus \(\Phi(x, y) - \Phi(y, y) \) indicates the total gain of \(Q_1 \), while \(\Phi(y, y) - \Phi(x, y) \) indicates that of \(Q_2 \). With the notion of this new zero-sum two-person game, (4) gives a criterion for the existence of equilibrium points for the original \(n \)-person game. If the given \(n \)-person game is constant sum, (4) is reduced to the more natural formula:
\[\min_{y \in X} \max_{x \in X} \Phi(x, y) = \pi, \]
where \(\pi \) denotes the corresponding constant sum.

5. Reduction to convex games. In this section we assume \(E \) is a normed linear space. We further assume regarding the payoffs \(H_i(x_1, x_2, \cdots, x_n) \) the following conditions:
\begin{enumerate}
 \item The \(x_i \)-function \(H_i(x_1, \cdots, x_{i-1}, x_i, x_{i+1}, \cdots, x_n) \) is upper semi-continuous for each fixed \((n-1) \)-tuple \([x_1, x_2, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n]\).
 \item The \(x_i \)-set
 \[\{x_i; \max_{x_i \in X_i} H_i(x_1, \cdots, x_i, \cdots, x_n) = H_i(x_1, \cdots, x_i, \cdots, x_n)\} \]
is convex for each fixed \((n-1) \)-tuple \([x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n]\).
 \item The family \(\{H_i(x_1, \cdots, x_i, \cdots, x_n); x_i \in X_i\} \) is a uniformly equi-continuous family of functions on \(X_1 \otimes \cdots \otimes X_{i-1} \otimes X_{i+1} \otimes \cdots \otimes X_n \).
\end{enumerate}
These games are usually treated by means of Kakutani's fixed-point theorem. We shall next, however, prove the following:

Theorem 5.1. To each game of foregoing type there exists a convex game with the same strategy spaces whose equilibrium points are exactly those of the original game.
As a direct application of Theorems 3.1 and 5.1 we can see the existence of equilibrium points for games of the foregoing type without Kakutani’s theorem.

We now proceed to prove some lemmas.

Let \(R \) and \(S \) be normed linear spaces. We denote by \(||x|| \) the norm of a point \(x \in R \). A continuous function \(f(x) \) over \(R \) will be called linear if

\[
f(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 f(x_1) + \alpha_2 f(x_2)
\]

for \(x_1, x_2 \in R, \alpha_1 + \alpha_2 = 1 \). We define the norm of \(f \) as usual:

\[
||f|| = \sup_{||x|| \leq 1} |f(x) - f(0)|.
\]

Now, let \(H(x, y) \) be a function on \(X \otimes Y \), where \(X \) and \(Y \) are compact convex sets in \(R \) and \(S \), respectively, and suppose that the family of functions \(\{H(x, y); x \in X\} \) is uniformly equi-continuous.

Let further \(F_y \) be the totality of linear functions \(f \) over \(R \) such that (I) \(||f|| \leq 1 \) and (II) \(f(x) \geq H(x, y) \) for any \(x \in X \).

Putting

\[
K(x, y) = \inf_{f \in F_y} f(x),
\]

we obtain an \(x \)-concave function on \(X \otimes Y \). We call \(K(x, y) \) the \(x \)-concave envelope of \(H(x, y) \). We shall show the continuity of this function by proving the following lemmas.

Lemma 5.1. \(\{K(x, y); x \in X\} \) is a uniformly equi-continuous family of functions on \(Y \).

Proof. Since \(\{H(x, y); x \in X\} \) is uniformly equi-continuous, we can find for \(\varepsilon > 0 \) a \(\delta > 0 \) such that \(||y_1 - y_2|| \leq \delta \) implies \(|H(x, y_1) - H(x, y_2)| \leq \varepsilon \) for any \(x \in X \). We shall show that, for this same \(\delta \), \(||y_1 - y_2|| \leq \delta \) implies \(|K(x, y_1) - K(x, y_2)| \leq \varepsilon \) for any \(x \in X \).

Indeed, if \(f \in F_y \), then

\[
f(x) \geq H(x, y_1) \geq H(x, y_2) - \varepsilon
\]

for all \(x \in X \), and \(||f + \varepsilon|| = ||f|| \); namely, we have \(f + \varepsilon \in F_y \).

In the same way, we have \(g + \varepsilon \in F_y \) for \(g \in F_y \).

Hence, if \(||y_1 - y_2|| \leq \delta \), we obtain

\[
K(x, y_1) + \varepsilon = \inf_{f \in F_y} f(x) + \varepsilon = \inf_{f \in F_y} [f(x) + \varepsilon] \geq \inf_{g \in F_y} g(x) = K(x, y_2),
\]
and similarly $K(x, y_2) - K(x, y_1)$ for any $x \in X$. This means that $|K(x, y_i) - K(x, y_j)| \leq \epsilon$ for $y_i, y_j \in Y$, $||y_i - y_j|| \leq \delta$, and all $x \in X$.

Lemma 5.2. $K(x, y)$ is continuous on X for each fixed $y \in Y$.

Proof. Let y be an arbitrary fixed point in Y. If $||x - \hat{x}|| \leq \epsilon$, then $f \in F_y$ implies

$$|f(x) - f(\hat{x})| \leq ||f|| ||x - \hat{x}|| \leq \epsilon.$$

It follows that

$$\inf_{f \in F_y} f(x) - \inf_{f \in F_y} f(\hat{x}) \leq \epsilon,$$

proving the desired continuity.

Lemma 5.3. $K(x, y)$ is continuous on $X \otimes Y$.

Proof. We have this lemma immediately by taking Lemmas 5.1 and 5.2 together into consideration.

Lemma 5.4. Suppose $H(x, y)$ is upper semi-continuous in x for each fixed $y \in Y$, and the x-set

$$\Gamma_y = \{x; \max_{x \in X} H(x, y) = H(x, y)\}$$

is a convex subset of X for each fixed $y \in Y$. Put

$$\Delta_y = \{x; \max_{x \in X} K(x, y) = K(x, y)\}.$$

Then we have $\Gamma_y \subseteq \Delta_y$ for each fixed $y \in Y$.

Proof. Let y be any fixed point eY, and put

$$\omega_y = \max_{x \in X} H(x, y).$$

Then the linear function $g(x) = \omega_y$ belongs to F_y. Hence we have

$$H(x, y) \leq K(x, y) = \inf_{f \in F_y} f(x) \leq \omega_y$$

for all $x \in X$, which implies $\Gamma_y \subseteq \Delta_y$.

Conversely, by the above formula, it is obvious that if $x \in \Delta_y$ then $K(x, y) = \omega_y$. Thus, to see that $\Delta_y \subseteq \Gamma_y$, it suffices to show that $K(\hat{x}, y) < \omega_y$ for $\hat{x} \notin \Gamma_y$.

Let \(\hat{x} \) be any point not belonging to \(\Gamma_y \). Then
\[
\text{dist}(\hat{x}, \Gamma_y) = 2\alpha > 0.
\]

Putting
\[
M = \{x ; \text{dist}(x, \Gamma_y) < \alpha\},
\]
we obtain an open convex set \(M \) and a closed convex set \(\overline{M} \) (the closure of \(M \)) in \(\mathbb{R} \). Moreover, it is clear that \(\hat{x} \notin M \).

Let \(e(x) \) be such a linear function that \(e(x) \geq 0 \) on \(M \) and \(e(\hat{x}) = -1 \); its existence is a well-known fact (known as Mazur's theorem) in the theory of convex sets. Denote by \(N \) the complement of \(M \) within \(X \); \(N \) is compact and, in view of the definition of \(M \), we have
\[
\omega_y = \max_{x \in N} H(x, y) = r > 0 ; \quad \min_{x \in N} e(x) = \eta < 0.
\]

Put
\[
f(x) = \omega_y + \frac{\partial e(x)}{\eta},
\]
where \(\delta > 0 \) is so small that \(\delta \leq r \) and \(\delta \|e\| \leq |\eta| \). Then \(\|f\| \leq 1, f(x) \geq \omega_y \) on \(M \), and
\[
f(x) = \omega_y + \frac{\partial e(x)}{\eta} \geq \omega_y + \frac{\gamma r}{|\eta|} = \omega_y - \frac{\gamma}{|\eta|} H(x, y)
\]
for any \(x \in N \).

Hence \(f \in F_y \). Moreover,
\[
f(\hat{x}) = \omega_y + \frac{\partial e(\hat{x})}{|\eta|} = \omega_y - \frac{\delta}{|\eta|} < \omega_y,
\]
which means \(K(\hat{x}, y) < \omega_y \), proving the lemma.

The proof of Theorem 5.1. is now immediate. Indeed, let us construct the \(x_i \)-concave envelope \(K_i(x_1, \ldots, x_i, \ldots, x_n) \) of
\[
H_i(x_1, \ldots, x_i, \ldots, x_n) \quad (i = 1, 2, \ldots, n).
\]
Then \(K_i(x_1, x_2, \ldots, x_n) \) is clearly \(x_i \)-concave, and is continuous by Lemma 5.3. Thus, we obtain a convex game. Moreover, the set of equilibrium points of this game coincides with that of the original game, by Lemma 5.4.

REFERENCES

1. Contributions to the theory of games I, edited by H. W. Kuhn and A. W. Tucker,

TOKYO COLLEGE OF SCIENCE, TOKYO, JAPAN
TOKYO INSTITUTE OF TECHNOLOGY, TOKYO, JAPAN.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, Alfred Horn at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back numbers (Volumes 1, 2, 3) are available at $2.50 per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.) No. 10 1-chome Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

* During the absence of E. G. Straus.

UNIVERSITY OF CALIFORNIA PRESS · BERKELEY AND LOS ANGELES
Henry A. Antosiewicz, *A theorem on alternatives for pairs of matrices* 641
F. V. Atkinson, *On second-order non-linear oscillation* 643
Frank Herbert Brownell, III, *Fourier analysis and differentiation over real separable Hilbert space* .. 649
Richard Eliot Chamberlin, *Remark on the averages of real function* 663
Philip J. Davis, *On a problem in the theory of mechanical quadrature* 669
Douglas Derry, *On closed differentiable curves of order *n* in *n*-space* 675
Edwin E. Floyd, *Boolean algebras with pathological order topology* 687
George E. Forsythe, *Asymptotic lower bounds for the fundamental frequency of convex membrane* ... 691
Israel Halperin, *On the Darboux property* 703
Theodore Edward Harris, *On chains of infinite order* 707
Peter K. Henrici, *On certain series expansions involving Whittaker functions and Jacobi polynomial* .. 725
Jack Indritz, *Applications of the Rayleigh Ritz method to variational problem* ... 765
E. E. Jones, *The flexure of a non-uniform beam* 799
Hukukane Nikaidô and Kazuo Isoda, *Note on non-cooperative convex game* ... 807
Raymond Moos Redheffer and W. Wasow, *On the convergence of asymptotic solutions of linear differential equation* 817
S. E. Warschawski, *On a theorem of L. Lichtenstein* 835
Philip Wolfe, *The strict determinateness of certain infinite game* 841