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1. Introduction. The series of Jacobi polynomials

w = 0

(an independent of p and τ) has in the case an=l already been evaluated
by Jacobi in terms of elementary functions, and there are several other
known cases where it can be summed explicity. The sum of (1) is then
usually called a generating function of the Jacobi polynomials. On the
other hand, according to a particular case of a theorem which we have
proved recently, every function of a certain class of regular solutions
of the partial differential equation

dxz dyz x dx y dy

can be represented by a series of type (1), where

and may therefore be considered as a generating function of the Jacobi
polynomials in the above sense. This fact is used in the present paper
for the construction of an expansion of type (1) which contains several
known results of this kind as special cases. As a side result we shall
obtain some identities of Cayley-Orr type between the coefficients in the
Taylor expansions of certain products of hypergeometric series.

In what follows x and y are considered as independent complex
variables. Also the variables

(4) z=x-\-iy, z*=x — iy

will be used. Our notation of special functions is in accordance with [5].

2. The expansion theorem. The special case k=0 of the main
theorem of [6] is as follows:
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4-^-2, -3, -4,

u(x, y) = U(z, z*)

be a solution of (2) regular in the domain & : | z | < r , | z * | < r (r>0)
satisfying the conditions

(6) U(z, z*) = U(-z, -z*) = U(z*9 z)

and let

(7) U(z, 0 ) = Σ ^ s

ίl-0

7%β?i 2̂ (̂ , ?/) ^αs in & the representation

(8) Φ,2/)-

where p and τ are given by (3)

r _ 2 ^ ! _ (μ + » + l)nnl
In

\ 2 Ίn
v±2\
2 )n

3 A special solution of (2) We substitute in (2) bipolar coordinates
(ξ, η) which we define by

(10) χ= ™Af , y= - - .
cosh ξ + cos η cosh ξ + cos 37

They are connected with (z, «*) and (p, r) respectively by the relations

ω ω

(ii)

where

(12) ω

(The square roots are positive for z=z*=0, p=0.) Since (2) may be
written in the form

(13) div (# 2 μ + y v + 1 grad u) = 0
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and since the transformation (10) is isothermalι, we obtain for ψ(ξ, η) =
ιι(x, y) the equation

Setting

and

one finds by the usual separation method that both S(s) and T(t) have
to satisfy the differential equation

(14) ( r i ) ζ + 2 ( i + l ) / +
dv" dv

where v=s, λ=μ, if V=S, and v=t, λ = v, if V=T, K being a separation
parameter. A solution of (14) regular near v=l is the function

(15) \ λ κ λ ^ ι z + l ]

Here P denotes the Legendre function of the first kind.2 Tracing back
our substitutions and assuming that none of the numbers μ and v is a
negative integer, we may thus define a solution of (2) by

(16) Φf\p, τ H ω - i - ^

Evidently this function satisfies the functional relations

Φi^iP, τ) = Φ^Ά(p, r)

Among the many possible representations of #/ ί V ) in terms of
hypergeometric functions we list the following, which is obtained by
substituting equation 3.2 (24) of [5] for the Legendre functions involv-
ed in (15):

1 Arising from the conformal transformation z — tanhf, ζ = ξλ-iτ].
2 The functions Vκ\v) could also be expressed in terms of Gegenbauer functions.
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(18) )==φ2F1

X ιl

l μ4-6 4-2 .
2 ' " " 2 '

V — K, v — £ 4 - 1

Here we have put

and

Y

It is easy to see from this representation that the function

U(z, Z*) = Φ™(p, τ)

is regular in | z | < l , | ^ * | < 1 and that it satisfies the symmetry rela-
tions (6). Save for the mentioned exceptional values of the parameters,
(15) defines therefore a solution of (2) for which the assumptions of
the expansion principle of § 2 are satisfied.

4. The Jacobi expansion of Φi^K From (18) we have immediately

(19) U(z, 0 ) = ^
>4-/c4-l μ + tc

μ + 1

— K v — /C4-1

2 2

If we denote by an the coefficient of zm in the Taylor expansion of the
right hand side of (19), we obtain by the expansion principle the series

= Σ r,«»W(20) ffi-"-»-17ϊ

which converges if

\z\<l,

or, what amounts to the same,

We note the following representations of an in terms of terminat-
ing hypergeometric series:



ON GENERATING FUNCTIONS OF THE JACOBI POLYNOMIALS 927

-/Λ ίvv__!l j !*-___-_._- j r_._.- ' - ? r- • -. . :_- ? - v - w > - n ;

»

™

* - £ , - r c

Of these, (21) is obtained by straightforward Cauchy multiplication of
the two power series on the right of (19). In order to prove (22), we
consider (20) for the special value r = l (that is, z=z*). This gives on
the left, using (17),

(24) U(z, 25) = (Γ+>)2

By a quadratic transformation [5, eq. 2.11 (34)] this 2Fλ can be ex-
pressed by one with argument £2, and in view of

nl

(20) thus becomes

From this (22) follows again by Cauchy multiplication of the series on
the left. Putting r = — 1 (or z=~z*) in (20) leads in a similar way to

(26) (l-zr^F

The representation (23) of an is remarkable for the fact that only one
parameter in the 3F2 depends on n. It is obtained by expressing the
hypergeometric function on the left of (25) by one with argument
z2l(z2 — l), expanding in terms of this argument, expanding the powers
of z2l(z2 — l) in terms of powers of z2 and rearranging.

From (19) it is easily seen by applying Euler's linear transforma-
tion to the two hypergeometric series simultaneously that U(z, 0) and
hence an is a symmetric function of μ and p. Therefore in (21), (22)
and (23) the variables μ and v may be interchanged. Furthermore, in
view of (17) K may be replaced everywhere by —/c —1. Many other
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representations for the coefficients an could be derived from the ones
given above by the application of transformations of generalized hyper-
geometric series of unit argument. One example for this technique
will be given at the end of § 6.

5 Special cases* (i) If /c = 0, (23) yields by Vandermonde's theorem

and from (15) we have

Thus (20) reduces to

(27) 2μ+vw
n=o

This is the classical generating series, of Jacobi3.

(ii) Since

(28) TO = 1 ,

other noteworthy special cases of (20) are to be expected for κ=μ or
κ=v. In the first case we have from (23) (using the symmetry with
respect to μ and v)

Thus (20) yields, if (18) is used on the left,

(29) (1 + pf

An equivalent formula is easily derived from a bilinear generating
function due to Watson [10] and has been stated explicitly (but with
a slight algebraic error) by Bailey [1, p. 102], The result is given
correctly by Buchholz [3, p. 143. eq. (20)].

The case κ=ι> does in view of (17) not lead to something new. A

3 See [5, eq. 10.8 (29)J and, for several direct proofs of the expansion, [9, p. 68],
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similar, but not equivalent formula can be deduced from (20) by
putting κ = μ + l or /c = ̂ -f 1.

If κ=μ=v9 we obtain from (20) and (29) in virtue of (28) and

the classical generating series of the Gegenbauer polynomials

(iii) Also in the cases μ=±\ (or ι>=±i) the Jacobi polynomials
reduce to Gegenbauer polynomials. Since Φ^X) likewise may be ex-
pressed in terms of Gegenbauer functions, (20) takes then the form of
an addition theorem for these functions. This result has been given
by us already elsewhere [7].

(iv) Putting p=r/κ? and letting «->oo, we obtain from (20) and
(23), since

(30) lim Vλ

κ(l-2ιoie)=ΰFιiλ + l w],

the well-known formula (see the references to equation (42) of [6])

(31) o r ^ Ί ^ L + l r ^
2 J L 2

With the exception of a result of Brafman [2], the special cases
of (20) mentioned above cover to our knowledge all simple (that is, not
bilinear) known generating functions of the Jacobi polynomials which
are valid for general values of μ and v.A

6. Identities of Cayley-Orr type. The formulae (19), (25) and (26)
suggest identities between the coefficients of the expansions of certain
hypergeometric products which in a symmetric way may be stated as
follows:

Each of the three identities

(a) (l - c r v *ρ\ [μ+κ ^ Ϋ 1 ; ζ ] = Σ (*+nΛnC,

4 Brafman's result, which was originally established as a corollary to Bailey's decom-
position formula for AppelΓs function F4, has been proved by our method without the use
of Bailey's formula in [6J.
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v — K

2 '

v — κ + 1

2
., ι 1

C

V 2 •-Ί( 2 A

implies the other two.

This result is of a type considered first by Cay ley and Orr [8].
While (a)^(b) is a special case of a result by Burchnall and Chaundy
(see [4, eq. (13)]), the two equivalencies (a)^(c) and (b)^(c) as well
as the method of their derivation seem to be new. Identities of this type
have been investigated either by a discussion of the ordinary dif-
ferential equations satisfied by the products of hypergeometric functions
(for recent results obtained by this method, see [4]) or by transform-
ations of the generalized hypergeometric series arising in the Cauchy
multiplication of the power series under consideration. An account of
Bailey's and Whipple's work in this direction can be found in [1]. In
order to render our above result independent of the consideration of a
special partial differential equation, we sketch a short proof of it by
Whipple's method. By reasons of symmetry it suffices to prove (a)~
(c). This amounts to a direct proof of the equality of (21) and (22).
We first transform the ̂ F2 in (22) into a saalschϋtzian 4F 3 by equation
4.5 (1) of [1]. This gives

(32) r A - ( T l ) 7 3 2 -n

3 μ + v + 2

The desired result is now established by transforming the AFd according
to equation 7.2 (1) of [1]. We emphasize that it is also possible to prove
(a)~(c) by the differential equation method of Burchnall and Chaundy.
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