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1. Introduction. In this paper an algebraic characterization of the
fixed ideals in a certain class of function rings is given (an ideal in a
function ring is fixed if there is a point at which all functions in the
ideal vanish). This class of function rings includes the rings of all
real-, complex-, or quaternion-valued continuous functions on a normal
Hausdorff space whose points are G-delta sets and the ring of »-fold
differentiable functions on an r-differentiable manifold whose coordinate
covering is neighborhood finite. For these rings of functions we con-
struct the underlying space from the fixed ideals in the same way that
Gelfand and Kolmogoroff [3] have constructed a compact space from
the non-unit ideals in its ring of all real-valued continuous functions.

We also show the existence of certain homomorphisms from the
automorphism groups of these function rings into the group of homeo-
morphisms of the underlying space onto itself. In §5 we find that an
isomorphism between the rings of all r-differentiable functions on two
r-differentiable manifolds can be extended to an isomorphism between
the rings of all continuous functions on these manifolds and that the
homeomorphism determined by this isomorphism is differentiable.

2. The general case.

(2.1) By . % we mean a ring of functions from a regqular Hausdorf
space X to a division ring D having the following properties :

P,. If f isin %, then the set of zeros of f, which we denote by
Z(f), is closed.

P.. If © is not in a closed set F', then there is a function f in
Z such that Z(f) contains a neighborhood of F but does mnot
contain .

P, If f in % does not vanish at any point of a closed set F', then
there is a function g in % such that fg (and also gf) has the
value 1 at every point of F.

P. For each x in X there is a function f, in . which vanishes
at x and only at x.
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(2.2) By the ‘“‘support of a function f’’ in B, which we denote by
Sp(f), we mean the set Cl(X—Z(f)), From the properties of closure
we have:

(i)  Sp(f)=X-IntZ(f),
() IntSp(f)=X—ClIntZ(f),
(i) Sp(f)=Cl Int Sp (f).

By the “annihilator of a function f’° in B, which we denote by
A(f), we mean the set of all g in H such that fg=0 (and hence gf =
0). For any ring of functions with values in a division ring the
annihilator of an element is a two-sided ideal. In addition we have

A(f)={9e Z |Z(9)D8p (N},
and A(f)=. if an only if f=0.

(2.3) LEMMA. If f and g are in # and g0, then Z(f) and
Sp(g) are disjoint if and only if f— A(g) has an inverse in the residue
class ring .F# — A(g).

Proof. Since g#0, then Z(9)=%~X and Sp(g) is not empty. If f
does not vanish at any point of Sp(g), then there is a function % in
% such that f# and 2f have the value 1 at every point of Sp(g),
that is, fA=1 (mod A(g)) and ~f=1 (mod A(g)). Hence f-A(g) has an
inverse in % — A(g). If f—A(g) has an inverse in .%# — A(g), then there
is a function A2 in 22 such that (fA—1) is in A(g), that is (fh—1)
vanishes at every point of Sp(g). Hence f does not vanish at any
point of Sp (9).

2.4) Ir f s in Z#, let H(f) be the set of all nonzero g in %
such that f— A(g) has an inverse in the ring % — A(g). Anideal I in 7%
i8 ‘‘bounded’ if there is a function f in F without an inverse such
that H(f) contains H(g) for every g in I. We say that ‘I is bounded
by 7. An ideal which is maximal in the set of all bounded ideals is
called a ‘‘maximal bounded ideal”. The set of all maximal bounded

ideals is denoted by M[.Z7]. We observe that an ideal contained in a
bounded ideal is bounded.

(2.5) LEMMA. For f and g in ., Z(g) contains Z(f) if and only
if H(f) contains H(g).

Proof. From (2.3) and (2.4) H(f) is the set of all functions % in
2 such that Z(f) and Sp(z) are disjoint. Hence if Z(f) is a subset
of Z(g), then H(f) contains H(g). Suppose there is a point = in Z(f)
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but not in Z(g), then by P, there is a function 2 in &% which is
different from zero on a neighborhood of x but vanishes on a neighbor-
hood of Z(g). For this function %2, Z(f) meets Sp(h) but Z(g) does not.
Hence if Z(f) is not a subset of Z(g), then H(f) does not contain H(g).

(2.6) THEOREM. If .Z# 148 a ring of functions from a regular
Hausdorff space X to a division ring D which satisfies P,, P,, P;, and
P, of (2.1), then an ideal I in % s a fized ideal if and only if it is a
bounded ideal.

Proof. 1If I is a fixed ideal, then there is a point # at which all
elements of I vanish. From P, there is a function f, in & which
vanishes at x and only at . For every ¢ in I, Z(g) contains Z(f,),
that is H(f,) contains H(g). Since f, has no inverse, I is bounded. If
I is bounded by a function f in & without an inverse, then Z(f) is
a subset of Z(gy) for every ¢ in I. Since Z(f) is not empty, I is fixed.

(2.7) For x in X, I(x) means the fixed ideal {f e #|f(x)=0}.
From (2.6) an ideal is a maximal bounded ideal if and only if it is of
this form.

(2.8) Let A be a subset of M[.5#]. If we define
JeCl(4) if and only if JDONed

for A nonempty and Cl(A)=A for A empty, then M[.F2] s said to have
the ““Stone topology’’. We denote the set M[.%2] with the Stone topology
by X*.

(2.9) THEOREM. If < s a ring of functions from a regular
Hausdorff space X to a division ring D satisfying P,, P,, P;, and P, of
(2.1), then X is homeomorphic to X*.

Proof. From (2.7) the mapping x—I(x) is a one-to-one mapping of
X onto X*. Let aeCl(4), ACX, and let A* be the image of A under
the mapping x—I(x), then every function in %% vanishing on A (that
is, every function in N\yec l(2)=/\;ex) also vanishes at a (that is, is in
I(a)) and I(a) is in Cl(A*). If, however, @ is not in CI(4), then there
is a function f in .2# vanishing on 4 but not at a. Then f is in
Niesd but not in I(a), and I(a) is not in Cl(A*). Hence the corre-
spondence x—I(x) is a homeomorphism of X onto X*.

(2.10) COROLLARY. If the rings ..# and %' of functions from
the regular Hausdorff spaces X and X' to the division rings D and D',
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respectively, satisfy P, P,, P,, and P, of (2.1) and are isomorphic, then
the spaces X and X' are homeomorphic.

(2.11) Let ¢: .2#—.7’ be the isomorphism referred to in the
preceding paragraph. With the point z in X we associate the ' (which
exists uniquely) in X’ which is the common zero of all functions in the
isomorphic image of the ideal consisting of all functions in . which
vanish at z, that is,

&' = NseicranZ(f) -

One can show that the correspondence x—x’ is a homeomorphism from
X onto X'. We will denote this homeomorphism by ¢(t) and refer to
it as ‘‘the homeomorphism from X onto X' corresponding to (or deter-
mined by) the isomorphism © from % onto #'7

(2.12) By /() we mean the automorphism group of .#. By
(X)) we mean the homeomorphism group of X, that is the group of
all homeomorphisms of X onto itself. If 4, and 4, are in .°/ (%), then
it follows from (2.11) that ¢(4.%,)=¢(4,)$(4,). Hence we have the theorem
of the following paragraph.

(2.13) THEOREM. The mapping ¢: (#)>F(X) is a homo-
morphism from the aulomorphism group of =2 into the homeomorphism
group of X.

(2.14) For x in X we denote the set of wvalues (f(x)|fe. 2} by
V(). From P, and P, the set V(x) is a subdivision ring of D. The
correspondence f— f(2) is a homomorphism from .%# onto V(x) with
kernel I(z), hence the correspondence f—I(x)—f(z) is an isomorphism
from the residue class ring “2 —I(x) onto V(z). Since .2 —I(x) is,
therefore, a division ring, I(x) is a maximal ideal, that is, every maximal
bounded ideal is a maximal ideal.

(2.15) LEMMA. If f—f' is an isomorphism from .2# onto ..2' and
r—>a’ 48 the corresponding homeomorphism, then the correspondence
S(@)—f'(x) 48 an isomorphism from V(x) onto V'(x').

Proof. Since I'(x’) is the isomorphic image of I(x), the corre-
spondence f —I(x)—f’—1I'(x’) is an isomorphism. Since f(x)—f —I(x) and
f'—I'(x")—f’(x') are isomorphisms, f(x)—f'(x’) is an isomorphism from
V(x) onto V'(a’).

3. Rings of continuous functions.

(3.1) Cech [2] has shown that a subset of a normal Hausdorff
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space is the zero set of some real-valued continuous function if and
only if it is a closed G; set. Using his result and Urysohn’s lemma
concerning real-valued continuous functions on a normal space, one
may show that the rings — C(X, R) of all real-valued continuous func-
tions on X, C(X, K) of all complex-valued continuous functions on X, and
C(X, Q) of all quaternion-valued continuous functions on X—satisfy P,
P,, P;, and P, of (2.1) if X is a normal Hausdorff space all of whose
points are G; sets. Hence we have the following.

(3.2) THEOREM. Let X and X’ be normal Hausdorff spaces all of
whose points are Gy sets and let F denote either the real field, the com-
plex field, or the quaternion ring. If C(X, F) and C(X', F') are iso-
morphic, then X and X' are homeomorphic.

(8.83) According to results obtained by Gelfand and Kolmogoroff [3],
Hewitt [6], and Gillman, Henriksen, and Jerison [4], Theorem (3.2)
holds for completely regular spaces satisfying the first axiom of counta-
bility. There are, however, normal spaces all of whose points are G;
sets which do not satisfy the first axiom of countability (cf. Bing [1,
p. 180, Example C]).

(3.4) For the rings C(X, F) it can be established that the homo-
morphism ¢ : o7(C(X, F))— 57 (X) of (2.11) and (2.18) is a homomorphism
onto &~ (X).

4. Rings of real-valued functions.

(4.1) If <2 is a ring of real-valued functions on X satisfying P,
P,, P, and P,, then for each z the set of values V(a)={f(x)|f e R}
is a subfield of the real field R. We now introduce an additional
property for the ring & :

P,. For each x in X the set of values V(x) is a subfield of the real
field R which has only one isomorphism into R, the identity
1S0morphism.

Property P, holds if V(x)=R; hence C(X, R) satisfies P;. There are
rings of real-valued functions satisfying P,, P,, P;, P.,, and P; which
contain discontinuous functions as is shown by the example of the
following paragraph given to the author by D. W. Dubois.

(4.2) ExAMPLE. Let X be the closed interval [0, 1], @ be a finite
subdivision {0=z,, 21, +, @,_1, ,=1} of X, and A be the set of all a.
Let 6(x)=exp(x) for a%0 and 60(0)=0. Let B(a) be the set of all
real-valued functions f on X such that
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_ pi(@, O(x)) -
f($) = ([;(m, 0({/0)) ’ v, <z<z,t=1,2,--+, n,
where p,(z, 0) and ¢,(x, 0) are polynomials in & and f(x) such that f(x)
is continuous at x,, x,,---, x,-s, and x,-; and g, 6(x)) does not vanish
for x,_,<ax<x; for any ¢. If 2=\J,.B(a), then % is a ring of
real-valued functions which satisfy P, P, P,, P,, and P; but some of
which are discontinuous.

(4.3) Theorem (4.4) and (4.5) may be established by using P, and
the results of § 2.

(4.4) THEOREM. If 27 and .22’ are isomorphic rings of real valued
functions on regular Hausdorfl spaces X and X' satisfying P,, P,
P,, P, and P;, i s the isomorphism from .7 onto #', and h s the
corresponding homeomorphism from X onto X', then:

(1) F@)y=0Ef)Rx)) for all f in R and « in X. Hence f is bounded

above (below) if and only if (¢f) vs bounded above (below); lub f=Ilub s,

glb f=glb f’; and the subrings of all bounded functions in R and

R’ are isomorphic.

(ii) There is an isomorphism i* from C(X, R) onto C(X’, R) such

that i(f)=4*(f) for all f in C(X, R)N.F#.

(4.5) THEOREM. If .22 is a 7ving of real-valued functions on a
regular Hausdorff space satisfying P., P,, P;, P,, and P;, then the homo-
morphism ¢ of (2.11) and (2.13) is an isomorphism of .~/ (R) into & (X).

From (3.4) and (4.5) we have the following.

(4.6) THEOREM. The groups - (C(X, R)) and Z(X) are iso-
morphic.

5. Rings of continuously differentiable functions.

(6.1) If C"(M) is the ring of r-fold continuously differentiable
functions on an 7r-differentiable manifold M with a neighborhood-finite
covering of coordinate neighborhoods (» may be either a positive integer
or the symbol <), then C"(M) satisfies P, P,, P,, P, and P;. The
theorem of the following paragraph may be obtained.

(5.2) THEOREM. If C"(M) and C"(M') are isomorphic, then M and
M’ are homeomorphic. The homeomorphism h determined by the iso-
morphism s differentiable (that is, f(h) is in C"(M) if f s in C7(M'))
and the isomorphism can be extended to an isomorphism from C(M, R)
onto C(M', R).
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6. Additional remarks. Since the above was written the author
has observed that P, may be replaced by the weaker hypothesis:

Pi. For each v in X there is a pair of functions g and b in .2
such that x=2Z(g)—Z(h).

If .22 satisfies P, P,, P,, and P}, one can show that an ideal [ is fixed
if and only if there is a pair of functions ¢ and 42 in .22 such that
H(g) does not contain H(%) but H(gh) does contain H(fh) for every f
in the ideal I. (Lemma (2.5) holds as before.) The results of (2.9)
through (2.15) may then be established if X* is defined to be the set
of maximal fixed ideals with the Stone topology.

If X is a completely regular, locally-compact space all of whose
points are Gj sets, then the rings Cy(X, R), C«(X, K), and Cy(X, Q) of
all real-, complex-, or quaternion-valued continuous functions with com-
pact supports satisfy P, P.,, P;,, and P°. Hence it follows that they
determine X. (This result for Cy (X, R) has already been established
by Shanks [7] without assuming that points are G sets). One can
also show that the automorphism group ./ (CyX, R)) is isomorphic to
/(C(X, R)) and #°(X).
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