ADDITIONAL NOTE ON SOME TAUBERIAN THEOREMS OF O. SZÁS

C. T. RAJAGOPAL
ADDITIONAL NOTE ON SOME TAUBERIAN
THEOREMS OF O. SZÁSZ

C. T. RAJAGOPAL

1. An additional theorem. In the note [3] to which this is an
addition, Theorem II is exhibited as a generalization of Theorem I and
an appeal is made to Szász [6] to indicate the transition from Theorem
II to the final result stated as Corollary III'. However, in view of the
formal simplicity of Corollary III' and the wide generality (reflected in
its apparent complexity) of Theorem II, it seems worth while to adopt
the opposite point of view and record a method, based on the following
result, of deducing Theorem II and all related theorems (which cover
Szász's) from Corollary III' [3, p. 384].

Theorem IV. If a (real) series \(\sum_{n=1}^{\infty} a_n \) is \((\varphi, \lambda)\)-summable to \(s \), where
\(\lambda \) denotes the strictly positive increasing divergent sequence \(\{\lambda_n\} \)
subject to the additional condition \(\lambda_{n+1}/\lambda_n \to 1 \), and if the series satisfies the
Tauberian condition:

\[
\liminf_{n \to \infty} \frac{1}{\lambda_n} \sum_{\gamma=n+1}^{m} \lambda_n a_\gamma > 0, \quad m > n, \quad \frac{\lambda_m}{\lambda_n} \to 1,
\]

then \(\sum_{n=1}^{\infty} a_n \) is convergent to \(s \). (Amnon Jakimovski [1, Theorem 1] gives
the case \(\varphi(u) = e^{-u}, \lambda_n = n \).)

Proof. We have, by Abel's partial-summation lemma,

\[
\sum_{\gamma=n+1}^{m} a_\gamma = \sum_{\gamma=n+1}^{m} \frac{\lambda_n a_\gamma}{\lambda_\gamma} \geq \frac{\lambda_n}{\lambda_{n+1}} \cdot \frac{1}{\lambda_{n+1}} \sum_{\gamma=n+1}^{m} \lambda_n a_\gamma.
\]

Hence, by (1),

\[
\liminf_{n \to \infty} \frac{1}{\lambda_n} \sum_{\gamma=n+1}^{m} a_\gamma > 0, \quad m > n, \quad \frac{\lambda_m}{\lambda_n} \to 1.
\]

It is well-known [2, p. 33] that the above Schmidt condition is equivalent
to the second alternative of hypothesis (12) of Corollary III' [3, p. 384].
Therefore this corollary establishes that \(\sum_{n=1}^{\infty} a_n = s \).

2. Deductions from Theorem IV.

Corollary IV.1. In Theorem IV, (1) is implied by, and so can be
replaced by, one of the following conditions:

Received August 4, 1954.
\[(2) \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{v=n+1}^{m} \lambda_v (|a_v - a_s|) = 0, \quad m > n, \quad \lambda_n \to 1.\]
\[(3) \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{v=n+1}^{m} \lambda_v |a_v| = 0.\]

(Szász [6, Theorem 3] gives the case \(\phi(u) = e^{-u}, \lambda_n = n\).)

Corollary IV.2. In Corollary IV.1, (2) can be replaced by the condition:

\[U_n = \sum_{v=1}^{n} \lambda_v (|a_v - a_s|) = O(\lambda_n), \quad n \to \infty,\]
\[(4) \lim_{n \to \infty} \left(U_m - U_n \right) = 0, \quad m > n, \quad \lambda_m \lambda_n \to 1.\]

(Szász [6, Theorem 2] gives the case \(\phi(u) = e^{-u}, \lambda_n = n\).)

The above corollary is the same as Theorem II of my note [3]. We can deduce it from the preceding corollary merely by noting that (4) implies (2)\(^1\) as a result of letting \(n \to \infty, \lambda_n \lambda_m \to 1\) in the identity:

\[\frac{U_m - U_n}{\lambda_m} = \left(\frac{U_m - U_n}{\lambda_n} \right) \lambda_m + \frac{U_n (\lambda_m - 1)}{\lambda_n}, \quad m > n.\]

Corollary IV.3. In Corollary IV.1, (3) can be replaced by the hypothesis:

\[V_n = \sum_{v=1}^{n} \lambda_v |a_v| = O(\lambda_n), \quad n \to \infty,\]
\[(5) \lim_{n \to \infty} \left(V_m - V_n \right) = 0, \quad m > n, \quad \lambda_m \lambda_n \to 1,\]

which implies (3) exactly as (4) implies (2).

Plainly the last hypothesis (5) can assume the special form:

\[\lim_{n \to \infty} V_n = l, \quad l < \infty.\]

(Szász and Rényi [6, Theorems 1 and B] give the particular case \(\phi(u) = e^{-u}, \lambda_n = n\).)

3. **A second additional theorem.** Theorem IV is a deduction from Corollary III' [3] and so ultimately from Theorem A [3, p. 378]. The following is another deduction from Theorem A deserving of mention.

\(^1\) In fact (4) is equivalent to (2) as (2) implies (4) by an argument exactly like Szász's in the case \(\lambda_n = n\) [6, Lemma 2].
THEOREM B. Let \(\phi(u) \) fulfill the conditions C(i)-(v) of the Introduction [3, p. 377]. Suppose that \(A(u) \) is a (real) function of bounded variation in every finite interval of \((0, \infty)\), \(A(0)=0 \). If

\[
(6) \quad \frac{1}{u} \int_0^u x \, d\{A(x)\}
\]

is slowly decreasing, that is,

\[
\liminf_{u \to \infty} \left(\frac{1}{v} \int_0^v x \, d\{A(x)\} - \frac{1}{u} \int_0^u x \, d\{A(x)\} \right) \geq 0, \quad v > u, \quad \frac{v}{u} \to 1,
\]

and if \(A(u) \) is \(\Phi \)-summable to \(s \), that is, \(\phi \)

\[
(7) \quad \Phi(t)=\int_0^\infty \phi(ut) \, d\{A(u)\}
\]

exists for \(t>0 \) and tends to \(s \) as \(t \to +0 \), then \(A(u) \to s \) as \(u \to \infty \).

Proof. We write as before [3, pp. 377–378]:

\[
A_i(u)=\int_0^u A(x) \, dx, \quad \phi(u)=\int_0^\infty \psi(x) \, dx.
\]

Then (7) gives successively [4, pp. 346–347], as \(t \to +0 \),

\[
\phi(t)=t\int_0^\infty \phi(ut) A(u) \, du \to s, \quad \phi_1(t)=t\int_0^\infty \psi(ut) A_i(u) \, du \to s.
\]

Thus \(A(u)-u^{-1}A_i(u) \) is \(\Phi \)-summable to 0 and satisfies the Tauberian condition in (6). Hence, by a known result [4, Corollary 2.2] following from Theorem A [3], \(A(u)-u^{-1}A_i(u) \) tends to 0 as \(u \to \infty \). Consequently, by Theorem A [3], \(u^{-1}A_i(u) \), and hence also \(A(u) \), tends to \(s \) as \(u \to \infty \).

4. Remarks. (i) Amnon Jakimovski [1, Theorem 1] has dealt with the case of Theorem B in which \(\phi(u)=e^{-u} \) and

\[
A(u)=\begin{cases} a_1+a_2+\cdots+a_n & \text{for } n \leq u < n+1, \ n \geq 1, \\ 0 & \text{for } 0 \leq u < 1, \end{cases}
\]

showing, by a modification of the method used above to prove Theorem B, that we may in this case replace (6) by

\[
(6^*) \quad \liminf_{n \to \infty} \left(\frac{U^*_{mn}}{m} - \frac{U^*_{nn}}{n} \right) \geq 0, \quad m>n, \ \frac{m}{n} \to 1,
\]

\[\text{These conditions can be slightly relaxed (for example, [5, Theorem A]).}\]
where \(U_n^* = \sum_{\nu=1}^n \alpha_\nu \), leaving the statement of Theorem B otherwise unaltered. He also observes that (6*) includes (or generalizes) the second half of (4) with \(\lambda_n = n \), implying that, in Szász’s result cited under Corollary IV.2, the first half of (4) is superfluous. This observation is, however, incorrect as shown by the following example.

Example 1. Let \(a_n \) be defined so that

\[
\begin{align*}
na_n &= \nu & \text{for } 4^\nu \leq n < 2 \cdot 4^\nu, \\
na_n &= -n^{-2} & \text{for } 2 \cdot 4^\nu \leq n < 4^{\nu+1},
\end{align*}
\]

Then it is easily verified that (4) with \(\lambda_n = n \) holds because

\[
\sum_{\nu=1}^n \nu (|a_\nu| - a_\nu) = o(n), \quad n \to \infty,
\]

but that (6*) does not hold since

\[
\begin{align*}
\text{if } n = 2 \cdot 4^\nu, \nu \to \infty, \text{ then } U_n^* &= \frac{\sum_{k=0}^{\nu} k \cdot 4^k + O(1)}{2 \cdot 4^\nu} \sim \frac{2^\nu}{3}, \\
\text{if } m = \text{the integral part of } 2 \cdot 4^\nu, \nu \to \infty, \text{ then } U_m^* &= U_n^* + o(1) \frac{n}{m}
\end{align*}
\]

where \((n/m - 1) \sim -\nu^{-1/2}\), so that

\[
\lim \inf_{n \to \infty} \left(\frac{U_m^*}{n} - \frac{U_n^*}{m} \right) = -\infty, \quad m > n, \frac{m}{n} \to 1.
\]

While the above example shows that (4) with \(\lambda_n = n \) does not in general imply (6*), the one which follows makes it clear that neither does (6*) necessarily imply (4) with \(\lambda_n = n \).

Example 2. Let \(a_n \) be defined so that

\[
\begin{align*}
(-1)^\nu na_n &= \nu & \text{for } 4^\nu \leq n < 2 \cdot 4^\nu, \\
na_n &= 0 & \text{for } 2 \cdot 4^\nu \leq n < 4^{\nu+1},
\end{align*}
\]

Then (6*) holds since \(U_n^*/n \to 0 \) as \(n \to \infty \). However, (4) with \(\lambda_n = n \) does not hold since now

\[
U_n = \sum_{\nu=1}^n \nu (|a_\nu| - a_\nu)
\]

and we have:

\[
\begin{align*}
\text{if } n = 2 \cdot 4^\nu, \nu \to \infty, \text{ then } U_n &= \frac{\sum_{k=1}^\nu k \cdot 4^{k/2}}{2 \cdot 4^\nu} \sim \frac{\nu}{3}.
\end{align*}
\]
if $m = \text{the integral part of } 2 \cdot 4^\nu v - \sqrt{\nu}$, then $U_n = U_m n$

where $(n/m - 1)^{1/2} = -v^{-1/2}$, with the result that

$$\lim_{n \to \infty} \inf \left(\frac{U_m}{n} - \frac{U_n}{m} \right) = -\infty,$$

$m > n, m \to 1$.

(ii) In the definition of \(\Phi \)-summability of \(A(u) \), set forth in (7) and assumed in both Theorem A [3] and Theorem B, the integral \(\Phi(t) \) is to be interpreted as a Lebesgue-Stieltjes integral (absolutely) convergent for \(t > 0 \) unless further considerations, as in the case \(\Phi(u) = e^{-u} \), permit us to view it as a (non-absolutely) convergent Riemann-Stieltjes integral (cf. [5, p. 103, Note]).

(iii) In Theorem III [3, p. 383] the condition \(\lambda_{n+1}/\lambda_n \to \infty \) of hypothesis (11) is a misprint for \(\lambda_{n+1}/\lambda_n \to 1 \).

In conclusion I wish to thank Dr. T. Vijayaraghavan and the referee for helpful suggestions.

References

Ramanujan Institute of Mathematics
Madras, India

Who passed into the beyond on April 20, 1955.
Nesmith Cornett Ankeny and Theodore Joseph Rivlin, *On a theorem of S. Bernstei* .. 849
Louis Auslander, *The use of forms in variational calculation* 853
Paul Civin, *Abstract Riemann sum* .. 861
Paul Civin, *Some ergodic theorems involving two operator* 869
Eckford Cohen, *The number of solutions of certain cubic congruence* 877
Richard M. Cohn, *Specializations over difference field* 887
Jean Dieudonné, *Pseudo-discriminant and Dickson invariant* 907
Ky Fan, *A comparison theorem for eigenvalues of normal matrices* 911
Richard P. Gosselin, *On the convergence behaviour of trigonometric*
interpolating polynomial .. 915
Peter K. Henrici, *On generating functions of the Jacobi polynomial* 923
Meyer Jerison, *An algebra associated with a compact group* 933
Wilhelm Magnus, *Infinite determinants associated with Hill’s equation* ... 941
G. Power and D. L. Scott-Hutton, *The slow steady motion of liquid past a*
semi-elliptical bos ... 953
Lyle E. Pursell, *An algebraic characterization of fixed ideals in certain*
function ring ... 963
C. T. Rajagopal, *Additional note on some Tauberian theorems of O. Szás* . 971
Louis Baker Rall, *Error bounds for iterative solutions of Fredholm integral*
equation ... 977
Shigeo Sasaki and Kentaro Yano, *Pseudo-analytic vectors on*
pseudo-Kählerian manifold ... 987
Eugene Schenkman, *On the tower theorem for finite group* 995
P. Stein and John E. L. Peck, *On the numerical solution of Poisson’s*
equation over a rectangle ... 999
Morgan Ward, *The mappings of the positive integers into themselves which*
preserve divisio .. 1013
Seth Warner, *Weak locally multiplicatively-convex algebra* 1025
Louis Weisner, *Group-theoretic origin of certain generating function* 1033