Pacific
Journal of

Mathematics

IN THIS ISSUE—

Nesmith Cornett Ankeny and Theodore Joseph Rivlin, On a theorem of S. Bernstei
Louis Auslander, The use of forms in variational calculation
Paul Civin, Abstract Riemann sum
Paul Civin, Some ergodic theorems involving two operator
Eckford Cohen, The number of solutions of certain cubic congruence ...................... 877
Richard M. Cohn, Specializations over difference field
Jean Dieudonné, Pseudo-discriminant and Dickson invarian 907
Ky Fan, A comparison theorem for eigenvalues of normal matrice . 911
Richard P. Gosselin, On the convergence behaviour of trigonometric interpolating

polynomial e 915
Peter K. Henrici, On generating functions of the Jacobi polynomial . . R 923
Meyer Jerison, An algebra associated with a compact grou. .................cccoiuiiiiin. 933
Wilhelm Magnus, Infinite determinants associated with Hill’s equatio 941
G. Power and D. L. Scott-Hutton, The slow steady motion of liquid past a semi-elliptical

DOS o 953
Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function ring 963
C. T. Rajagopal, Additional note on some Tauberian theorems of O. Szds 971
Louis Baker Rall, Error bounds for iterative solutions of Fredholm integral equation 977
Shigeo Sasaki and Kentaro Yano, Pseudo-analytic vectors on pseudo-Kdhlerian manifold . . . .
Eugene Schenkman, On the tower theorem for finite group
P. Stein and John E. L. Peck, On the numerical solution of

rectangl

Morgan Ward, The mappings of the positive integers into themselves wi
divisio

Seth Warner, Weak locally multiplicatively-convex algebra
Louis Weisner, Group-theoretic origin of certain generating function . .

Vol. 5, No. 6




PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. L. RoypEn R. P. DiLworTa
Stanford University California Institute of Technology
Stanford, California Pasadena 4, California
E. Hewirr A. Horn*
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

H. BUSEMANN P. R. HALMOS R. D. JAMES GEORGE POLYA

HERBERT FEDERER HEINZ HOPF BORGE JESSEN J. J. STOKER

MARSHALL HALL ALFRED HORN PAUL LEVY KOSAKU YOSIDA
SPONSORS

UNIVERSITY OF BRITISH COLUMBIA STANFORD RESEARCH INSTITUTE

CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA, BERKELEY UNIVERSITY OF UTAH

UNIVERSITY OF CALIFORNIA, DAVIS WASHINGTON STATE COLLEGE

UNIVERSITY OF CALIFORNIA, LOS ANGELES UNIVERSITY OF WASHINGTON

UNIVERSITY OF CALIFORNIA, SANTA BARBARA * * *

MONTANA STATE UNIVERSITY

UNIVERSITY OF NEVADA AMERICAN MATHEMATICAL SOCIETY

OREGON STATE COLLEGE HUGHES AIRCRAFT COMPANY

UNIVERSITY OF OREGON SHELL DEVELOPMENT COMPANY

UNIVERSITY OF SOUTHERN CALIFORNIA

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent
to their successors. All other communications to the editors should be addressed to the
managing editor, Alfred Horn at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained
at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50; back numbers
(Volumes 1, 2, 3) are available at $2.50 per copy. Special price to individual faculty members
of supporting institutions and to individual members of the American Mathematical Society:
$4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to the
publishers, University of California Press, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.) No. 10
1-chome Fujimi-cho, Chiyoda-ku, Tokyo, Japan.
* During the absence of E. G. Straus.

UNIVERSITY OF CALIFORNIA PRESS - BERKELEY AND LOS ANGELES



ON A THEOREM OF S. BERNSTEIN

N. C. ANKENY aND T. J. RIvLiN

1. Introduction and proof of the main theorem. A result of S.
Bernstein [4] is the following.

THEOREM A. If p(2) is a polynomial of degree n such that
[max |p(2)|, |2|=1]=1, then
(1) [max [p(2)|, lz|=R>1]<R",
with equality only for p(2)=", where |i|=1.
We propose to show here that if we restrict ourselves to poly-
nomials of degree n having no zero within the unit circle the right

hand member of (1) can be made smaller. In particular we have the
following result.

THEOREM 1. If p(2) s a polynomial of degree n such that
[max [p(2)|, |z|=1]=1, and p(z) has no zero within the unit circle, then

R’ﬂ

?

[max|p(2)], |2|=R>1]< 1—]—2

with equality only for p(2)=(A+ uz")(2, where |i|=|p|=1.

In order to prove Theorem 1 we use a conjecture of Erdos first
proved by Lax [2] (See also [1]).

THEOREM B. If p(2) is a polynomial of degree n such that
[max |p(z)], |z|=1]=1, and p(2) kas no zero within the unit circle, then

[max [p' ()], [e]=11< 7 .

Turning now to Theorem 1, let us assume that p(z) does not have
the form (1+ p2z")/2. In view of Theorem B

(2) Ip'(e"9)|< ’2“ : 0<¢<"2r,

from which we may deduce that

Received August 4, 1954. This research was supported by the United States Air
Force, through the Office of Scientific Research of the Air Research and Development
Command.
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850 N. C. ANKENY AND T. J. RIVLIN

(3) e <D, 0<p<lem, v,
by applying Theorem A to the polynomial p’(2)/(n/2) and observing that
we have the strict inequality in (8) because p(z) does not have the form

(A+p2")/2. But for each ¢, 0<<¢< 2w, we have

P(Re®) —p(e'?)= r e'op’ (re'?)dr .

Hence
In(Re'*) —p(e’*ﬂ)lgf |0 (re'®) ldir < ug,gfw-ldr: !‘l”’éfl ,
and
p@e) < < L
Finally, if p(z)=(1+ #2")/2, |A]=1, then
+R"

[max [p(2)], lz[=R>1]=1T :

As a corollary of Theorem 1 we may deduce

THEOREM 2. If p(z) i4s a polynomial of degree n with real co-
efficients having all zeros of nonpositive real part and if for some R >1

py>p) (T ),

k a monnegative integer, then p(z) has at least (k+1) zeros in |z|< 1.

Proof. Suppose p(z) has m zeros in [2|<1 and m<k. Let
PR)=(2—21)"  (@—=2,) (= 2ns1) - - (2—2,)
and suppose |z;|<1, (j=1, -+-, m). Put
IR =~z (2—2u)
and
R(R)=(2=2n+1)"+(2—2,) .

The polynomials p(z), g(z) and A(z) have positive coefficients, hence for
all B>1

g(R)<g(1)R™
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and
mey=n)( )

according to Theorems A and 1 respectively.
Thus

R+ R" R+ R"
RY=h(R
PE) =nRyE <p)( 1 )<p) (T
a contradiction, establishing Theorem 2.

2. The converse problem. The converse of Theorem 1 is false as
the simple example p(z)=(z+%)(z+8) shows. However, the following
result in the converse direction is valid.

THEOREM 3. If p(z) is a polynomial of degree n such that

p(1)=[max |p()], le|=1]=1
and
[max | p(z)], |e|=R>11< 1;5

for 0<R—1<0, where & i3 any positive number, then p(z) does not have
all its roots within the unit circle.

For the proof we need the following

LEMMA. If
2)=(z—21) - (2 =2,
where |z;|<1, (=1, ---, m), then if |la|=1 we have
7@ | m
I qo(a) 2

Proof. According to Laguerre’s Theorem [3, p. 38]

q@_ m
oa)y a—w’

where |w|<1, hence la~w|< 2 and
(@) |~ m
Laa) T2
We turn now to the proof of Theorem 3. Suppose p(z) has all its
zeros in |z|<'1. Let
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p(R)=a,+ a2+ -« +a,2",
put
PR)=8o+ T2+« - +T,2"

and consider the polynomial g(z)=p(2)p(2) of degree 2n. g¢(z) is real for
real z,

[max|g(2)], l2]=1]=g(1)=1,

IQ(Rei‘P)[g( 1;R“)2 1_4_2@

and g¢(z) has all its zeros in |z|<{1. Now g¢’(1) is not only real but
positive. This is so since, given any >0, we have g(1—17)<¢g(1). Hence

g'(1)=lim 91 =D =9D 5,
n—0 -7
Now ¢’(1)5£0, as all of the roots of g(z)=0 are inside the unit cir-
cle, hence, by Lucas’ Theorem all roots of g’(z)=0 are within the convex
closure of the unit circle namely the unit circle itself.
Given any >0, sufficiently small,

)2n_1
2

’

oL+ =g ()] =g(1+e)—g()< T 1 (e

or
[g(L+e)—g(1)|<ne+O(e?) , as ¢—0

and g’(1)<n. Therefore g’(1)/g(1)<n contradicting the lemma. Theorem
3 is established.
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THE USE OF FORMS IN VARIATIONAL CALCULATIONS

Louis AUSLANDER

Introduction. The purpose of this paper is to present a method
of calculating the first and second variation which is suitable for spaces
which have a Euclidean connection. I then use this method to calculate
the first and second variations along a geodesic in a Finsler space in
terms of differential invariants of the Finsler metric. In the special
case of Riemannian geometry, this calculation has been carried out by
Schoenberg in [4].

Indications as to how this calculation should be made are originally
due to E. Cartan [1]. I wish to thank Prof. S. S. Chern for the pri-
vilege of seeing his calculations on this matter for Riemann spaces.

1. Algebraic Preliminaries. Let /=[0, 1] and 0<¢&, &§<C1. Let M"
be an n-dimensional C= manifold. Assume we have a one parameter
family of mappings of I into M™ which we will denote by f(&, &),
where &, is taken as the parameter along I and & parametrizes the
family of mappings. Then we may define a mapping 7: Ix[->M" by
the equation

77(51! Ez)zf(fl, Ez) .

We require that 7 shall also be a C~ mapping.

Let 7, denote the mapping induced by 7 on the tangent space to
Ix I into the tangent space to M*. Let z* denote the dual mapping
induced on the cotangent spaces. Then we define two vector fields X,
and X, over n(IxI) by

X.=7,(0/0&) and X,=7,(3/0¢).
Then if w is any form in M™ we may write
7*(w)=wd&, + wdE, ,
where w; and w, are defined by the equation.
Lemma 1.1. If (X, w) denotes the value that X takes on the co-
vector w at each point, then

ws=<X;, wd
and

wWe=<{X,, w).
lel{éce\i"\;edfebruary 12, 1954 and in revised form June 2, 1954,
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854 LOUIS AUSLANDER

Proof. ws=<3/3&, 7" (w)>=Ly*(0/2&), wy=<(X,, w) .
The proof is analogous for w,.

Let & be any two form and let X; and X, be any two vector
fields. It is well known that 4*(V) and A4*(V*) are dually paired. Let
this pairing be denoted by

<X1/\X2.’ ‘Q/> .

Then if Q can be decomposed as w,~w,, where w, and w, are one
forms, we have that the pairing may be defined by the following ex-
pression :

<X1/\X2? wl/\w2>=<X]y wl><X29 w2>_<X1, ?IU2><X2, w1> .
THEOREM 1.1. (XA Xs, WiAW,) =WigWsq— W1 Wss -

The proof of this theorem is straightforward.
We define the symbols éw, and dw; by the following equations:

dw,=2/3eLX,, W),
dws=20[06<XX;, w) .

If f is any function of ¢ and &, we define

dorf=F
I = e

where t=1+s. Define ¢"d*f similarly.
THEOREM 1.2. (XA X, dwdy=0w,—dws .

Proof. Now, in terms of a local coordinate system (w,, -+, @),

o3[ | (0 52) & (050

since

asz
= Z Oi—

2 8513& 06,06

This and the definition of dw, and dw; prove the theorem.
2. The First Variation. Consider the integral
b
(2.1) I={ F@ - g di -, da

in a space M of 2n+1 dimensions. Then in the cotangent space to
the manifold M define the form w by the equation
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[%2]

2.2) w=3Fag ~(50. 25— )it
oq; oq

Now let C be a curve in M**!' expressed by the equations
:=q(8), 0i=qi(&), t=(b—a)e+a.

Assume further that dq,/ds.=q; for all values of ¢ . Let X, be the
image of 3/0&, under the mapping described above. Then

, D aq, @ 3
2.3 X=q 2 +5% 2 L4-a)?
(2.3) St 20 om0 ]
and
t

wde,=F(g, ¢', ) (bfl_ .
Hence
@4 I=|wda= [ Fa@, o a® 60, o G .

Now consider a one parameter family of curves f(&, &) each with
the property described above. For each curve in the family we get a
vector field which we will denote by X.(&). We may consider the
variational problem for this family of curves. The crucial fact is that
the requirement that f(&, &) is a mapping of a fized interval for each
fixed value of & enables us to treat the problem of variable end point
without the necessity of differentiating limits of integration. We
consider

I(a)=§j)<)é(a), wHe,
and

(2.5) o= 1) [ u ..

& v

If we add and subtract dws; under the integral sign we get

(2.6) 6I=[w515+§‘<awd-dw5>dsz
0

@.7) _[w]h + Slw/(a, d)dz,

where

(2.8) w' (9, d)={X,~Xs, dw,
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and
w/(d, 8)=(Xenr X, dw)>.

It may be noted that w’(ds, d)=—w’(d, ). The term [w;]} is called
the transversality term.

THEOREM 2.1. Assume [w;];=0. Then a necessary and sufficient
condition for 61=0 for all variations is that dw=0 along C.

Proof. The condition is clearly sufficient. An equivalent form of
the hypothesis is that

gl<XIAXz, dw>de,—0
0

for all vector fields X, along C. Assume dw does not equal zero along
C. Then there exists an X, such that (X;~X;, dw)> > 0 for some open
interval a<¢,<’b. Then we may choose a new vector field X, such that:

X=X, for a<&<b
X,=0 for 0<&<a—e or bre<t,<1,

where ¢ may be chosen arbitrarily small. Then
[®nx, dwyde = <Xn X, durds+e,
0 @

where ¢ depends on ¢ and lime¢=0. Hence we may choose ¢ in such

g0

a way that
SD<X1AX2, dw>de, >0 .

This contradiction proves the theorem.
Remark: This is essentially the usual argument for the deriva-
tion of Euler’s equation.

3. Application to Finsler Geometry. If we assume that our integral
is of the Finsler type then we may proceed to calculate the second
variation. For treating this special case we assume that the reader
has a familiarity with Euclidean connections and we will use the Eucli-
dean connection for a Finsler space as calculated by E. Cartan in [2]
and Chern [3].

Let M be an n-dimensional differentiable manifold and let G be the
principal bundle over M with fiber and group the n-dimensional ortho-
gonal groups, On,. Then in G, we have forms w,, w;;, where w;+
wu=0 and %, j=1, --+, n. The equations of structure are
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3.1) Aw; =W, W5+ 7 jigW A Wan
3.2) AW, ;=W AWi;+ 5,

where a=1, -.-, n—1. (Henceforth we will assume that Greek indices
run from 1 to n—1 and Latin indices run from 1 to n.) The 7, are
symmetric in all indices and zero if any index is n. Also

1 1
(3.3) Q= 2’ % Qtju;swan/\‘wsn+ LZA P~ + 9 ZZ}; Byjw ~ay, .
@&, s 0 by

Let C be any path in M*. Choose any path in G with the pro-
perty that if e, --., e, represents a righthanded frame, that is, an
element of O,,, then ¢, is in the tangent direction to C. Then arc
length along a path C is

I— S () .

This follows from equation (2.4) and the definition of w, (see [3]).

Now X,=e, and X;= >\ kie;. Therefore (w,);=<{X,, w,>=Fk,. Hence
if X, is perpendicular to the curve C, then the transversality term is
zero. From equation (3.1), we have

AW, =S WyAWyy .

Hence
(3.4 =13+ | 51000 (o)) e
where (Wa)e=W,, €,>=0.

It is clear from the last equation that the symbols ¢ and d and
our indices make the notation awkward. Hence a w, will be written
as w and a w, will be written as ¢. In this notation equation (3.4)
becomes

(3.5) I=[¢ ]+ S S utliantlls
0

since w,=0 along the path C.
From Theorem 2.1 we have the following theorem.

THEOREM 3.1. The differential equations of « ycodesic in Finsler
geometry dre
w,=0, Wen=0, a=1, «--, n—1.

We will now compute the second variation along a geodesic. We
have
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1
31*——5 Bwndé‘; ’
0

and ¢°f is the second variation. Hence we have to compute &*(w,)
along a geodesic. Now

(3.6) 0*(wy) =0d(Pn) + Pud(Wan)
sinee w,,=0 along the geodesic. We have
(3'7) 6(20an) _d(¢w1z) = <X1/\X:.Zr dwom> .

From equation (3.2) we obtain

(XA Xy, AWy ={Xin Xy, WogAWeyy +{Xin X5y Qpp> .
By Theorem 1.1 and since C is a geodesic, we have
(3.3) OWa = AP — Waghpn + {any Xin XD .
Now by equation (3.2) and the facts that

R = —Rju , R =R ;

we have
(3.9) (XA Xsy Qopy =3 PrangWatbpn + 2 Rnangbpts -
Therefore, from equations (3.6), (3.8) and (3.9), we obtain
(8.10)  P(w.)=0ddn+ 3. Puldban—PanlWap+ PrangWusban + Ryangpstn] -

Now,

ddp=dogp, and d(pubur)=Pun(dPa)+ Pa(tpsn) .
Hence
(3.11) 0*(w,) =d[0¢ + PaPar] — Pandipy

+ ['— ¢af¢6n/ww6 + PozwrzB¢w¢Bn + anzs(ﬁwq&B]/wn .

But from equation (3.1) we have
(3.12) Apy=0Wq + W5 — P Wa
since

7 sapl P Wpn— W sppn] =0

along the geodesic. Also éw,=0 along the geodesic, since w,>0 and
equals zero along the geodesic and hence w, must attain a minimum
along a geodesic.
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Hence

(3 13) 6210712 d[6¢zz + 2 ¢w¢a&n] + Z(¢wn¢wn + inzﬁqsw(f)ﬁn -+ Rnwn{iqsw(f)ﬁ)/wn .

Hence the integral form of the second variation becomes
1
52-[: [a(i)n + 2 ¢wawn](1) + SOE (¢am¢wn + annﬁ¢w¢’,8n +annﬁ(ff)w¢6)'wnd52 .

For Riemannian geometry we have P, ;=0 and 3 ¢,¢.. represents
the second fundamental form of the geodesic surface perpendicular to
the geodesic at the point.
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ABSTRACT RIEMANN SUMS

PAuL CiviN

1. Introduction. A theorem of B. Jessen [5] asserts that for f(z)
of period one and Lebesgue integrable on [0, 1]

2m -1 1

(1) lim 2-" f(x+k2“”)=§ f(t)dt almost everywhere.
N—>o0 k=0 0

We show that the theorem of Jessen is a special case of a theorem

analogous to the Birkhoff ergodic theorem [1] but dealing with sums

of the form

(2) 2% F(T),

In this form T is an operator on a o-finite measure space such that

T'?" exists as a one-to-one point transformation which is measure pre-
serving for »=0, 1,-.-, and f(x) is integrable with f(z)=f(Tz). We
also obtain in §3 the analogues for abstract Riemann sums of the
ergodic theorems of Hurewicz [4] and of Hopf [3].

We might remark that there is no use, due to the examples of
Marcinkiewicz and Zygmund [6] and Ursell [8], in considering sums of
the form

LS prenay
n k=0

without further hypothesis on f(2). However we may replace 2"
throughout by mm, .-« m, with m; integral and m,>2 without altering
any argument.

In §4 necessary and sufficient conditions are obtained on a trans-
formation 7 in order that the sums (2) have a limit as n—o for
almost all . These conditions are analogous to those of Ryll-Nardzew-
ski [7] in the ergodic case. We use the necessary conditions to establish
an analogue of a form of the Hurewicz ergodic theorem for two
operators [2].

2. Notation. Let (S, Q, #) be a fixed os-finite measure space. We
consider throughout point transformations 7' which have measurable
square roots of all orders, that is,

(8.1) There exist one-to-one point transformations T, so that

Received June 2, 1954.
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862 PAUL CIVIN

T=T; T.,=T, n=1, 2, -+
3.2) If XeQ, then T,XeQ and T;'X e Q, n=0, 1, -.-
No requirement is made of the uniqueness of the sequence 7,. For
example in the theorem of Jessen, 7 is the identity transformation

while T,z—2+2" (mod 1). We also suppose throughout that 7' is
measure preserving

(3.3) wTX)=p(X) for XeQ.

3. Limit theorems. Let @ be a finite valued set function defined
on  and absolutely continuous with respect to #. Form the sums

9% _1

(4) O(X)= Y, 0(T:X) n=0, 1, -,
k=0

and

(5) m(X)="3, (TX) n=0, 1, -

Then @, is absolutely continuous with respect to p, and there exists
an averaging sequence of point functions f.(x) so that

(2) 0.0~ Fi@)pmde), n=0, 1, -

THEOREM 1. Let T be a transformation such that (3.1), (3.2) and
(3.3) are satisfied. Let @ be a finite valued set function defined on Q,
absolutely continuous with respect to p and such that O(TX)=0(X). Then
for almost all x[p] the averaging sequence of point functions defined by
4), (5) and (6) has a limit as n—co. The limit function F(x) has the
Jollowing properties:

(i) F(T,x)=F(x) almost everywhere [p], n=0, 1, ---.
(ii) F(x) is integrable over S.
(ili) For any set X with T, X=X, n=0, 1, «-+ and p(X)< oo

[, Feman) = r@ uaw.
Proof. Note first that since O(TX)=0(X),
(7) 0.(T. X) :z P(T= X)—0(X).

Likewise
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(8) 1T, X) = p1(X) -
Therefore for all X

[, AT =] fu@) () = 5@ mian)

7

and consequently
(9) F(Tx)=f(x) almost everywhere [z,].
Relation (3.1) then implies

(10) . , . almost everywhere [;] j=1, ---,2"—1
lim f(Tha)= lim f ()

o m m=1,2, «--
Let

11 A= {a:]s(]%) Su(x)=0}.
It is asserted that
(12) [, Fiapam=o0.
We define the following sets:

P={z|f (x)=0} j=0, 1, -

Ay={a| sup f.(x)=>0} N=0, 1, ---

0<n<N
Cy ;=PxN\--- NP NP, j=0,+--, N.

Now (9) together with (3.1) imply that 7.P;=P; for k<j. Con-
sequently

TjCN’ j=CN, j and @(C’NY ]):@(Tl;CNY j)'

Therefore
20(Cy. )= ; O(TCy, )=0(Cy. )
and
20(Cy, ):SCN’ =0, j=0, -+, N.

Since the Cjy, ; are disjoint for j=0, ---, N, we have @#(4,)=>0 and by
a limiting process we obtain (12).
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Likewise if

(13) B {alinf £.(2)=0},
then
(14) SBfu(w)/!(dw)ZO :

Inasmuch as the preceding argument made no use of the finiteness
of @, we may apply the result to the set function ¥=@—cpg for any
real ¢. Since

7.(0=| (£ -om(do)

we deduce that for

(15) A*= (w|sup f () =c}
we have

(16) D(A) =cp(A°)
and for

(17) A= {z|inf f(x)<d}
we have

(18) O(A)<dp(A,).

Let now for »>s

(19) Li={z|lim f,(z)>r and lim f,(x)<s} .

From (10) we obtain
(20) TiinL:—_‘L: .720’ 1, crty 2771_1; mzoy 1y et

Since L? is invariant under each 7, we may consider it as a new
space. The sets A" and A, relative to the new space are now the full
space L;. Hence if we apply (16) and (18) we obtain

HL)=rpL) ; OLY<su(L3) .

The finiteness of @ together with the assumption r>>s implies p(L;)=0.
Thus lim f,(x) exists almost everywhere [¢].

n—>00

Property (i) of the limit function F(x) follows immediately from
(10). Utilizing (i) the proofs of (ii) and (iii) are now identical with
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the corresponding proofs by Hurewicz [4, p. 201] in the ergodic case.
The theorem for abstract Riemann sums analogous to the Hopf
ergodic theorem is now deducible as a corollary.

COROLLARY 1. Let T be a transformation such that (3.1) and (3.2)
are satisfied and in addition

@1 (T X)=p(X) n=0, 1, +--.

Then for any integrable f(x) with f(Tz)=f(x) and any g(x)>0 with
9(Tx)=g(x)

S A
(22) lim #-°

n—roo 271

> 9(T7)

k=0
ewists for almost every x [¢). The limit function h(x) is integrable,
satisfies h(T,x)="h(x) for almost all « [u], and for sets Y with (Y )< co
and T, Y=Y, m=0, 1, ---

(23) | Haro@)udn) = f)uda).

Proof. Introduce the measure

(0 = g@ntdo),

and the set function

F(X)=Sxf(90)#(dw)-

The function F' is absolutely continuous with respect to » and is finite
valued. Condition (21) implies that

P =\ 'S £ (@iae)

and

(0= S oTioyuaa).

Thus from the representation

FN(X) = S‘an(x) Vn(dx)
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we deduce that

271

>, f(Trx)

fo(@)=*2____. almost everywhere [pg].
27-1
21 9(Tz)

The corollary is then an immediate consequence of Theorem 1.
The theorem of Jessen now follows from the version of Corollary
1 with g(x)=1 with the T, as noted in §2.

4. Invariant measure and two operators. It is possible for the
conclusion of Corollary 1 to hold when g(x)=1 but T does not satisfy
(21). If we introduce

(24) Ri(A, Y)=2-S] s(Y(\T544)

we obtain the following theorem.

THEOREM 2. If T is a transformation such that (3.1) and (3.2) are
satisfied, then the following statements are equivalent :

(25.1) For every integrable f(x) with f(Tx)=f(x),

lim 2-°S" £(T%z)
=0

N—>oo k

exists for almost every x [p].
(25.2) For each Y with p(Y)<oo, lim R, (A, Y)<Kp(A).

(25.8) For each Y with p(Y)<lco, lim R, (A4, Y)<Ku(A).

(25.4) For an increasing sequencc of sets Y, with O Y,=S,
j=1

limR(A, Y)<Ku(A4) .

N—>c0

(25.5) There exists a countably additive measure . with the properties:
(i) 0<uX)<KpX)
(ii) If A=T,A, n=1, 2, -+, W(A)=p(A)
(iii) v(A)=u(T,4), n=1, 2, <.

The proof is almost identical with that of Ryll-Nardzewski [7] in
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the ergodic case, and is omitted. The existence of an invariant measure
implies, as in the ergodic case [2], the following theorem with two
operators (or two sequences of roots of the same operator).

THEOREM 3. Let T and U each satisfy (3.1), (3.2), (3.3) and (25.1),
and let

o7 _1

5 pu(TiX)
be absolutely continuous with respect to
9T _1
m(X)= 3 WULX), n=0, 1, --
k=0

For any finite valued set function @ absolutely continuous with respect
to p and with O(TX)=@(X) form

$72(X) = 221@(T91X).
Then in the representation

2,X) =\ f.@)mid),

the averaging sequence of point funcltions f.(x) tends to a limit as n— o
for almost every x [p].

As a consequence of Theorem 3 we obtain the following corollary
in the same fashion as Corollary 1 was derived from Theorem 1.

COROLLARY 2. Let T and U each satisfy (3.1) and (3,2), and in
addition

(26) (V. X)=p(X) =0, -

for V=T and V=U. Then for any integrable f(z) with f(T'x)=f(z)
and any g(x) >0 with g(Uz)=g(x)

S A(TEX)
lim*®° - .

N->c0 271

S 9UEX)

exists for almost all « [¢].
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SOME ERGODIC THEOREMS INVOLVING
TWO OPERATORS

Paun Civin

1. Introduction. The object of the present note is to indicate
how the ergodic theorem of W. Hurewicz [3] and E. Hopf [2] can be
extended to theorems involving two operators. While for a finite
measure space, the Hopf theorem for two operators is readily seen to
be the consequence of the theorem for one operator and the Birkhoff
ergodic theorem, in the general case the theorem for two operators is
established via the extended form of the Hurewicz theorem. An ap-
plication is made to the theory of Markov chains in § 4.

Let (S, Q, p) be a fixed measure space which is assumed to be o-
finite unless otherwise stated. Capital letters are reserved for elements
of Q. For a measure & and for point functions we write [f(z)=g(x)[£]
for equality almost everywhere [£].

We consider two one-to-one transformations of S onto itself, ¢
and u, each of which is measurable in the sense that for v=t and
v=u, Me Q implies vM e Q and v*M e Q, and if p(M)=0 then p(v-'M)=0.
We suppose throughout that neither £ nor # has wandering sets of posi-
tive measure, that is,

(1) For v=t and v=u, if ANV*A=0, k=1,2, «--, then p(A4)=0.

2. The Hurewicz theorem. For any finite valued countably addi-
tive set function ¢ defined on Q and absolutely continuous with respect
to p, form the set functions

(2) o X)= 3 ¢(t°X), n=0,1, -,
and
(3) p,,(X)=§*d w(t*X), n=0, 1, -+

Then ¢, and », are countably additive set functions and ¢, is absolutely
continuous with respect to v, so admits the representation

(4) e X) = ou(a)pm(de) n=0,1, -

The Hurewicz theorem then asserts that g,(x) has a limit at all points
except for a nullset with respect to ¢, that is for all points except a
t-invariant set of p measure zero.

Received June 2, 1954.
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To formulate the theorem for two operators we introduce
(5) m(X)= 3 p'X), n=0, 1, ---.

The set function p, is countably additive but ¢, is no longer automati-
cally absolutely continuous with respect to p,. In order to have this
absolute continuity for any countable additive set function ¢ absolutely
continuous with respect to ¢ with the consequent representation

() o X)=|_Fu@mdo), n=0,1, ---

it is necessary for v, to be absolutely continuous with respect to p,.
To see this simply take ¢=/p, whence ¢,=v,. We therefore take as a
basic hypothesis

(7) v 98 absolutely continuous with respect to p,

with the consequent representation

(8) un(X)=Sch(x)/1n(dx) , n=0, 1, -+

We also assume that the operators ¢t and u satisfy the Birkhoff ergodic
theorem, that is,

(9) PFor v=t and v=u, if f(x)e LX(S), lm >, f(v'x)n ewists almost
n—soo k=0
everywhere [p].

THEOREM 1. Let t and u be one-to-one measurable transformations
of S onto itself which have no wandering sets of positive measure. Let
¢ be a finite valued countably additive set function defined on Q and ab-
solutely continuous with respect to p. If (7T) and (9) are satisfied, then
the ‘‘averaging sequence’’ f.(x) of point functions defined by (2), (5)
and (6) converges everywhere except for the union of a t- and u-nullset
as n—roo,

Proof. We suppose first that p(S)</coc. From the representations
(4) and (8) we deduce that

o X)=| _g.(@)enta)m(da).

The comparison with (6) yields f.(x)=g.(@)c(x)[p,]. The Hurewicz
theorem implies that g,(x) has a finite limit except for a ¢-nullset. A
result of C. Ryll-Nardzewski [4] shows that the hypothesis (9) that ¢
satisfies the Birkhoff ergodic theorem implies the existence of a
countably additive measure « with the additional properties:
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(10.1) 0<a(X)<kuX).
(10.2) If X=t-'X, then a(X)=p(X).
(10.3) at'X)=a(X) .

Likewise, since u satisfies (9), there is a countably additive measure
with the additional properties:

(11.1) 0<B(X)<kpm(X)
(11.2) If X=u"'X, then f(X)=p(X)
(11.3) B X)=p(X) .

From (10.1) we note that a is absolutely continuous with respect to s.
Hence if

(12) (X) =3 a(t'X), n=0, 1, -+
then «, is absolutely continuous with respect to v, and we may write
(13) a,Z(X)=SXan(x)vn(dx), n=0,1, «--
Likewise if

(14) Au(X)= 30X, n=0,1, -,
B, is absolutely continuous with respect to g, and

(15) FuX)=|_eu@)pn(da) n=0,1, -

If 3(A)=0, then (11.8) implies ﬂ( v u"A)=0, and since \J w*4 is

u-invariant (11.2) implies p( G u"A)=0 and thus #(4)=0. Hence we

also have the representation

(16) /A,L(X)=Lbn(x)ﬂn(dx), n=0, 1, «--.
If we combine (13), (8) and (16) we obtain

an w,(X) = _a@e.@b. @), (de) .

By the use of (10.3) and (11.3), (17) simplifies to

0,1, .--.

(18) a(X)= Sxan(w)cn(w)bn(w)ﬂ (dw), n

Since cy(x)=1[x], we find that
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(19) . (@)en(@)bu(@) = ao(@)bo(@)[ 2] n=0,1, «--

Since we are supposing at present that #(S)< e, the Hurewicz
theorem can be applied to (13) and (16), and thus a,(x) has a limit a(x)
as n—oo, except for a t-nullset and b,(x) has a limit b(x) as n—co,
except for a u-nullset. By a further conclusion of the Hurewicz theorem,
not already stated, we know that a(x) is ¢-invariant and that

| a@u@n=| a@n@s)

for every invariant set X. Hence for Z= {z|a(x)=0}, «(Z)=0 and
since Z is t-invariant, p(Z)=0 by (10.2). The identical argument shows
that b(z) is not zero except for a w-nullset. If we also observe that
the sets where ay(x)=oc and by(x)=occ are ¢- and u-nullsets respectively,
as are the sets where a,(x)=0 and b(x)=0, we conclude that for all =
except the union of a ?- and u-nullset ¢,(x) has a finite limit as n-—>oo.
Thus f.(x) has a finite limit excepting the union of a ¢- and u-nullset.

If the measure space (S, Q, p) is o-finite, let k(x) be a bounded
positive function integrable over S. Let

1X)= | I@)u(da)
and form
(X)) = z Hw'X).

The measure space (S, Q, 1) is a finite measure space, and ¢ is absolutely
continuous with respect tc 4. Hence by the first part of the proof, if

o X)=| m(@)in(de),
then Z,(x) has a finite limit at all points other then the union of a ¢-

and #-nullset in the 1 measure and hence also in the # measure. Thus
if we let

(20) Z,L(X)=Sxkn(w)p,,(dw), n=0,1, -«
we have

o X) = @ @)m(da),
and consequently f,.(z)=h (@)t (x)[p,]. The Hurewicz theorem applied

to (20) asserts that k,(x) has a finite limit except for a u-nullset, which
implies the conclusion of the theorem.
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THEOREM 2. If in addition to the hypotheses of Theorem 1 p(S)< oo
and t and u commute, then f(x)=lim f,(x) has the properties

(i) ) =f@) -
(i) § f (x),a(d:v)=SX Fo@)p(dx) for any t-invariant set X.

Proof. We use the same notation as in the proof of Theorem 1.
From (10.1) we see that any function integrable with respect to a is
also integrable with respect to p. Hence the counterpart of (9) is
satisfied with v=u and g replaced by a. By a further use of the
results of C. Ryll-Nardzewski we find the existence of a countably
additive measure 7, defined as a Banach-Mazur limit

. 1 n ,
X)=1 = -7
and having the additional properties:
(21.1) 0<r(X)<ka(X)
(21.2) If X=u'X, y(X)=a(X)
(21.3) @ X)=r(X).

Since « is t-invariant and ¢ and % commute we have a(utX)=
a(u~’'X), and thus the definition of 7(X) shows

(2.14) r(X)=rt"X).

We similarly obtain a countably additive measure with the properties:

(22.1) 0<<o(X)<k:B(X)

(22.2) If X=t'X, then 3(X)=p(X)
(22.3) At X)=0(X)

(22.4) o' X)=0(X).

From (21.1) we obtain
(23) 0= m@a(ds) .
An earlier argument showed that 6(X)=0 implies 3(X)==0, hence
24) B(X)— an(x)a(dx) :
The combination of (23), (18), (19) and (24) then yields

1(X0)=| m@ae)b@n@do) .
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Since ¥ and 6 are both ¢- and u-invariant, the integrand must be both
t- and u-invariant. With the aid of (10.2), (11.2), (21.2) and (22.2) it
is then seen that m(x)a\(x)by(z)n(x)=1[5].

Likewise the ¢-invariance of y and a shows that m(x)=1[«], and
the u-invariance of £ and & shows that n(x)=1[F]. Since a set of
measure zero in any of the measures «, S, J, and g is also of measure
zero in any of the other measure, we conclude that a,(x)b,(x)=1[x].

The Hurewicz theorem, applied to (13), implies that for any ¢-
invariant set X, if we let a(z)=lima,(x)

(25) [ a@ndn = af@mdn—aD.
If we combine (10.2) with (25) we find
#X)=|_a@uda).

The t-invariance of a(x) then yields a(x)=1[g]. A repetition of the
argument shows that lim b,(x)=1[¢], consequently lim ¢,(x)=1[¢]. The

conclusions of the theorem now follow from the corresponding conclu-
sions of the Hurewicz theorem applied to (4).

3. The Hopf theorem.

THEOREM 8. Let t and u be one-to-one measure preserving trans-
Sformations of S onto itself. Let f(x)eLY(S) and g(x)>>0, then for
almost all x the quotient

> f(tx) | 3 g(w')
J=0 J=0
has o limit as n—oo.
Proof. Let
Z(X)=ng(w)ﬂ(dw), (X)) = j;)z(qu), pu(X)= glol(th)-
Then p, is absolutely continuous with respect to 4, and
oX)={ _r@da)
is a finite valued countably additive set function absolutely continuous

with respect to 4. We form f,.(x) according to (4) and (5) with p re-
placed by 1. Now

WX =S oo,
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S0
o X)=|_ri@)dn) =| £, 3 owoude).
But by definition
o) =| S reona).

v j=

<

Thus
Fu@)= 3 f ) | 3 0(wa)
j=0 j=0
and the conclusion follows from Theorem 1.

4. An application. In a recent note [1] T. E. Harris and Herbert
Robbins used the Hopf ergodic theorem to obtain results concerning
Markov chains admitting an infinite invariant measure. We indicate
below the corresponding results that are obtainable by the use of
Theorem 3.

Consider the real valued Markov chain ---, -, «, @, --+- with a
stationary transition probability function

h(u, B)=prob (x,,, € Blx,=u).

It is assumed that there is a measure 11 on the real Borel sets, which
does not vanish identically, is finite for bounded Borel sets and satisfies

11(B)=SD_° h(w, B)I(du) .

Let @ be the class of real Borel sets, S the space of sequences of
real numbers x=(:-+, _1, &, &, +-+) and O the Borel extension of the
cylinder sets, in S. If A=Q is determined by the coordinates «, z,..,
<., x, then q(Alx,=u) will denote the probability of 4 relative to the
Markov chain starting with x,=u, as specified by 4.

A meagure is established [1] in © by the relation

m(A>=Sq<Alxj=u>u (d) i<k

for cylinder sets determined by «;, ---, 2, .

We shall apply Theorem 3, with ¢ the ath shift transformation,
(tx);=a;,,, and u the bth shift transformation. If I"e @, let R, be the
event that z,e I" infinitely often. The assumption

(26) If I'e @, then (R, |z,=u)=1[11],

then yields [1] that ¢ and « are m measure preserving and that neither
¢ nor ¥ has wandering sets of positive measure.
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THEOREM 4. If (26) is satisfied, h(u) is 11 summable and k(u)>0,
then for almost all x[11]

1im k(xc) +k(xm+c)r+ A "}‘ﬁh(xna+c)
e Jo(Xq) + (T pa) + o o o B Tnpra)

exists with probability one.

THEOREM 5. Let y,, ., -+ be independent random variables with a
common distribution function. Suppose that for any interval I
PTOb (Yo + Yarot * * * + Ynaso € I nfinitely often)=1
and
Prob (Yot Ypsat == * +Ymwa € I tnfinitely often)=1.
Then for h(u) Lebesgue integrable k(u)>0 and almost all m
n P
S 1 (m+ Sven)
lim —2=¢ J=0

"o »
)E; k <m+ Z‘:') yjb+d)

p=0

exists with probability one.
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THE NUMBER OF SOLUTIONS OF CERTAIN
CUBIC CONGRUENCES

EckroRD COHEN

1. Introduction. In this paper we shall be concerned with cubic
congruences of the form

1.1 n=q,x}+ + » + + (mod m),

where 7 is arbitrary, m >>1, and the a, are integers prime to m. The
number of sets of solutions (», ---, ) of (1.1), distinct modulo m,
will be denoted by N(n, m). Our discussion of N(n, m) is limited to
the cases s=2 and s=3; however, we emphasize that the method
involved can be extended to arbitrary s.

Suppose that m has the faetorization m=p}1, .-+, pM as a product
of powers of distinect primes p,, ---, », . Then it follows easily that
(1.2) Nyn, m)=N{n, pl1) -+ Nfn, p").

Thus the determination of Ny(n, m) reduces to the problem of deter-
mining N(n, p*) where p is a prime. We accordingly limit ourselves
to the case of a prime-power modulus p*.

If we denote by ¢ the largest integer <1 such that n=0 (mod p'),
then one may write
(1.3) n=p'¢, (§ p)=1, 0<<t< 2.

We observe, in case 1>-¢, that £ is uniquely determined (modp). Our
main goal will be to obtain exact formulas for the number of solutions
Nyn, p*, t)=N, of

(1.4) n=0a"+ by’ (mod 2%,
and the number of solutions Ny(z, p*, t)=N; of
(1.5) n=aa®+ by’ + ¢z’ (mod p*),

where 7 is arbitrary of the form (1.3), and the following conditions
are satisfied:

(1.6) p=1 (mod 3), abe=£0 (mod p) .

The restriction p=1 (mod 3) is natural, since other primes are special
in the case of cubic congruences.
The method of the paper is based on elementary properties of

Received March 5, 1954. This paper is based on research completed when the author
was a member of the Institute for Advanced Study.
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finite exponential sums. These are listed for the cubic case as pre-
liminary lemmas in §2. The principal formula for N, is contained in
. Theorem 1 (§3) and the corresponding result for N; in Theorem 2 (§4).
Both results involve the pair of integers (A4, B), determined uniquely
by the relations [7],

1.7) dp—A*+ 278, A=1 (mod3), B>0.

However, in the special case 0 (mod 3), the value of N, is given
explicity (§3, Corollary 2).

On the basis of these formulas, solvability criteria for (1.4) and
(1.5) are developed in §5. In fact, it is shown in Theorem 5 that
(1.5) is always solvable (N;>>0). As for N,, the following criterion is
established: If p5£7, then (1.4) is insolvable if and only if t=0 (mod
8), t< A, and a and b belong to different cubic character classes (mod p).
(For the exceptional case p="7, see the complete statement of the
criterion in Theorem 6). Approximations to N, and N, are also given
in §5 (Theorems 3 and 4, respectively).

Regarding previous research on cubic congruences, we note the
work of Gauss who evaluated NN, in the case of a prime modulus p
[4]. More recently, Dickson determined N; for a prime modulus, with
a=b=c=1 [3, p. 167]. In addition, Skolem [9] and Selmer [8] have
considered such congruences in their treatment of cubic Diophantine
equations. Some of these results were deduced by the author in an
earlier note anticipating the present paper [2].

2. Notation and preliminary lemmas. The cubic Gauss sum
G(n, m) is defined by
(2.1) Gn, m)= 3, «n*, m),

p(mod m)

where the summation is over a complete residue system (mod m), and e
is defined for integral «, by

(2.2) e(a, m)=e*ie/m,

Expansion of N(n, m) into a Fourier sum [1, §5] reveals immediately
the relation between Ny(z, m) and the Gauss sum (2.1):

LeMMA 1. The number of solutions of (1.1) is given by

2.3) Naom)y=1 S e, m) .1}1 G(—aupe, m) .

m w(mod m)

We next note two reduction formulas for G [6].
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LEMMA 2.
(2.4) G(nm', mn')y=m' G(n, m).

Lemma 3. If (v, p)=1, then

. T (k=3)),
(2.5) Gl p)= PGl ) (h=3i+1),
Lp¥™t (k=3j+2).

Closely related to G(n, p*) are the two Gauss-Kummer sums defined
by

(2.6) ()= 3 y'(n, 94, (i=1, 2),
v(mod p’})
(v, p)=

where 7(») and ¥*(») denote the two non-principal cubic characters
(mod p), the summation being over a reduced residue system (mod p*).
In order to differentiate between the two non-principal characters, we
write

(2.7) 0= (A+3BY/=3), 0.=F, (6.6.=p)
where A and B are defined by (1.7). Then one may define y(«), for
integers «a prime to p, to be that cube root of unity satisfying

(2.8) y(a)=a®@-b (mod 8,) .

The relation (2.8) is the cubic extension of the Euler criterion [5, p.
455]. In our discussion, the primitive cube roots of unity will be
denoted by w and o?, with o=3—-1+1"-3).

We place further,

r(n)=7’(n), =,=r(1), (i=1, 2).
With this notation, we state the following reduction formula for {(n).

LEMMA 4. If k>1 and i=1 or 2, then

(2.9) womy—{ P (=p"7¢, (& p)=1),
Lo (otherwise)

The important relation connecting G(v, p), 7,(v), and z,(») is contain-
ed in the following lemma.

LEMMA 5. If (v, p)=1, then

(2.10) G(v, p)=n(v, p)+ (v, D).
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The sums 7,(v), 7.(v) have the following fundamental properties [5],

(2.11) n(M)=2 ), n)=10)e, (v p)=1,
(2.12) T =P,
(2.13) i=p0,, i=0pb,,

0, and 6. being defined by (2.7).
Corresponding to the principal character (mod p), we have the
familiar (Ramanujan) sum,

(2.14) Cn,p" )= S, e(ny, p"),
v(mod p*)
v, p)=1
which has the evaluation (k> 0),
pp—1) " In,
(2.15) C(n, p")={ —p*" (@ | n, p* ),
0 (" An).

Also of importance in this paper are the functions,
(2.16) T(a) = ; ()i + Y(e)ed)
(2.17) J(a)={ A (x(a)=1),
. 3(On(a)B— A) (x(a)+#1) ,
where A(«) is defined for cubic non-residues a (mod p) by
(2.18) ha)=1 or -1,

according as y(a)=w or o’.
Application of (2.13) gives

LEMMA 6.
(2.19) T(a)=J(a) .

The following notation will be needed.

(2.20) qz[t,g}] , ’"{é] , sz[tgz] ’
(2.21) o—[*F1, R[] s-[R7].

where [fA] indicates the largest integer << f; and for =0, 1, 2,

(2.22) L,Z(t)z{l (t=1 (mod 3), ¢<2),
0 (otherwise) .
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3. The number of solutions of (1.4). In this section we use the
notation,
(3.1) {=abs,
where ¢ is defined by (1.8), and
(3.2) 7=x(a)’(d)+ () (a)=2 or -1,
according as y(a)=yx(b) or y(a)%x(d).

The main result on (1.4) is contained in

THEOREM 1. The number of solutions of (1.4) is given by

(3.3) N(n, P, O)=p {p'J(O)L(t) + p"'7(1 — Lo(t))
+ 0" (L= Ly(2)) + p* (1= Ly(t)) — (p+ 1)},

where t is defined by (1.3), J by (2.17), q, 7, s by (2.20), the LJ(t) by
(2.22), and ¢, 7 by (3.1) and (3.2) respectively.

Proof. By Lemma 1 it follows immediately that

1
(3.4) Ny= " 3 elnp, pYG(—ap, p)G(—by, p*).
P” (mod p*)
The residue system pg(mod p*) may be assumed to be the set p=vp**
where k& ranges over the values 0<Ck <1, and for each %, » ranges
over a reduced residue system (mod p*). Thus (3.4) becomes, using
(2.4),

A
(3.5) Ne=p'S LS om, pHG(—an, pYG(—bs, ).
k=0 D™ v(mod p*)
(v, p)=1

We now break up the &£ summation according as k==1, 0, or 2 (mod 3),
and apply Lemma 3 to obtain

(3-6) N2=U1+U3+U3,

where

& 1
(8.7 U=p*2> - ,
770 P u(mod pui+1)
(v, »)=1

s(vn, p")G(—av, p)G(—by, p),

E s
(38) U_,=p)‘ Z "]:;A C(’IZ, paj) ’ Uszp)‘_ZZ' 1., C('”; p”*?) .

i=0 p =0 p*

Applying Lemma 5 and (2.11) to (3.7), and expanding, U, may be
written
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(3-9) U1=U11+ U12+ U13 ’
where
. e 1 .
Uu=p)‘"2)("(ab)rf Z _ 2} 71(3J+1)(,n) ,
=0
Ams D
U12=]) —zx (ab) 75 Z v 2_2($J+1)(n) s
=0 p¥

Q .
Us=p""riryy 3 - %T C(n, p**).
j=0 p~

Application of (2.11) and Lemmas 4 and 6 to U, and U, gives
(3.10) Uy + Up=p**"J(E)L(2)

while U,; becomes, on the basis of (2.12) and (2.15),

(3.11) Us=p*7{p™' (1 - Ly(t))—1} .

Also, using (2.15) and summing, we get

(3.12) Ui=p"(1=Ly¢)), Us=p " {p""(1-L()—-1}.

The theorem follows on combining (3.6), (8.9), (8.10), (3.11), and (3.12).

Three main cases of Theorem 1 are distinguished according as, (i)
A>t, t=0 (mod 3), (ii) 1>>¢, t£0 (mod 3), or (ili) 1=t (r=0). Cor-
responding to these cases, one may deduce the following corollaries
from (3.3).

COROLLARY 1. If 2> t=3e, then
(8.13) Ny(n, p*, 3e)=p* " {p"(J()+p+1)—y—1} .

COROLLARY 2. If 1>t==0 (mod 3), then
(8.14) Ny(n, p*, y=p* ("' =1)(n+1) ,

where t=38e+1 or 3e+2, according as t=1 or 2 (mod 3).

COROLLARY 3. (n=0). If i=t=38e+j, (=0, 1, 2), then
(3.15) Ny, ', )=pH{(g+ D)@ = 1)+ 07}
where y=0 or 1 according as t=0 or t==0 (mod 3).

4. The number of solutions of (1.5). The elements of the set
(@, b, ¢, &)=H may be distributed among the three cubic character

classes (mod p) in essentially four different ways. These four distribu-
tions, denoted by H,, H,, H;, and H, are defined as follows: (H)
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Every class contains at least one element of H; (H.) One class contains
two elements of H and a second class contains the other two; (H)
One class contains three elements of H but not all four; (H,) All four
elements lie in the same class.

Using this notation we define the function,

(4.1) 3(H)=0, 3, —3, or 6,

according as the elements of H have a distribution of type H,, H., H,
or H,.
We will also make use of the following notation :

(4.2)  O=abe; N=n(a, b, c)=yx(@)y*(bc)+ x(b)y*(ac)+ x(c)r’(ab) , 7.=7%,
7. denoting the complex conjugate of 7;:
(4.3) A(H)=7.(8) + 7:2°() -

On the basis of the above notation, one may deduce

LEMMA 7.
(4.4) A(H)=0(H) .

We now state the main theorem for Ny(n, p*, t).

THEOREM 2. The number solutions cf (1.5) is given by
(4.5) Ny(n, p*, t)=p"*{[(p—1)Nq+ 1) — Lo(1)]J(0) + po(H) Li(?)
— L) — pL(t) + (p—1)(pr +s+1)+p*} ,
where 0(H) is defined by (4.1), 0 by (4.2), and the rest of the notation
has the same meaning as in Theorem 1.
Proof. As in the proof of Theorem 1, we may express N; as a
Fourier sum and apply Lemmas 2 and 3 to obtain
(4.6) N$: V1+ V;‘*“ V:, y
where
Q
4.7 Vi=p??>, 13 > elm, pG(—ay, p)G(—by, p)G(—cv, p),
j=0 p* v(mod p3i+1)

(v, p)=1

Ll S
@8 Ve S Lom ), V=S ow ).
j=0 p3f = p“

Application of Lemma 5 and (2.11) to (4.7) yields
(4'9) V1= Vi+ Vi + VIS ’
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where
) s 1
Viu=p>"2T(0) 3\ e C(n, p31+1) ’
j=0 p¥
\ e 1
Vi=p*rieap >, -o."(n),
im0 p*?

¢ 1
V13=p2>\—3711'§772 > -5 M (n) .

i=0 p
Using (2.15) and Lemma 6 in case of V,;, one obtains
(4.10) Vu=p?=2J(0) {(p—1)(q+1)— Ly(?)} .

V. and Vi; may be transformed by (2.11), (2.12), and Lemmas 4 and
7, to give

(411) Vi + V13=p2>\—-13(H)L0(t) .

As for V, and V;, application of (2.15) gives
(4.12) Vi=p**{p'+pr(p—1)—pLt)} ,
(4.13) Vi=p**{(p—1)(s+1)— Ls(?)} .

Combination of the results in (4.6) and formulas (4.10) through (4.13)
leads to the theorem.

Corresponding to the corollaries of Theorem 1, we may deduce the
following results as special cases of Theorem 2.

COROLLARY 1. If 2>t=3e, then
(4.14) Ny(n, p*, 8e)=p**{(pe—e—1)J(0)+e(p*— 1)+ p*+ po(H)} .

COROLLARY 2. If 2>t£0 (mod 3), then
(4.15) Ny(n, p*, )=p**(p—1)(e+1)(J(O)+p+1),
where t=3e¢+1 or 3e+2.
COROLLARY 3 (n=0). If i=t, then
(4.16) Ny(n, p*, )=p"*{(p—DIJ(O)(e+m)+e(p+1)+m]+ 9},
where py=p=0 if t=38¢>0; m=1, p,=0 iof t=8e+1, and m=p,=1 if
t=3e+2.

5. Solvability criteria. First we establish some bounds for N, and
N;. To do this, note by Definition (1.7) that |A|<21 p, and by a
simple process of maximalization, that [94(a)B—A|<41v p, (A(a)= +1).
Thus we have
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LEMMA 8.
(5.1) V(a)|<2v p .

By means of this Lemma and Corollary 1 of §3, we get the fol-
lowing estimate for Ny(n, p*, 3e).

THEOREM 3. If 1>>t=3e, then
(5.2) p(p+1— 21/p)—7’—1<~~<p(p+1+21/p)—r—

Similarly, we may deduce bounds for N, on the basis of Corollaries
1 and 2 of §4.

THEOREM 4. If A>>t, then in case t=3e,
5.9 P ey = 1) —2(pe —e— 1)/ p + po(H) < - N,
<p*+e(p'—1)+2(pe—e—1) p +pd(H),

and in case t=3e+1 or 3e+2,

_ p(l n\)N3
(5.4) p+1 21/p<( “1)(e +1)<p+1+21/p .

We are now in a position to establish precise criteria for the
solvability of (1.4) and (1.5).

THEOREM b. The congruence (1.5) has a solution for every integer n.

Proof. To prove this theorem it suffices to show that the lower
bounds in (5.3) and (5.4) are positive. This follows immediately in the
case of (5.4). Rewriting the lower bound in (5.3) in the form,

ep* (Vv p —2)+e(2y p —1)+p(p+2p~'*+9),

and remembering that the minimal values of p, 6(H), and e are p=T,
0=—38, and e=0, we see that N; >0 also in the case 1>¢ =0 (mod 3).

THEOREM 6. The congruence (1.4) has mo solution if and only if
either t==0 (mod 3), ¢t <2, and y(a)Zx(®d), or if p="7, t=0, y(a)=7x(d)
and {=abt=+3 (mod 7).

Proof. If 2>t=£0 (mod 3), it follows directly from Corollary 2 of
§3, that N,=0 if and only if y=—1(x(a) 5~ x(0)). In the remainder of
the proof we suppose, therefore, that A>¢=0 (mod 3). Now the
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lower bound in (5.2) is positive in case 7—=—1 and also in case 7=2,
¢ >0. In the remaining case (7=2, e=0), the lower bound is p—2—
21/ p, which is positive if p>7. But if p=T7, ¢=0, =2, then substi-
tution in (8.13) shows that N,=0 if and only if y({)=«*, which implies
that £ =+3 (mod 7).

As a corollary of Theorem 6, we have the following result [8], [9]:

COROLLARY (Skolem-Selmer). If p ) abe, then the congruence
(5.5) ax*+ by’ +cz*=0 (mod ")
always has a non-trivial solution (x, y, z not all=0 (mod p)).

Proof. With z=1, ¢=—n, Theorem 6 shows that (5.5) has a non-
trivial solution (X, Y, 1) unless p="7, y(a)=yx(b). In the latter case,

however, there exists a solution (X, 1, 0), because an integer « is a
cubic residue (mod p*) if and only if it is a residue (mod p).
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SPECIALIZATIONS OVER DIFFERENCE FIELDS

RicHARD M. COHN

Introduction. We consider a system S of algeraic difference equations
with coefficients in a difference field .7 and involving also parameters
2. Well-known results concerning systems of algebraic equations and
systems of algebraic differential equations would lead one to expect
that, if S has solutions in some extension of the difference field formed
by adjoining the parameters i, to .% then the system resulting from
S by assigning special values to the 4, has solutions, provided only
that the special values are chosen so as not to annul a certain difference
polynomial. But the examples in [5, p. 510] show that this is not so.

The difficulty in these examples arises from the fact that a dif-
ference field .~ may have incompatible extensions, that is to say, ex-
tensions which cannot both be embedded isomorphically in any one of
its extensions. In particular, it may happen that one can express in
terms of a solution of the system S an element «, independent of the
4;. Then « will be contained in the difference field formed by adjoining
to 4" a solution of any system (possessing solutions) which arises by
specializing the parameters of S. It will then not be possible to find
solutions if one specializes the A, in such a way that the extension of

.7 formed by adjoining the specialized values is incompatible with
that formed by adjoining «.

The principal result of this paper is that one can restore the
expected result concerning the specialization of parameters of S by
imposing a suitable condition of compatibility. If the system S has
solutions, then, in order to assure that the system obtained from S by
specializing the parameters has solutions, it suffices to choose the
specializations from an extension of & compatible with a certain ex-
tension & of . and not annulling a certain difference polynomial.
In particular, if 4 is algebraically closed it has no incompatible
extensions so that it suffices to choose specializations of the parameters
not annulling a certain difference polynomial. Hence, in this case, one
has the same freedom of specialization as with systems of algebraic
equations. Even in the general case, there is considerable freedom as
the compatibility condition will evidently be satisfied if the specialized
values are chosen from < itself or any extension of <. We turn
now to a formal discussion of this theorem.

We consider a difference field & and extensions & and oz of
" Received May 25, 1954.

887
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7. Let a set S of elements «; be selected from 7  and a set S of
elements &, from .7, where the index 7 has the same range, finite or
infinite, in each case. We shall say that the &, constitute a specializa-
tion over ./ of the «; if there is a homomorphism of the difference
ring' . {S} onto the difference ring ..# {S}, this homomorphism leaving
the elements of ./ fixed and carrying each «; into «,.

We wish to discuss the following question. Let fy, «-+, 4} 715"
7, be a set of elements lying in an extension of the difference field .o/
and such that no nonzero difference polynomial in . {u,, ---, u,} vani-

shes when we substitute 3, for u;, i=1,---, q. Let j,,---, 3, constitute
a specialization over ../~ of /3, -, §,, Under what circumstances do

there exist elements 7, ---, 7, such that f;, ---, 8,; r,--+, 7, constitu-
te a specialization over .~ of the set £y, -+, 4,; 11, +++, 7, If such
elements 7, exist we shall say that the specialization of the 3, can be
extended to a specialization of the /A, and 7, We have already indicat-
ed that, in order to insure the possibility of the extension, we must
impose a condition of compatibility. Our principal result is contained

in the following theorem.

THEOREM 1. Given a difference field % and an extension
=T+ B T s T

of ./ which s such that the degree of tramsformal transcendence of
& =Py -, By over 4 is q, there exists a nonzero element & in
By e, By} such that any specialization By, +«+, 3, over 7 of Bi, -+, A,
with the properties that

(@) LBy, v+, B and 7 are compatible extensions of .
(b) the specialization of ¢ is not zero,

can be extended to a specialization [y, +++, g T =+, 7o OVEr 7 of
ﬁly R /?q y T1s **s Tope

It is evident that Theorem 1 may be applied to show that zeros of
a reflexive prime difference ideal may be found for all assignments of
values to its parametric indeterminates (if any) which lie in an extension
of a certain field and do mot annul a certain nonzero difference poly-
nomial in the parametric indeterminates.

The condition that 3, ---, A3, annul no nonzero difference polynomial

L For this and similar notations see [5, pp. 508 and 513]. Basic definitions will be found
in {9], 8], [1] and [5].
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with coefficients in .2 is essential in Theorem 1. Let / be an element
transcendental over the field M of rational numbers, and consider
the difference field N<(F>, whose elements are their own transforms.
We may extend N{F> to NB, r>, where 7*=p, r,=—r (subscripts now
denote transforms). Then /7 may be specialized to the square of an
element of 9. No such specialization can be extended to y. It is
evident that this implies that no element ¢ exists with the properties
prescribed in Theorem 1.

We give the proof of Theorem 1 in §2 using preliminary lemmas
proved in § 1. It is possible for a set S of elements «;, i=1, ---, n,
to specialize to a set S such that ../ (S> and /<S> are incompatible
extensions of ./ In §3 we give an example of such a specialization
and prove a theorem to the general effect that such specializations are
scarce.

1. Proof of two lemmas.

1. 1. Absolutely irreducible polynomials. Let there be given a set S
of elements 1;, where the index ¢ ranges over a suitable set of ordinals,
and the 4, lie in an extension of a field (not a difference field) .7 of
characteristic 0. Let P be an absolutely irreducible polynomial in
TSy, < +-, x,]. We shall show that almost every specialization of the
2, specializes P into an absolutely irreducible polynomial. Specifically,
we shall prove the following result.

LEMMA 1. There s a nonzero element y in .7 [S] such that for any
specialization of the 2, over .7 for which v does not specialize to zero,
specializations of the coefficients of P are defined, and the polynomial

P which is obtained by replacing the coefficients in P by their specializa-
tions is of the same degree as P in x, and is absolutely irreducible.

Proof. Using a device due to Kronecker [11, VI, p. 129] we in-
troduce an auxiliary variable ¢ and replace each «, in P by #»‘-!, where
m 1s an integer exceeding the degree of P in any ;. Then P goes
over into a polynomial P* in ¢. In the algebraic closure of -/ (S), P*
factors into (not necessarily distinct) linear factors

P*“_—Pl"‘Pr.

Let S;*, ¢=1, ..., 2"—2=y, denote the products of all subsets of from
1 to »—1 of the P;,. Let T ,*=P%/S,*.

In each S;* and T,* the powers of £ may be replaced in a unique
way by power products of the x, which correspond to them by the
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substitution of the preceding paragraph and are of degree less than
m in each x;. Let polynomials S, and T, result from these replacements.

The absolute irreducibility of P is equivalent to its irreducibility
in the algebraic closure of .97 (S) and this, in turn, is equivalent to
the statement that none of the polynomials @,=P—-S8,T;, i=1, -+, v,
is zero. Let ¢,, 1=1, ..., v, be the coefficient of a term which appears
effectively in @,. Let ¢=¢, --- ¢,. Let 0 be the coefficient of a
term of P which is of highest degree in z, .

There exists an element 7 in .&# [S] such that for any specializa-
tion of the A; for which y does not specialize to zero:

(a) Specializations exist for all the coefficients of P,

(b) The specialization may be extended so as to define specializa-
tions for each coeflicient occurring in the S; and T,

(c) ¢0 does not specialize to zero under the extended specialization.

7 has the properties claimed in the statement of Lemma 1. For the
existence of specializations of the coefficients of P is guaranteed in (a).

The equality of the degrees of P and P in x, follows from (c). It
follows from (b) that polynomials Q;, S;, T, S;* and T,* may be defin-
ed as the polynomials resulting by replacements of the coefficients of
the Q,, S;, T,, S;* and T,* respectively by their specializations. By
Condition (¢) no @, is zero. This implies the absolute irreducibility of
P. For P*=P, ... P,, where the P, (which coincide with certain S,*)
result from the specialization of the coefficients of the P,. Since the

P, are of degree zero® or one in ¢, factors of P in any extension of its
coefficient field can be found by the method of Kronecker from the

P, of first degree. The Q, relate to the P; in the same way as the
Q, to the P,. Hence if P had a proper factorization in any field,
then some @, would be zero. This completes the proof of Lemma 1.

1. 2. Absolutely irreducible manifolds. Let 2 be a prime p.i.?
(polynomial ideal) in ./ (S)[u, «--, uq; @y, ++-, @,], the u, constituting a
set of parametric indeterminates for 2. Let A4,,---, 4, be a charac-
teristic set of X with 4, introducing z,, t=1,-.-, p. We suppose that
the manifold M of 2 is absolutely irreducible. Then the following
generalization of Lemma 1 may be proved.

LEMMA 2. There is a nonzero element y in 4 [S] such that for any

2 Actually no P, is of zero degree, for this would imply that some QZ:O.
3 We use this term as in [9, Chapter IV], to designate ideals in polynomial rings as
distinguished from difference ideals.
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specialization 1, of the A, for which v does not specialize to zero,
specializations of the coefficients of A,,---, A, are defined, and the
polynomials A, «--, /f,, which are obtained by replacing the coefficients
of Ay, -+, A,, respectively, by their specializations form a characteristic

set of a prime pi. X in F(S)ty, +ee, Uy; T, -, x,], where S de-
notes the set of 1,. The manifold of 3 is absolutely irreducible. Each
A, is of the same degree as A, in x,. The 2, and a generic zero of 3
constitute a specialization over ./ of the A, and a generic zero of 2.

Proof. Let
»
w=>,a,x;,
i=1

the a, integers, be a resolvent unknown for X; let G be the correspond-
ing resolvent, 1l the prime p.Ii.

p
(2 , W— leh) .
=

Then 1I contains polynomials M,x,—N,, ¢+=1,---, p, where the M, and
the N, are polynomials in w and the u, of lower degree in w than G,
and the M, are nonzero.

(1) G; Mwx—N, -+, Mgx,—N,

is a characteristic set of 1l corresponding to the ordering u,, ---, %,;
w; &, -+, x, of the indeterminates, which we use throughout the
following discussion.

G is absolutely irreducible. For, by [5, p. 514}, the reducibility of
G in any field would imply the reducibility of 2 in some extension of
./ Hence, by the preceding lemma, there is a nonzero element 7y, of
./ [S] such that, for all specializations of the 4, for which y, does not

vanish the coefficients of G specialize, and the polynomial G which is
obtained by replacing the coefficients of G by their specializations is
absolutely irreducible and is of the same degree as G in w.

Each coefficient of the M,, N, and A, may be written as a quotient
of elements of ./ [S]. Let & be the product of the denominators of
these quotients. Let /8, ¢=1,---, p, the 7, %0, be coefficients of
terms of the M,. Let » be the product of the 7.

Let I be the product of the initials of the 4,, and J the remain-
der of I with respect to (1). J is a nonzero polynomial in w and the
u, . Some coefficient of J has the form /o', where t=%0 is in ./ [S]
and ¢ is a positive integer.

We let y=r.o76. For any specialization of the 2, to a set S of
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elements 2, for which 7 does not specialize to zero we may define poly-
nomials . M,, N;, 4, and G which result from the M, N,, 4, and G
respectively by the specialization of their coefficients. G is absolutely
irreducible. The M, are not zero and are reduced with respect to G
since G is of the same degree as G in w. Hence

(2) G; Mx—N, -+, Ma,—N,

is a characteristic set of a prime p.i. M in 7 (S, +++, U3 w;
@, -+, x,]. Each A4, is of the same degree as 4, in a,, and its initial
results from the specialization of the coefficients in the initial of A,.
The A, are in II. For the A4, are in II and hence have zero remainders
with respect to (1). The equations which express this go over upon
specialization into equations which show that the A, have zero remain-
ders with respect to (2). In saying this we make use of the fact that
each coefficient in these equations may be written as an element of
S#[S] divided by a power of 4.

Let I denote the prime p.i. consisting of those polynomials of 1I
which are free of w. The 4, are in 3. Let B,, ---, B, be a charac-
teristic set of 2 with B, introducing z,. The product of the degrees
of the B, in the indeterminates they introduce equals the degree of
G in w. This is the degree of G in w and hence equals the product
of the degrees of the A, in the respective «;. This product, in turn,
equals the product of the degrees of the A, in the respective x,.
Hence the product of the degrees of the B, in their respective x; equals
the corresponding product formed for the A4,. It follows that the chain
B, -+, B, cannot be lower than the chain 4,, -+, 4,. The latter is
therefore a characteristic set of 3.

The absolute irreducibility of the manifold of 3 is a consequence
of the absolute irreducibility of G since G is a resolvent for X. It
remains only to prove the last statement of the lemma. Let P be any
polynomial of X whose coefficients are in #[S]. On specialization of
its coefficients P becomes a polynomial P. The equation which shows
that the remainder of P with respect to A, ---, 4, is 0 goes over into
an equation showing that the remainder of P with respect to A4, «+-,
A, is 0. Hence P is in Y. This is equivalent to the statement that
any algebraic relation between the 4, and a generic zero of 2 goes
over on specialization into a relation between the 1, and a generic
zere of 3. This completes the proof of Lemma 2.
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1. 3. Adjuncltion of a generic zero. Our application of the preceding
iemma will arise in the following situation. Let !l be a prime p.i. in
F Uy ooy Uy Y1y oo, Yo, the u, constituting a parametric set. Let
& be the field obtained by adjoining a generic zero u,=«;, i=1, ++-, q;
y;=08; j=1,--+, p, of 1l to .7 The manifold M of 1 is the union of
manifolds M, ---, M, irreducible over -7 Let M, be an M, contain-
ing the generic zero named above. Then M, is absolutely irreducible.

To prove this statement we consider the field 2’ consisting of
those elements of 27 which are algebraic over .~ Let M’ be the
least manifold over < which contains M, and let II’ be the ideal of
M. Evidently 11’ is prime. u,=«;, i=1,--+,q; y;=F5 j=1,--+, p,
is a zero of 1I’. Now II’ contains IT and hence is of at most the
dimension ¢ of [I. Since the degree of transcendence of

Zj(aly trey aq; ﬁly ctty, /91)):(9/

with respect to 2 is the same as the degree of transcendence of 07~
with respect to .%, and the latter is ¢, it follows that u,=«;, i=1, .-,
q; ¥;=pf,, j=1,---, p is actually a generic zero of I1’, and that 1T’ is
of dimension g¢.

It suffices to prove the absolute irreducibility of 9. For, since
M’ is of the same dimension as M, and contains M,, its absolute ir-
reducibility would imply that it coincides with 9,, and hence that the
latter is absolutely irreducible.

Suppose M’ is not absolutely irreducible. Then there is an element
7 algebraic over < such that M’ is reducible over < (r). Let r be
of degree d over <. Then 7 is also of degree d over %2~ because
every element of %% algebraic over % is in Z* Evidently 7 is also
of degree d over < = < («ay, ---, «,). lLet ¢ be the degree of 2%~ over
], and let f be the degree of </(y; S, -+, 5,) with respect to = (7).
The reducibility of M’ over < (y) implies that f<e. On the other hand
the degree of <i(r; By, -+, f,) with respect to %; is given both by
de and df, so that e=jf. This is a contradiction which establishes
our claim that M, is absolutely irreducible.

2. Proof of Theorem 1.

2. 1. A special case. We return to the notation in which Theorem
1 was stated. We treat first the case that p=1, and that y,, which
we shall now denote by 7, using subscripts to denote its transforms,
is algebraic over %, Without loss of generality we may suppose that
& is inversive.’

* One applies Lemma 2 of [5] to the prime p.i. in &[y] whose generic zero is y.
5 This is an easy consequence of the fact, proved in [3], that every difference field has
an inversive extension.
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Suppose first that » and, hence, its transforms are algebraic over
.7. Then the compatibility of the extension .7 <f, -+, B> and 57

implies the existence of a field® % <@, -+, B,; 7>. We say that
By +++, f,; 7 constitutes a specialization of &, ---, f#,; 7. For, if Pis
a polynomial in . {u,,---, u,; y} which vanishes when we replace u,

by 8, 4=1,---, ¢, and y by 7, then each coefficient of P as a poly-
nomial in the u;; is a difference polynomial of .& {y} which has the
zero 7. If this were not the case a set of §,; would be algebraically
dependent over . (7> and hence over .7, which is not so. It follows

that P vanishes when we replace the u, by the corresponding B; and y
by 7. Hence in this case the assertion of Theorem 1 holds with 6=1.

2. 2. Conclusion of the algebraic case. We proceed to complete the
proof of the algebraic case by induction. We shall suppose that the
conclusion of Theorem 1 has be been verified for algebraic functions

of the 8, i=1,---, ¢; =0, 1,---, n—1. Let 7 be algebraic over
the field formed by adjoining to .o7 the B, i=1,.--, ¢; 7=0,1, .-, n.
We denote by S;, k=0, 1, ---, the set of f§;,, i=1,---, q; j=k,

«ev, k+n—17; and by T, the set of B, i=1,---, q; j=k,---, k+tn.
Then 7 is algebraic over T(=T,). Let those elements of 27'= 7 (3>
which are algebraic over any . (S,) be adjoined to <. There results
a difference field whose inversive extension we denote by < /. Let 7
be of degree d over = /. Evidently there is an element o of 57,
algebraic over .#(S), such that some transform 7, of » is of degree d
over “ {oy. Let < * be the difference field formed by adjoining to
% elements whose {th transforms are respectively - and the 5, i=
1,+--, g. Then % is of degree d over <*. Let 1I be the reflexive
prime difference ideal in < *{y} whose generic zero is 7. We claim
that the characteristic set of II consists of a single polynomial.
Evidently, the first polynomial of this characteristic set is of order
zero and degree d in y. To prove that it is the only polynomial of
the characteristic set we must show that, for any >0, the degree of
7, over < *(y, ---, 7,._,) is d. For any >0, 7. satisfies an irreducible
algebraic equation of degree d’<<d with coefficients in Z'*(, «+-, ,.)).
Since 7, is algebraic over .& (T,) these coefficients may be chosen to be
algebraic over . (T,). The coefficients are rational combinations with
coefficients in . of certain transforms and inverse transforms of the
83; and o, and of 7,-++-, 7._;. The B;,; involved, either directly, or

6 The field F<By, ---, Bq; 7>, and other fields arising in similar situations, is not
necessarily determined to within isomorphisms. It is a field which contains and is

generated by subfields isomorphic to F<By, -++, B> and F<xy>. Our notation is intended
to indicate that one such field is selected and held fixed throughout the discussion.
7 Sk is to denote the empty set if =0,
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because the s, involved or %, --+, 7., are algebraic functions of them,
are finite in number. We may specify a positive integer p such that
for all 8,; involved, we have —&t<j<p.

We now specialize the pg,;, —t<{j<{», to integers. This is to
be a specialization in the sense of algebra only; the operation of
transforming need not be preserved by the specialization. If the
integer values are appropriately chosen the specialization may be ex-
tended to the f3,;, »<<j<p, and to the o, involved in the coeflicients and
7o, =+, 7, in such a way that these j8,; remain algebraically independent
over % It follows that the coefficients of the irreducible equation for
7., the o, involved, k>r, and 7, itself are unaltered by the specializa-
tion. That is to say, the specializations of these elements, and of the
Bi;y j=r, satisfy precisely the same set of algebraic relations over .o~
as did the corresponding unspecialized elements.

The 4, —t<k<lr, and 7%, ---, 7,_, specialize to elements algebraic
over .~ (S,). There is then an element 1, algebraic over .7 (S,) such
that these specializations lie in . (S,, 1). Evidently, then, 7, is of
degree at most d’ over <'*(1). Hence if d’’ donotes the degree of 7.
over /(1) we must certainly have d//<ld’.

Now 4 is algebraic over the field . consisting of elements of </
which are algebraic over .7 (S,). Let its degree over .o be 2. Every
element of Z7/(»,) algebraic over .2 isin .27, as follows from the descrip-
tions of these fields. Hence 21 is also of degree % over «/(7.) in con-
sequence of Lemma 2 of [5]. Then 4 is also of degree & over <.
Hence the degree of < /(7,, 1) with respect to </ must equal d& and
also 2d’’. Hence d’’=d’=d. Thus we have shown that the characteris-
tic set of IT consists of a single polynomial. We denote this polynomial
by F. We may choose I so that its coefficients are in &% {8, _,, -~ -,
Bo, -5 01}

Let ¢ denote the initial of F. Some transform of p is algebraic
over .#<{f,--+, .. Hence there is an element 6,40 of .& {73, ---,
3.} such that any specialization of the f;; in the sense of algebra which
does not annul §, cannot be extended to a specialization to zero of this
transform of ¢, By the induction hypothesis, if n>>1, or by the special
case proved in 2.1 if n=0, there is a 6,540 in .~ {3, -+, f3,} such that

any specialization f,, ---, 5, of f,, -+, 3, such that o, does not specialize
to zero and that 7B, .-, f3,> and < (s> are compatible exten-

sions of .7 can be extended to a specialization B, ---, fB,; 5 of
Biy -+, By; o over .S

Let 6=0,0,. We shall show that ¢ has the properties specified in
Theorem 1. Let f3,---, #, be any specialization of f;,---, 8, such

that ¢ does not specialize to zero and that <@, .--, 8, and &7
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are compatible extensions of .. Since o+ is in .z, FBy, o0, B
and 2'{s> are compatible extensions of .~  Hence the specialization
of the 3, to the f§, can be extended to a specialization of & to 5. Let
F become F when we replace ¢ by 7 in its coefficients.®* Because 0,

does not specialize to zero F is of the same degree as F' and its initial
¢ is the specialization of x. We let 7 be any sclution of the difference

equation F=0. We shall show that 5, ---, f,; 7 constitutes a
specialization over & of £, ---, f,; 7.

Let P be any polynomial in .7 {u,, ---, u,; y} which vanishes when
we put u;=@,, i=1,---, q; y=7. When the u, are replaced by the 3,
P goes over into a polynomial P’ of <« {y}, and 7 is a zero of P’.
Hence P’ is in II. Then ¢P’, where ¢ is a product of powers of
transforms of g, is a linear combination of F and its transforms with
coeflicients which are polynomials of £ *{y}. By a consideration of the
process of forming the remainder we see that these coefficients are
actually in .Z<o_>{B -1y -+, B, -1; y} and hence, since the transforms
of o are algebraic over <, they are in & {o_,; B, -1y, B4 -15 Y}
Hence specializations may be defined for them.

From the relation of the preceding paragraph we obtain on
specializing the f;, to the /5, and o+ to & an expression for ¢ P’, where
¢ 0 is the specialization of ¢, and P’ is the polynomial obtained from
P by replacing the u; by the f,, as a linear combination of F and its
transforms. Hence 7 is a zero of P’. This implies that P vanishes

when the u,;, i=1, --., ¢, are replaced by the corresponding /%, and y
is replaced by 7. Thus Theorem 1 is proved in the algebraic case.

2. 3. Completion of the proof of Theorem 1. We now revert to the
situation in which there are no restrictions on 7, ---, 7,. We shall
show that, without loss of generality, we may assume that each r, is
transformally algebraic over Z. For, if this is not so, let, say, 7.,

+, 1 constitute a basis of transformal transcendency® for the y;. If
the theorem can be proved under the restriction just mentioned there
isa &40 in 7 {By, -+, By5 71, -+, 1} such that any specialization
of By, -+, By 71y -+-, 75 for which ¢’ does not specialize to zero, and
which is such that .2 and the field formed by adjoining the specializ-
ed elements to &% are compatible extensions of .o, can be extended
to a specialization of 7,,,+--, 7,. We write 4’ as a polynomial in
715 *+, 7 With coefficients in & {f,, ---, 8,}. Let 6540 be a coefficient

7 Br'rl:l;grrewiﬁs no difficulty in defining any needed inverse transforms of 4.

9 A basis of transformal transcendency of a set of elements (over a given difference

field) is a maximal subset of the elements not annulling any nonzero difference polynomial
with coefficients in the field.
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of this polynomial. Then ¢ has the properties specified in Theorem 1.
For, let B, ---, B, be a specialization over .7~ of f,,.--, B, which is
such that & does not specialize to 0 and that /<8, ---, B> and %

are compatible extensions of % We extend <<{f, ---, B> by
means of successive transformally transcendental adjunctions of elements

7ts **=, 7x. Then it is evident that f, -+-, 8,71, -+, 7+ constitutes a
specialization of £, -+, f,; 71, -+, 7% such that ¢’ does not specialize

to zero, and that % <P, .-+, By; 71+, 74> and 7 are compatible
extensions of &% Hence it is possible to extend this specialization to
a specialization of y,,,, -+, 7,. We shall deal henceforth only with the
restricted case.

Since the case that no J; exist is trivial and may be dismissed,
%’ contains an element, £, which is distinet from all its transforms.
Because of this and the restriction that the 7, are transformally
algebraic over < the Theorem of [4] implies that £#° contains an
element

»
O=>" 115755
i=1

s§>0 an integer, the p; in .7 {f, ---, B,}, such that 0 is of equal order
and effective order over <, and for some integer k>>s, and each 7, =1,
<, D, T 18 in 20>, There exist difference polynomials P;, j=1,
-, p, and Q in 2 {w} such that € is not a zero of € and that each
quotient P;/@ becomes 7; when w is replaced by 6. We may and
shall choose the P; and Q to be in . {&, -+, #,; w}.

Let Il denote the reflexive prime difference ideal in « {w} with
generic zero 0, and let A4,, 4, --- be a characteristic sequence for II.
A4, is of equal order and effective order. We choose an integer m such
that the order m’ of A, is not less than the order of the last
polynomial of a characteristic set of Il and also not less than the order
of Q. Let A=m’—m. Then A, is of order 2. We may assume with-
out loss of generality that the coefficients of

(1) AO! Al:""Am

are in .7 {p, ---, fB,}. For, if this is not the case, it can be brought
about by multiplying these polynomials by a suitable element of
FABy < ey Ba)e

Let ' denote the subfield of 5 consisting of those of its ele-
ments which are algebraic over «. By the Theorem of [6] there is
an element” ¢ in <’ such that =°/= 2°{zr). Since r and its trans-

10 We see from [6] that there is a finite set of elements r; which generate &’ when
adjoined, together with their transforms, to ¢&. Since the =; are algebraic over & it
follows that there is a linear combination of them which will serve as .
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forms are algebraic over <, T (>= < {r}.

The manifold of A4,, regarded as a manifold over &/, is the union
of components of which at least one contains 0. Let II’ denote a
reflexive prime difference ideal in Z/{w} whose manifold is this com-
ponent. [II’ contains A, and is of order and effective order 4.

We gshall construct a beginning

(2) CO; *tty Cm

of a characteristic sequence of I’ in such a way that the coefficients
of each polynomial of (2) are in the ring

<@ =L7{|Blr"'7 IBG; T}

and that each is obtained from the preceding by the procedure describ-
ed in [1, pp. 142-145], all polynomials entering the computations having
coefficients in .<#. There is no trouble about C,. We need merely start
with the first polynomial of a characteristic sequence for II and multiply
it by a suitable element of <# We specify that C, is to be irreducible.
Suppose C,, --+, C; have already been determined. Let B,,, denote
the remainder of the transform C;, of C; with respect to Cy, ---, C;
considered as a chain of algebraic polynomials. Then

¢
Bi+1=D£Cil —jZ(‘) LUCJ ’

where D; is a product of powers of initials of C,, --+, C;, and the L,
are polynomials of < /{w}. An examination of the remainder process
shows that the L,; and B,,; are actually in .ZZ {w}.

Now C,,; is either equal to B,.;, so that

i
( 3 ) Cii=D,Cy —j=Z(] LijCj ’
or there is a relation
i
(4) Ei[TvLBi+1_CL+1Hi]=j§0 ]Mz'jcj ’

where E; is a product of powers of initials of G, ---, C;, the M,; are
in ’/{w}, H, is in <’{w} and is of order 2+¢+1, T, is in <’ {w}
and is of order 2+1, and C,,; and T; are reduced with respect to
Cy, -+, C;, while H; is a product of polynomials reduced with respect
to this chain. We see that by multiplying the polynomials defined by
(4) by suitable elements of 2 {w} it is possible to obtain a relation of
the form of (4) in which all polynomials present are in 7 {w}. We
assume this to be done. Then C,, ---, C, as defined by relations (3)
or (4) have the stated properties.



SPECIALIZATIONS OVER DIFFERENCE TFIELDS 899

We now treat the w; as a set of indeterminates in the sense of
algebra, and the difference fields as fields. The polynomials of 1T which
are of order not exceeding m’ form a prime p.i. i, in < {w,, -+, W],
while the polynomials of 11’ of order not exceeding m’ form a prime
p.i, 1, in <’ {w, -++, w,}. Both II, and II,, have dimension 4.
Ay, -+, A4, is a characteristic set for 1I,, and C, ---, C, is a
characteristic set for IT,.

We say that the manifold of 11/, is absolutely irreducible. For,
by the definition of =, every element of (0, ---, 0,) not in <7 ig
transcendental over Z/. Hence C,, ---, C, is the characteristic set of
a prime p.i. I, in 27/ (6,, <++, O,.)[wy, *++, w, | Wwhose manifold is that
of II,,.* But 6, ---, 6, 1s a generic zero of II,, and a zero of 11,
since it annuls C,, ---, C, but not the initials of these polynomials.
By the remark after the proof of Lemma 2 above it follows that the
manifold of 11, is absolutely irreducible.

Lemma 2 now shows that . contains an element ¢, such that for
any specialization in the sense of algebra of the §;; and the transforms
of ¢ for which 9, does not vanish, (2) specializes to a characteristic set

Cy, -++,C, of a prime p.i. over the field formed by adjoining to .~ the
specializations of the £, and the transforms of . Now C, is absolute-
ly irreducible. For it follows from the absolute irreducibility of the
manifold of 11), that C, has no factors other than itself which involve
w,, whatever extension of </ is used as the ccefficient field; while
the irreducibility of C, in </ shows that in no field does it have fac-
tors other than field elements which are free of w,. Hence, by Lemma
1, there is a ¢, in = such that for any specialization of the f,, and
the transforms of  for which 6, does not vanish, C, specializes to an
absolutely irreducible polynomial.

Since 6,0, is algebraic over & {f, ---, B,}, this ring contains a
0, such that any specialization in the sense of algebra of the f, for
which J, does not specialize to 0 cannot be extended to a specialization
of 8,0, in which this product specializes to 0.

By the special case of Theorem 1 proved in 2.2 there is a &, in
7 {By, »++, B} such that any specialization of the 53, over & to ele-
ments B, -+, [, such that .7 <(By, «-+, B> and /=T fy oo+ By
are compatible extensions of ., and that J; does not specialize to 0,
can be extended to a specialization of the 3, and -.

The polynomials of 1I’ which are in < {w}form a reflexive prime

11 To prove the identity of the manifolds we consider a generic zero of a component of
the manifold of II,, which is irreducible over &’ (6, -+-, 8m.). This generic zero must
annul the C;. Because the dimension of the component equals the dimension of IT,, the
generic zero cannot annul the initial of any C;. Hence it annuls the polynomials of I,

Hence the component is contained in the manifold of I,,. Our statement follows readily
from this.
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difference ideal of dimension %2 with zero 4. Evidently this must be
1. Hence Q and the product J of the initials of the polynomials of
(1), which are not in II, are not in 1I’. Let S be the product of the
T, and the initials of the H; of (4). Then S is notin II’. The remain-
der R of JQS with respect to the chain (2) is therefore not 0. Let
0,5~ 0 be a coefficient of B. Then 0, is in the ring < and there is a
0s in F {f, -+, B} such that any specialization of &, ---, 8, for which
Js does not vanish cannot be extended to a specialization of ¢, to zero.

We let 6=0,0:0;. We shall show that ¢ has the properties specified
in the statement of Theorem 1.

Let B, -++, B, be a specialization of 8, -+, 8, over & which is
such that <G, -+, B> and S~ are compatible extensions of .~
and that & does not vanish under the specialization. Then .78, +++, B>
and %’ are compatible extensions of &%, and ¢&; does not vanish
under the specialization. Hence there is a 7 such that 8, ---, f,; 7
constitutes a specialization over & of f, ---, f,; r. Let the poly-
nomials of (2) become C,, «--, C,, when their coefficients are subjected
to this specialization. The non-vanishing of &, shows that C,, -, C,
is a characteristic set of a prime p.i. over the field F<G, «+-, By T,
with w,, ---, w,_, constituting a set of parametric indeterminates, and
that C, is irreducible. The initials of the C, specialize to the initials
of the C,.

Because o; does not vanish the specialization carries R into a non-
zero polynomial R reduced with respect to Cy, ---, C,. Hence J, @
and S are carried by the specialization of their coefficients into poly-
nomials J, @ and S respectively which are annulled by no regular zero
of the chain C,, ---, C,. Hence the T, and the initials of the H, do
not vanish when their coefficients are specialized, so that the relations
(3) and (4) are carried by the specialization into relations of the same

type. It follows that C,, ---, C, is the beginning of a characteristic
sequence of one or more reflexive prime difference ideals whose mani-

folds are components of the general solution of C,. Let Il be one of
these ideals, and 6 a generic zero of 1I. Evidently J and @ do not
have 6 as a zero.

Let the P, i=1, ---, p, be carried into polynomials P, by the
specialization of their coefficients. We define 7, =1, -+, p, to be
the result obtained by replacing w by 6 in P,/Q.

We say that Bi, +++, Bu; 7ie *++, 7' constitutes a specialization
over . F of By, +++, By} Tis """ » Tus- For let F be a polynomial of



SPECIALIZATIONS OVER DIFFERENCE FIELDS 901

F AUy, eee, Uyy Yy, o0, Yy Which is free of y,;, j<{s, and which
vanishes when we replace each u,, +=1,.-+, ¢, by f, and each y;,
j=1,««-, p; k=s, s+1,---, by 74 Let the u;, in F be replaced by
the f,, the y, by P;/Q, and their transforms by transforms of these
expressions. After multiplication by a suitable product of powers of
transforms of @ there results a polynomial G in &% {3, -+, B, w}.
Evidently G is in 11.

Let G denote the polynomial obtained from G by specializing its

coefficients, and let 4,, ---, A, denote the polynomials so obtained from
the polynomials of (1). The A; have 0 remainder with respect to (2)
considered as a chain of polynomials in the indeterminates w,, «++ , Wym.

By specialization we see that the Z,- have 0 remainder with respect to

the chain C,, ---, C,, and hence have the zero 6. Similarly G has
zero remainder with respect to the chain A, ---, A4,. By specializa-

tion we see that J G has the zero 6. Hence G has the zero 0. If we
replace the u; in F by the 5, and the y;, and their transforms by the
P,/@ and their transforms we shall also obtain G. Hence F has zero

w,=f,, Yw=T7sm k=>s. This proves our statement concerning the r;. If
we define 7,, j=1, ---, p, as an element whose sth transform is 7, we

see that B, »++, B,; 71, +=+, T, is a specialization of B, «++, A, 71, *++,
7,» The proof of Theorem 1 is now complete.

2. 4. Corollaries to Theorem 1.

Corollary 1. The specialization of 7., -+, 7, Whose existence is
proved in Theorem 1 may be made n such a way that of a basis of
transformal transcendency for 7., -+, 1, @8 selected in advance, then its
elements specialize into a basis of transformal transcendency for 7., <+« ,
7p Furthermore the effective order of iy, +-+, v, with respect to the
pre-assigned basis equals the effective order of 7., «++, 7, with respect to
the basis obtained by specialization.

Proof. Let y, .-+, 7. be the pre-assigned basis of transformal
transcendency. The first statement follows immediately from the con-
struction used in the proof of Theorem 1, since 7, ---, 7. are so
chosen as to annul no nonzero difference polynomial with coefficients in

FLPy, o+, B>. The second statement follows from the fact that 1I
and 11’ are of equal effective order.

12 No such statement holds for orders. For let & be an inversive difference field con-
taining an aperiodic element. Let u=p, y=7 be a generic zero of the ideal {y1~wu} of
G{u, y}. Then 9B, y> is of first order over F<B>, but if g is specialized to an
element of &, y specializes to an element of <. The specialization of 8 can be chosen
so as not to annul any pre-assigned nonzero element of F{g}.
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Corollary 2. Let p=50 be an element of . {B1, =+, Fui Tis*** s To}-
For an appropriate choice of ¢ of Theorem 1 the specialization of 7.,
-, 7, whose existence is proved in Theorem 1 may be made in such o
way that p does not specialize to 0 and that the requirements of Corol-
lary 1 are satisfied.

Proof. Let A be a polynomial of % {u,, «--, u,; 4, +++, y,} Which
goes into p¢ when the u,, ¢=1, ---, ¢, are replaced by the 5, and the
Y5 j=1,+++, p, by the y;. Suppose first that each® 7, is transformally
algebraic over . If we replace the u; in A by the £, and the y; by
the P,/Q, and multiply the result by a suitable product of powers of
transforms of @, we obtain a polynomial 7' of < {w} which is not in
II. We redefine R as the remainder of JQST with respect to the
chain (2), and redefine §, and ¢§; correspondingly. Evidently 06=20,0:0;
has the desired properties.

To complete the proof of the corollary we proceed, as in the proof
of Theorem 1, to obtain a ¢’. In consequence of what has just been
proved &’ may be so chosen that any specialization of £, <++, B, 71,

-, 7 for which &’ does not vanish, and which satisfies the usual
compatibility requirement, can be extended to a specialization of the
remaining 7, in such a way that g does not specialize to 0. We form
o from ¢’ as in the proof of Theorem 1.

3. Proof of a partial converse.

3. 1. A counterexample. It is not necessarily the case that the
extensions of a ground field .»#  generated by a set of elements and by
one of its specializations over . are compatible. To show this we
take for the ground field the fleld N of rational numbers and consider
polynomials in R{y}. Let A be the polynomial 1-+3* and let F' be
A*+ A% Then y,—y is a factor of F,—F. Hence F, y.,—y is a charac-
teristic set of a reflexive prime difference ideal'* 11 in N {y}. Let » be
a generic zero of 1I.

To N we adjoin an element ¢ such that ¢*=-—1, and define the
transform of ¢ to be itself. Then > and N{y> are incompatible. For
1+%5£0, since 7, as a generic zero of II, satisfiles no zero order
difference equation. Hence 9<{»> contains an element

A=1+7)/(1+77).
Since
(1+7)+ 1 +7) =0

13 We aré here using the symbolism of the proof of Theorem 1.
141t is easy to establish the irreducibility of #. Then one applies Theorem 3 of [1].



SPECIALIZATIONS OVER DIFFERENCE FIELDS 903

we see that #*=—1. From 7,=7 we readily derive the relation 14,=1.
These imply 4, =-—2. Hence®, R is incompatible with RG>, Evi-
dently this implies that N<{y)> is incompatible with N>, But ¢ is a
specialization of 7 over . For the substitution y=+ annuls F' and y,—y,
but does not annul their initials. Hence it annuls every polynomial
of 1I.

3. 2. Compatibility of ¢ most’’ specializations. Let F <y, «++, n,>
be an extension of the difference field %, The following theorem
provides a restriction on the specializations of 7, ---, 7, over ./ which
generate extensions of & incompatible with F#{y, ---, 7.>.

THEOREM 2. There is an element 740 in 7 {n, -+, 7,} such that
W Ty oo, 7, 48 A Specialization over 7 of ny, eee, 7, and the cor-
responding specialization of r is not 0, then <y, -+, 7. and
Ty e, Tup are compatible extensions of .

Proof. Let 11 be the reflexive prime difference ideal in & {y, ---,
Y.} with generic zero 7, .-+, 7,. Theorem 2 is equivalent to the
statement that there is a polynomial @ in & {y, ---, ¥,}, but not in
I1, such that if A, ---, 4, is a zero of II but not of @, then 74,
ceoy, A and Fy, -+, 1,> are compatible extensions of % We shall
prove this statement

We denote by < the subfield of <y, .-+, 7, consisting of
those of its elements which are algebraic over % By [6] there is a
finite set of elements of < which generate % when adjoined, with
their transforms, to %% Since these elements are algebraic over &7 it
follows that there is an element 6 such that 2 =.7<§>. There
exist polynomials P, @ in & {y, -+, .}, @ not in 1I, such that ¢ is
obtained by replacing the y, in P/Q by the corresponding »,. We shall
show that @ has the properties claimed in the preceding paragraph.

Let X be the reflexive prime difference ideal in & {w} with
generic zero 6. Let By, B, ---, B, be a characteristic set for 2.
When the w,;, =0, 1, ---, are replaced by P,/Q, in the polynomials
By, +»+, B, and the resulting expressions are multiplied by an appro-
priate product of powers of transforms of @, there results a set,
Cy, +++, C,, of polynomials of II.

For a zero 2, ---, 2, of 1I which is not a zero of @ we define the
element ¢’ to be the result of replacing the y, in P/Q by the corres-
ponding A;. Since the 4, annul C,, ---, C, it is easy to see that ¢’ is
a zero of B, ---, B,. Because B, is of zero order, any zero of B, is

15 The incompatibility of these extensions of R is discussed in Ritt [10].
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the generic zero of a prime ideal whose manifold is an ordinary mani-
fold of B,. Hence ¢’ is the generic zero of an ideal 3/ of this descrip-
tion. But 2’ must be 2. For no other such ideal contains every B,,
=0, ++-, 7.

It follows that < and .#<é’> are isomorphic under a mapping
which leaves fixed the elements of &% Let ©°’ denote the field con-
sisting of those elements of #<4, -+, 4,> which are algebraic over
7  Evidently </ is an extension of <3’>. It follows from the
definition of compatibility and from the preceding statement that ¥
and <’ are compatible extensions of .4 By results obtained in proving
Theorem 1 of [5] this implies that .#<a, ---, 2> and Fp, ++-, 7
are compatible extensions of & This proves Theorem 2.

3. 3. Alternate proof of Theorem 2. We give another proof of
Theorem 2 in the case that 1T has dimension n—1. This proof has the
advantage of furnishing a polynomial Q explicitly.

Let y,-++, ¥y, be a parametric set of indeterminates for II.
With the ordering %, *++, ¥, of the indeterminates, let F’ be the first
polynomial of a characteristic set of 1I. Then the y,-separant of F
may be used as Q.

Proof. Let S denote this separant and % the effective order of F'
in y,. Let A, ++-, 4, be a zero of 1I which is not a zero of S.

In the field #<4, +-+, 4> the manifold of F' has a component
M containing 4, .-+, 4,. Let 2 be the reflexive prime difference ideal
in Py, Loy, *++, Y.} whose manifold is M. Let ay, --- a,
be a generic zero of 2. Since 2, -+-, 4, is not a zero of S, y, --+,
Y.-1 constitute a parametric set for 3, and 2 is of effective order 4
in ¥, We denote by 2’ the reflexive prime difference ideal 2N
F Y oty Ya}s

Since X’ contains F' its manifold is either a component of F or is
properly contained in a component of F. The latter case is impossible
because X’ contains no nonzero polynomial of effective order less than %
in y, or free of y,. Since A, -+, 4, is a zero of both II and 2/, but
not a zero of S, it follows from [7] that Il and 2 are identical. Hence
&, +++, a, 18 a zero of II, and evidently a generic zero. Then
FLay, o+, a,y and F{p, -+, 7, are isomorphic under a mapping
which leaves fixed the elements of # and carries «, into 7, =1, «--,
n. Since FA, 2+, A5 A, -+, a,y is defined this implies that
Gy voy by and F<y, +--, 7,» are compatible extensions of F
This completes the proof.
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PSEUDO-DISCRIMINANT AND DICKSON INVARIANT

JEAN DIEUDONNE

1. Let E be a vector space of finite dimension over a field K.
To a bilinear symmetric form f(x, y) defined over ExFE is attached
classically the notion of discriminant: it is an element of K which is
not entirely defined by f; however, it is entirely determined when in
addition a basis of E is chosen, and when the basis is changed, the
discriminant is multiplied by a square in K. More precisely, let « be
a linear mapping of E into F, and let fi(z, v)=rf(u(z), u(y)) the form
“transformed”’ by w; if 4(f), 4(f:) are the discriminants of f and f;,
with respect to the same basis of £, and D(x) the determinant of u
with respect to that basis, then one has the classical relation

(L) A f)=(D@)A(f) .

When K has characteristic %42, the preceding results may be ex-
pressed in terms of the “quadratic form” f(x, ) associated tof(x, y).
However, when K has characteristic 2, the one-to-one association
between bilinear symmetric forms and quadratic forms no longer
subsists. More precisely, to a given alternate symmetric form f(x, y)
(that is, f(x, )=0 for all xe k) is associated a whole family of
quadratic forms Q(x), satisfying the fundamental identity

(2) Q@ +y)=Q(2)+ Q)+ f (2, y)

and to all these @ is associated the same discriminant of f (with re-
spect to a given basis).

Now C. Arf [i] has introduced an element 4(Q) attached to @ and
to a given symplectic basis of E (with respect to the form f) which
we shall call the pseudo-discriminant of Q. He proved moreover that
under a change of symplectic basis, 4(Q) is transformed in the follow-
ing way: let § be the homomorphism &-£-+¢ of the additive group K
into itself ; then the pseudo-diseriminants of ¢ with respect to two
different symplectic bases have a difference which has the form #(2).
Arf’s proof is rather lengthy and proceeds by induction on n. We
propose to show how the pseudo-discriminant is related to the Clifford
algebra of @ in a way which parallels the well-known relation between
the discriminant of f and the Clifford algebra of f over a field of
characteristic %2. At the same time, this will clear up the origin of
a curiously isolated result obtained by L. E. Dickson for the orthogonal

Received May 11, 1954.
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group O,(K, Q) over a finite field of characteristic 2: the transforma-
tions # of that group are defined by the condition Q(u(x))=Q(x), and
Dickson showed [4, p. 206] that a certain bilinear polynomial D(u) in
the elements of the matrix of » (with respect to a symplectic basis),
turns out to be always equal to 0 or 1 for elements of O,(K, @) (the
first case occurring if and only if % is a product of an even number of
transvections of O,(K, @); see [6, p. 301]). Now the connection with
the Clifford algebra which we mentioned above leads one in a natural
way to form the polynomial D(u) for an arbitrary symplectic trans-
formation % ; if Q(x)=@Q(u(x)) is then the ‘‘transformed’’ of @ by u,
and 4(Q), 4(®,) and D(u) are computed with respect to the same
symplectic basis, we will prove the following identity, which can be
considered as the counter-part of (1)

(3) A(Q)=4(Q)+ r(D(w)) .

Dickson’s result follows obviously from this relation.

2. We shall always suppose that the alternate form f is nonde-
generate, which implies that n=2m is even, and that the forms @
associated with f are nondefective [5, p. 39-40]. For the definition of
the Clifford algebra C(Q) of a quadratic form @ associated to f, we
refer the reader to [3] or [6]. If (e,)<i<. is @ symplectic basis of E,
such that

f(ei: em+j)=6zj; f(@.b-, ej)=0, f(em+i; em+j)=0 1_{_'&, jg_m;

then the unit element and the e¢; (1<{4<n) constitute a system of
generators for C(Q), with the relations

g p
(4) ei=Q(e;) , Omei=Q(Ensi) » €,6;=2¢;6,
em+iem+j‘=em+jem+£, eie‘m-i-j—*_ Gm+j0vi=5ij 137’) J£m°

From this it follows that C(Q) is an algebra of rank 2 over K.
Moreover, the elements of even degree of C(Q) (generated by the
products of an even number of the e,’s) constitute a subalgebra C*(Q)
of rank 2**-! over K, and it can be shown that the center Z of that
algebra has rank 2 over K [3, p. 44]. Now, it is readily verified
from (4) that the element

( 5 ) 2==€16 41 T 00 st oo +€,0,,

commutes with all products e,e,, and therefore constitutes with the
unit element a basis for Z over K. From (4) it follows that 2*+z2
=A(Q)y where

( 6 ) A(Q) = Q(El)Q(emH) + Q(eﬁ)Q(emA‘Z) +eee+ Q(em)Q(QZm)
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is precisely the pseudo-discriminant of @ relative to the basis (e;)
considered by Arf. Now the fact that 4(Q) has the form (1) expresses
the fact that the equation 2*+2=4(Q) has a solution in K, in other
words, that Z is not a field. When Z is a field, it is a separable
quadratic field over K, and if it is generated by the roots of any
equation ¢*+t=yg, then ¢ and 4(Q) differ by an element of the form
() [2, p. 177, exere. 8]. This proves immediately that when the
pseudo-discriminant is computed with respect to two different symplectic
bases, the values obtained have a difference of the form #(2).

3. We are now going to make the above result more precise by
proving (8). If u is a symplectic transformation, the elements u(e,)
(1<<¢<{2m) constitute again a symplectic basis for E, hence also a
system of generators for the Clifford algebra C(Q), satisfying rela-
tions similar to (4) (with Q(u(e,)) replacing Q(e¢;)). The element

(7) 2 =u(e)u(en.1)+ * » +ul(e,)u(e,)

constitutes therefore, with the unit element, a basis for Z over K, in
other words, 2’ has the form p+¢z, where p, ¢ are in K. Now it is
easy to compute 2z’ as a function of the coefficients of the matrix of u
with respect to (e,) : let

u(e;)= Z?:! a5€;+ > b'ijemﬂ
W(enrs)= D51 €505+ D5l €mas -

Let on the other hand Q(e¢,)=«a;, Q(e,.;)=p;. Then 2z’ is a linear
combination of elements e¢. ., and it follows from (4) and (5) that we
need only consider among those elements the squares ¢? and the products
€81y €nr€, Since we know in advance that 2’ can contain no other
elements from the basis of C*(Q). We thus obtain

(8) p=3010 20054 850,,d,5 +b,,6,5)
(9) q=3(a 5+ by5e5) .

But it follows, from the faet that the transposed matrix of # is again
the matrix of a symplectic transformation, that ¢-=1. The expression
on the right of (8) is the Dickson wnvariant D(u); as the relation
2'=p+z yields 2/*+2' =2*+24p*+p, the identity (3) follows immediately
from (6).

4. We cannot expect, of course, that the mapping u—D(x) should
be a homomorphism of the symplectic group Sp..(K) into the additive
group of K, if only because we know that Sp..(K) is a simple group.
However, there are some relations between the Dickson invariants of
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two symplectic transformations #, v and the Dickson invariant of their
product. In fact, it follows immediately from the expression of 2z’
obtained in § 3, that we have

(10) D(vu)=D(u)+ D,(v)

where D(x) and D(vu) are the Dickson invariants of # and vu with
respect to the basis (e,), and D,(v) the Dickson invariant of v with
respect to the basis (u(e;)). This general formula takes a simpler shape
when u is an orthogonal transformation, because then Q(u(e,))=Q(e,)
for 1<¢<2m; on the other hand, the matrix of v with respect to the
basis (u(e,)) is the same as the matrix of w-'vu with respect to (e,),
and we thus obtain

(11) D(vu)+ D vu)=D(u) .
But in this identity we can replace v by uvu~'; therefore we also have
12) D(uv)=D(u)+ D(v)

when % is an orthogonal transformation, v an arbitrary symplectic
transformation (D(%) being equal to 0 or 1, as recalled above).

REFERENCES

1. C.Arf, Untersuchungen iiber quadratische Formen in Korpern der Charakteristik
2 (Teil I), J. Reine Ang. Math., 183 (1941), 148-167.

2. N.Bourbaki, Eléments de Mathématique, Livre II: Algébre, chap. IV-V, Actual.
Scient. et Ind., n° 1102, Paris (Hermann), 1950.

3. C.Chevalley, The algebraic theory of spinors, Columbia Univ. Press, New-York, 1954,
4. L.E.Dickson, Linear groups, Leipzig (Teubner), 1901.

5. J. Dieudonné, Sur les groupes classiques, Actual. Scient. et. Ind., n° 1040, Paris
(Herman), 1948.

6. ————, Algebraic homogencous spaces over fields of characteristic two. Proc.
Amer. Math, Soc., 2 (1951), 295-304.

NORTHWESTERN UNIVERSITY

Added in proof (November 1955): Since this paper was submitted for publication,
the following papers, containing substantially the result of § 2, have appeared:

M. Kneser, Bestimmung des Zentrums der Cliffordschen Algebren einer quadra-
tischen Form tiber einem Kiorper der Charakteristik 2, J. Reine Angew. Math., 193
(1954), 123-125.

E. Witt, Uber eine Invariante quadratische Formen mod. 2, J. Reine Angew. Math.,
193 (1954), 119-120.

E. Witt and W. Klingenberg, Uber die Arfsche Invariante quadratischer Formen
mod. 2, J. Reine Angew. Math., 193 (1954), 121-122.



A COMPARISON THEOREM FOR EIGENVALUES
OF NORMAL MATRICES

Ky FAN

The following interesting theorem was recently obtained by H.
Wielandt (Oral communication, see also J. Todd [3]):

Let M, N be two normal matrices of order n, and let r denote the
rank of M—N. Let D be an arbitrary closed circular disk in the com-
plex plane, If D contains exactly p eigenvalues of M, and exactly q
eigenvalues of N, then |p—q|<r.

It is then natural to raise the following question: Without con-
sidering the rank of M—N, is it possible to compare the eigenvalues
of M and N in a manner similar to that of Wielandt’s theorem ? The
purpose of this Note is to present such a rank-free comparison theorem
which includes Wielandt’s theorem stated above.

THEOREM. Let M, N be two normal matrices' of order n and let
r be an integer such that 0<<r<m. Let ¢=>0 be such that & 1is not less
than the (r+1)th eigenvalue of (M — N)*(M— N), when the eigenvalues of
(M—NY*(M—N) are arranged in descending order.” If a closed circular
disk

|2 —2| <p
contains p eigenvalues of M, then the concentric disk
lz—z|<p+e

contains at least p—1r eigenvalues of N.

While Wielandt’s proof of his theorem uses geometric arguments
involving convexity, the proof of our theorem will be based on an in-
equality (.emma below). This difference in methods explains why our
result is of more quantitative character than Wielandt’s theorem.

LEMMA. Let A, B be any two matrices® of order n. If {a;}, {8},
{r.} are the eigenvalues of A*A, B*B and (A+B)*(A+ B) respectively,
each arranged in descending order

Received August 1, 1954. This paper was prepared in part under a National Bureau
of Standards contract with The American University, sponsored by the Office of Scientific
Research of the Air Research and Development Command, USAF.

1The elements of all matrices considered here are real or complex numbers.

2 As usual, the adjoint of a matrix 4 is denoted hy A*,

3Here A, B need not be normal.

911



912 KY FAN

=y, Pi=Pis TiZ=Tian (1<i<n-—-1)
then the inequality
Vi<V VB,
holds for any two nonnegative integers 4, .7 such that i+j+1<n.
A more general form of this lemma (valid for completely continuous
linear operators in a Hilbert space) has been given in [2], and is a

generalization of a classical inequality of H. Weyl [4, p. 445] concerning
eigenvalues of sum of two symmetric kernels of linear integral equations.

Proof of the theorem. Let {p}, {v} denote the eigenvalues of M,
N respectively and so arranged that

l/‘z_zn‘2|,“i+1—‘zn1y ‘Vi—zolz‘yi+l”‘zgly (lgzgn~1)
Let
A=M—zI , B=N-M.

Then A+B=N-z2J. Let {«a;}, {#}, {r:} denote the eigenvalues of
A*A, B*B and (A+B)*(A+ B), each arranged in descending order. As
M, N are both normal, we have

ay=|p,—2? 7i=|vi— 2% (1<i<n).
By the above Lemma, we have
i r =2l <l pts =20l +V B 5 A<i<n—7).
Using our hypothesis f§,.,<(e*>, we obtain
(1) P ARSI AL (I<i<n—r).

Let p denote the number of eigenvalues p, of M contained in the disk
lz—7,|<<p, and ¢ the number of eigenvalues v, of N contained in the
concentric disk |z—z|<{p+e. We shall prove that

(2) g=>p—r.

If n—q—r<1, then ¢>n—r>p—r. Thus we may assume 1<n—
q—r. By (1),

iun—q—znlgllun—q-r —Zn| +e.
But, according to the definition of ¢, we have

an—q—zol>f)+€ .
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Therefore

Iﬂrz—q--r—zi\!>p ’
which implies n—g—r<n—p or (2). Our theorem is thus proved.
COROLLARY. Let M, N be two normal matrices of order n and let
r be an integer such that 0<r<nm. Let x,, @, +++, @,_, be n—r ortho-

normal vectors in the unitary n-space. If a closed circular disk |z—z,|<p
contains p eigenvalues of M, then the concentric disk

b
2 >2

(3) o=zl <p+( X1 (M- Nz,
contains at least p—1r eigenvalues of N.

Proof. By a minimum property of eigenvalues of Hermitian matrices
[1, Theorem 1], the expression

SNy =S (M= N* (=N, )

is not less than the sum of the last n—r eigenvalues of (M —N)*(M — N),
and censequently not less than the (r+1)th eigenvalue of (M—N)*(M
—N). Thus the corollary follows directly from the theorem.

In case r is the rank of M— N, we can choose n—r orthonormal
vectors x,, @, -+, @,_, such that

(M—N)x;=0 ai<n-r).

Then the disk (3) becomes |z—z,|<p and the corollary reduces to
Wielandt’s theorem.
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ON THE CONVERGENCE BEHAVIOUR OF
TRIGONOMETRIC INTERPOLATING POLYNOMIALS

RicHARD P. GOSSELIN

1. Grunwald [1] and Marcinkiewicz [2] have shown by examples
the existence of continuous functions for which the sequence of Lagrange
interpolating polynomials taken at the Tchebysheff abcissas diverges at
each point of [—1, 1]. Marcinkiewicz constructed a function which
actually proved an equivalent proposition, the existence of continuous
functions for which the sequence of trigonometric interpolating poly-
nomials taken at an even number of equidistant points centered at the
origin diverges everywhere.

A similar result is known if for the nth polynomial the interpolat-
ing points are of the form 2m¢/(2rn+1), i=0, +1, -..; the sequence of
interpolating polynomials corresponding to a certain continuous func-
tion, f(z), diverges for every a=£0 (mod 27). The point =0 must be
excluded because it is of the form 2x¢/(2rn+1) for each n, and hence
the nth polynomial must equal f(x) there. (cf. Zygmund [3, p. 75]).
We shall consider more generally the following sets of points

(1) a+22711,n, i=0, +1, £2,---
n

where « is any real number which is held fixed as n varies. The
points (1) are called the fundamental points of interpolation. We shall
denote the nth trigonometric interpolating polynomial, that is, the
uniquely defined polynomial of order not greater than n which agrees
with a given periodic function f(x) at the points of (1), by I*(x; f),
except that we write I(x; f) for I{’(z; f).

In this paper, by refinements of the Marcinkiewicz example, along
with adjustments for the new set of fundamental points, we show the
strong dependence of the convergence behaviour of I{®(x; f) for certain
functions f(x) on the number «. For proper choice of «, the con-
vergence behaviour may be the worst possible, divergence for all zs£0
(mod 27), whereas for the same function, another choice of « will lead
to uniform convergence of the above sequence. We make these notions
precise in the statements of our theorems.

THEOREM 1. For any real number «, irrational with respect to r,
there is a continuous function f(x) for which the sequence I/ (x; f) di-
verges for all =0 (mod 27), but for which the sequence I®(x; f) con-
verges uniformly.
~ Received May 6, 1954.
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2. The function in question, f(x), is of the form
St £ (@) .
i=1 i

We shall define each f,(x) on certain points and impose some further
general conditions which ensure that I(x; f) diverges for every a0
(mod 27). This part of the construction is quite similar to that of
the Marcinkiewicz example and is discussed in [3], so that our remarks
here will be brief.

Each function f,(x) satisfies the following conditions : it is continu-
ous and bounded by 1; smooth enough so that I(x; f,) converges
uniformly to it; but such that there is a bounded integral-valued
function p(x) defined on the closed intervals [1/n, z=—1/n], [z+1/n,
2r—1/n], and also for a=nr for which |[,(x; f,)>>n. Thus for each
%, we choose m so large that

Wy (0) =0, 070032,

1/n dﬂ)- (0)
2 S s >M(n), m; .
20 )i 2sin (9/2) == 09— 2T G0, 41, £2, .
2s+1

M(n) is some function of » which we may take as large as we wish.
Let p;, p., -+, p, be integers all depending upon 7 such that m<p,
and

m(2p;+3)°<2pi+1, i=1, 2,+++, m—1.

For each p, let S, be the system of points 6, i=0, 1, 2,---, 2p; and
let S,(x) be the intersection of S, with the interval [u, 27]. We define
fu(@) on S, as follows:

(— 1)i’ girv e Spl(zn/m)
fn([)(ipl)):
0, b e S, — S, (2n/m).

Since S, and S, .. are disjoint, except for the point =0, we may
define f,(f) in the same way in S, .,; that is equal to (—1)" if @V
€ S, +:(2x/m) and 0 elsewhere in S, .;. Suppose now that f,(0) has
been defined for 6€S,\JS,, .., =1, 2,---, k—1. For the points of
Sy, \US},+1 which coincide with points of S,,\US,, 1, ¢=1, 2,---, k-1,
the original definition holds. For the remaining points of S, \/S,,+1
we define f,(6) as follows :
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(—' 1)ir ()E‘,nk) € S,)k(2ﬂ']€/’)’l’l)
fn(agpk))z{ ;
0, 07w e S, —S,,(2rk/m)
{( -1), OnveS, . (2nk/m)
fn(()gpl"ﬂ)):
0, 0P e S, =S, 1 (2xkim)
Thus by recurrence, f,(f) is defined for all points of S,,\JS,,., t=1,
2,+, m—1. [f,(6) may be defined arbitrarily elsewhere except that
it must be continuous, bounded by 1, and smooth enough to ensure the
uniform convergence of I(x; f»)-
Every point = of the interval [1/n, 27—1/n] belongs to some inter-
val [2(k—1)r/m, 2kr/m], k=1, 2,---, m—1. TFor & in the kth interval,
we may write according to a well known formula

]S(x ; f”):}; S:‘ fn(O)DS(x - 0)dw23+1(0)

__sin (s+ 1/2)x327rfn(0) cos(s+1/2)0 dwnn(0),  s—po, Det-1
o R () |
where

Dy()— sin (s+1/2)x -

2 sin (x/2)

By arguments similar to those in [2], we may show, using (2), that

L@ £z YD M) 0wy, s=pa pott.

If ®=z, then sin(s+1/2)a=+1. If & belongs to one of the intervals
[1/n, =#—1/n, z+1/n, 2zx—1/n], then either |sin(p,+1/2)x|>>1/7n or
[sin(p,+ 8/2)x|>1/7n . This shows with suitable choice of M(n) that

[ Iz, f)l>>n, zell/n, #—1/n], [x+1/n, 27—1/n], or ==

where s is chosen to be p, or p,+1 for some k. The n,/s are spread
out so sparsely that the following conditions are satisfied :

Sinittleo i paa(n) 3 a1 and L £,)l<2, mn)<s, k<.

Because of the first condition, f(x) is continuous, and the last can be
satisfied by the uniform convergence of I(x; f.). By well known
arguments (cf., for example, Zygmund [3, pp. 79, 80]), these conditions
are sufficient to make I(x; f) diverge for every 20 (mod 2r).
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. 3. Our own proof depends upon defining more explicitly each
Sa(x) throughout the interval [0, 27]. Let T(n) denote the set of
points where f,(x) has already been defined to be +1. Let r=m, be
the number of points of 7(n). For each s, there exists an integer
v(s) such that all the points

ofs)ma s 2T 2T

j=0, 1, 2, «++, 28
2s+1 2s+1

belong to the interval [0, 27]. All of the numbers

j=0,1,"',28; S=1,2,--.,s
& (s)— 27 X

2 +1 ”::Or 1r ctty 2p; D=D1,y D2y ""p7n—17p1+1r"" pm—1+1

are different from 0, else our hypothesis about « would be violated.
Let y(s,), depending upon %, be the minimum of the absolute value of
these numbers. Choose disjoint intervals I; of length 27=27, centered
about each point & of T(n). We choose 7 so small that I; contains no
other points of S,,\/S,,+1, ©=1,2,---, m—1. Let s, be so large that
(a) 2r/7(2s+1)<1 for s=>s,. Now in each interval I, we let f.(x)
equal a ‘““roof”’ function, +A(x—&) where 24(0)=1; A(x)=0 if |x|>4,
and 4;(x—¢) is linear from £—¢ to £ and from & to §+. The plus or minus
sign is of course chosen in accordance with the original definition of
fax) at &, Let 0=40, be so small that (b) 7<% and (c) 6<y(s,). Else-
where, we define f(x) to be 0. Condition (¢) guarantees that f,.(x)
will be 0 at all points z(s), j=0, 1,.--, 2s; 5<s,. Since f,(x) satisfies
a Lipschitz condition, both I(x; f,) and I{®(x; f.) converge uniformly
to fu(®).

4. We now proceed to show that [I{*(x; f,)|< A4 for all z in [0, 27]
where A is a constant independent of z, s, and ». We have

I¢(a; fn)=~1*'5mfﬂfnw)DAx—ﬁ)dwuH(ﬁ)

= Tﬁ 2 @)Dy —x8)).

If s<s,, then I®(x; f,) is 0 by condition (c) on 4. If s>>s,, we write

I fo)=I5@; fo)+I5@; fa)= —~~1 {20+ 25} fu(@(8)) D@ —2,(s))

where I{(x; f,) consists of those terms of the sum corresponding to
the points z,(s) which belong to the interval I; containing o for some
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¢ (if « belongs to one such interval), and I®(x; f,) consists of the
remaining terms of the sum. We have

1
I " ST .
R R S
Let y—o0=8=f,. Then |x—x,s)|>p for the terms of 3, whether «

belongs to any interval I, or not. Now let k,(s) be the number of
terms of 3\,. It follows that

<w) T"kn(rs)
(3) (@; fn)l£(2+1)‘8

To estimate %,(s), consider all of the intervals I, except the one which
contains & (if there is such). In each f,(x) is different from 0O only
on a subinterval of length 25. Since successive fundamental points are
separated by a distance 2z/(2s+1), there are at most <{5(2s+1)/z>+1
distinet points x,(s) of the sum >} in this interval, where {y> denotes
the least integer greater than or equal to y. Since there are not more
than » such intervals, we have that

(s )éar(szr 1),

and from (3)

@ 2nr
(4) L5 ; fn)lgﬂ B@s 1)

Condition (b) implies that 6<»/2 for r>2, and hence that 5 >7/2.
Thus 6r/B<20r[9< 2, the latter inequality also following from condi-
tion (b). For the second quantity on the right side of (4), we have
r[(2s+1)3<2r/(2s+1)y<1, the Ilatter inequality being condition (a),
which holds since s>>s. Combining these results, we obtain from (4)
that

(5) I53(@; f)l<2+m.

If « belongs to none of the intervals I, then the estimate (5) of
IM(x; f,) will serve also for I¢®(x; f,). If « does belong to one of
the intervals I, then

1

(6) I, fn)—i*”_l_'i sin [(s+1/2)(x —a)]

(1)
C 2@, G o))
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where the index j corresponds to the points x,(s) of the interval I;.
The sum in (6) can be written as 3, + b, .+ >, s where 3, , con-
sists of those terms of >, for which |z —ux,(s)|<<27/(2s+1), . . of the
remaining terms for which sin [(x—x,(s))/2]<0, and Y, ; of the remain-
ing terms for which sin [(x—x,(s))/2]>>0. Since there are at most three
terms of > .,

1 — (-1
(7) 254 1 sin [(s+1/2) (@—a)] 30,1 A:(@,(s) 25 Sn[(z— 2,(9)/2]

The sum of successive terms of > , is

( 8 ) 25(.’1/']-_,_1(3)—'5) __,js(w1(8t§)7r7 .
2sin[(@— z,.(5))/2]  2sin[(@ — z,(s))/2]

All of the terms, except possibly for two, of 3, , can be paired as in
(8) so that A (x—¢) is linear for z,(s)<x<w;,,(8). For these two terms
4s+2 is a bound. For the remaining, we apply the mean value theorem
to obtain that the absolute value of the difference (8) is not greater
than

T Find

82s+1)|x—ay(s)| +2(2s¥ 1)z —as)?

and so
(-1
(9) 2s +1 2z A(S) = S)2 sin [(x— wj(s))/Z]
1 1
S a2 41 e )

Since the number of terms of 3, . is not greater than 2-+4§(2s+1)/n
and the smallest possible value for (z—a,(s)] is 27/(2s+1), the second
term on the right side of (9) is not greater than 1/2+=/6(2s+1). If
(2s+1)0/7<1, then there is at most one term in the sum of (6) so that
one would serve as a bound for [I{®)«; f,)|. Hence, we assume other-
wise, and 7/6(2s+1)<<1. For the third term on the right side of (9),
since the smallest possible value for |z—x,(s)| is 2x/(2s+1), and since
successive terms differ by 27/(2s+1), we have

s, 1 s [gzs;r1)2 L@ 1y, }c,

2(2s+ D a— s 228 + 1PL @rp 0 (da)

a constant. Hence, collecting these results, we see, using (9), that

1 _( ,1),,,,,
(10) 2s+1 22 Aow,() = 5)2 sin [(oc x48))/ 1£c+7/2
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A similar result holds for 3%, ;, so that from (6), (7), and (10), we see
that |I&(x; f.)| is bounded by a constant A, independent of z, s, and
n. From (5), |I{®(x; f,)| is bounded by a constant A,, independent of
x, s, and n. Thus, [I{®(x; f,.)] is bounded by a constant A=A4,+ A..

5. The last result shown together with the uniform convergence of
I (x5 f.) gives

1@ f)—f(x)[éénmzllgw)(x;ﬁ”)_.fm(xﬂ+‘i=%ln[-m|lgw>(x;ﬁ”)_ﬁ%(x)l
gsé n{1/2+(A+1)"=N§|1ni—1/z

for s large enough. Since the right hand side is arbitrarily small with
e and 1/N, our theorem is proved.

6. With a slight modification of the previous argument, we may
establish the following theorem.

THEOREM 2. There is a continuous function f(x) such that I(x; f)
diverges for every x==0 (mod 2r) while for almost every number «,
Ix; f) converges uniformly.

Our function, f(x), will be of the same form as in Theorem 1,
> ni' f, (), where the f,,(x) are sums of nonoverlapping roof funec-
tions. Let I, 7, s, be defined as before. Consider

. [=—25—1,+,0,1, e, 28; s<s,

1) — 2 2m_
2s +

o — -

+ 657, .
2p+1

’
1 7::071;"')27);p:pl,pl+19"';p1nypirb+1

Suppose that there are r=—r, such numbers. Choose symmetric neigh-
bourhoods of length 2/:* about each, and denote the set which consists
of the sum of these neighbourhoods by R,. Let «a belong to R, (com-
plement of R;), 0<<a<27. Let .(s) denote the least integer such that

o +2m(s)/(2s+1)>0. Clearly —2s—1<{u(s)<<0. Then the numbers

2ng ) (27w(8)> .
+<“*ﬁ - - ’ =V, y "y
2s+1 * 2s+1 7=0,1 2s

belong to the interval (0, 27) and so are our (*(s). Also the numbers
j+v(s) are included in the numbers [ of (11) for s<(s, since —2s—1<
J+u(s)<<2s. We choose ¢ such that it satisfies »60<7» (Condition (b) of
Theorem 1) and in addition (¢’) 6<C1/<*. We have
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2(s) — 0P =t — I:__ 232?1 " 0;11)]

for some ! such that —2s—1<I<(2s, s<{s,. Hence |z{®(s)—0?|>1[z">6
by (¢’) so that I{*(z; f,)=0 for all o, s<s;, and all @ in B,. To show
that I®(z; f,) is bounded for all s and all « in R, we employ the
previous argument, which, beyond this point, used nothing about «.

Considering only the portions of R, and R, in (0, 27), we have

g2 & = 1
[R.|<% 5 SR, I<2Y, 7 <o
Tn =1 =1 Ty
for the n; spread out sufficiently. Hence, except for a set of measure
0, every a belongs to at most a finite number of sets R’,, and so to
every R, for ¢ large enough.

The author would like to acknowledge his indebtedness to Profes-
sor A. Zygmund for suggesting to him a result of the type of Theorem
1. Theorem 2 was established in response to a question raised by
Professor E. G. Straus.
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ON GENERATING FUNCTIONS OF THE JACOBI
POLYNOMIALS

PeTER HENRICI

1. Introduction. The series of Jacobi polynomials

(1) S a,0" P()

(@, independent of p and r) has in the case a,=1 already been evaluated
by Jacobi in terms of elementary functions, and there are several other
known cases where it can be summed explicity. The sum of (1) is then
usually called a generating funection of the Jacobi polynomials. On the
other hand, according to a particular case of a theorem which we have
proved recently, every function of a certain class of regular solutions
of the partial differential equation

2 2
(2) aiz‘g;%_kaiJr 2,u+17_’gzi+ 2v+1 ou
ox* oy* x ox Y oy

can be represented by a series of type (1), where

p=a+y*,

(3) s
sz. y. s

24y

and may therefore be considered as a generating function of the Jacobi
polynomials in the above sense. This fact is used in the present paper
for the construction of an expansion of type (1) which contains several
known results of this kind as special cases. As a side result we shall
obtain some identities of Cayley-Orr type between the coefficients in the
Taylor expansions of certain products of hypergeometric series.

In what follows « and y are considered as independent complex
variables. Also the variables

(4) R=r+1y, Zr=x—1y

will be used. Our notation of special functions is in accordance with [5].

2. The expansion theorem. The special case k=0 of the main
theorem of [6] is as follows:

Received June 9, 1954. This paper was prepared under a National Bureau of Standards
contract with American University, Washington, D. C. with sponsorship of the Office of
Naval Research, '
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THEOREM. Let
(5) pAvE—2, =3, —4, -+,
Let
u(x, y)=U(z, %)

be a solution of (2) regular in the domain Z : |z|<r, |z¥|<r (r>0)
satisfying the conditions

(6) Uz, 2)=U(—2, —2*)=U(z*, 2)
and let
(7) Uz, 0)= S a2

n=0

Then u(x, y) has in F the representation

(8) W@, Y)= 3 10 PR
where p and © are given by (3) and

(9) —_ _m22nn{ . ([l+V+ 1)17,2@!
" (ptv+1+n), (,u—i—u—i—l) (,zgrwz)
2 n 2 n

3. A special solution of (2). We substitute in (2) bipolar coordinates
(&, 7) which we define by

(10) e sinh & _sin 7

coshé+cosy  cosh&+cosy |

They are connected with (z, 2*) and (p, r) respectively by the relations

coshé= 1+ zz*zli‘? ,
cos 7= 1—z2*_1—p ,
@ 7]
where
(12) 3=1'1-2)(1—2") =v1—20r+p* .

(The square roots are positive for z=2*=0, p=0.) Since (2) may be
written in the form

(13) div (z**+'y>*' grad u) =0
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and since the transformation (10) is isothermal'!, we obtain for ¢(¢, 7)=
u(x, y) the equation

,a gty a?’{)_*_ d gLt 85""_):0‘
o o0& o 7

Setting
s=cosh ¢, t=cosy
and
P& 7)=(s+8)""1S(s)T(1)

one finds by the usual separation method that both S(s) and T'(¢) have
to satisfy the differential equation

(14) =1 %Y 1 20+00% 1L+ ) —n(s +1)]V =0,
dv? dv

where v=s, i1=p, if V=S, and v=t, 1=y, if V=T, r being a separation
parameter. A solution of (14) regular near v=1 is the function

1. 10
L 2+1

=1"(A4+ 1)@ —1)"MP;Mw).

Here P denotes the Legendre function of the first kind.> Tracing back
our substitutions and assuming that none of the numbers x# and » is a
negative integer, we may thus define a solution of (2) by

(16) PP (p, 7)=3 1V (1.%9) v:(*-1).

w

Evidently this function satisfies the functional relations

(17) DL(p, ©)=PL2\(p, 7)
OF(p, T) =PI (—p, —7).

Among the many possible representations of @%* in terms of
hypergeometric functions we list the following, which is obtained by
substituting equation 3.2 (24) of [5] for the Legendre functions involv-
ed in (15):

1 Arising from the conformal transformation z=tanh {, {=£&+1n.
2 The functions V,Mv) could also be expressed in terms of Gegenbauer functions.
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p+e+l p+E42 e
(18) PE(p, )= B o g ;

p+1

v—k v—k+1,

y+1

Here we have put
p=1+p) A —p)r=1+2") (1 —22")"
and

x— 2p(c+1) =( z+2* )2 ,

1+p)* 1+422*
20(r—1) [ z—z2*\?
Y="2010 == .
1—p) (1—zz*)

It is easy to see from this representation that the function
Uz, 2°)=0¢>(p, 7)

is regular in |2|<1, |2*|< 1 and that it satisfies the symmetry rela-
tions (6). Save for the mentioned exceptional values of the parameters,
(15) defines therefore a solution of (2) for which the assumptions of
the expansion principle of § 2 are satisfied.

4. The Jacobi expansion of @, From (18) we have immediately

prE+l ptE+2 v—k v—k+1l .,
(19) Uz, 0)=F" 2 2 TU R 2 7 2 ’ .

r+1 v+1

If we denote by a, the coefficient of 2z*” in the Taylor expansion of the
right hand side of (19), we obtain by the expansion principle the series

(20) e (L) v (220 = Sraepen (),
w n=0

@
which converges if

lzl<<1,  [¥|<1,
or, what amounts to the same,

oz £V —1)|<1.

We note the following representations of @, in terms of terminat-
ing hypergeometric series:
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(y—ﬂ/c) (yjylcr-%l) p+e+1l  pt+E+2 e —m
@ o--2 2 fp) 2 2 - ,
(v+1),n! ptl, 2=vhE ;ﬁ-{:(e "
o (v—E), p+e+1, k+1, —n;]
(22) Ay =77 (u441)n'3F2{:#+1’ l4k—yp—n ’
— o (gtr+1), pre+l, p—k, —n;
(25) =T (v+1), S IS R R b

Of these, (21) is obtained by straightforward Cauchy multiplication of
the two power series on the right of (19). In order to prove (22), we
consider (20) for the special value r=1 (that is, z=2z*). This gives on
the left, using (17),

p+e+l  p+r+2 42
(24) U(z, z):(l_*_zz)—.ﬂ-—x—l(l__zz)x-v zFl 2 ’ 2 ’ (1—}—23)‘7 .

p+1

By a quadratic transformation [5, eq. 2.11 (34)] this ,F, can be ex-
pressed by one with argument 2?2, and in view of

Ppo)— ¢ L
n!

(20) thus becomes

on

ke o [ 2FEFL L2 & v+
(25) (1 z) Zﬁl[ f1+1 ]— ";:.407,”(2” '*“?:L! -7 .

From this (22) follows again by Cauchy multiplication of the series on
the left. Putting r=—1 (or z=—=2%) in (20) leads in a similar way to

oo

(26) (12 F, Iiu-i—li}-{- 1, s+1; z2:|= ST (r2+1), i
)’+1 n=0 n'

The representation (23) of a, is remarkable for the fact that only one
parameter in the ,F, depends on %n. It is obtained by expressing the
hypergeometric function on the left of (25) by one with argument
2*/(#2—1), expanding in terms of this argument, expanding the powers
of 22/(2*—1) in terms of powers of 2* and rearranging.

From (19) it is easily seen by applying Euler’s linear transforma-
tion to the two hypergeometric series simultaneously that U(z, 0) and
hence a, is a symmetric function of # and ». Therefore in (21), (22)
and (23) the variables # and » may be interchanged. Furthermore, in
view of (17) » may be replaced everywhere by —x—1. Many other
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representations for the coefficients a, could be derived from the ones
given above by the application of transformations of generalized hyper-
geometric series of unit argument. One example for this technique
will be given at the end of §6.

5. Special cases. (i) If =0, (28) yields by Vandermonde’s theorem

—a=1 (ﬂ+p+1)n l:/l; ’—n;]z -1
p=7n G +1), I eyt 1 Tn

and from (15) we have

no-(11")"

Thus (20) reduces to

(27) 200 (L4 p @) H(L—p+ @)= 3 "PYR() -

=0

This is the classical generating series of Jacobi®.
(ii) Since
(28) Vi(v)=1,

other noteworthy special cases of (20) are to be expected for k=g or
t=y. In the first case we have from (23) (using the symmetry with
respect to ¢ and »)

a,=7r: 7(/“ +y+ 1)n_ .
(#+1),

Thus (20) yields, if (18) is used on the left,

prv+1l ptr+2 | 2p(z+1)
@) @R 2 s ey
p+1

— 3 (pHr+1), n P s
=i, @) .

An equivalent formula is easily derived from a bilinear generating
function due to Watson [10] and has been stated explicitly (but with
a slight algebraic error) by Bailey [1, p. 102]. The result is given
correctly by Buchholz [3, p. 143. eq. (20)].

The case =y does in view of (17) not lead to something new. A

3See [5, eq. 10.8 (29)] and, for several direct proofs of the expansion, [9, p. 68].
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similar, but not equivalent formula can be deduced from (20) by
putting k=p+1 or k=p+1.
If k=p=y, we obtain from (20) and (29) in virtue of (28) and

the classical generating series of the Gegenbauer polynomials
&')—211.—1_: i ‘oncﬁ+l/2(r) .
n=0

(iii) Also in the cases p=+3% (or v=+1%) the Jacobi polynomials
reduce to Gegenbauer polynomials. Since @¢* likewise may be ex-
pressed in terms of Gegenbauer functions, (20) takes then the form of
an addition theorem for these functions. This result has been given
by us already elsewhere [7].

(iv) Putting p=r/s* and letting #—o, we obtain from (20) and
(23), since

(30) lim VAL —2w/k?) = F, [2+1 ; w],

K—>00

the well-known formula (see the references to equation (42) of [6])

1 T_-l oo 7'71
8) el T 1 T = e
( ) offa) M 2 e 2 ”g(‘) (/l+1)7z(”+1)" (T)

With the exception of a result of Brafman [2], the special cases
of (20) mentioned above cover to our knowledge all simple (that is, not
bilinear) known generating functions of the Jacobi polynomials which
are valid for general values of p and v.’

6. Identities of Cayley-Orr type. The formulae (19), (25) and (26)
suggest identities between the coefficients of the expansions of certain
hypergeometric products which in a symmetric way may be stated as
follows :

Each of the three identities

(a) (1—6)<",F, l:/l-*-li? +/11_,*—Ii+1 ; Cji ZnZ:d (. +1),4,8",
(b) (1=) =, F, [u—}—lﬁ-l—pl;li-l-l ; gjl Z,Z,; (z+1),4,L",

4+ Brafman’s result, which was originally established as a corollary to Bailey’s decom-
position formula for Appell’s function F;, has been proved by our method without the use
of Bailey’s formula in [6].
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p+E+l  p+E+2 v—k v—r+1 .7
(C) I [ 7 2 ’ 2 ’ C:lel l:gv—éﬂ ! 2 ! CJ
r+1 v+1
</1—{:y+”1> <7/71—7!—v+2>
o 2 n 2 n
:ngf; 7 (p+v+1), “AL"

emplies the other two.

This result is of a type considered first by Cayley and Orr [8].
While (a)~(b) is a special case of a result by Burchnall and Chaundy
(see [4, eq. (13)]), the two equivalencies (a)~(c) and (b)~(c) as well
as the method of their derivation seem to be new. Identities of this type
have been investigated either by a discussion of the ordinary dif-
ferential equations satisfied by the products of hypergeometric functions
(for recent results obtained by this method, see [4]) or by transform-
ations of the generalized hypergeometric series arising in the Cauchy
multiplication of the power series under consideration. An account of
Bailey’s and Whipple’s work in this direction can be found in [1]. In
order to render our above result independent of the consideration of a
special partial differential equation, we sketch a short proof of it by
Whipple’s method. By reasons of symmetry it suffices to prove (a)~
(¢). This amounts to a direct proof of the equality of (21) and (22).
We first transform the ;F, in (22) into a saalschiitzian JF; by equation
4.5 (1) of [1]. This gives

(=K [/A-l—lﬁ:—l—l,lc-l—l, —n;
(32) T nlln= (1;’_}‘—‘1);;3 2 /,t—{—l, 1+I§'—V*‘n

pre+l  p—g

_ (pe+v+1), 7 2 T2
= - ' “el'3 -
(v+1), ptv+1 pryv+2

+1, ,
# 2 2

s pAvt1+n, —n;

The desired result is now established by transforming the ,F% according
to equation 7.2 (1) of [1]. We emphasize that it is also possible to prove
(a)~(c) by the differential equation method of Burchnall and Chaundy.
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Added in proof: Without giving details we mention an interesting “ confluent” case
of the generating function (20). This is obtained by setting
2;
r='T—1, k2= —vy

v
(x, ¥ fixed) and letting v—>o. The result is the well-known series (sce [9], p. 98)

& (=)n! : plx+y) [ xyp
LB @) Ly, (0()p7 = (14-p)~#-1 Y op+l; — ,
= (/"}‘D)z» ) (q) n (J)ﬂ ( 0) exp 14_0 oL p (1_{_ p)'l

where L,(*) denotes the Laguerre polynomial.






AN ALGEBRA ASSOCIATED WITH A COMPACT GROUP

MEYER JERISON

1. Introduction. This paper deals with a variation on a familiar
theme ; namely, a proof that a space is determined, in some appropriate
sense, by certain properties of a collection of functions on that space.
Here, the space in question is a compact abelian group G, and the
collection of functions is the set of all continuous functions from G
into a commutative, complex Banach algebra RE. The relevant proper-
ties of the collection of functions make it into a Banach algebra R(G),
with addition as well as multiplication by scalars defined in the usual
way, that is, pointwise, norm defined by

(1) |2]=sup |a(9)] ze R(G),
and multiplication of elements in R(G) defined as the convolution

(2) @) @)= w(oh ).

The integral, like all integrals appearing in this paper, is taken with
respect to Haar measure in G, normalized so that the measure of G is
1. The integrand takes on values in the Banach algebra R, and the
integral is of the type described in [3]. An alternate approach to this
integral is obtained by observing that, as continuous functions on a
compact group, the functions with which we deal are almost periodic
in the sense of [2], and the integral is the invariant mean whose
existence and uniqueness are proved in [2].

We will let &#° denote the class of theorems of the type described
in the first sentence of the preceding paragraph. Many theorems of
this class may be found in the literature; the ones most intimately
related to the present investigation appear in [6] and the papers quoted
there. 1 feel, therefore, that some justification is needed for the
publication of still another one. TFuthermore, there is probably no
limit to the number of different kinds of spaces and different sets of
functions which might be combined to yield a theorem in . The
choice of the particular set-up that is being studied here was motivat-
ed by an attempt to solve a problem in topology proposed by Fox [4].

If X, Y, and Z are topological spaces, and if the cartesian product
XxY is homeomorphic with X x Z, then it is known that Y and Z
need not be homeomorphic. In the simplest example of this phenomenon
[4], Y and Z are compact subsets of the plane that are not at all

Received June 15, 1954.
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pathological, and X is a closed interval. The non-homogeneity of X at
the end points seems to be what makes this example work, and Fox
raises the question whether homeomorphism of the products will imply
homeomorphism of Y and Z if X is a circle. Now, let B, and R, be
the Banach algebras of all continuous complex (real would work just
as well) valued functions on the compact spaces Y and Z, respectively,
with multiplication as well as addition defined pointwise. Then a well
known theorem (in &) asserts that R, and R, are isomorphic, in
symbols! R~R,, if, and only if, Y and Z are homeomorphic. A func-
tion from X into R, may be identified in an obvious way with a com-
plex funetion on XxY. If one could prove that isomorphism of the
algebra of all continuous functions from the circle X into R, with the
space of functions from X into R, implies R,~R.,, and if, moreover,
the former isomorphism is a consequence of the homeomorphism of
XxY with XxZ, then Fox’s problem would be solved.

It would be pleasant to be able to report that this has been
achieved, especially because the theorems in & have had no note-
worthy applications to problems in topology. Unfortunately, although
Theorem 2 does say that R,(G)~R.(G) implies R,~R, for any compact
abelian group G, in particular for a circle, the algebraic structure
which has been placed on R(G) is of such a nature that I cannot prove
that homeomorphism of GxY with GxZ implies R,(G)~R,(G). Section
4 is devoted to a discussion of some of the reasons for the failure of
this approach.

Theorem 2 is probably true without the hypothesis that G is
abelian, but I have not been able to prove it. This hypothesis does
not influence the applicability of the theorem to Fox’s problem. The
requirement that R be a commutative Banach algebra whose only
idempotent is its unit, is equivalent, if R is the algebra of continuous
functions on Y with pointwise multiplication, to the assumption that
Y is connected.

2. Complex valued functions. In this section, we assume that R
is the field of complex numbers, and then we no longer need to require
that G be abelian.

THEOREM 1. If D and 4 are the Banach algebras of continuous com-
plex functions on the compact groups G and I', respectively (with multi-
plicatian defined by (2)), and D~4, then G and I' are isomorphic.

This theorem can probably be proved by the technique of [6], but

1This symbol will be reserved for isomorphism (including preservation of norms) of
Banach algebras.
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we choose to base our proof on the theory of Banach spaces of
continuous functions. If f: 4—D is the isomorphism, then there exists
a one-to-one mapping ¢ of G onto I which is a homeomorphism of the
underlying topological spaces, and x,€ D with the property |z,(9)=1,
such that®

(3) FE(@)=x(9)-(e9)

for all £e 4 and ge G. We propose to show that ¢ is an isomorphism
of the groups.

LEMMA 1. z(g9’9")=x,g")x,(9’’) for all g’, 9" e G.

Proof. 1If £,€ 4 is defined as &(r)==1, re/l’, then fé&=wx, Con-
sequently,

Ty o= f & fE=S (£ E) =TS (E) =1, ;

that is, z, is an idempotent in D. Hence,
ag) =ag0) = | (gh el
Since |x,(g)|=1, we have
1=a0)e(0) = [ oh-) @)

But the absolute value of the integrand is 1 for all g and %, and the
measure of G is also 1, so that

'a;;)"(*g')*xu(gh_ [)wn(h) =1

for all ¢ and 2 (more precisely, for almost all 2, but the function is
continuous). Setting g=g’g’’ and A=y¢’’, and remembering that |z,(¢)|=
1, we obtain x,(g’9"")=w,(g9")-2,(9"") .

Proof of Theorem 1. It is required only to prove that

¢(99")=(e9)(¢9") for all g, g’ e G.

Let Q be a neighborhood of the identity in /7, and let w be a con-
tinuous function on I which vanishes outside of Q and such that

|, @tratds=1.

ED proof of this assertion for a Banach space of real functions may be found in a
number of different places, including [1, p. 172]. A generalization which includes the
case of complex functions appears in [5, Theorem 6.2].
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Set

o(r)=o((p9)™'r) and wy(7)=w(r-(eg")") ;

then a straightforward computation yields

(4) 00y((pg)eg’))=1.

Using (2), (3), and Lemma 1 in the relation f(ww,)=(fw)(fw.),
we find that for any ae G,

Fl@w)@) = aah=)-o.p@h ) ab)-oeh)dh

=wn(a)SG o((pg)"'e(ah=1))- o((¢h)(¢g")~)dh .

Since o vanishes outside of , this implies
(5) S(w,ws)(a)=0 for a¢ V
where

V=¢"l(e0)]- ¢ [Uey)] .

(¢)2 is a neighborhood of ¢g in 7, so that ¢ '[(¢g)Q] is a neighborhood
of g in G. Similarly, ¢ ' [Q(eg’)] is a neighborhood of ¢/, and V is a
neighboerhood of gg’.

Let a be the (unique) element of G such that ga=(¢g)-(¢g’), and
suppose az%4gg’. Since no previous restrictions have been placed upon
Q, we may now choose Q so that a& V, that is, so that f(ww.)(a)=0.
But,

S(@,0.)(@) =) 0,0,(pa)=x(a): ,0,(¢9- g’ )=2(2)70 .

This contradicts the assumption that a=%gg¢’, and therefore ¢(gg’)=
(p9)(eg’).

3. The isomorphism theorem.

THEOREM 2. Let G, and G, be compact abelian groups, and R, and
B,, commutative Banach algebras whose only tdempotents are their re-
spective units. Then R(G)~R.G.) if, and only if, Ri~R, and G, is
ssomorphic to G,.

Proof. In one direction, the implication is trivial. To prove the
non-trivial half of the theorem, we consider a group G, an algebra R
with unit ¢, and show how R and G may be recovered from R(G),
using only the structure of R(G) as a Banach algebra.

The first step is to find D (in the notation of Theorem 1) in R(G).
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Specifically, we want to characterize the set De of elements in R(G)
of the form A(g)-e, where A(g) is a complex function on G.

LEMMA 2. De is the smallest closed linear subspace contarning all of
the idempotents of R(G).

Proof. We review some essential facts concerning Fourier analysis
in R(G); the proofs may be found in [2]. Let [y} be the set of all
continuous characters of G, that is,

X(9)=1 and x.(99")=xu(9)*%L9’)
for all g, g’ e G. For xe R(G), define

re=| zal)ato)ds

This is an element of R. The formal series 3.y.(9)r. represents x(g)
in exactly the same way that classical Fourier series represent continu-
ous functions. We write o~ y.7.. If a’/~3 7.7, then xa'~3, y.77 .
(This is not proved in [2], but can be done, as in the classical case,
simply by evaluating the ath coefficient of aw’.)

Since the formal series representation is unique, z is an idempotent
if, and only if, 7,=0 or e for all «. Thus, every idempotent of R(G)
is in De, and, in fact, is an idempotent of D multiplied by e. Since
the idempotents of D span D, the idempotents of R(G) span De. It is
obvious, that De is a closed linear subspace of R(G).

Lemma 2 asserts that De is determined by R(G). Since De~D
(assuming |e|=1), it follows from Theorem 1 that G is determined by
R(G). Tt remains only to prove that R is determined by R(G), and this
will be achieved essentially by fishing the constant functions out of
R(G). Specifically, we will find all of the constant functions multiplied
by some character of (. It is impossible to distinguish between
characters using only their algebraic properties in R(G).

LEMMA 3. Let x be any irreducible idempotent of R(G), that is,
any idempotent which is not the sum of other non-zero idempotents. The

principal ideal generated by x is isomorphic with the Banach algebra R.

Proof. From the discussion of idempotents given earlier, it is
clear that x=ye for some character y of G. If ye R(G), then

yx(g>=Sy(gh“)x(k)-edk———gy(k)x(iﬂ-lg)-edk

~[ [uwrrar | xo)-e=0)-r
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where 7 is the ¢ Fourier coefficient’ of y with respect to the character
y. Similarly zy(9)=y(9)r. Consequently, the set of functions in R(G)
of the form y(g)r, reR, is a two-sided ideal. The correspondence
r{Syr is the desired isomorphism.

4. Fox’s problem. It was remarked earlier that the class of
theorems 57 has been disappointing as a source of solutions of problems
in topology, problems that do not involve the function space directly.
The comments which will be made here refer only to the failure to
solve Fox’s problem, but it seems to me that they lie close to the
heart of the difficulties in general.

It is unlikely that Theorem 2 can be used to prove Fox’s conjecture
because the conclusion of the theorem is so strong. What is needed is
a theorem with the statement ¢ G, isomorphic to G,’’ in the hypothesis
rather than in the conclusion. That so much could be proved from the
hypothesis R, (G,)~R,(G,) implies that it is a very strong condition and
one that will be difficult to verify. Thus, in the application to Fox’s
problem, we would take R, and R, as the algebras of continuous fune-
tions on Y and Z, respectively, (pointwise multiplication) and we would
have to prove that if GxY is homeomorphic with GxZ, then R\(G)~
R(G). One may observe, incidentally, that in the correspondence be-
tween these two algebras induced by the homeomorphism of the pro-
duct spaces, norms are preserved, but the norms do not enter in an
essential way into the proof of R~R,.

Apparently, then, the source of the difficulty is the peculiar de-
finition of multiplication in R(G). 1 believe, however, that the trouble
goes deeper. A theorem in & generally has a hypothesis which is so
strong that to verify it is tantamount to exhibiting a homeomorphism
of the topological spaces on which the functions are defined. One
manifestation of this is the fact that the hypothesis implies not only
a homeomorphism but also an intimate relationship between the homeo-
morphism of the conclusion and the isomorphism of the hypothesis, as
given by formula (3). The presence of such a formula is implicit in
all of the techniques for proving theorems in £&#°. It is what requires
the strong hypothesis, which, in turn, limits the applicability of the
theorem.
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INFINITE DETERMINANTS ASSOCIATED WITH
HILL’'S EQUATION

WILHELM MAGNUS

1. Introduction and Summary. Hill’s equation is the differential
equation for a one-dimensional linear oscillator with a periodic potential.
In most applications, the question of the existence of a periodic solu-
tion arises. The main purpose of this investigation is to examine the
analytic character of the transcendental function, whose zeros deter-
mine the periodic solutions. For the special case of Mathieu’s equation
the results obtained here have previously been used for solving the
inhomogeneous equation, and the cases where Hill’s equation has two
periodic solutions have been discussed in detail and applied to the con-
struction of *‘ transparent layers’’ [1].

We consider the differential equation of Hill’s type:

(1.1) Y + 4" +q(@))y=0,

where ¢(x) is an even function of period » which can be expanded in
a Fourier series

1.2) q(a')=2§ t, cos 2nx .
=1

We shall assume that the constants ¢, satisfy

(1.3) St e .

The most widely investigated problem connected with (1.1) is the
question of the existence of solutions with period = or 2z. Let y(a),
y:(z) denote the solutions of (1.1) which satisfy the initial conditions

(1.4) 1(0)=1, »/(0)=0; .(0)=0, y’'(1)=1.

Then the following elementary statements hold (see for instance
Schaefke [5]: Equation (1.1) has

(a) an even solution of period = if and only if #/(x/2)=0

(a’) an odd solution of period = if and only if y.(z/2)=0

(8) an even solution of period 2z if and only if y(z/2)=0

() an odd solution of period 2z if and only if y,/(z/2)=0.

Received June 30, 1954. The research reported in this article was done at the Institute
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The conditions («), (a’) and (3), (') can be reduced to two single ones
because

(1.5) Yi(7) —1=2y. (/2)yx(x[2) ,
(1.6) yi(7) + 1=2y,(a/2)y (7/2) .

In order to find directly a solution of (1.1) which has a period =,
we put

a.7m Y= NZ ¢, exp (2nai) ,
where
(1.8) Cr=C_,

for a real function y(x). (As usual, a bar denotes the conjugate com-
plex quantity). By substituting (1.7) into (1.2) we obtain an infinite
system of homogeneous linear equations for the ¢,. The determinant
of this system can be written in the form

(1.9) sin® 7w Dy )

where Dy(w) is an infinite determinant of the type

(1.10) Dyw)=\dy, ul, n, m=0, +1, +2,«+-.
Here
(1-11) dzz, m=6n, m_{_(”fn—m z) )
w —n
(1.12) tr-n=tm-n=Cln-mls &=0.

As usual, 6, n=1 if n=m and ¢, ,=0 if ntm.

The vanishing of the expression (1.9) is a necessary and sufficient
condition for (1.1) to have a solution with period z. According to
Whittaker and Watson [7]

(1.13) Y1(x) —1=—2Dy() sin* 7w

This shows that the vanishing of (1.5) is an immediate consequence of
the vanishing of the term (1.9) and vice versa. Also, it provides two
alternative ways of approximating the eigenvalues o for which ¢, (7)=
1. If we compute y(n) approximately by applying the Picard iteration
to (1.1), we arrive at trigonometric polynomials or series. If we use
the principal minors of D, we obtain algebraic equations for the ap-
proximate values of o which will be particularly suitable for large w.
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To obtain even or odd solutions of (1.1) which are of period = we
may put

= CO S 7
(1.14) Y (1/,2 >+n2=10,2 cos 2nx
or
(1.15) y:icn sin 2na
n=1

respectively. By substituting (1.14) or (1.15) into (1.1) we obtain an
infinite system of homogeneous linear equations for the ¢,. After an
appropriate normalization of these equations, we can write the deter-
minants of the resulting systems in the form w sin{(zw)C, and w~'sin
(mw)S,, where the infinite determinants C, and S, can be defined as
follows: Let

(1.16) 67,7,:2 for m=ir1, iz, ‘_f:3, e 5():1
sgn m=1 for m=1, 2, 3, «+++; sgn 0=0
(1.17) {
sgn m=—1 for m=-1, —2, —3, ---.
Let the ¢, be defined by (1.2) and (1.12). Then
(1'18) C+=I(S7L€In)_1/2(1+sgn n Sgn m)[67b, Iﬂ+(t7l-—’lﬂ+tn+7n)(a)z——nz)—l]l
(ni m:O, 17 2;"') ]
(1‘19) S+: I‘sn, m+(tn—m_tn+m)(w2—n2)—ll (?’L, ?’)?,:1, 2r 3r b ') ’

where 7 denotes the rows and m denotes the columns of the infinite
determinants C, and S..
We shall prove the following extension of Equation (1.13):

THEOREM 1. The infinite determinants C, and S, can be expressed
in terms of ¥,/ (7/2) and y.(=/2) as
(1.20) 2w sin (rw)C, = —y,'(n/2) ,
(1.21) w~'sin (zw)S, =2y,(/2) .
They are related to the infinite determinant D, by
(1.22) D,=C.S,.

A similar factorization theorem ecan be proved for the infinite
determinant arising in the problem of determing whether (1.1) has a
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solution of period 2z.

Equations (1.19) and (1.21) show that S, and ».(7/2) depend in a
special way on w. We shall write S,(w) for S. and y,(z/2, w) for y.(z/2)
if we wish to emphasize the dependency on @. S.(w) has poles of
the first order (at most) at w=+1, +2,-.-. Since the individual
terms in the determinant S,.(w) tend to 4, . as |w|—>oc, we may expect
that S.(w)-1 as |w|—>cw. Therefore we may expect that (1.21) will
lead to a formula of the type

(1.23) (72, @)=3g, ST

w0 w—mn

where g, are constant coefficients. Now the form of the infinite series
on the right-hand side of (1.23) suggests that it can also be written as

/2
(1.24) S | G(6) exp (2iwt) o,
which would imply the existence of a formula of the type

(1.25) Sm (2, w) exp (~2iwd) do—0 for [0]>7 .

Actually, a result more general than (1.25) is true. We shall prove
the following formula for the Fourier transformation with respect to
w.

THEOREM 2. Let the t, in (1.12) be real constants sutisfying
S [t oo,
n=1

and let y(x, w) be the solution of (1.1) for a real value of o which sates-
fles the initial conditions

(1.26) y(0, w)=a, y'(0, w)=b.

Then there exists a function G(x, 8) of the real variables & and 6 which
s defined in the region — |x|<L0<\|x| such that

(1.27) Y(@, w)=a cos 20)@'4—8. Gz, 0)e™*do,
G _ G

1.28 - 4 G=0,

(1.28) st op: TH@

(1.29) G(x, ©)=G(x, _'T'):'g —a i o sin 2ma ,

n=1 1
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(1.30) Go(z, x)=—Gy(x, ~:v)————2i t, sin na:{a sin nx + b cos no:}
n=1

n

R /N :
+a 24 n¥m sin znx sin 2mw .

n, m=1 NM,

Here G, stands for 2G/26 .

2. Proof of Theorem 1. Since Theorem 1 involves the determinants
of infinite matrices, it is important to know something about their
finite ‘‘ sections ’’. We shall define these sections as follows: Let N
be a nonnegative integer, and let (M) be an infinite matrix. If the
rows and columns of (M) are labeled by subscripts running from one
to infinity, we denote by (M,) the square matrix of order N which
results if we let the subscripts in (M) run from one to N only. If
the rows and columns in (M) are labeled by the subseripts 0, 1, 2,---,
we define (M,) by the rows and columns of (M) for which the sub-
seripts run from zero to N. Finally, if the subscripts in (M) run from
—o to + oo, then in (M,) we let them run from —N to +N only.
In each case, (M,) is called the Nth section of (M). The determinant
of (M) is defined as the limit of the determinants of (M,) as N—co.

We shall denote by (D), (C), (S) the matrices whose elements are
given respectively by the elements of the infinite determinants D,, C,,
and S,. In addition, we shall introduce the matrix (T') with the general
element r, ,(n, m=0, +1, +2, --+), where

(2-1) Ty, m:(an, m+ sgn na—n, m)(en)llz'

As usual the first subseript # in ¢, , denotes the rows of (7') and the
second subscript denotes the columns. The matrix (7') has a formal
inverse (T'), whose general element is given by

(22) (an, m+ SgNn ma—n, m)(em)wllz-

In fact it follows from an easy computation that the general element
of (TWT™) is

(2.3) {0, w(1+sgnnsgnm)+o_, .(sgnn+sgnm)}(e,e,) "> =0, .

It is important to observe that the Nth section (7'3') of (T-') is the
inverse of the Nth section (T',) of T .

Now we shall compute, in a purely formal way, the elements of
the matrix

(2.4) D*)=T)YD)T) .
By a simple computation we find from (1.11), (1.12), (2.1) and (2.2)
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that the general element dj,, of (D*) is given by

(2.5) (enen)'* A n=04 n(1+sgnnsgnm)+7, _,.(sgnn+sgnm)

w*—n? w*—n?

Equation (2.5) shows that d;,=0 if » and m are both different from
zero and of different sign. It also shows that for », m=0, 1, 2, 3,---
the elements of (D*) are exactly those of (C). In fact, for n>0, m>
0, we always have 8, _,(sgnn+sgnm)=0, and sgnn+sgnm=1+sgnn
sgnm, unless n=m=0. But in this case, f,_,=t,.,=0, and again
d¥ .. is equal to the corresponding element of C, in (1.18). Similarly,
we find that for n, m=-—1, —2, —3, .--, the elements of (D*) are ex-
actly those of (S) if we ‘“invert’’ the labeling of the elements of (S)
by substituting for every subscript its opposite (negative) value.

Therefore (1.22) would be proven if we could deal with infinite
determinants in the same way as with finite ones. In the particular
problem under consideration this is actually the case. If we form the
matrix (7,)(D,)(T5") we obtain (D}) for all N and we find that its
determinant actually equals the product of the determinants of (S,)
and (C,) because its elements are those of (S,) and (C,) respectively.
Equation (1.22), namely D,=C.S,, follows if we simply let N tend
towards infinity.

Next we must prove equations (1.20) and (1.21). It suffices to do
this for arbitrary but fixed real values of ¢, t,, ;, ---. Indeed, it is
not difficult to show that both sides in (1.20) and (1.21) depend
analytically on any particular parameter ¢, (v=1, 2, --+). Then the only
variable which matters is o. As mentioned above, we shall write
y(n/2, ) and y,’(x/2, w) for y.(x/2) and y,’(x/2) whenever we wish to
exhibit the dependency on o of these quantities; similarly, we shall
write C,(®) and S,(0) for C, and S,. It is easily seen that both sides
in (1.20) and (1.21) are entire functions of » and also entire functions
of 1=w?,

Now we can prove (1.20) and (1.21) by proving the following
lemmas:

LEMMA 1. The quotients

(2.6) 2o sinzo C.(w) @™ sinzwS(w)
‘ v/ (z[2, @) 272, @)

are entire functions of =) .

Proof. It has been mentioned in the introduction that the numera-
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tor and denominator of (2.6) vanish for the same values of 1=w® It
remains merely to be shown that the denominators have simple zeros
only. We observe first that these zeros are real, because any solution
or derivative of a solution of (1.1) that vanishes at =0 and a=n=/2 is
a solution of a Sturm-Liouville problem. Since

@7 2w =42} | o)y

2.8) 2yl =—4( 2" @) e,

the right-hand sides of (2.7) and (2.8) are different from zero and
therefore the denominator in (2.6) has simple zeros. This completes
the proof of Lemma 1.

LEMMA 2. The quotients (2.6) are entire functions without zeros.

Proof. From (1.5), (1.13), (1.22) we see that the product of the
quotients (2.6) equals —1.

LEMMA 8. The quotients (2.6) are independent of I=o*.

Proof. This lemma follows from the fact that for both the
numerators and the denominators of the quotients (2.6) the order of
growth with respect to 12 does not exceed 1/2. For w,(n/2, ) we can
show this by solving (1.1) with the help of Picard’s iteration method.
Putting

(2.9) Uz, w)=(sin 20x)/(2w),

@.10)  u,(z, (u)=——%gmsin 2z — Oy (&, e, (n=1,2, ---),

w

we have
(2.11) (@, )= S u(z, o).
n=0

In order to estimate |y,| for large values of |w|, let @ be a positive
constant such that

(2.12) la(6)1<Q

for all real values of &. Let |w|>2. Then obviously |u,/<<exp (2|w|x)
for real positive @. From this it follows by induction and by using
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(2.10) that for real positive values of =

(2.13) [ (2, w)|<a"Q e*1*(n!)~Y(w/2)~"1.
Therefore we have from (2.11) for |w|>2:

(2.14) ly(7[2, w)|< exp(r|w|+Qr/2) .

A similar estimate can be derived for y,’(7/2, o). Since the right-
hand side of (2.14) is of order of growth unity with respect to o, its
order of growth with respect to 4 is 1/2.

The corresponding statement for the numerators in (2.6) can be
derived from Hadamard’s inequality for determinants. If we write

2.15) (z/2) 21(1 - ‘i) :

n?

for (sin nw)/(20), and if we multiply each row of S, by the correspond-
ing factor of (2.15), the numerator involving S, in (2.6) becomes a
determinant for which the sum of the squares of the absolute values
of the mth row is at most o,, where

(2.16) n= {1+ (lo]? + |t D=2 S ([Ey o] 4+ [ em )

m=1
We have from Hadamard’s inequality

(2.17) |(20)~(sin 70)S., (0)| <27~} 13 (o112

Now we wish to estimate |s,]. From (1.2) we find that there exists
a constant M such that for all n=1, 2, 8, --.

(2.18) [AES A M E LA 74
Therefore

(2.19) o< {4 (ool + M)n}

and

(2.20) 1 {o,} < {sinf a(|®] + M)} 5o 4 M2,

Together with (2.17), this shows that the left-hand side of (2.17) is of
order of growth <{1/2 with respect to A=w*. An analogous proof can
be given for 2w sin zw C,(w)].

Now we can prove Lemma 8 by using a known theorem about
factorization of functions of an order of growth <1 (See Nevanlinna
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[2, pp. 205-213] or Titchmarsh [6, Chap. VIII]. According to this
theorem we have for both the numerators and the denominators of
the quotients (2.6) a representation of the form

A o ﬁ <1_w2) ,

n=1 a’n

where the a, are the simple roots common to the numerator and
denominator if both are considered as functions of i=w?. Therefore,
the quotients in (2.6) are independent of w, as stated in Lemma 3.

Now we can prove (1.20) and (1.21) by computing the value of the
quotients in (2.6) for w—ico. It is easily seen that for w—¢o both S,
and C, tend toward unity. From (2.9), (2.10) and (2.11) we can show
that y(n/2, o)/uw) tends also towards unity as w—t¢oo, regardless of
the particular nature of ¢(x). The behavior of ¥,/(7/2, ®)/(2w sin 7w)
can be described in a similar manner, and this completes the proof of
Theorem 1.

3. Proof of Theorem 2. In this section, we shall use a theorem
given by Paley and Wiener [3, Theorem X, p. 13]. According to this
theorem, the following two classes of functions are identical:

(I) The class of all entire functions F(w) satisfying

3.1) | F(@)|=o(e**1"1) (lo]—e0)

for a positive real value of A; and
(II) The class of all entire functions of the form

(3.2) F(w)=SA f(O)e s
-4
where f(0) belongs to L, over (—A, A).
In proving Theorem 2 we shall confine ourselves to the case where

a=0, y=u.(z, o). If we construct ¥, in the manner described by (2.9),
(2.10), (2.11), we find from (2.13) that for >0 and |w|—>co:

(33)  |m o)~ e, o)+t u e o)) | =0(o]| e 101)
and
(3.4) [un(x, w)l:_O([wI—n—leﬂm[z).

Now it follows from an application of Paley and Wiener’s theorem
that

(3.5) wia, o) =

e Gz, 0)do,
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where
(3.6) G, 0)=Y3 g.(, 0),
3.7) ., 0)=n-1r 20y () @) dao .

It follows from (3.4) that for %>0, g,(z, 0) is (n—1) times differentiable
with respect to 6, with a continuous (n—1)* derivative. Outside the
interval —ax<<0<x, all of the g,(x, 0) vanish identically. Therefore at
0=+ only gz, 0) and g,(x, 0) contribute to the value of G(z, §) and
to its first derivative with respect to . These contributions can be
found by a direct computation. In the same way, it can be verified
that g¢,, 9., 9. are twice differentiable within the region —ax<0<x,
having one-sided continuous derivatives at 6= +x, provided that
50 lta] <o,

"~ The only part of Theorem 2 that now remains to be proved is

equation (1.28). If we substitute the expression (3.6) for G into (1.28),
it will suffice to prove that for n=1, 2, 3,---,

2 2
3.8 Pn _ D0n 1 40(2)g 1 —0
(3.8) o T (@)1

and for n=0

(3.9) S _ T g,

ox* 20°
Since g¢,=1/2 for —ax<0<w, it is trivial to show that (3.9) holds.
Equation (3.8) may be verified for n=1 directly by observing that
(3.10) 9:1(z, 0)——:i ztzn.cos nx (cos nx—cos nd) .

n=1 N

For n>2 we may proceed as follows. It suffices to prove, instead of
(3.8), that

7 a‘:g7 azgz 2wh
A1 S ( n LI x n_) d6 =0
(3.11) (ST a@gan e

for all values of w. Since the left-hand side of (3.11) is an analytic
function of w, it suffices to show that it vanishes for all real values
of w. We shall prove this by expressing the left-hand side of (3.11)
in terms of the u,(x, ») which satisfy the recurrence relations

(3.12) a4 gy, + dg(@)u, ,=0.
ox*
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((8.12) can be derived easily from (2.9) and (2.10)). It follows from
(3.5) and (3.7) that

(3.13) u,(, w)=§m gz, 0)e*do .

Therefore we have for n>2:

(3.14) ?i&z:r PG griwn g |
ox? -z 0x?

since any term derived by differentiating the integral in (3.18) with
respect to its limits vanishes for »>>2. For the same reason we find
from an integration by parts that

(3.15) —Y .aa_g exp (2iwb) df—4doru,(z, 0).
-2 0K

Equations (3.15), (3.18), (3.12) show that (3.11) and (3.12) are equivalent.
Since (3.12) is true, the proof of Theorem 2 has been completed.
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THE SLOW STEADY MOTION OF LIQUID
PAST A SEMI-ELLIPTICAL BOSS

G. PoweEr AND D. L. Scort-HuTTON

1. Introduction. In this problem of two-dimensional viscous flow,
liquid is supposed to have a rigid boundary represented by ABCDE in
Figure 1 and, apart from the disturbance caused by the presence of the
elliptical boss BCD, is assumed to be in uniform shearing motion. The
stream function is thus a biharmonic function vanishing together with
its normal derivative at all points of the boundary, and proportional to
y* at a great distance from the boss. A series of functions is found,
each of which satisfies all the boundary conditions save one. A linear
combination of these functions will also satisfy the boundary conditions
with this one exception, and by a particular choice of the arbitrary
constants which it contains, the remaining condition can be satisfied at
as many points as desired. Special cases are discussed, and a process of
approximation is outlined which yields the most accurate results at C,
and also gives a convenient function for determining at any point of the
boundary the magnitude of the error in the unsatisfied boundary condi-
tion. A special case of this problem has previously been considered [1].

z-plane

TN

E(co) D 0 B Tz Ales)

Figure 1.

2. The stream function. We take the equation of the boundary
BCD to be z*/a*+y?[/b*=1, and note that the region occupied by the
fluid, for which ¥ is never negative, is transformed into the interior of
the semi-circle of unit radius shown in Figure 2 by

(1) —22=(a—b)w+ (a+b)/w .

The stream funection ¢ is biharmonic, that is to say it must satisfy
V=0, and a satisfactory solution to the problem is

(2) ¢=y*+U+yV,
Received September 14, 1954.
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W
w-plane

4 d, u
B A E D

Figure 2.

provided U and V are harmonic functions which are chosen so that
U+yV does not tends to infinity as z tends to infinity.

The boundary conditions to be satisfied are ¢=0 and 0¢/3v=0 along
the boundary, where d» denotes an element of normal to the boundary.
From (2), we see that four conditions are required, namely

(a) U=0 along AB and DE, that is when y=0,
(3) (b) V+oUloy=0 along AB and DE, that is when y=0,
(c) ¥+U+yV=0 along BCD, that is when 2*/a*+y*/b*=1,

(d) @/o)y*+U+yV)=0 along BCD, that is when a*/a*+y*/b*=1.

Writing w=7re®=u+iv, and using the tranformation (1), we see that
the boundary conditions (38) become, after a little reduction,

(a) U=0, when v=0,
(b) (b—a)V’ 1 27’62_.;, . aU:O s when v=0,
(4) (c+u*) o
(c) U+bsinV'=0, when r=1,
@ wa+b)sind=-2 U V' oy when r—1,
sin 0 or or

where V/'=V+brsinf, and c=(b+a)/(b—a).

"We will proceed to find pairs of harmonic functions U, Vi,
such that each pair will satisfy exactly the first three of the above
boundary conditions. Any linear combination of these functions will
also satisfy exactly these three conditions, and by giving special values
to the arbitrary constants in this linear combination we can satisfy
approximately the fourth equation. Physically, this means that in the
fluid motion represented by our solution there will be a small velocity
of slip along the boss BCD, which can be calculated from the error
involved in the last boundary condition.
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If we take
q
(5) U= Zla’;’n—L 2n—1
where
- A, \ B, _ - C,. _ snes)
6 Uzn_ o //{ 2n—1 wzn+1+ 2=l gpin 1+ =l gn2n—=3 ,
(6) ' 2n+1 2n—1 2n—3

955

then U is harmonie, and 4 (a) is satisfied. Moreover, the consideration
of symmetry shows that even powers of w are not required. Now we

have
(7) <?E}’nf},> =(uz+C)<Am_luzn~z_{_7(;2%:; uzn—;) ,

v Je=0 c

provided ¢A,,_1— B+ Copoi/c=0,
and
24, 2C.

8 Usp-1)ro1=sin 6’( 22=-1cog 2n0 — S22 cos (2n—2 0)
() (zl)l 2+1 2?’1,30(n)

. A.
ded Am-1 4 ,
Provided o1 " on—1" 2n—3

From (7), (8), we see that we can take

A 1—7(%"“) (2(n—1)b+a}p, ,
(9) Buyoy= 4%" D 1 @n—1)ab+a?) v, ,
Conoim _ 2(2n=3)(b+a) (2nb+a}p
(b a,)z n !

\

where the unknown p, has yet to be determined. By setting

21 -2 an
Vine1 = W1+ 2C,,_,7*""* cos 2n—2)0 _ 2A,,_,r*" cos 2nl

(2n—3)b @n+1)b
we see that 4 (¢) yields
(10) W,,.,=0 when r=1.
If further we take
(11) p= OO

4@2nb+a){2(—1)b+a}

By e Czn—1”

=0.
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then condition 4 (b) gives
(12) Wy, =u*—u* when v=0,.
Equations (9), (11) now give

A, —Cnt+1)(b—a)
T 2(2nb+a)
(2n—1)b{b*+ (2n—1)ab+ a*}
2nb+a){2(n—1)b+a}
(2n—3)b(b+a)
22(m—1)b+a}

|
(13) ]‘ B,,_ =
| T

To find the function W,,_, satisfying (10), (12), we consider
o= B {¥u(W)}, Where

Lon(W)= —w™ " 4 i {w’" + fllog (w+1)—log (w—1)}
T

2@{( S | )+ 1 <w2”“3 1 ) 1 ( 1 )}
- T + e+ - w+ ’
(14) T w wl?l 1 3 20272—3 2% _— 1 w j‘

o (W)= — 2%. {log (w+1)—log (w—1)} .

7

It is easy to verify that ¢ {y.,,(w)} =0 when r=1, and that
G {Yan(w)} =u*™ when v=0, since from Figure 2

log (w—1)—log (w+1)~log +@(0 —0,).

1
The function W,,_, is thus given by
(15) W2n—1:¢2n—2—¢2n .

Finally, we see that the required stream function ¢ is given by
equation (2), where

g Ao o1 Bouoy  ne Cin- _s)
U-:k// - _f 2m—1 2n+l 2m—1 w./z 1_,_ 2n—1 w?n 3 R
l nz;la_ 1l2n+1w T on—1 2n—3 J
l
j ) 2_\ j ZC 2n-1 27 =2 2A‘_’71—L 27
16 V= (%{ bw+ >, Gy W — W
(16) \1 Wt 24 Genmi] g "3 @n+1)b

+ in— _,(’LU) - X'.'n(lw)} } ’

the constants A,,.,, B.,-i, C.._;, being determined from (13), y..(w)
from (14). It is quite easy to verify that ¢—y* as z->oo, that is as
w—0, since the most significant terms in U and yV are respectively
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2a,C\y/(a+b) and a,y(—2C,/b+1), the sum of these being clearly zero
from (13).

3. The fourth boundary condition. It is now necessary to consider
the boundary condition as yet unsatisfied, given by equation 4 (d), in
the form

(17) ba+b) sin 0= S dyy_1un_ () when r—1,
n=1
where
1 Usns, , 3V ,
,2,,”_ N= — =14 p -1 Vm_ .
wn-1(0) sinfd or + or @ !

Theoretically, the constants a.,., must be chosen so that (17) is satisfied
for all values of ¢ lying between 0 and =, and this would require an
infinite number of terms. Clearly, therefore, some form of approxima-
tion must be applied. Suppose that the constants a.,., are chosen so
that

Y oA =@+ ) sin 0+ F(0) ,
n=1

then sin#F(0) is the error involved in the boundary derivative
(3¢/or),-,, and the actual velocity of slip on the boundary BCD in the

z-plane is
{( o¢ >| dw | f _ _ sm0F©O)
or /\ dz Vet (b cos® 0 +a® sin® 6)1°

This becomes infinite at #==/2 in the degenerate case a=0, unless
F(7/2) happens to be zero. Therefore we must consider a method of
approximation which gives no error at all when #/=z/2. The coefficients
Gsn-: Will be chosen so that the expressions on each side of (17) have
the same values and the same differential coefficients with regard to ¢
when 0=r7/2, the number of differential coefficients that can be equated
depending on the value of the integer ¢. From (16), we see that when
r=1,

ﬂ&lmquz.¥E{AmﬂMn@n+D0+BmﬂsM@n—D0+Cmqﬁn@n—$ﬂ
sin

9 { 2(n—1)b—a
@n—3)b

+ b(f2n—-2(0) '_'fm(a)) ’

}C.,n_lcos (2n~2)0—2{ 2nb—a }Amﬁlcos 2n
(2n +1)b

where
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0bun) o fyp Wen(w)
Ful@= () = foo Benl)}
_8n {sm(2n 1)0+;sin 2rn—8)0+ -+ + 141 sinﬂ}»

+2n cos 2nd + in sin 2n6 log tan g _ 2 csef,
T T

JSo)y=— csc 0.

It is to be noted, that although f..(0) is infinite at =0, r, the expression
Soa-o(0)— f2a(6), which occurs in 2,,_,(f) is finite at these points. Equation
(17) is satisfied exactly when 6=0, =, and putting 0=r=/2, we have

(19) Ba+b)= 3 Coueidn_i(7/2) ,
n=1

and by differentiation we are led to

—b(a-+b)= Zam an-a(7[2) 5
(19")

b(a + b): Z Aop— 1/2;/1117—1(77//2) ’
n=1

and so forth.
It is from this set of equations that the constants a.,., are to be
calculated.

4. Special cases. The two special cases of the semi-circular boss
and projection will now be discussed.

(@) semi-circular boss.

Setting a=b=1, equation (16) yields

q
U:ﬁ

266 mot {1 sin (2r—1)0— " sin (2rn—3)0}
n=1

:*TSine‘f’ Eq:azn—l(¢27z~—i_¢i7l)_ an zam_l "% cos (272‘”2)0 ;
n=1 n=1 27’1,‘—1

and from (18), we get when r=1

2 _
b= { ) 2L sin@n=D)0 4 fan )= 12.0).

As an example, let us take ¢=3, so that from (19) we are required to
solve the equations
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2=a,2(7[2) + a;24(7/2) + a,2,(7/2) ,

—2—a, ) (2)2) + @,k (=]2) + a2, (z)2) ,
2—a, 21 (2)2) + a2t (x]2) + a8 (=/2) .

By substitution and straightforward calculation we obtain the follow-
ing table :-

n=1 n=2 n=3
Aomo1(m/2) | +1.45352  © —0.72488 1-0.38385
Ao _(x12) ~0.36056 +5.18309 —9.65706
AV m2) 0 —1.10423 ~22.24210 +-191.53800

which leads directly to a,= +1.21058, a;= —0.34379, a;= —0.02299.

A more accurate result can be obtained by taking more terms in
the linear expression for ¢, and it is found that the coefficients a.,_.
decrease rapidly in magnitude, but the numerical work involved soon
becomes exceedingly heavy.

This choice of approximation method is seen to advantage if cal-
culating the error function

F(ﬁ): Zg azw—t/lznﬂ(ﬂ)“z sin 0

n=1

at any point by means of the Taylor expansion about 6=r=/2, several of
the significant differential coefficients being zero by definition. The
following table gives the value of F(0) for various values of ¢, and
Figure 3 shows the graph of F(f) plotted against values of ¢ lying be-
tween 0 and 7/2. The graph for =/2<<0<z will, of course, be similar,
since F(0) is symmetrical about 0==/2.

. 3x/8 =2

6 0 /45 =15 ‘ =8 -

K . 0 | 0.05918 0.08225 | 0.05838 0.009155 0.00041 0
[ . - ! - ‘ ) - -

It will be noticed that the results are most accurate in the vicinity
of @=mn/2, as might be expected from the method of approximation.
Although the value of F() becomes greater than 0.08 for a certain
(small) values of ¢, the velocity of slip, given by sin 0-F(f), is really
very small at these points.

(B) degenerate boss.

If a=0, the semi-elliptical boss degenerates to a projection into
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F(0)

0.08

0.06 Figure 3.

0.04

/4 72 0
the moving liquid, and the formulae (13) become

Azn_1=(2”+1)b , 3271_1:(275—1)() , C2n—1:_(2n—3)b
in dn(n—1) 4(n—1)

These values will hold except for n=1. For this case we will follow
W. R. Dean [1], and will find a pair of solutions U,, V)’ which satisfy
equations 4 (a), (b), (¢). The procedure outlined in § 2 is again followed,
and omitting details we are led to the two pairs of solutions

U= bw, V/=-— /f’{ .2@0 } )
74w

and

ya Z {w*+ 3w}, U1:w3+w , Vi'= .‘\?f’{—l— ;w2+ Xn(w)-—x._,(w)} .

4
The final solution is thus

b, . a wrr el w
U= b+ @ +3 et "y, + - )
a,0w 4 4 (w* +3w) + n;, -l an dn(n—1) 4(n—1)

(20 V=7 {ibw“l(‘l‘éw")* by “(222_1) *2;2): )

q
b = B S (nea0) )} .
i4w =1
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Again we note that ¢—y* as z—co.

5. The pressure equation. The pressure p is determined from the
equations of motion in the form

op 0 op
. = — 7=, S = [7 I
ox # oy / Yy 7 o i

where p is the coefficient of viscosity. Now ¢=y*+U+yV, where U
and V are harmonic, so that /*¢=242(3V/2y), and hence

w _ 2#§V_2/18V W _g, OV

ox oy* ox” oYy Xy
Ignoring an arbitrary constant, we have therefore

12r2Y —apin 0ty VO

where V=27 {V(w)}. From equation (16) we see that

bt S ay, | 2Ce 24y _
V=it 3t~ Gy o) ]

and so
= 2w* . g 4(n—1)Cyp_ w0
21 —2p. 7 [ ,, ] b L A
(21) p=ar { b +a)+ (b—a)w? R nz=1a‘ { (zn 3)b
_ 47514271—17/02"_1_*_ din—:{(w)r — dX‘zn(w) Ijll .
(2n+1)b dw dw 1)

Fquation (21) gives the pressure distribution, and on the plane boundary,
where »=0, this becomes

@ r{r oo

q
S oy

n=1

{ 4(n—1)C,,_ju*"?
(2n—3)b

_ 4nA,, !

+2(n—1)u -2 ?LG_l} '
@2n+1)b (1) " 7(

In particular the pressure at B exceeds that at D by

8y & ,f 2(n—1)Cypn_; 2nA,,
23 e = -1 — - + 1.
(23) Pure=" 2 0n-1= "o o™ T on it }

For the special case a=b=1 discussed in §4 («), this expression is

4n—3)a,
8 ( n—1
a nZl on—1
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and with the values for a,, a;, a; substituted we obtain a difference of
4.78 p.

For the degenerate case a=0, b=1, Dean [1] obtains a difference of
approximately 5.80 2 between the pressures at B and D.
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Added in Proof: The equations governing the slow steady flow of a viscous in-
compressible fluid are the same as those characterizing an equilibrium state of an incom-
pressible elastic solid, if one simply replaces velocity and coefficient of viscosity by
displacement and shear modulus. Thus the results here obtained can be used as the
solution for the tension of a semi-infinite plane whose edge is indented and traction free.



AN ALGEBRAIC CHARACTERIZATION OF FIXED IDEALS
IN CERTAIN FUNCTION RINGS

LyLE E. PURSELL

1. Introduction. In this paper an algebraic characterization of the
fixed ideals in a certain class of function rings is given (an ideal in a
function ring is fixed if there is a point at which all functions in the
ideal vanish). This class of function rings includes the rings of all
real-, complex-, or quaternion-valued continuous functions on a normal
Hausdorff space whose points are G-delta sets and the ring of »-fold
differentiable functions on an r-differentiable manifold whose coordinate
covering is neighborhood finite. For these rings of functions we con-
struct the underlying space from the fixed ideals in the same way that
Gelfand and Kolmogoroff [3] have constructed a compact space from
the non-unit ideals in its ring of all real-valued continuous functions.

We also show the existence of certain homomorphisms from the
automorphism groups of these function rings into the group of homeo-
morphisms of the underlying space onto itself. In §5 we find that an
isomorphism between the rings of all r-differentiable functions on two
r-differentiable manifolds can be extended to an isomorphism between
the rings of all continuous functions on these manifolds and that the
homeomorphism determined by this isomorphism is differentiable.

2. The general case.

(2.1) By . % we mean a ring of functions from a regqular Hausdorf
space X to a division ring D having the following properties :

P,. If f isin %, then the set of zeros of f, which we denote by
Z(f), is closed.

P.. If © is not in a closed set F', then there is a function f in
Z such that Z(f) contains a neighborhood of F but does mnot
contain .

P, If f in % does not vanish at any point of a closed set F', then
there is a function g in % such that fg (and also gf) has the
value 1 at every point of F.

P. For each x in X there is a function f, in . which vanishes
at x and only at x.

Received June 14, 1954. This paper includes extensions of certain results given in the
author’s doctoral thesis which was written at Purdue University under the direction of
Prof. M. E. Shanks (1952). The author wishes to express his appreciation to Prof. Shanks,
Prof. M. Henriksen, and Dr. D. W. Dubois, who made several contributions to this paper,
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(2.2) By the ‘“‘support of a function f’’ in B, which we denote by
Sp(f), we mean the set Cl(X—Z(f)), From the properties of closure
we have:

(i)  Sp(f)=X-IntZ(f),
() IntSp(f)=X—ClIntZ(f),
(i) Sp(f)=Cl Int Sp (f).

By the “annihilator of a function f’° in B, which we denote by
A(f), we mean the set of all g in H such that fg=0 (and hence gf =
0). For any ring of functions with values in a division ring the
annihilator of an element is a two-sided ideal. In addition we have

A(f)={9e Z |Z(9)D8p (N},
and A(f)=. if an only if f=0.

(2.3) LEMMA. If f and g are in # and g0, then Z(f) and
Sp(g) are disjoint if and only if f— A(g) has an inverse in the residue
class ring .F# — A(g).

Proof. Since g#0, then Z(9)=%~X and Sp(g) is not empty. If f
does not vanish at any point of Sp(g), then there is a function % in
% such that f# and 2f have the value 1 at every point of Sp(g),
that is, fA=1 (mod A(g)) and ~f=1 (mod A(g)). Hence f-A(g) has an
inverse in % — A(g). If f—A(g) has an inverse in .%# — A(g), then there
is a function A2 in 22 such that (fA—1) is in A(g), that is (fh—1)
vanishes at every point of Sp(g). Hence f does not vanish at any
point of Sp (9).

2.4) Ir f s in Z#, let H(f) be the set of all nonzero g in %
such that f— A(g) has an inverse in the ring % — A(g). Anideal I in 7%
i8 ‘‘bounded’ if there is a function f in F without an inverse such
that H(f) contains H(g) for every g in I. We say that ‘I is bounded
by 7. An ideal which is maximal in the set of all bounded ideals is
called a ‘‘maximal bounded ideal”. The set of all maximal bounded

ideals is denoted by M[.Z7]. We observe that an ideal contained in a
bounded ideal is bounded.

(2.5) LEMMA. For f and g in ., Z(g) contains Z(f) if and only
if H(f) contains H(g).

Proof. From (2.3) and (2.4) H(f) is the set of all functions % in
2 such that Z(f) and Sp(z) are disjoint. Hence if Z(f) is a subset
of Z(g), then H(f) contains H(g). Suppose there is a point = in Z(f)
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but not in Z(g), then by P, there is a function 2 in &% which is
different from zero on a neighborhood of x but vanishes on a neighbor-
hood of Z(g). For this function %2, Z(f) meets Sp(h) but Z(g) does not.
Hence if Z(f) is not a subset of Z(g), then H(f) does not contain H(g).

(2.6) THEOREM. If .Z# 148 a ring of functions from a regular
Hausdorff space X to a division ring D which satisfies P,, P,, P;, and
P, of (2.1), then an ideal I in % s a fized ideal if and only if it is a
bounded ideal.

Proof. 1If I is a fixed ideal, then there is a point # at which all
elements of I vanish. From P, there is a function f, in & which
vanishes at x and only at . For every ¢ in I, Z(g) contains Z(f,),
that is H(f,) contains H(g). Since f, has no inverse, I is bounded. If
I is bounded by a function f in & without an inverse, then Z(f) is
a subset of Z(gy) for every ¢ in I. Since Z(f) is not empty, I is fixed.

(2.7) For x in X, I(x) means the fixed ideal {f e #|f(x)=0}.
From (2.6) an ideal is a maximal bounded ideal if and only if it is of
this form.

(2.8) Let A be a subset of M[.5#]. If we define
JeCl(4) if and only if JDONed

for A nonempty and Cl(A)=A for A empty, then M[.F2] s said to have
the ““Stone topology’’. We denote the set M[.%2] with the Stone topology
by X*.

(2.9) THEOREM. If < s a ring of functions from a regular
Hausdorff space X to a division ring D satisfying P,, P,, P;, and P, of
(2.1), then X is homeomorphic to X*.

Proof. From (2.7) the mapping x—I(x) is a one-to-one mapping of
X onto X*. Let aeCl(4), ACX, and let A* be the image of A under
the mapping x—I(x), then every function in %% vanishing on A (that
is, every function in N\yec l(2)=/\;ex) also vanishes at a (that is, is in
I(a)) and I(a) is in Cl(A*). If, however, @ is not in CI(4), then there
is a function f in .2# vanishing on 4 but not at a. Then f is in
Niesd but not in I(a), and I(a) is not in Cl(A*). Hence the corre-
spondence x—I(x) is a homeomorphism of X onto X*.

(2.10) COROLLARY. If the rings ..# and %' of functions from
the regular Hausdorff spaces X and X' to the division rings D and D',
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respectively, satisfy P, P,, P,, and P, of (2.1) and are isomorphic, then
the spaces X and X' are homeomorphic.

(2.11) Let ¢: .2#—.7’ be the isomorphism referred to in the
preceding paragraph. With the point z in X we associate the ' (which
exists uniquely) in X’ which is the common zero of all functions in the
isomorphic image of the ideal consisting of all functions in . which
vanish at z, that is,

&' = NseicranZ(f) -

One can show that the correspondence x—x’ is a homeomorphism from
X onto X'. We will denote this homeomorphism by ¢(t) and refer to
it as ‘‘the homeomorphism from X onto X' corresponding to (or deter-
mined by) the isomorphism © from % onto #'7

(2.12) By /() we mean the automorphism group of .#. By
(X)) we mean the homeomorphism group of X, that is the group of
all homeomorphisms of X onto itself. If 4, and 4, are in .°/ (%), then
it follows from (2.11) that ¢(4.%,)=¢(4,)$(4,). Hence we have the theorem
of the following paragraph.

(2.13) THEOREM. The mapping ¢: (#)>F(X) is a homo-
morphism from the aulomorphism group of =2 into the homeomorphism
group of X.

(2.14) For x in X we denote the set of wvalues (f(x)|fe. 2} by
V(). From P, and P, the set V(x) is a subdivision ring of D. The
correspondence f— f(2) is a homomorphism from .%# onto V(x) with
kernel I(z), hence the correspondence f—I(x)—f(z) is an isomorphism
from the residue class ring “2 —I(x) onto V(z). Since .2 —I(x) is,
therefore, a division ring, I(x) is a maximal ideal, that is, every maximal
bounded ideal is a maximal ideal.

(2.15) LEMMA. If f—f' is an isomorphism from .2# onto ..2' and
r—>a’ 48 the corresponding homeomorphism, then the correspondence
S(@)—f'(x) 48 an isomorphism from V(x) onto V'(x').

Proof. Since I'(x’) is the isomorphic image of I(x), the corre-
spondence f —I(x)—f’—1I'(x’) is an isomorphism. Since f(x)—f —I(x) and
f'—I'(x")—f’(x') are isomorphisms, f(x)—f'(x’) is an isomorphism from
V(x) onto V'(a’).

3. Rings of continuous functions.

(3.1) Cech [2] has shown that a subset of a normal Hausdorff
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space is the zero set of some real-valued continuous function if and
only if it is a closed G; set. Using his result and Urysohn’s lemma
concerning real-valued continuous functions on a normal space, one
may show that the rings — C(X, R) of all real-valued continuous func-
tions on X, C(X, K) of all complex-valued continuous functions on X, and
C(X, Q) of all quaternion-valued continuous functions on X—satisfy P,
P,, P;, and P, of (2.1) if X is a normal Hausdorff space all of whose
points are G; sets. Hence we have the following.

(3.2) THEOREM. Let X and X’ be normal Hausdorff spaces all of
whose points are Gy sets and let F denote either the real field, the com-
plex field, or the quaternion ring. If C(X, F) and C(X', F') are iso-
morphic, then X and X' are homeomorphic.

(8.83) According to results obtained by Gelfand and Kolmogoroff [3],
Hewitt [6], and Gillman, Henriksen, and Jerison [4], Theorem (3.2)
holds for completely regular spaces satisfying the first axiom of counta-
bility. There are, however, normal spaces all of whose points are G;
sets which do not satisfy the first axiom of countability (cf. Bing [1,
p. 180, Example C]).

(3.4) For the rings C(X, F) it can be established that the homo-
morphism ¢ : o7(C(X, F))— 57 (X) of (2.11) and (2.18) is a homomorphism
onto &~ (X).

4. Rings of real-valued functions.

(4.1) If <2 is a ring of real-valued functions on X satisfying P,
P,, P, and P,, then for each z the set of values V(a)={f(x)|f e R}
is a subfield of the real field R. We now introduce an additional
property for the ring & :

P,. For each x in X the set of values V(x) is a subfield of the real
field R which has only one isomorphism into R, the identity
1S0morphism.

Property P, holds if V(x)=R; hence C(X, R) satisfies P;. There are
rings of real-valued functions satisfying P,, P,, P;, P.,, and P; which
contain discontinuous functions as is shown by the example of the
following paragraph given to the author by D. W. Dubois.

(4.2) ExAMPLE. Let X be the closed interval [0, 1], @ be a finite
subdivision {0=z,, 21, +, @,_1, ,=1} of X, and A be the set of all a.
Let 6(x)=exp(x) for a%0 and 60(0)=0. Let B(a) be the set of all
real-valued functions f on X such that
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_ pi(@, O(x)) -
f($) = ([;(m, 0({/0)) ’ v, <z<z,t=1,2,--+, n,
where p,(z, 0) and ¢,(x, 0) are polynomials in & and f(x) such that f(x)
is continuous at x,, x,,---, x,-s, and x,-; and g, 6(x)) does not vanish
for x,_,<ax<x; for any ¢. If 2=\J,.B(a), then % is a ring of
real-valued functions which satisfy P, P, P,, P,, and P; but some of
which are discontinuous.

(4.3) Theorem (4.4) and (4.5) may be established by using P, and
the results of § 2.

(4.4) THEOREM. If 27 and .22’ are isomorphic rings of real valued
functions on regular Hausdorfl spaces X and X' satisfying P,, P,
P,, P, and P;, i s the isomorphism from .7 onto #', and h s the
corresponding homeomorphism from X onto X', then:

(1) F@)y=0Ef)Rx)) for all f in R and « in X. Hence f is bounded

above (below) if and only if (¢f) vs bounded above (below); lub f=Ilub s,

glb f=glb f’; and the subrings of all bounded functions in R and

R’ are isomorphic.

(ii) There is an isomorphism i* from C(X, R) onto C(X’, R) such

that i(f)=4*(f) for all f in C(X, R)N.F#.

(4.5) THEOREM. If .22 is a 7ving of real-valued functions on a
regular Hausdorff space satisfying P., P,, P;, P,, and P;, then the homo-
morphism ¢ of (2.11) and (2.13) is an isomorphism of .~/ (R) into & (X).

From (3.4) and (4.5) we have the following.

(4.6) THEOREM. The groups - (C(X, R)) and Z(X) are iso-
morphic.

5. Rings of continuously differentiable functions.

(6.1) If C"(M) is the ring of r-fold continuously differentiable
functions on an 7r-differentiable manifold M with a neighborhood-finite
covering of coordinate neighborhoods (» may be either a positive integer
or the symbol <), then C"(M) satisfies P, P,, P,, P, and P;. The
theorem of the following paragraph may be obtained.

(5.2) THEOREM. If C"(M) and C"(M') are isomorphic, then M and
M’ are homeomorphic. The homeomorphism h determined by the iso-
morphism s differentiable (that is, f(h) is in C"(M) if f s in C7(M'))
and the isomorphism can be extended to an isomorphism from C(M, R)
onto C(M', R).
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6. Additional remarks. Since the above was written the author
has observed that P, may be replaced by the weaker hypothesis:

Pi. For each v in X there is a pair of functions g and b in .2
such that x=2Z(g)—Z(h).

If .22 satisfies P, P,, P,, and P}, one can show that an ideal [ is fixed
if and only if there is a pair of functions ¢ and 42 in .22 such that
H(g) does not contain H(%) but H(gh) does contain H(fh) for every f
in the ideal I. (Lemma (2.5) holds as before.) The results of (2.9)
through (2.15) may then be established if X* is defined to be the set
of maximal fixed ideals with the Stone topology.

If X is a completely regular, locally-compact space all of whose
points are Gj sets, then the rings Cy(X, R), C«(X, K), and Cy(X, Q) of
all real-, complex-, or quaternion-valued continuous functions with com-
pact supports satisfy P, P.,, P;,, and P°. Hence it follows that they
determine X. (This result for Cy (X, R) has already been established
by Shanks [7] without assuming that points are G sets). One can
also show that the automorphism group ./ (CyX, R)) is isomorphic to
/(C(X, R)) and #°(X).
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ADDITIONAL NOTE ON SOME TAUBERIAN
THEOREMS OF 0. SZASZ

C. T. RAJAGOPAL

1. An additional theorem. In the note [3] to which this is an
addition, Theorem II is exhibited as a generalization of Theorem I and
an appeal is made to Szasz [6] to indicate the transition from Theorem
II to the final result stated as Corollary III’. However, in view of the
formal simplicity of Corollary III’ and the wide generality (reflected in
its apparent complexity) of Theorem II, it seems worth while to adopt
the opposite point of view and record a method, based on the following
result, of deducing Theorem II and all related theorems (which cover
Szasz’s) from Corollary III’ [3, p. 384].

THEOREM V. If a (real) series S, a, is (@, )-summable to s, where
A denotes the strictly positive increasing divergent sequence {1,} subject
to the additional condition A,,./A,—1, and if the series satisfies the
Tauberian condition :

(1) lim inf}l S La,>0, m>n, gm_,l,
n—ro0 nv=n+1 ”

then >y a, is convergent to s. (Amnon Jakimovski[1, Theorem 1] gives
the case ¢(u)=e", 1,=n.)

Proof. We have, by Abel’s partial-summation lemma,

m m K
Sa,= Y _@27'2,", 1 min 3 A4a,.

v=n+1 v=n+1 'Iv 2n+1 ]nn-i-lgkgm v=n+l

Hence, by (1),

lim inf i a,>>0, m>n, j’”—»l.

—>00 V=7+1 An

It is well-known [2, p. 33] that the above Schmidt condition is equivalent
to the second alternative of hypothesis (12) of Corollary III’ [3, p. 384].
Therefore this corollary establishes that >, a,=s.

2. Deductions from Theorem IV.

COROLLARY IV.1. In Theorem 1V, (1) s implied by, and so can be
replaced by, ONE of the following conditions :
Recéived August 4, 1954.
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(2) lim } S (e —a,) =0,
N >co (nv=n+1 N
m_n, 1'"——)1.
(3) lim b 3 Ala=0, "

n-—r00 Xnv=n+l
(Szasz [6, Theorem 3] gives the case ¢(u)=e", 1,=n.)

COROLLARY IV.2. In Corollary 1V.1, (2) can be replaced by the condi-
tion:

U= i ’zv(]avl —a,)=0(1,), n—co,
(4) -
tim (U Un) 0. mm, sl

(Szész [6, Theorem 2] gives the case ¢p(u)=e¢"*, 1,=n.)

The above corollary is the same as Theorem II of my note [3]. We
can deduce it from the preceding corollary merely by noting that (4)
implies (2)' as a result of letting n—cw, 2,/1,—1 in the identity :

my

Um_Un :<Um . Un >/?m +7g;n7<7)‘m . 1) , m>7l .
):n jm '{n ‘}n ’]‘n )rz

COROLLARY IV.3. In Corollary IV.1, (8) can be replaced by the
hypothesis :

Vn% i Zvlavlzo()‘n) ’ e
(5)
lim (7 — Y2 )0, el

which implies (3) exactly as (4) implies (2).
Plainly the last hypothesis (5) can assume the special form :

lim

Vi g < oo .
(Szész and Rényi [6, Theorems 1 and B] give the particular case ¢(u)=
e, 1,=mn.)

3. A second additional theorem. Theorem IV is a deduction from
Corollary III’ [3] and so ultimately from Theorem A [3, p. 378]. The
following is another deduction from Theorem A deserving of mention.

1 In fact (4) is equivalent to (2) as (2) implies (4) by an argument exactly like Szasz’s
in the case 4,== |6, Lemma 2].
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THEOREM B. Let ¢(u) fulfill the conditions C(i) —(v) of the Introduc-

tion [3, p. 377].> Suppose that A(u) is a (real) function of bounded
variation in every finite interval of (0, =), A(0)=0. If

(6) e da@)
w Jo
28 slowly decreasing, that s,

lim inf(lg”x d{A(z)} — 1§a, d{A(w)})}_O , v>u, Yol
v Jo u Jo u

U0

and if A(u) is @-summable to s, that is, if
(1) o)~ et a4
ewists for >0 and tends to s as t—+0, then A(u)—>s as u—>o.
Proof. We write as before [3, pp. 377-378]:
Al(u)———S:A(x)dx , b()— S “go)dz
Then (7) gives successively [4, pp. 346-347], as t—+0,

Q)(t)=t5:¢(ut)A(u)du s, (Dl(t)ztrc/’(ut)A;(Lu) du — 3.

d?(t)—(bl(t)ztg: dut) {Aw) —u—As ()t du — 0 .

Thus A(u)—u"'A,(u) is @-summable to 0 and satisfies the Tauberian
condition in (6). Hence, by a known result [4, Corollary 2.2] following
from Theorem A [3], A(u)—u"'A,(u) tends to 0 as u—>. Consequently,
by Theorem A [3], ©u '4,(u), and hence also A(u), tends to s as u—oo.

4, Remarks. (i) Amnon Jakimovski [1, Theorem 1] has dealt with
the case of Theorem B in which ¢(x)=e " and

A(u):{al +adyt+ -0 +a, for n§u<n+— 1, n>1 ,
0 for 0<<u<1,

showing, by a modification of the method used above to prove Theorem
B, that we may in this case replace (6) by

N
(6*) lim inf(U’" _Ux )20 , m>n, 1
n

0—>00 m n

b

2 Trhésér conditions can be slightly relaxed (for example, [5, Theorem Al}).
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where Ur=Y"7"_,1a,, leaving the statement of Theorem B otherwise
unaltered. He also observes that (6*) includes (or generalizes) the
second half of (4) with 1,=n, implying that, in Szasz’s result cited under
Corollary 1V.2, the first half of (4) is superfluous. This observation is,
however, incorrect as shown by the following example.

ExampLE 1. Let a, be defined so that

N0, =y for 4<n<2-47, } v—0,1,2, - .
na,=—n"* for 2.-4*<<n<4"*',
Then it is easily verified that (4) with 2,=n holds because
S u(la, | —a)=o(n) , oo,

v=1

but that (6*) does not hold since

if n=2-4", y—>co, then U — k=0 k-4'+0Q) 20

n 2.4¥ 3
v * * g
if m=the integral part of 2.4 ’ , then U _Ui+o() n
y— l/ v m n m

where (n/m—1)~—y~'* so that

* *
lim inf(Um _Us )= e, m>n, ™1,
m, V! n

N—>c0

While the above example shows that (4) with 2,=n does not in
general imply (6*), the one which follows makes it clear that neither
does (6™) necessarily imply (4) with i,=n.

ExamprLe 2. Let a, be defined so that
(—1ma,=v for 4'<n<2-4", } »=0,1,2, «--.
a,=0 for 2-4"<n<4*',
Then (6*) holds since Uj/n—0 as n—co. However, (4) with 2,=n does
not hold since now

U, 3 ula,|-a)

and we have:

U, _ St kdi2 s

if n=2.47, , then ,
nn e 2 2.4 3
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if m=the integral part of 2.4~ ¥ , then Un U,
v—1"1 2m  2nm

where (n/m—1)~—,"1? with the result that

lim inf(Um——U"->=—00, m>n, ™1
n

n->o0 ‘m n

(i) In the definition of @-summability of A(u), set forth in (7) and
assumed in both Theorem A [3] and Theorem B, the integral &(¢) is to
be interpreted as a Lebesgue-Stieltjes integral (absolutely) convergent
for ¢>>0 unless further considerations, as in the case ¢(u)=e", permit
us to view it as a (non-absolutely) convergent Riemann-Stieltjes integral
(cf. [5, p. 103, Note]).

(iii) In Theorem III [3, p. 383] the condition 2,.,/4,— o of hypothesis
(11) is a misprint for 4,..,/4,—1.

In conclusion I wish to thank Dr. T. Vijayaraghavan® and the referee
for helpful suggestions.
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ERROR BOUNDS FOR ITERATIVE SOLUTIONS OF
FREDHOLM INTEGRAL EQUATIONS

L. B. RaLL

1. Introduction. A number of iterative procedures for obtaining
the solution a(s) of the integral equation of Fredholm type and second
kind,

(L.1) y(s)=x(s)——ZS:K(s, tyal(t)dt, a<s<b,

have been developed, notably by G. Wiarda [10, pp. 119-128], Hans
Biickner [2, pp. 68-71], Carl Wagner [8], and P.A. Samuelson [7]. These
methods are generalizations of the one due to Neumann [3, pp. 119-
120] in the sense that they converge where the Neumann process fails,
or else offer the possibility of more rapid convergence. The purpose
of this paper is to obtain estimates for the error resulting from the
use of a finite number of steps of these interative processes in forms
suitable for numerical computation.

The author wishes to thank Professor A.T. Lonseth for many en-
lightening discussions concerning the material presented here, and the
Reviewer for his helpful remarks.

2. The solution of linear equations. Methods for the approximate
solution of Fredholm integral equations such as (1.1) and error estima-
tes for these methods may be obtained directly from known results con-
cerning the solution of linear equations in certain abstract spaces; it
will be convenient to summarize some of these results here.

A set X={a} of elements is called a linear space if we X implies
(0x) e X, where 0 is any real number, and a binary operation + is defin-
ed in X, with respect to which X is an Abelian group. The identity
element of X for the operation + will be denoted by 0. In order to
discuss convergence and error estimation, with each xe X associate a
finite, non-negative real number [«|, called the norm of x, which
satisfies the following conditions :

1°, a0 if 2520, [0]=0;
2°. | Ox|=|0|-| x| for any real number 0 ;
3% Je+y|<|a|+|y]| for all , ye X.
© Received June 2, 1954. Research sponsored by the Office of Ordnance Research, U.S.

Army, under terms of Contract DA-04-200-ORD-177, ¢ Numerical solution of Integraj
Equations ”’.
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The space X is now said to be a normed linear space, and all spaces
considered subsequently will be of this type.

A sequence {x,} in X is said to converge to the element ze X, in
symbols, z,—»x as n—c, if |z—z,]>0 as n—o. A normed linear
space X is called complete if for every sequence {x,} in X such that
@, =040 as n—oo for all positive integers p, there exists an xe X
such that z,—z as n—ooo.

A transformation which carries each z € X into a y € X is symbolized
by Tx=y, where T is called an operator in X. T is additive if T(x+y)
=Tz +Ty for all z,ye X, and continuous if x,—x as n—c implies that
Tx,—Tx as n—oco. An additive and continuous 7' is said to be linear;
for such a 7', the nonnegative real numbers

(2.1) M(T)=1l.u.b. (|Tz|/|=]), |70,
2.2) m(T)=g.Lb. (IT=|/|x]), | [0,

exist and are finite [1, p. 54]. A linear T is homogeneous, that is
T(x)=6(Tx) for any real 6 [1, p. 86]. The sum T+ U and product TU
of two linear operators 7' and U in X are defined respectively by the
relations (T+U)e=Tz+ Ux and (TU)x=T(Ux) for all ze X. Further-
more,

(2.3) M(T+U)<M(T)+ M),
(2.4) M(TU)<M(T)M(U),

[6]. The operator I such that Ix=x for all 2 e X is defined to be the
identity operator in X. The nth power T* of an operator T in X is
defined by T"=T7T"-' for all positive integers n, with T°=I by defini-
tion. The 4nverse of an operator T in X is the operator 7! such that
T T=TT-"'=I if such exists. If T is linear and T-! exists, 7' is
likewise linear; moreover, if m(7T)>0,

(2.5) m(T)M(T-")=1

[6]. If T is a linear operator in a complete space X and M(T)<1,
(2.6) (I-T)'— Jio T,

[6, 9]. This result in combination with (2.3, 4, 5) gives

(2.7) 1— M(T)<m(I-T)<M(I—T)<1+ M(T)

for M(T)<1. An operator 7' in a normed linear space X (not neces-
sarily complete) is called completely continuous if for every bounded set
B={a: |z|<0} for 0 finite, in the set TB={Tx: xec B} every infinite
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sequence converges to an element of X. In a general normed linear
space X, (2.6) and (2.7) hold with the additional assumption that 7' is
completely continuous [6]. These results furnish the following theorems:

THEOREM 1. If F' is a given linear operator in a complete normed
linear space X, then the linear equation

(1) Fr=y

has a unique solution x€ X for every ye X if and only iof there exists a
linear operator P in X such that P-' exists, and

(2) M(I—-PF)<1.

The solution x of (1) wn this case is given by

M

(3) x=>,(I—PF)Py.

0

<.
[

Proof: To prove the sufficiency of Theorem 1, assume that a
linear operator P having the desired properties exists. The series

S (I—-PFY Py
j=0

thus converges to an element, say 2z, of X; furthermore, ([—PF)z=2z—
Py, so PFz=Py. The application of P-! yields Fz=y, and thus z
satisfies (1). If Fz=y and Fz,=y, then F(z;—=z,)=0, so that (I—PF)
(,—2,)=2,—2,, and if 252, MI—PF)>1, contrary to assumption ;
hence x==z is the unique solution of (1), and is given by (8). The
necessity of Theorem 1 results from the fact that if there is a unique
solution « of (1) for every ye X, F-'exists. Taking P=F-!, P! exists
and M(I—PF)=M{I—-F-'F)=M(0)=0<1, which completes the proof of
the theorem.

COROLLARY 1. Subject to the conditions of Theorem 1, F has the
unique tnverse

(4) F-l= io (I— PF)’P.

These results hold in a general normed linear space X subject only
to the additional condition that (I—PF) be completely continuous.

THEOREM 2. If a unique solution xc X of (1) exists for every ye
X, X a normed linear space, and an operator P on X exists such that
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(2) ¢s satisfied, then the iterative process
(5) er:(I""PF)xn—l‘l‘Py

is totally convergent (Blckner) to the solution = of (1), that s, for all
z,e X, x,>x as n—>co, and its error is bounded by

(6) &=, < [M(I— PF) 2|

and

(7) jo—a, | <MI=FE)y o),
m(PF)

Proof. TFollowing [9], note that, from (1) and (5),
r—x,=(I—PF)(x—2x,),

from which (6) follows at once from (2.4). Condition (2) evidently insures
that z,—x as n—o, whatever x,, From (5),

Ty~ &y =PF(x—2,-,), and z—z,=(I—PF)(x—x,-1),

from which (7) is obtained by (2.1) and (2.2). Condition (2) insures
that m(PF)>0, for, if PFz=0 for any 2540, then (I— PF)z=z2, and thus
M(I—PF)>1, contrary to assumption.

For the purposes of practical computation, it may prove expedient
to calculate only one of the bounds M(I—PF), m(PF). By (2.7), the
quantities m(PF) and 1—M(I—PF) may be interchanged in (6) and (7);
in what follows, the symbol # will be used to denote either of these
quantities. These results have been obtained on the assumption that
all operations have been carried out exactly, which is frequently not
possible in practice. Set z,=x,, and let z, denote the results obtained
from (5) by the use of some method of approximate evaluation. If
A; ig the difference of the exact and the approximate evaluation of
(I—PF)z;-,+ Py, from (5),

(2.8) & — 2= — T+ g(I—PF)JAn_j.
Thus,
2.9 o=zl <oz +5 0= an,

and as 0<1—p<1, for éd=maxl|A,_;|, (=0, ---, n—1),

(8) ”x_Z)ZH£l‘x_x7z'l+5//‘;
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where the estimate for |ax—uw,| is obtained from the error bounds pre-
viously derived.

3. Application to integral equations. The space C of functions
x=ux(s) which are real, single-valued, and continuous on the interval
a<s<b is an example of a linear space. For the purpose of error
estimation, useful definitions of the norm of an element xe C are:

() lel-maxle@|, i) [o|=||Ed]
@) Jal={le@ias, @) jel<[] wErds]”, =1

all of these definitions are obtainable from (iv), (i) being the limit of

(iv) as p—oo, [5, pp. 134-150]. The inner product (x, y) of two ele-
ments «, ye€ C is the real number

(3.1) @, 9)=| o6 ds .

An operator @ in C is said to be positive definite if (Qx, x)>0 for all
x=<0 in C, and to be positive semi-definite if (Qu, 2)>0 for all ze C. If Q
is positive definite and M(Q)<1, then M(I—Q)<1 [11, p. 213], a fact
which will be useful in establishing the convergence of iterative pro-
cesses of the form (5). If K(s, t) is real, single-valued, and continuous
on the square a<s, t<b, the integral transform K defined by

(3.2) szjbx(s, £) a(t) dt

is a completely continuous linear operator in C, so that the results of
§2 apply at once to the equation (1.1) with F=(—2K). A number 2
is called a characteristic value of an integral transform K if m(l—iK)
=0; Fredholm’s general theorem ([4] states that (1.1) has a unique
solution z(s) in C for every y(s) in C provided that 2 is not a charac-
teristic value of K. If 1 is a characteristic value of K, is follows at
once from Theorem 1 that (1.1) cannot have a unique solution, and
thus it will be assumed throughout that 2 is not a characteristic value
of K, unless the contrary is explicitly stated.

The error bounds (6) and (7) for the iterative method (5) as ap-
plied to (1.1) may be put in the following convenient forms:

(ED) =2, | <(L=p)|@—2| ;

(E2) lo—a, ﬂslf‘ 1@ @aes]
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for k a nonnegative integer,

_ k+1
(E:3) N — | <L /’f =0
while for z,=y,

(E4) fo—z, )< =" MoK y) .
/l

As before, p=m[P(I—JIK)] or p=1—M[l—P{I—iK)]. These bounds
depend on the values of g and M(P). The operator P will now be
specified to obtain several iterative methods of practical importance,
for which explicit bounds for p and M(P) will be calculated.

Method 1 (Neumann):
(3.3) x,=y+iKz,_; .

This process is (5) with P=I, and thus (/—PF)=iK. It follows from
Theorem 2 that (3.3) is totally convergent provided that M(AK)<1.
If this is the case, explicit error estimates are obtained from the general
expressions by setting p=1—M(OK) and noting that M(P)=MI)=1.
Usually M(AK) is not known exactly, but estimates for M(IK) are
obtainable for various definitions of || from known inequalities [5, loc.
cit.; 6; 9].

Method 11 {Wiarda):
(3.4) T,=1—0)x,_,+0iKz,_+ 0y, 0<70<1.
This method is (6) with P=4@I. Sufficient conditions for (3.4) to be

totally convergent are that —AiK is positive semi-definite and

(3.5) 00, > -

These conditions insure that PF=0(I—.K) is positive definite and that
M(PF)<{1; the total convergence of Method II is a consequence of
Theorem 2 in this case. As —21K is positive semi-definite, m(PF)=
m[0(I—AK)]>0, and as 0<0<1, explicit error bounds for Method II

may be obtained from the general expressions by the substitution p=
0, and noting that M(P)=0.

Method 111 (Biickner):
(3.6) T, =1+ 0)w,.,— 0 Kv,.,.— 0y,
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where
(3.7) ’U,L_1=(1—0)£E,Z_1+02Kx”_1+Oy .

This process is totally convergent provided that 6 satisfies (3.5) and
the kernel K(s, t) of K is symmetric, that is, K(s, t)=K(t, s), a<s,t <b.
From (3.6) and (3.7),

(3.8) ty—=5yy — O — 2K+ °(I — Ky .

This is (5) with P=¢*(I—2K). If the kernel K(s, t) of K is symmetric,
direct calculation from (3.1) verifies that

(3.9) ([I— KT, @)=(I—Kz, [I-K]),

which is positive for all 240 in C as 2 is not a characteristic value of
K. Thus PF=¢*(I—2K)* is positive definite, and if ¢ satisfies (3.5),
M(PF)<1. By Theorem 2, Method III is totally convergent. If {2,}
denotes the set of characteristic values of K, for the norm defined by
(iii),
(3.10) p=m(PF)=0"-min [1—4/2,T,

om)
[2, pp. 10-11; 3, pp. 112-113]. This, together with the fact that M(P)
<0, as M[O(I—21K)]<1 from (3.5), allows the explicit evaluation of the
general error estimates for Method III for the norm (iii).

Method IV (Wagner):

(311) wnzxn—l_(l/g)(l— )‘K)a'nﬂ + (1/0)?/ ’
where
(3.12) g=g(8)=1—2§h K(s, t)dt a<s<b ;

here it is assumed throughout that g(s)=<0, a<<s<<b. If K(s, t) has a
high maximum for s=¢ and is nearly zero elsewhere, then (I—/K)x
~gx for all xe C. Define the function ¢(s; =) by
(3.13) P(s; @)=1/g)I - 2K)x
for all ze C. If
(3.14) w=max|l—¢(s; x)|<1,

a<$<<h

xeC

then Method 1V is totally convergent, as it is (5) with P=(1/g)Il, and
(3.14) gives M(I—PF)<w<1. Explicit error bounds are obtained from
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the general expressions by the substitution g=1-—w and the fact that
(3.15) M(P)=M[(1/9)I]£[Izlig} lg()1"

For kernels of the type considered, it may be true that «<1, in which
case Method IV will converge rapidly.

Method V (Samuelson):
(316) xnzxn—l—‘(I+J)(I~‘2K)xn—l+(I+J)y

is totally convergent, provided that

1
3.17 MGC—-IN<—— 0,
( ) ( )= 1+M(AK)
where G is the resolvent operator for 1K which gives the solution « of
(1.1) as
(3.18) r=(I+ Gy,

This follows at once from Theorem 2, as (3.16) is (5) with P=I+J.
Hence,

PF=[(I+G)—(G—=NI—1K)=I—(G—J)I—IK),

as (I+G) is the inverse of /—21K). Thus {—PF)=(G—J)I—21K), and
(3.17) insures that M(I —PF)<1. Explicit error estimates for Method V
are obtained by setting p=1—-M(G-J)1+M(GK)] and from M(P)=
MUI+J)<1+M(J). In case that M(G—.J) is very small, Method V con-
verges rapidly.

4, Numerical example. To illustrate the application of some of
the methods and error bounds given, an approximate solution of the
integral equation

“.1) sﬂ:x(s)—xgi K(s, Ha(t) dt , 0<s<1,

where

s(1—t), 0<s<<i<1,
(4.2) K(s, t)=
t(l—S), O§t£8_<_1 y

will be sought for various values of 2. An approximation x,(s) to a(s)
will be considered to be satisfactory if [x—wx,|<0.01 with the norm
defined by (iii). The characteristic values of K are known to be 21,=
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n'r? and M(K)=1/"

For 2=—1, M(2K)=1/z*<1, and thus Method I will be used. For
W(8)=¢*, as |s*|=>5"1"%, from (E4) the number of iterations required will
10t exceed one, so that

4.3) z(s)=8"—s(1—s%/12

s a satisfactory approximation to x(s) on [0, 1].

For 1=—10, M(4K)=10/z">>1, and the condition for the total con-
rergence of Method I is not satisfied. However, —1K is positive
lefinite, so that Method II is applicable. Take @, (s)=s* and

4.4) 0—=0.49650<"1/(1+10/7%).

from (E4), the number of iterations will not exceed six. Successive
terations yield

4.5) 2,1(5)=5"—(0.41375)s(1 —s?),
4.6) 2,(s)=58"+ (0.34238)s(1 —s*) — (0.62207)s(1 — s*) — (0.06848)s(1 — 5°),
with
4.7) | @, —a,[|=0.01140,
and thus from (E3),
4.8) [| 22—, ]}<C0.006 .
It follows that
(4.9) @,(8)=5"4+(0.46050)s(1 —s*)—(0.72960)s(1 —s")
4-(0.08500)s(1 —s*) — (0.13542)s(1 — ") — (0.00607)s(1 —s7)

is a satisfactory approximation to a(s) on [0, 1].

For 1=25, M(1K)=25/z">1, so that Method I is not applicable. As
(—AKs, s)=—5/9, —1K is not positive semi-definite, and Method II also
fails. However, K(s, t) is symmetric, and 25 is not a characteristic
value of K, so Method III is totally convergent in this case. Choose

4.10) 0=0.28394<1/(1 + 25/7*)
and x,(s)=s". From (3.10),
(4.11) #=0.01084 .

The upper bound for the number of iterations necessary is calculated
from (E4) to be 727. The slowness of convergence in this case excludes
manual methods of computation, but would be of little concern if a
high-speed computing machine is available.
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PSEUDO-ANALYTIC VECTORS ON PSEUDO-KAHLERIAN
MANIFOLDS

SHIGEO SASAKI AND KENTARO YANO

1. Introduction. A pseudo-Kihlerian manifold is by definition a
Riemanniaa manifold M*" of class C” (r>>2) which has a skew-symmetric
tensor field I, of class C’-! with non-vanishing determinant satisfying
following two conditions :

(1) Pplfo=—0y,  (I*Ize=—07)
(2) Lipo=0,

where

(3) Iy=g"1,p,  I"=g*g"I,,,

and a comma denotes the covariant differentiation with respect to gs.
It is known that the real representation of a Kihlerian manifold of
complex dimension % is a pseudo-Kihlerian manifold of dimension 2n
and of eclass C® and the converse is also true. However, the problem
whether a pseudo-Kihlerian manifold M* of class C” (rs%w) can be
regarded, by introducing suitable complex coordinate systems on M*,
as a real representation of a (complex) Kihlerian manifold or not is,
as far as we know, still an open problem. In this paper we shall
generalize some theorems which concern analytic vectors on Kihlerian
manifolds to pseudo-Kihlerian manifolds.

2. Definitions of pseudo.analyticity.

DEFINITION 1. A set of functions (¢, ¢) defined over a pseudo-
Kihlerian manifold M*" is said to be pseudo-analytic if

( 4 ) IAB¢,A:¢,B .
If (¢, ¢) is pseudo-analytie, then (—¢, ¢) is pseudo-analytic too.
DEFINITION 2. A contravariant wvector field u* defined over M* is
said to be wseudo-analytic if
(5) I u® s=ul 15, .

Received June 14, 1954.
1 We assume that the indices run as follows:
Uy By 7y e =1, 2, -ee, m,
A,B,C, --- =1,2, «v-, mn, n+1, -+, 2n.

987



988 S. SASAKI AND K. YANO

DEFINITION 3. A covariant vector field u, defined over M* is said
to be pseudo-analytic if

(6) IABuA,c;':IAouB,A .

If we denote a complex coordinate system of a Kihlerian manifold
K" by z* (=2x*+1y®) and take (x* y*) as coordinates of the real represen-
tation of K*, then (ef. [3])

( 7 ) st=1n+mn+6=0 , Idn+B: _In-rwﬁzaoé .

In this case, (4), (5) and (6) are nothing but Cauchy-Riemann equations
for a complex analytic function ¢44¢, for a self-adjoint complex
analytic contravariant veector u®++u”"® and for a self-adjoint complex
analytic covariant vector u,-+4%,,,. (We must take account of the fact
that the real representation of a contravariant vector u®-eu"** is (u%,
u™*®) and that of a covariant vector u,+1%, ., is (2u,, —2u,.,)). Hence,
the Definitions 1, 2 and 3 are appropriate.

When 14, takes the value (7), (5) means that u* ; is a matrix which
is the real representation of a unitary (rxn) matrix. Hence we may
say that u“, is pseudo-unitary.

THEOREM 1. If a set of functions (¢, ¢) is pseudo-analytic, then ¢
and ¢ are both harmonic functions on our pseudo-Kahlerian manifold.

Proof. By hypothesis

¢,B=IAB¢,A s
hence we get

A¢:¢,BOQBC=IAC¢,40=0 .
As (4) can be written also in the form
¢,B: _IAB¢,A s
we get in the same way 4¢=0.
THEOREM 2. If a contravariant vector field u* and its associated

covariant vector u, are both pseudo-analytic, then u* is a parallel vector
Sield.

Proof. 1f we use covariant components of u4, then (5) can be writ-
ten as
—Iu, =I"uy, .

Comparing the last equation with (6), we can immediately see that our
assertion is true.
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THEOREM 3. If u* is a pseudo-analytic contravariant wvector field,
then I*;u® ¢s also pseudo-analytic.

Proof. (I45u®) o 10y =I*yu® (1),
=4I p=I",(I%u°),p .
We shall remark that equation (6) can be written also as
(8) XI4,=0

where X=u4(0/ox4) and XI4, is the Lie derivative of I4, (cf. [5]). We
put further Y=v4(3/0z4) and

[uv]t=uB(v* z) —v5(u ;)

and similarly define [Iu, v]*, [, Iv]Y, [Iu, Iv]*. Then we get the
following

THEOREM 4. Let ut and v* be two pseudo-analytic contravariant
vector fields, then [uv]®, [Lu, v]*, [u, Iv]* and [Iu, Iv]* are pseudo-analytic
too.

Proof. 1t is sufficient to prove the pseudo-analyticity of [uwv]*. As
(XY—YX)f =[]t O
ozt

it is sufficient to show that
(XY -YX)I4,=0.
However, this follows immediately from the assumption that »* and v*
are pseudo-analytic.
3. Curvature tensors.

THEOREM 5. (cf. [3])

( 9 ) (1) RAECDIEB =IAEREBCD ’
(ii) RABCD ZIEAIFBREFCD .

Proof. From (1) we get
O=IAB,0D_IAB,D(,’:RAECDIEB'—RHBUDIAE .

Equation (9ii) follows immediately from (9i). The curvature tensor
R4,,, is pseudo-unitary with respect to the first two indices.
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THEOREM 6.
(1) RBC:IHBIFCR]!F 9
(10) (11) R y== “IAL‘IFBREF ’
(iii) IABRBC:RAB[BC y
(IV) IHAR/JBZ -IHBRHA .
R4, is pseudo-unitary too.
THEOREM 7.
(11) RABCDIAB:21E()RED (= _2IEDRE0) .

Let us prove Theorems 6 and 7 at the same time. First
Bpopl*?=—I", B 1o p=I" 1 (R op1+ R .10) =1"oR* s p s+ 1" p B
Hence we get
12) Rynopl**=IoRyp—1"pRpy .
Now, from (9) we see that
Byo=I" " Ry, 009"’ = — 11" (Ryopp+ Ropro) -

By virtue of (12), the first term of the right hand side of
equation becomes R,,— R, I°,I", and the second term can be eas
to be —R,,. Hence we get

RBG‘:REFIHBIFU .
(101i, iii, iv) can be immediately seen to be equivalent to (10i).
use (10iii), then (12) reduces to (11).
4, Pseudo-analytic vector fields.

THEOREM 8. Let u, be a pseudo-analytic covariant vector fi
pseudo-Kahlerian manifold M*™, then it satisfies the relation

(13) Uy 509" —RP ;=0 .
Especially, of M s compact, then w, is a harmonic vector. (cf. |

Proof. By hypothesis

A _—J4
I HZLA,B_I Bu]j,A!

I g0y o0 =1 gy 409" =Ty yo=—3R" U 1 .
The last equation can be transformed by (12) into

Iy yog® = —1" Ry yg" "uy=I1" R Pu
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As det (I1,)40, we see that (13) is true. Especially, if M*" is compact
and orientable, then by de Rham’s theorem [2], %, is a harmonic vector.

THEOREM 9. Let u* be a pseudo-analytic contravariant vector field
over a pseudo-Kahlerian manifold M*™, then

(14) u* 509"+ R4uP=0 .
Especially, if ut =0 and M*" is compact, then u* is a Killing vector.

(cf. [4], [6]).

The proof is quite similar to that of Theorem 8. Instead of de
Rham’s theorem we use a theorem due to one of the authors (cf. [4], [6]).

THEOREM 10. Suppose that u* and v, are conltravariant and co-
variant pseudo-analytic wvector field over a compact pseudo-Kahlerian
manifold M*. Then u*v, is a constant over the manifold M>".

Proof. It is sufficient to show that u4v, is harmonic. We put

d=uv,.
Then we get
Adp=(U" pov+2U* 3040 +U 4 50)9"% .

Putting (13) and (14) into the right hand side of the last equation we
get

Adp=2v4 u* g™ .
However, the right hand side can be transformed as follows:
20, oUA 9P = —z(uA,EIED[DB)QBovA,UZ "2(IAEME,D[DB)QBOUA,0: _zuE,D[DCIFC?)E,F
=—2u" ,(=I" I g" P Y0y, p=—2U" v, ;9" "= —d .
Hence 4$=0, and ¢ is a harmonic function.

THEOREM 11. Suppose that M?*™ is a compact pseudo-Kdihlerian
manifold. If the Ricci tensor R,, s positive definite, then there ewxists
no pseudo-analytic covariant temsors other than the zero vector. (If R,
18 positive semi-definite, them the covariant derivative of any pseudo-
analytic covariant vector field vanishes). (cf. [1], [6]).

Proof. We put

¢=gABuAuB ’

then we get
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A(f):(gABuAuB),opgonzZQAB(uA,UuB,D+u(1,01)u3)900 .
If we substitute (13) in the second term of the last equation we get
Ap=2942g"u ; 5 ,+2RPU U,

Hence, by virtue of Bochner’s lemma (cf. [1], [6]), we can see im-
mediately that our assertion is true.

THEOREM 12. Suppose that M is o compact pseudo-Kihlerian
manifold. If the Ricci temsor R, is negative definite, then there exists
no pseudo-analytic contravariant wvector field other than the zero wvector.
(If R,; is negative semi-definite, then the covariant derivative of any
pseudo-analytic contravariant vector field vanishes). (cf [1], [6]).

The proof is quite similar to that of Theorem 11.

THEOREM 13. Suppose that M*™ is a compact pseudo-Kahlerian
manifold and u, is a covariant vector field over M™ such that u, 8 ex-
pressible in a neighborhood of each point of M™ as ¢ x+1*4¢ . where ¢
and ¢ are harmonic functions in such neitghborhood with respect to the
pseudo-Kiahlerian metric. If the Ricci temsor R, 4s positive definite,
then u;=0, that s, the set of functions (¢, ¢) is pseudo-analytic. (If
R, 158 positive semi-definite, then the covariant derivative of u, vanishes).

(cf. [1], [6]).

Proof. We put

T=g"umy, ZLA::(];),A‘{‘II;A(I!),IJ ,
then we get
AT = 29" 4 U p -+ 29U 4 o2 5)G""
Now, the second term of the right hand side of the last equation is
transformed in the following way :
L =20""(}p cap+1" 49 cp)(P 5+ 17, 1 )g%"
=20"%( —RH('AI)(!),II 17, '”C/;'D‘/J,H)(d),B +1I", b )9’
=20"%(R" 4y + 1" \R" 1, ;NP 5+ 1" 5 )9
=2R%Pu .

In the process of the transformation we used (10 ii) and the fact that
¢ and ¢ are harmonic functions. Henece

AT =2g*5g%%u , s p+ 2RPU Wy,

so 4T>0. Accordingly, by virtue of Bochner’s lemma (cf. [1], [6]),
we see that the theorem is true.
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ON THE TOWER THEOREM FOR FINITE GROUPS

EUGENE SCHENKMAN

Wielandt [2] has given a very ingenious proof of the fact that the
tower of automorphisms of a finite group without center ends after a
finite number of steps. Using his work as a model a proof of a similar
tower theorem for Lie algebras was given in [1]. This depends on the
following three facts:

(a) If A (with no center) is a member of the tower of derivation
algebras of a Lie algebra L then the centralizer of L in A is (0).

(b) If L is a subinvariant Lie algebra of A and if the centralizer
of L in A is (0) then the centralizer of L® in A is contained in A.

(¢) If L is subinvariant in 4 then L® is normal in A.

In view of the much sharper estimate obtained in the theorem on Lie
algebras it seemed to be of interest to attempt to improve on the
results of Wielandt using the method of [1]. The group theory analogue
of (a) is to be found in Wielandt’s work. I shall prove here the
analogue to (b) and then show by a counter-example that the method
is not applicable to get the tower theorem even for solvable groups

since the analogue to (¢) does not hold for groups even under the
additional hypothesis of (b).

THEOREM. If G s a subinvariant subgroup of the finite group A
and if the centralizer of G in A is the identity, then the centralizer of
G* in A is contained in G°. It follows that «f N is normal in G such
that G|N is nilpotent then N DG and the centralizer of N is contained

wn N.
Here
Go= N G*
Rl
where G*=[G*~', G] is the subgroup generated by commutators of the

form [A, gl=hgh~'g~!, he G, geG.
The proof of the Theorem depends on two lemmas.

LEMMA 1. If G is a finite group then G=G°H where H is a
nilpotent subgroup of G.

Receive;i; July 19, 1954. This research was supported by the U.S. Air Force under
contract number AF19 (600)~790 monitored by the Office of Scientific Research.
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LEMMA 2. Let G be a group with center E ; then the centralizer W
of G in G is contained in G*. It follows that if N is normal in G such
that G|N is nilpotent then N O G® and the centralizer of N is contained
n N.

I shall also give an example to show that under the hypotheses of
the Theorem G® need not be normal in A, even with the added re-
striction that G be solvable.

Proof of Lemma 1. The proof is based on the fact that a group
is nilpotent if and only if its @-subgroup contains the commutator sub-
group G* [3, p. 114]. If G is nilpotent the theorem is trivially true
since G*=FE and G=GE. If G is not nilpotent then the @-subgroup
does not contain G*. Accordingly we can pick a minimal set of generators
g1, *-+, g of G where at least one of the generators, g, for definiteness,
is in G*. Then ¢, ---, gs_, generate a proper subgroup K of G; and
G=KG*. On the other hand G/G* is nilpotent and hence the @-subgroup
of G/G” contains the commutator subgroup of G/G®. Accordingly g¢.G*
is not essential as a generator of G/G® and therefore ¢,G*, ---, ¢:.1G*
generate G/G*. It follows that G=G“K.

Now we proceed by induction on the order of the group. Since K
is a proper subgroup of @, its order is less than that of G and we can
assume that K=K°H where H is a nilpotent group. Then

G=G"K=G"K°"H=G"H

sinece K¢ is contained in G* and the lemma is proved.

Proof of Lemma 2. G is normal in G and hence so also is W.
By Lemma 1, G=G“H where H is a nilpotent group. Let G,=WH.
Then G, is a group since W is normal and H is a group. Also G,=
GvH, where H, is nilpotent. But G¢=(WH)* is contained in W since
H is nilpotent and W is normal. This can be seen by showing induc-
tively that (WH)WH?*. For let # and y be elements of W, 2 be in
H, and % be in H*. Then if 2k is in WH and if yk is in WH*

[@h, ykl=xhyh* hkh o' hk " b~ kR K"y~ [, K17 (R, k]

which is an element of WH**!, since the four underlined expressions
are in W and [%, k]e H**.

Now if W is contained in G? then WZG® since GYyZG®. Hence the
lemma is false only if WGy, We need only consider therefore if
there is an element w in W, w not in G*. We shall write w=gh where
g is in G¥ and %~ in H,. Of course h7e since then w would be in GY.
It follows that A—g~'w is in W, since W2OG? and therefore H, N\ W=
E. But H,N\W is normal in H, since W is normalin ¢G. Thus HN\W
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has intersection P=4E with the center of H,. But this will imply that
P is in the center of G. For G=G*H=G"H, since HCG*H,; and P is
in the centralizer of G* and in the center of H,. We have shown that
if the centralizer of G* is not contained in G* then G has center not
equal to E contradicting the hypothesis of the lemma.

Proof of the Theorem. By Lemma 2 we know that if Z is the
centralizer of G® in 4 then ZN\GZG* since otherwise G would have a
non-trivial center. Now if Z is not contained in G* let K be the group
generated by G and Z. G° is normal in K since

[G°, G1=G® and [G°, Z]=E<G®.

It follows that Z is normal in K and hence K=ZG. But G is sub-
invariant in 4, and hence in K. That is, G is a proper normal sub-
group of G,, G, contained in K. Pick ¢, in G, but not in G. Since
K=7G, g,—gz where ¢ is in G, and z in Z. Furthermore z=g¢g7¢, is in
G, and not in G. Now G and 2 generate a group L=G(z) since G is
normal in G,. Also L*=G*; for

LIG*=G/G* % (2)G*[G*

and hence is nilpotent.

Now since z¢ G°=L¢ it follows by Lemma 2 that L has a non-trivial
center; but this is a contradiction of the fact that G has centralizer £
in A. This completes the proof of the Theorem.

The counter-example mentioned earlier is as follows. Let H be the
non-Abelian group of order 27 all of whose elements are of order 3;
and let ¢ and b be generators of H. Let o and r be automorphisms
of H defined by a’=a?, 6°=0>; and a"=q, b"=>b*. Let B be the holomorph
of H with s and r and let G be the subgroup of B containing ¢, a, and
¢, b]. Then G is invariant in the subgroup containing G and b which
subgroup in turn is invariant in B ; and it is easy to check that G“ is
the group generated by a and [a, b].

Now let p be the automorphism of order 2 of B defined by 0°=a,
a*=b, o’=r, =0, and let A be the holomorph of B and p. Then &
is subinvariant in A; the centralizer of G in A is the identity, but
clearly G* is not normal in A since a’=b.

Omitting the hypothesis of solvability Professor Zassenhaus kindly
furnished me with a similar example; in fact, an example of a group
G=G* with trivial center such that the group of automorphisms of G
is not complete.
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ON THE NUMERICAL SOLUTION OF POISSON’S
EQUATION OVER A RECTANGLE

P. STEIN AND J. E. L. PECK

Introduction. We consider the equation

2. 2.
22+ 2% i, )
2w oy’

over the rectangle 0 <ax < a, 0<y<bh, with given boundary values
for z. Following the usual procedure (see for example Hyman [1]) we
approximate the solution by solving a set of mn simultaneous equations,
arising from the corresponding difference equation. If we write

a:(n—i— 1)../].’,17, b=(m + 1)Ayv tO:Ay/Axy a; ;= -—f(?d;l’, M’U)AZ/“’
and z,;=2(j4x, idy), the mn equations are of the form

(1) 2(1+p2)z£,]:pz(2’i,]‘+l+zz',j—1)+zi+],j+zi—1,j+a/i,j ,
p=1,+2c,m, J=1,.-+,m.

A solution of this set of equations is given by Hyman [1]. In the
case where the boundary values are zero, the solution takes the form
Z=CwD [1, p. 340] where C and D are matrices which depend on n
and m and may be written down without any calculations, and w is a
matrix depending on m, n, p and the values of f(x, ¥) at the lattice
points. The matrix « requires somewhat elaborate caleculations. To
obtain the solution with given boundary values, he adds to the matrix
CwD the value of ¥ as a matrix obtained from the solution of the
equation fu/dx*+ Luldy*=0 with the given boundary values. He ob-
tains for # the matrix value U=C¢ [1, p. 329], where C is the matrix
mentioned above and ¢ is a matrix depending on %, m, p and the boundary
values and requires to be recalculated for every set of boundary values.

In this paper the solutions of equations (1) are obtained, column
by column, in the form Z,=>,M,,B,, where the M, are matrices
depending on m, n, and p and which require somewhat elaborate
calculations, and the B, are vectors depending on m, %, p, the values
of f(z,y) at the lattice points and the boundary values and can be
written down without calculation. We may regard this solution as
giving an explicit formula for the values of z at the lattice points.

The principal work in the calculation of Z; is the calculation of the
matrices M;,. It will be shown that it is suflicient to calculate a

Received July 3, 1953.
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selection of columns of Z, as the method lends itself to a stepping off
process; also that all the matrices used can be written down easily
from a knowledge of their top rows. The calculation is simplest when
p=1. Further, the case when p=1 or is nearly 1 is the most accurate
[1, p. 332]. It will be shown that when [¢*~1|<(1, Z may be obtained
by successive approximations with the help of the matrices calculated
for p=1. It appears to the authors that if a not very elaborate set
of tables were to be prepared for selected values of j, m and n with
p=1, the calculation of Z would be much simplified. Further, if such
a set of tables were available, it might be of assistance in the iterative
method of the solution of these simultaneous equations when the
boundary is not a rectangle.

In §1 we develop the method of solution. In 8§82 and 3 we give
methods by which the required matrices may be evaluated. Section 4
deals with the iterative process when p is nearly 1, and this is ampli-
fied in §§ 5 and 6.

1. We write the mn equations (1) in n sets each consisting of m
equations. A typical set is

200+ %)z~ 25 =21, 551F 21, 500) F Ay 2,
—2;+ 21+ ,02)23,3‘ —z:s,j:f’z(zz,jn + Z:,j—]) + 4y ;

(2)
- zm-l, J + 2(1 + Pz)zm,j :‘P?(an,j+1 + 27)1,]‘—1) + am,j + zm-i-l,j .

We write Z; for the vector (z,;, 2., +++, 2.,), A, for the vector (a,;

Qo+ vy yy), Z; for the vector (z,,,0,0,---,0,2,,,; and M,(a) for
the m xm matrix

! o, —1: 0;
(3) -1, «, —1,
0, -1, «a,

The equations (2) then take the form

an(z+2IO2)ZJ:AD2(ZJ‘+1+Zj—l)_{‘Aj“I“Zjl ’ 921; e,
or

M, (2+20%) 2, — Z, =p~A+Z)+7Zy =B
" — Zot M2 200V — Zy= Ay + 27 —B,

- Zn—l + ‘D”ZMn(Z + 2P2)Zn, :p-—’_’(An + Zn,l) + Z77,+1:Bll .
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These equations can be solved by iteration. See for example Todd [3].

The class of all ordered sets of m real numbers is a vector space
over the ring of polynomials in the matrix M, (2+2p*). Interpreting
equations (4) in this way, we may obtain their solution from Cramer’s
rule in the form

where <7 is the determinant of the matrix of matrix coefficients on
the left of (4) and the ../, are cofactors of /. One may readily
prove that .~ ,=.#,; and that when j<#Z

(6) 3 =Dy M2+ 20)) D, M, (2 + 20)

where D, is the polynomial defined by the nth order determinant

D, (x)= x, —1, 0,
-1, z, -—1,
0o, -1, x,

and DJ(x)=1.
One may regard (5) as expressing z in terms of the given values

for f(xz,y) and the boundary values. In particular when j=1, we have
from (5) and (6)

(7) Z=D7(pM,(2+20) >, D, (p~* M2+ 20%)) B, .
k=1

As was pointed out by Hyman [1, p. 331] it is unnecessary to
calculate the remaining values of z by the use of (5). It is sufficient
to use (7). Knowing Z, and Z, we may ‘‘step off”’ using (4) to deter-
mine Z, and then use it again to get Z, from Z, and 7, .

2. In this section we obtain some properties of the polynomial
D, and of the matrices D,(3M,(x)).

THEOREM 1.

(8) D(z)=aD,-(x)—D,-.()

(9) D)= S~y (" e

=0
a7z+1_b71+1

(10) D (x)= Pa—b)

a=z+VF—4 , b—aw—1Ve—4
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Laf2) 1 N e
(W) D=2 (5, )y =
(12) D,a($)=Sinh. (ﬁ;lﬁl) , x=2 cosh ¢
sSin
183 D@—netLl, 2—2cos 0
sin

(14)  D,(x)= I <x— 2 cos 7,1”,,“) )
r=1 n+1

Formulae (8), (13) and (14) are known ([2] and [4]). Formula (8)
follows immediately from the definition and (9) may be proved by
induction using (8). Formula (10) also follows from (8) by induction.
Formula (11) comes from (10) on writing a=2+vy, b=xz—y. The equa-
tion x==2cosh ¢ means that a=2¢*, b=2¢"% whence (10) gives (12).
Formula (13) is preved similarly. By (13) the roots of the equation
D, (2)=0 are 2cos (rz/(n+1)), (r=1,--., n) giving (14).

COROLLARY. If M is a square matrix and I is the corresponding
identity matric : —

(15) Dy(M)=MD, (M)~ D, (M)

(16) D,(M)—= [5';0]( _1y (”; T)M

(17) D=2 3 (3 TV or —ary
(18) D,Z(M)=le11 <M— 2 cos £1 I > .

THEOREM 2. If P is any polynomial, then P(M,(«)) is an mxm
matriz which s symmetric about both diagonals.

If two matrices which commute are symmetric about both diagonals,
then so is their sum, product and any scalar multiple. This theorem
therefore proves that the matrices D,(3M,(«)) are symmetric about
both diagonals.

THEOREM 3. Let F be any polynomial and let a,; be the elements
of P(M,(«)). Then if we interpret a,;=0 whenever ¢ or j is < 1 or
>m, we have, for 1<i<<m, 1 <j<m and i+j < m+2,

(19) Qi =01 j1 T Qiajor s
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and for 1 <<i<j<m and 1+5<m+1,

(20) Qi 5=y 4501t Oy _gajegt oo FQygajog .

Theorems 2 and 3 enable us to write down all the elements of
P(M,(«)) from a knowledge of the elements in the first row.

Proof of Theorem 3. We observe that (19) is invariant under addition
and scalar multiplication. We observe also that in the case i=1, (19)
reduces to a triviality. If j=1 it becomes a;,=a,; which is true by
symmetry about the main diagonal, and if ¢+j=m+2, it becomes
@, ;=0;-1;-1, Which is true because of symmetry about the other diagonal
(Theorem 2). Formula (19) will therefore be established if we can
show that it is true for M:(«), where + is a nonnegative integer, and
when 2<i<m, 2<j<m and ¢+5<m+1.

By inspection it is true when »=0, 1. Let «], denote the ¢, jth
element of M, («). Then af,=—a;;! +aa;;'—aj;i, for 1 <{i<m, 1<j
<m. If we assume that it is true for r—1 we have for 2<{i<{m,
2<<j<m, i+7<<m+1, that

- -1 1 -1
i y=— Q2| s o+ QAT — Q[T
S N
a{llj_,+aa1,+]1 Ty =Wy s AT 50

which completes the proof of (19).
Formula (20) follows from a repeated use of (19).

THEOREM 4. If we denote the 1, jth element of D, (BM.,.(x)) by a* then
(21) ayy=aly’, 1<j<k, n<k<m.

From (15) we have
(22) a’injn”* . ﬁam Mm—=1 + aﬂam ;=1 ‘Qagrf,}7i—11 —_— a/qliz}n—-ﬂ

where a?y*=a??7'=0 and 1 <{j<<m. From (22) we have by induction
on % that ay"=0 if j§>>n+2, which means that ay;'=0. Since we
must write a7y '=aly'=ali; =0, this allows the following induction on 7

M ___ myn—1 m,n—1 71,001 n,n—2
al‘__ﬂau‘ 1 +a9a ,@a 1,7+1 a/lj

= —fBatit+afaiit — Batin —al T =aly

However the theorem is true for n=1 and n=2.

Formula (21) shows that the top row of the matrix D,(M,(«)) is
essentially the same for all useful values of %, while (22) gives a re-
cursive method of computing this top row. Theorem 3 and the remark
after Theorem 2 show how the remainder of the matrix can be filled
in from the top row. Thus the computation of the matrices D,(SM,.(x))
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for n<<m 1is simplified, and the matrices lend themselves to easy
tabulation.

3. In this section we give some results which are useful in the
calculation of D;'(AM,(x))=[D.(SM,(x))]".

Since the inverse of any matrix is a polynomial in that matrix,
we have D;'(3M,(«)) a polynomial in D,(3M,(a)) and therefore a poly-
nomial in M,(x). Theorems 2 and 3 therefore apply. It is thus
sufficient to compute only its first row. From the first row we may
obtain its elements a;; for 1 <<7<{j<{m and 7+j <m-+1 by (19) or (20)
and then the other elements can be filled in by symmetry.

THEOREM 5. If the element in the ith row and jth column of
M, («) is a,; and if a=2 cosh¢, then

(23) ai‘]:vs_inh 1P sinhk(im +1—-9)p i<

sinh ¢ sinh (m + 1)

For proof we have first that

(24) ai,j:@—_l(%)%z).j(a) , i<

The result then follows from (12).

THEOREM 6. If

a,=a ——72~ cos rm ,
B n+1
then
(25) D (BM, () —=F-" 11 M;(a,) .
r=1

From (18) we have
Dn(‘BMm(a)): ln[ </’9Mm(6¥)“2008 rT I >
o n+1

(26) — g I M7,1<a—g cos T )
r=1 & n+1

="M, ().
r=1

The result follows immediately.

A result which may be easier from the computational point of view
is to express D;'(3M,(«)) as a sum of matrices. This is done in the
following theorem.
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THEOREM 7. If

2 rT
o= — — €COS ,
/A n+1
then
27 D; (M, ()= migint 7T M@, .
(27 (M, (@)= (+1)>“( 1y ol («,)

From (26) we have that
D,(3M () =11 FM (ct)
Therefore
D (EM (@)= ¥ e, (EM ()}

where the ¢.’s are suitably chosen scalars.
It f@)=0p., (x—7,), 1,77, when r=£s, then

f2)'= Zf(n) (@—7)".

To obtain the values of the scalars ¢,, we put f=D,. From (13) we
have

D,/(2 cos )= (n+1) cos (n+1)0 sin ¢ —sin (n+1)0 cos § ( -1 ) .

sin*0 2sin 0
This gives
D,,’(z cos T”i > = (= 1)"'*,1(??;—% n
e 2sin 7
n+1

and therefore

=(—1)y*12(n+1)"sin* 7"
e,=(=1)*"'2(n+1)"sin P

With the help of (23) we can obtain a more explicit result.
COROLLARY. If a;; is the ¢, jth element of DM, (x)) and
2 rT
2 cosh¢p,=a— ° cos - ,
‘8 9Z+1

then a,,—a,, for all © and j, and for i <_j
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a8 , 27z \ sinhd¢, sinh (m +1—7)¢,
28 =[Am+1)]! — 1)+t A ) R R SN T S T
(28) a.,=Lpn+1)] rzgl (=1 < e n41 ) sinh ¢, sinh (m + 1)¢,

In the case i=1, this reduces to

(29) a,y=[f(n+1)]"" Z( 1)’*‘(1 cos- 2171>'S{%72(lm%1~;)2¢'

4. In the formulae of the twec previous sections, if p=dy/de=1
we have a=4, =1 and there is some simplification in the resulting
calculations. It is pointed out by Hyman [1, p. 322] that the case p=
1 is the one which gives the most accurate results. Hence it is sug-
gested that in arranging the lattice points of a rectangle, one should
attempt to have p approximately one. We now give a method of find-
ing a correction, when p is approximately one, to the solution obtained
by assuming p=1. It is found that in this way we can make use of
tables prepared for the case p=1.

We write p*=1+48. The equations (1) then become

(30) (4+20)z;, ;= (14 0)(1, 501+ 21,5-1) + (113 + 2im1,,) + Wy 5 -
Let

Az, ;=2 ;— L g1 Ly j-1

L@ =42, ;= @11 ) = @1y T s — Ty oy -
Then (30) may be written
(31) Lz y=—0dz;+a,;.
We suppress the first term on the right of (31) and find %{; so that
(32) [luiy=a,;

and u{)=z, ;, on the boundaries. Let Z denote the values of z,, at the
lattice points, with similar notation for U and V¢ with »>1. Let
Z=U®+V®, then U™ is an approximation to the values of Z with

error V@ for which an equation is obtained by subtracting (32) from
(31). Thus

o= —ddz, ;= — 00— bAush

and V% is zero on the boundary.
We now find U® such that

[ty — dus

and U® is zero on the boundary. Writing V®@=U®+ TV we obtain, by
subtraction,
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[(Jvi5=—odvf; .
Proceeding in this manner we obtain for r>1

V(T)Z V(r+1) + U(r+1)
(33) [Juir b= — o du”)
(34) (w87 = —odvi;

where V¢ and U™, r >2 are zero on the boundary. A formal solution
of equations (30) is thus

(35) Z=SU® .

We observe that equations (32) and (33) to determine UY are the
equations (1) where p=1 and where different sets of values are suc-
cessively used in place of the «;;,. The formal solution (35) will be the
solution provided V' tends to 0 as » tends to o. This will certainly
be the case if, given any arbitrary X° we can show that the iteration

[P =—d4af

leads to the result X”—0 as #—> . In the next two sections we

obtain the condition on & that this should be the case, and we obtain
an estimate of the error if we take Z=3:_, U,

5. We proceed to the solution of (33) (and (34)) when r >2. The
equation may be written
— U AU —uf I =ugn ) — 6 (= uf .+ 2u) —u )

If U is the vector (u§?, uf?,---, ufy) then since all boundary values
are zero, these n equations can be written

(36) MU =U P+ U = oMu(2)U" .
If now _# is the m xm matrix of matrices defined by
M,4), -1, 0,
= -1, M,4), -1,
0, —-I, M,4),

_#* i3 the m xm matrix of matrices defined by
M,(2), 0, 0,

A * = 0, M2, 0,
O ’ O ’ Mn(z) ’
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and U is the vector (U ,.--, US), then since all boundary values
are zero the m equations (36) can be written

L//Z'U(T'H): _ av //:kU(T)
and so
(87) UCtO=—6_ 7 /U,
In the case r=1, we must take into account some boundary values.

Thus let Z'=(Z/, Z/,---, Z,’) where Z/ (i=1,.--., m) is the vector
(Zi9s 0,5+, 0, 2;,.1)- Then the solution of (33) for r=1 is

(38) UP=—6_7" (.7 UP=2").
Returning to (37) we have
UM =(—0. .2t 2%y-2U® .,

Hence U™ and V tend to zero as r tends to o provided that a cir-
cle of radius 0|7 and center the origin contains the spectrum of
AT,

The spectrum of _~-'_~* is found most easily by considering the
matrix .2 *_»~. Writing M=M,(2), we have

A
(M7, 0, 0, o\ M2, -, 0,
0, M-, 0, - ~I, M+2I, —I,
1 o, o, M, -| 0, —I, M+2I,
\
(LM, M 0,
—M-, I+2M-,  —M-,
- 0, —M"', I+2M-,

If {p,, 7=1,-+-, n} is the spectrum of M, we may use a theorem
of Williamson [5, Theorem 1] to find that the spectrum of _~z*-'_ .«
consists of the spectra of the n m xm matrices

14+2p7, =pit, 0,

— 1 -1 —pt
ut, 142p0t, e =y M, (¢, +2).

0, =t 127,

By (14) this is the set /1,71<,u,‘+2+260$ S’li>,7-:1,...,n;s=1,...,m_

m—+
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However by (14) also u#,=24-2cos Tl , r=1, -+, n. Thus the spec-
n

trum of _# ' ~Z* is

rT
24+ 2cos —-—

* n+1 . 1 )
o e e T T r= y vy N
4+2cos T 2cos- 7 sinz .57 |

n+1 m+l . 20m+l) §=1, «--, m.

N
2(n+1)

This spectrum therefore lies in the open interval (0, 1). Z=>':,U"
is thus a solution of (1) if

) T

R TR U

sin. "7
2(n+1)
and certainly if |0]<T1.

6. We shall now estimate the error if we take Z=3S3_ U™, We
suppose that || < 1, and consider first the case s>2. Since the
spectrum of _~ -'_~* lies in the open interval (—1, 1), using (37) we
have

4= 3,U00= S U= S (=02 " ¥y U
(39) R S

oA O R

Now the spectrum of the matrix (I+d.7z-'.zZ*)"! is

’
sy rr

2(n+1)

If 6> 0 this lies within a circle of radius one, while if 6<0 it lies
within a circle of radius (1+0)*'=(1—16))"*. Therefore we obtain from
(39)

@) |z- 32U
i r=1

<loL=la) T, when <0,
< Bl |U@y, when 40
1The norm |7'f of a matrix is sup ||7T%|/||«|, where |z| is the square root of the sum

of the squares of the coordinates of the vector «. Jf T is symmetric it is known that
IT||=|4] where 4 is the characteristic root of 7 of maximum modulus.
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Consider now the case »=1. By (37) and (38) we have

o0

Z—UP= S\ (=07 ¥ (=62 ). 2 *UP =2

(41) =

gk

(-(i //’[L,//*)]'(UO) — //*—1Z/)

r=1

=—0. AL+ YOV — %17

fl

We wish now to obtain a formula corresponding te (40). We observe
that

M;42), 0, 0,
/%—1: 0’ Mgl(z) ’ O’
0, 0, M;2),

and the ¢, jth element ¢;; of M;'(2) is given by (24) and (8) as

D:(2)D,_2) _i(n—j+1)

CLTCT @) nil

’ (]

A

By direct multiplication ..2*-'Z" is thus a vector P=(L, ., ---, P.),
where

Pi:‘Mrzl(z)Zi/ :(’Yl + 1)_l(nzi,u + 2041 (?’L—- 1)zb,u +221,n+1’ D) zz,u+nzi,7z+l) .

Now
|Pl= 3 | Pl
— z>ij‘1 ]}; (n4+1)*((n—75+ 1)z, s+ 521 ner)’
=(n+1)"* 321 (P ZoF +1Za s [P) +25(n — 5 +1)(Z0, Z,11)}
— 6@”13 [@r+1)(| 2o+ Znss ) + @0+ 4020y Ziis)]
< %((ffjg) 12041 Lo 4 20y Ziri)}
< (2412l
Thus

| 27 |=|P| < / 2; (iZol+ 1 Znsal) -

2(Zy, Zy+1) is the inner product 3L, 2i0 2i w1, and (Zo, Zp o)== 20| 1 20411l -
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From (41) using the same arguments as for (40) we obtain
2= < I [T+ 2 Zl 4120 | when 00,

gwm—lao-l{a|Uﬂ>u+/l?§ (1Z)+1Zua} when 6<0.
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THE MAPPINGS OF THE POSITIVE INTEGERS INTO
THEMSELVES WHICH PRESERVE DIVISION

MORGAN WARD

1. Introduction, First Theorem. Let L denote the lattice of the
integers 0, 1, 2, ... partially ordered by division. We study here
mappings

b o b1, bay 00y ¢)n:¢(n)! M
of L into itself which preserve division; that is,

(i) If n divides m, then ¢, divides ¢,,.

Since ¢, divides every ¢, and every ¢, divides ¢,, we lose little
generality by assuming

(i) ¢o=0, ¢ =1.

Any mapping with properties (i) and (ii) will be called a divisibility
sequence on L.
A mapping ¢ is said to be of * positive character’’ if

(iii) ¢, >0 for »>0.

A divisibility sequence of positive character will be called a normal
sequence or normal mapping of L.

In many instances, we are interested in the occurrence of multiples
of some assigned modulus m among the terms of a normal sequence ¢.
If ¢,=0 (mod m) for some >0, we call m a divisor of ¢ and r a
“place of apparition’ of m in ¢. If in addition ¢,=%=0 (mod m) for
every proper divisor s of », » is called a  rank of apparition’ of m
in ¢. If m is not a divisor of ¢, we assign to it the rank of appari-
tion zero, which is consistent with the definitions.

It follows that every modulus m has at least one rank of appari-
tion in ¢. If each modulus has exactly one rank of apparition, we
say that ¢ ‘“admits a rank function’’. Indeed if the rank of m in ¢
is denoted by p(m) then p is a divisibility sequence. Furthermore

(iv) ¢,=0 (mod m) if and only if n==0 (mod p,,).
Under this condition, multiples of any integer m if they appear at all
in ¢ are regularly spaced as in the identity mapping i(rn)=mn.

Normal sequences are of common occurrence in number theory ;
the totient function and its various generalizations [3, chap. 5] is a

Received April 19, 1954,
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familiar example. For other examples and generalizations see [3, chap.
17], [4], [e], [9], [10].

Normal sequences with property (iv) are of considerable arithmeti-
cal interest, and special instances, notably the Lucas sequences [6]
have been intensively studied [1], [5].

We study here general properties of all divisibility sequences and
in particular develop necessary and sufficient conditions that a normal
sequence shall admit a rank function. Our first main result is as
follows.

THEOREM 1. A mnecessary and sufficient condition that a normal
mapping ¢ admit o ronk funclion is that it have the following property:

(v) d(pn) < p(gn)=a¢((n) p, ¢ any distinct primes.

Here we are using the lattice notation explained in §3; the left side
of (v) is the greatest common divisor of ¢(pn) and ¢(qn).

2. Further Results, Second Theorem. Our other results are
formulated in terms of the notion of the ‘‘ generator’ of a normal
sequence. Let

(2.1) ’nzpfb]pélz e pgk

be the prime factorization of any positive integer n of L. Define a
new mapping ¢ of L by ¢(0)=0, ¢(1)=1 and

(2.2) gm=gm=+ N o), n>1.
Then ¢ is called the generator of ¢. It has properties (ii) and (iii),
but not in general property (i). It is shown in §5 that formula (2.2)
may be inverted to express ¢ in terms of ¢ thus:
(2.3) Bm)= () T ¢(c).
Here (¢): 1=c¢, ¢, -+, ¢,-1, ¢,=n is a complete chain of divisors of =
in the lattice L, ¢, covering ¢,;,, for ¢=1, 2, ---, r—1. The indicated
least common multiple N of the products IT ¢(c,) is to be extended over
all such chains (¢) of divisors of n.

For example, if =12, there are three complete chains: 1, 2, 4,
12; 1, 2, 6, 12 and 1, 3, 6, 12. Thus (2.3) becomes

B(12) =H(D)H2)HDPA2) NP(L)P(2)P(6)¢(12) NP(1)¢(3)¢(6)F(12).

Conversely, it turns out that if we start off with a mapping ¢ of
positive character with ¢»,=0, ¢;=1 and define ¢ by (2.3), then ¢ is a
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normal mapping, and ¢ is its generator. The relationships between
arithmetical properties of ¢ and ¢ are developed in §§6 and 7.

If ¢ is of positive character, we may define a new numerical
function ¢ by the Dedekind-Mobius inversion formulas [2, p. 61]

n M(d)' .
(2.4) con=119(" )" #)=11 £@) .

Here p as usual is the Mobius function.

¢ is uniquely determined by ¢, but does not define a mapping of
L because ¢(n) is not necessarily an integer. If ¢(n) is an integer for
every n, ¢ is evidently a normal sequence; we call ¢ in this case the
“ Dedekind generator’’ of ¢.

THEOREM 2. If ¢ is a normal sequence, then a mecessary and suf-
ficient condition that ¢ admit a rank function is that its Dedekind
generator should exist, and be equal to its ordinary generator.

The best known instance of this theorem is when ¢ is the Lucas
sequence ¢,=(a"—f")/(a«—fP) where p=a +f3, ¢=«af} are co-prime integers
chosen so that |[pg|>1; |p*—4¢|>>0. Then ¢ is the Sylvester [7]
cyclotomic sequence

o T
S!”ll: IT (a_e-ﬂ " ﬁ> .
1<r<n
rUn=1

3. Notations. We use whenever convenient the standard notations
of lattice algebra for arithmetical division and its associated operations
over L considered as a distributive residuated lattice [8], [11]. We
thus write aDb, a®pb and a>b for “a divides b’’, ““a does not divide
b’ and ‘@ properly divides b’’. If neither aDb nor bDa, we say a
and b are ‘‘non-comparable’’. If aDb and aDxDb implies either a=z
or b=x we say ‘‘a covers b”’.

a\Jb, aN\b and ab stand respectively for the greatest common
divisor (g.c.d.), least common multiple (l.c.m.), and product of @ and
b. If a, @, ---, a, are &k given integers of L, we write Ua,, Na, and
M a, for their g.c.d., l.e.m. and product suppressing the range of 4
where no confusion can arise.

If x %y denotes any one of the three operations z\y, 2Ny or ay
in L, and ¢ is any mapping of L, we say that ¢ is ‘“ w-factorable ” if
b(x % y)=ad(x) * ¢(y) whenever x\ Jy=1 and *‘‘completely s« -factorable”
if ¢p(x*y)=0¢(x)*%¢p(y) for every «, y. The star-product of two mappings
¢ and 6 is defined as usual by (¢*6),=¢,%0,.
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In proofs we use when convenient —) and ¢ for ‘“implies ’, and
““implies and is implied by”’. We use without specific mention the
familiar formulas [12]

b\Ja,=\ba,, bNa,=Nba,,
b\ JOo=bN\1=b; bUl=1, bN0=0.

4. Divisibility Sequences, Binary Sequences. Let ¢ be any divi-
sibility sequence; that is, a mapping of L with properties (i) and (ii)
of the introduction. Define ay=p5,=0 and

a,=d,, /9n= 1 if ¢n#0
x2n
bz 20

Then « and S are divisibility sequences, and ¢=«f. Furthermore «
is a normal mapping of L, while /5 consists exclusively of zeros and
ones. We call 8 a ‘““binary (divisibility) sequence’’.

We may immediately obtain a binary sequence from any divisibility
sequence by reducing each term modulo 2. More generally, if m is any
modulus, we may obtain from the divisibility sequence ¢ a Dbinary
sequence ¢ which describes the distribution of multiples of m in ¢ by
letting 0,=0 or 1 according as ¢==0 or ¢z%£0 (mod m). The sequences
obtained in this manner from linear divisibility [12] or elliptic divi-
sibility sequences [13] are usually periodic.

Again, if E is any subset of L with the properties that 0 is not
in  and if = is in E, so is every divisor of «x, then the characteristic
function of E is evidently a binary sequence. A simple example is the
set of square-free integers; the characteristic function is g~

Let /4 be any binary sequence. If f,=0, & is called a zero of /.
If in addition (3,540 for dDk, k is called a prime zero of f° The prime
zeros of f# evidently form a multiplicative basis for the set of all zeros
of 8. Perhaps the most interesting property of this basis is expressed
by the following theorem whose proof is left to the reader.

basis if and only if the sequence is periodic. The period of the sequence
4s then the l.c.m. of the prime zeros of its basis.

5. The Generator of A Normal Sequence. From now on, all map-
pings considered are of positive character. Let ¢ be any such mapping
with ¢,=0, ¢;,=1 and define a new mapping ¢ by means of formula
(2.3) and ¢y=0, ¢,=1. Then ¢ is evidently normal. Hold = fixed, and
let (2.1) be its prime decomposition. KEach complete chain
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(¢): 1=e¢y, €y *++, Croyy C,=7N; C; COVers ¢;.,

in the sublattice of all divisors of % is of the same length r—a,+a.+
««+ +a,+1, while ¢,.; is one of the k& elements n/p, which cover n. We
may accordingly group the chains into & mutually execlusive classes
C; by putting into class C, all chains (¢) with ¢,_,=%/p,. But any chain
of class C; consists of a complete chain of divisors of #n/p, plus the
fixed element ¢,=n. Hence formula (2.3) may be written
b=\ N ($e'y+++ Pe', 1)

C; (¢))
where the inner l.c.m. is taken over all complete chains (¢’) of divisors
of n/p;. Thus by (2.3) again

bp= C\ ¢(n/pi)¢(n)=¢(n)[¢nlpl ﬂ ctt m(bn/pk]'

Therefore ¢ is the generator of ¢ as defined in formula (2.2).
Conversely, if we define ¢ by (2.2), we find by direct calculation
that (2.3) holds for small n. We therefore proceed by induction and
assume that (2.3) is true for all integers less than », and hence in
particular for the % integers n/p; which cover n.
On transforming the right side of (2.8) as in the first part of this
proof, we obtain by (2.2) and the hypothesis of the induction

[-\ I ()DC,: [-\ 11 sbc,ﬁ/’n: ﬂ ((bnlm'sbn)zsbn ﬂ ¢nlz),~=¢n .
(C> 2 Cl 4 12 2
Thus the formulas (2.2) and (2.3) are equivalent.

6. Factorable sequences. Various factorability properties of normal
sequences may be elegantly stated as properties of its generator. We
postpone the consideration of g.c.d. factorability until the next section,
since it is intimately connected with the existence of a rank function.
We omit proofs of the results stated here, since we merely wish to
show the importance of the notion of a generator.

Either of the following two conditions is necessary and sufficient
for a normal sequence ¢ with generator ¢ to be product-factorable :
(6.1) o= 11 ¢t .

ptan
Here the product is extended over all prime powers o' dividing n.

(6.2) Pam=Pn \J P n, m co-prime.

A necessary and sufficient condition for ¢ to be l.c.m.-factorable is
that

(6.3) ¢.=1, n not a power of a prime.
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Any one of the following three sets of conditions are necessary
and sufficient for ¢ to be completely product factorable:

(6.4) d(mn)=d(m\n)=¢(m)J¢(n), n, m>1.
(6.5) d(mn)=¢(m)\J¢(n) if m, n are co-prime
and ¢(p*)=¢(p) for every prime p.

(6.6) d(r)=9¢ (D1, =+ +» P)=P(P)P(p2)s + = +5 (D) -

Here as in (2.1), pi, »., + -+, p are the distinct prime factors of n.

7. G.C.D. factorable mappings. A mapping ¢ is said to be com-
pletely g.c.d. factorable if it has the property

(vi) p(r\Um)=¢p(n)Jp(m) .

Every such mapping evidently preserves division.

LemMaA 7.1. (Ward [14]): Conditions (iv) and (vi) are equivalent
for normal mappings of L; that is, a mormal mapping admits a rank
Junction if and only if it is completely g.c.d. factorable.

Proof. Assume that ¢ is a normal mapping satisfying Condition
(iv). Let p=p(k) be the rank of k=¢,\J¢, in ¢. Then p is positive.
Also kD¢, d—=pon, m—ypOn\Um—kDd(n\Jm). But by (i),

nUmg’ﬂ, mjgl)nUngbny (xbm:\qf)num:_jk .

Hence ¢,y,=¢,\UJd, and (iv) implies (vi).

Conversely, let ¢ be a normal mapping with property (vi), and let
k be any modulus. If % is not a divisor of ¢, the rank of %k is zero,
and (iv) is satisfied. If % is a divisor of ¢, let ¢, be the first term
with positive index » which %k divides. By (i),

n=0 (mod 7)—y¢,==0 (mod k).

Assume conversely that ¢,=0 (mod k). Then by (vi), ¢.u,==0 (mod %k).
But 0<n\yr<<r. Hence n\Jr=r or n=0 (mod 7). In other words,

=0 (mOd k)ﬁ%zo (mod 7).

Hence » is the rank of k£ in ¢. Since k was arbitrary, (vi) implies (iv),
which completes the proof.

The factorability condition on ¢ may be replaced by an equivalent
condition on its generator ¢.

LEMMA 7.2 A normal mapping ¢ admit a rank function if and
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only if its generator ¢ satisfies the condition

(vii) )\ JP(m)=1 n, m non-comparable.

Proof. Assume that ¢ is normal, and admits a rank function, but
that (vii) is false. Then there exist integers n, m and a prime ¢ such
that

(7.1) d(n)=P(m)=0 (mod ¢q), but npm, mpn.
By formula (2.2),
(7.1)=>p(m)=(m)==0 (mod q) .

Suppose that ¢* exactly divides ¢(n) and ¢* exactly divides ¢(m). We
may evidently assume that 6>a. Let » be the rank of ¢” in ¢. Then
since n=m=0 (mod ), we have n\Jm=0 (mod »). But if (2.1) gives
the factorization of % so that p, p., .-, p. are its distinct prime
factors, then

(7.2) $(n/p;)70 mod ¢*, 1< <h.

For in the contrary case, ¢(n)==0 (mod ¢) and (2.2) together imply

p(m)=g(m) N " )=0 (mod ¢*)
3 pl
which is-a contradiction.
Now
(7.2)—=n)p,==0 (mod 7) 1=1,2, -+, k.

But =0 (mod ). Hence n=r and nDOn\Jm>IDm contradicting (7.1).
Therefore (iv) implies (vii).

Assume conversely that ¢ is normal with generator ¢ satisfying
(vii). To show that ¢ then admits a rank function, it will suffice to
prove that every prime power ¢* has o unique rank of apparition i ¢.
If ¢* is not a divisor of ¢ then it has the unique rank zero. If ¢% isa
divisor of ¢ then there exists a positive index » such that

(7.3) ¢,=0 (mod ¢*), ¢,5=0 (mod ¢"), 0<m<r.

To prove that # is the rank of ¢* in ¢, it will suffice to show that
if ¢,=0 mod ¢* then 2=0 (mod 7). This we do by contradiction. For
otherwise, there exists a least positive n>-1 such that ¢,=0 mod ¢*,
but n, » noncomparable. Evidently, ¢,==0 (mod ¢). Hence ¢,=£0 (mod ¢)
by Condition (vii). But then formula (2.2) implies that ¢(n/p,)==0
(mod ¢%) for some prime divisor p; of n. Therefore, by the minimal
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choice of n, either rDn/p, or n/p,Dr. In the first case, r>n. In the
second case n/p,<<r so that by (7.3), #/p,=r and rDOn. In either case
rPpn is contradicted. Hence (vii) implies (iv), which completes the
proof of the lemma.

8. Proof of Theorem 1. In view of Lemma 7.1, the proof of
Theorem 1, requires only the demonstration that if ¢ is normal,
Condition (v) implies Condition (vi); for pr\jgrn=n so that the impli-
cation (vi)—(v) is trivial. Note also that (v) is essentially a weaken-
ing of (vi), since it amounts to asserting (vi) only in the special case
when n\Jm covers both n and m.

Let ¢ be normal, and s a fixed positive integer. Then the normal
mapping 6 defined by

(8.1) 0(n)=g(s)/b(s) , n=0,1,2, -

is called a subsequence of ¢. The following lemma is an easy con-
sequence of this definition.

LeMMA 8.1. If ¢ is normal, and has the property (v), then so has
every subsequence of ¢.

LEMMA 8.2. If ¢ s normal, and has the property (v), then ¢ is
g.c.d. factorable; that is

(viii) o)\ Jp(m)=1 if n\Um=1.

Note that by (il), (viii) is a special case of (vi); the proof is by
induction on the number of prime factors of #» and m. First if » and
m are distinct primes p and ¢, then (viii) follows from (v) on taking
n=1.

Suppose that n=p and m is the product of [>>2 primes, m=q, ¢,

--, ¢, where the ¢; are distinet from p but not hnecessarily distinct
from one another. Assume that (viil) has been proved for n=p and
m a product of [—1 primes. Now take p=p, ¢=¢, and n=m/qg, in (v).
Then

Pp(pm|q)\J p(m)= (.b(’m/(b) .

Now

aPp—= oM/ =y d(p)2p(pm/q,) .
Consequently,

d(p)\Jdp(m)=p(p)\Jp(pm/q)\J d(m)=p(p)\Up(m/q)=1

by the hypothesis of the induction. Henece (viii) is true if » is a prime
number.
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Next assume that n=pp, -+ p, is the product of £>2 primes p;
distinet from all the primes ¢; dividing m so that n\Jm=1, and also
assume that (viii) has been proved for n a product of k—1 primes.
Now apply (v) with p=p,, ¢=q¢. and n=nm/p,q;. Thus

p(nm|q)\J p(nm|p)=p(nm|pq) .

Now

RO M= (n) Dp(rm|q) =3 ()\Jp(rm | p) — $(n) U p(rem q)\J (e p)
—p(m) U p(nmpg) = p(m)\U b(nm g5 .

Repeat this argument replacing m successively by
mlq, M|z, 0y MGG =1
and leaving » and p unchanged; we find that

H(n)\U p(nm|p) =d(n)\J p(nm|pg,)
=p(n)\J p(nm[pq1)= « + - =H(n)\U p(n/p)=p(n/p).
But

m2nm|p=—yp(m)Dp(nm|p)=p(n)J¢(m)=¢(n)\J p(nm[p)\J p(m)
=¢(n/p)Udp(m)=1
by the hypothesis of the induction. Hence (viii) is true for every =
prime to m, completing the proof of Lemma 8.2.

Theorem 1 may now be proved as follows: Let ¢ be a normal
mapping satisfying (v) and let both » and m be positive, since (vi) is
trivially satisfied if »n or m is zero. Let s=n\ym. Then n=n's, m=
m’s with n'\Um’=1. Consider the subsequence # of ¢ defined by (8.1).
By Lemma 8.1, 0 has property (v). Hence Lemma 8.2 implies

0(n')\Jb(m’)=1=yp(n)|p(s)\J p(1)/p(s) =1
=P\ p(m)=g(s)=p(n\Jm) .
Hence (v) implies (vi), completing the proof of Theorem 1.

9. Proof of second theorem—necessity. Assume that ¢ is normal,

and admits a rank function, and let ¢ be its generator. We shall
show that

(1X) b= 11 ¢d

d2n

so that ¢ is the Dedekind generator of ¢. The proof is based on a
consequence of Dedekind’s cross-classification principle [2]; namely
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LEMMA 9.1. If a, &, ---, @, are positive integers, then
a\a\ - Nap=1a, IT(a,\Ja,\Ja,)+ -« =11 (a,\Ja,) 1 (¢ \Ja,\Jaz\Ja,)- -

This result is a generalization of the familiar formula a,N\a,=a,a,—~a,\Ja,
and is perhaps easiest proved by showing that the highest powers of
p dividing both sides of the formula are the same.

On applying the result to formula (2.2), we obtain

¢'<w>=¢<n>+[( )fw( )f\ ﬂd’(pﬂ

"

o) (G (s (el
sV (Un()-

Now since ¢ admits a rank function, ¢ is completely g.c.d. factorable
by Lemma 7.1. Therefore the formula above may be written

$(n)=¢(n) 11 ¢ <?ZO§ ) 11 ¢>< n_. > ..

DD D4

——H(p( )]I'( n,,>...
D1 DiD2Ps

m(dy
= 1l¢ ”)

d2n

where p is the Mobius function. Hence (ix) follows by the Dedekind
inversion formula, completing the proof of the necessity.

10. Proof of second theorem—sufficiency. Now assume that ¢ is
normal, and that its Dedekind generator exists and equals its ordinary
generator ; that is, Condition (ix) is satisfied. We shall show that

(vi) d(n)\Jd(m)=1. n, m non-comparable.

Hence it will follow from Lemma 7.2 that (ix) is a sufficient condition
for ¢ to admit a rank funection.

Assume n, m non-comparable. Then if [=nN\m, n<{ and m<l.
Let ¢y, ¢s +--, q; be the distinet prime factors of /, and let » be any
prime p"r, p"» the highest powers of p dividing ¢(n) and ¢(n) respectively.

Now by formula (2.2),

¢)l:¢'l[¢l/q1[\\ the ﬂ@bﬁlqs) .

Hence a,=b,+a,,, where a,, is the largest of ay,, -+, @y, . But by
(ix), a,= > b,. Hence b,=0 unless d={ or dDl/q
aal
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Not both b, and b, are positive. For since n DI and m DI, in the
contrary case nDl/¢g and mDl/¢ by the remark above. But then !
=n/\m>Dl/q¢ so that ¢=1, contrary to ¢ a prime.

It follows that p does not divide both ¢(n) and ¢(m). Since p was
an arbitrarily chosen prime, (v) follows, which completes the proof of
Theorem 2.

In closing, note that it follows from Theorem 2 and Lemma 7.2
that if ¢ has the Dedekind generator ¢ (that is,

L(n)=11 p(nfa)*

is an integer for every n); then a necessary and sufficient condition
that ¢ should admit a rank function is that its Dedekind generator
satisfy the condition ¢(n»)\J&(m)=1 if n, m are non-comparable.
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WEAK LOCALLY MULTIPLICATIVELY-CONVEX ALGEBRAS!

SETH WARNER

Let E be an algebra over the reals or complex numbers, £ a toial
subspace of the algebraic dual E* of vector space E. We first discuss
the following natural questions: When is the weak topology o(E, E)
defined on E by E’ locally m-convex? When is multiplication continu-
ous for o(E, E’), that is, when is o(E, E’') compatible with the algebraic
structure of E? We then apply our results to certain weak topologies
on the algebra of polynomials in one indeterminant without constant
term.

1. Weak topologies.

~ Let K be either the reals or complex numbers, £ a K-algebra. A
topology .9~ on E is locally multiplicatively-convex (which we abbreviate
henceforth to ‘‘locally m-convex”) if it is a locally convex topology
and if there exists a fundamental system of idempotent neighborhoods
of zero (a subset A of E is idempotent if A*CA). Multiplication is
then clearly continuous at (0, 0) and hence everywhere, so & is com-
patible with the algebraic structure of E. If A4 is idempotent, so is
its convex envelope, its equilibrated envelope (a subset V of E is called
equilibrated if AVZV for all scalars 4 such that |2|<{1), and its closure
for any topology on E compatible with the algebraic structure of E.
Hence if .97 is locally m-convex, zero has a fundamental system of
convex, equilibrated, idempotent, closed neighborhoods. (For proofs of
these and other elementary facts about locally m-convex algebras, see
§8§1-3 of [8] or [1].) Henceforth, £’ is a total subspace of the algebraic
dual of E.

LEMMA 1. Let W be a weak, equilibrated neighborhood of zero (that
1s, for the topology o(E, E")), J a subspace of K, and ge E’ such that
JTWWY W {g}°. Then J, JE, and EJ are contained in the kernel
of g.

Proof. Let xed, ye E. As W is equilibrated and absorbing, let
A>0 be such that Jye W. For all positive integers m, 2-'mxeJ, and
therefore mary=(2"'mx)(ly)e JWSW*T{g}®; hence |g(may)|<1 for all
positive integers m, and therefore g(xzy)=0. Hence JE is contained in
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the kernel of g. Similarly for EJ. Also |g(mx)|<<1 for all xeJ and
all positive integers m, and therefore g(x)=0 for all z e J.

LEMMA 2. Let V be a weak neighborhood of zero. Then L=
N[w=(0) |ue V] is a weakly closed subspace of finite codimension.

Proof. L is clearly a weakly closed subspace. By definition of
o(E, E') there exist ki, b, +--, b, in E' such that (%, %, «--, b}’ V.
Thus if 2(2)|<<1 for 1<<i<n, then [u(2)|<<1 for all we V°. Then if

re ﬁh;l(O), for any positive integer m |k (mx)|=0<1 for 1<<i<m and
hence lu(mz)<<1, so u(x)=0 for all we V°. Hence F\h;l(O)gL. Since
i=1

the codimension of fn\hfl(O) is at most n, so also the codimension of I
i=1

is at most =.

LEMMA 3. Let E\, E,, «--, E, be finite-dimensional, Hausdorff topo-
logical K-vector spaces, F' a topological K-vector space. Any multilinear
transformation from K, x E,x .-+ x E, into F is continuous.

Proof. This lemma is well known, and follows from Theorem 2 of
[3, p. 27] just as Corollary 2 of that theorem does.

THEOREM 1. o(&, £') is a [ocally m-convex topology on E if and only

if for all ge E’, the kernel of g contains a weakly closed ideal of finite
codimension.

Proof. Necessity: Let ge E’. Let V be a weakly closed, convex,
equilibrated, idempotent neighborhood of zero such that V<{g}’. Let
L=N[u""(0)|ue V’]. Then clearly L V™, but since V is weakly closed,
convex, and equilibrated, V®=7V (see [4]). By Lemma 2 L is a weakly
closed subspace of finite codimension. We assert L is an ideal: Let
xeL, ye E. Choose 2>0 such that lye V. For all positive integers
m, A'maxelL; hence may=(1"‘mx)(ly)e LVZV*CV. Hence for all
positive integers m and any we V°, u(may)|<<1; hence u(xy)=0 for all
ueV® so axyelL. Similarly yre L, so L is an ideal. Now let J—=
L\ g7(0). Then J is a weakly closed subspace of finite codimension
contained in the kernel of g. It remains to show J is an ideal. Now
JTLZV=VUV*< {g}°; hence by Lemma 1 JEZg-'(0) and EJZg~(0).
Also JECLEZL and EJZELZL. Therefore JEZL N g-'(0)=J and
EJZL N9 (0)=J, so J is an ideal.

Sufficiency : It clearly suffices to show that for all ge E’ there
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exists an idempotent neighborhood V of zero such that V< {g}’. Let
J be a weakly closed ideal of finite codimension contained in g¢~'(0).
Then F=E/J is a finite-dimensional algebra with a Hausdorff topology
compatible with the vector space structure of F. Multiplication is a
bilinear transformation from FxF' into F, and hence by Lemma 3
multiplication is continuous. But also, any finite-dimensional, Hausdorff,
K-vector space has its topology defined by a norm (this follows from
Theorem 2 of [3, p. 27]); and by a familiar property of normed spaces
with a continuous multiplication, the norm may be so chosen that F'is
a normed algebra [6, p. 50]. Let ¢ be the continuous canonical homo-
morphism from E onto F, and let g=gop. g is continuous on F, so
we may select an idempotent neighborhood U of zero in F' such that
ve U implies |g(v)|<1. Then V=¢-}(U) is a neighborhood of zero for
o(E, E’). As U is idempotent and ¢ a homomorphism, V is idempotent.
Finally, if xe V then ¢(x)e U, and therefore |g(x)|=Ig(¢(x))|<1, so
xe {g}°; hence V< {g}°, and the theorem is completely proved.

THEOREM 2. Multiplication in E is continuous for o(E, E') if and
only if for all ge E', the kernel of g contains a weakly closed subspace
J of finite codimension such that JE and EJ are also contained in the
kernel of g.

Proof. Necessity: Let ge E’. Then since {g}° is a neighborhood
of zero, we may choose a weakly closed, convex, equilibrated neigh-
borhood W of zero such that W\ W*T{g}°. Let L=\[u"'(0)|ue W"].
Then clearly LCW®=W, since W is weakly closed, convex, and
equilibrated. By Lemma 2 L is a weakly closed subspace of finite
codimension. Let J=L N ¢~'(0). Then J is also a weakly closed sub-
space of finite codimension contained in the kernel of g. Also JTLZ
WW\U W {g}°, so by Lemma 1, JE and EJ are contained in the
kernel of g.

Sufficiency : It suffices to show that for any ge £’ and any ae E,
there exist neighborhoods W and V of zero in E such that W*T{g}°
and Va\JaV<{g}* ([5, p. 49]). Let I=g-'(0) and let J be a weakly
closed subspace of finite codimension contained in I such that EJZI
and JECTI. Let ¢ and ¢ respectively be the canonical maps from F
onto E/J and from E onto E[/I. Let g=go¢. We assert the map
(¢(2), ¢(y))—>¢(xy) is a well-defined bilinear map from (E/J)x (E/J) into
E[l: If x—a'edJ and y—y’ €J, then zy—a'ye JEZI and x'y—a'y’ €
EJZI; hence zy—a'y' =(vy—o'y)+(@y—2'y')el+I=I. The map is
therefore well-defined ; bilinearity is easily seen. Both (E/J) and (E/I)
are finite-dimensional Hausdorff topological K-vector spaces, so by
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Lemma 3 the above bilinear map is continuous. Hence there exists a
neighborhood U of zero in E/J such that if ¢(x), ¢(y) e U, then ¢(ay)e
{g}*. If W=¢*(U), then W is a neighborhood of zero for o(E, E’);
if 2, ye W, then ¢(x), ¢(y)e U and hence |g(ay)|=|g(¢(xy))|<1, so aye
{g}°. Thus W*T{g}°. Now let ac E. We assert the maps ¢(x)—>¢(ax)
and ¢(x)—>¢(xa) are well-defined, linear maps from E/J into E/I: For
if x—a’ e J, then arx—ax’ € EJZI and xa—2a'aec JEZI, so the maps are
well-defined. Linearity is immediate. Since E/J and E/I are finite
dimensional and Hausdorff, again by Lemma 3 these maps are continu-
ous. Hence we may choose a neighborhood P of zero in E/J such that
if ¢(x)e P then ¢(ax), ¢(za)e {g}°. Then V=¢-'(P) is a neighborhood
of zero for o(F, E’). If xe V, then ¢(x)e P and hence |g(ax)|=lg(¢(ax))|
<1 and similarly |g(za)|<<1. Hence aV\jVa<{g}°, and the theorem is
completely demonstrated.

Here is an example of a Banach algebra F with topological dual
E’ such that multiplication is not continuous for the associated weak
topology o(#, E'). Let E be the algebra of all continuous functions
from the compact interval [0, 1] into K with the uniform topology. If

2( f)=Sl f(®)dt (dt is the usual Lebesgue complex-valued measure if K

is the complex numbers), then pgeE’. But g does not satisfy the
restrictions of Theorem 2: Let J be any weakly closed subspace con-

tained in the kernel of z such that JE<p-'(0). If feJ, then ffe
JEu-(0) (F=5 if K is the reals); hence S‘\ F(E)Pdt—=0 and so, since

f is continuous, f=0. Therefore J={0}. But since FE is infinite-
dimensional, J is not of finite codimension. Hence by Theorem 2,
multiplication is not continuous for «(E, E’).

2. Algebras of polynomials. If £ is any locally m-convex algebra,
E’ its topological dual, . (K) is the set of all continuous multiplica-
tive linear forms, . # ~(E) the set of all nonzero continuous multiplica-
tive linear forms. . Z(F) and .~ ~(E) are topologized as subsets of
E; o(E', E).

In [9] Silov proved the following theorems:

(1) If E is a normed C-algebra (C is the complex numbers) with
identity e, generated by e¢ and another element x (that is, if all elements
of E are of form ae+ax+---+a,z"), then .~ ~(E) is homeomorphic
with a compact subset of C whose complement is connected; (2) every
such subset of C arises in this manner.

Here we give elementary analogues of these theorems for locally
m-convex algebras.
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Progposition 1. If K is a locally m-convex Hausdorff algebra generated
by a single element x, then f— f(x) is & homeomorphism from _ (£) onto
a subset of K.

Progf. The map is surely continuous and is one-to-one since «
generates E. To show f(x)—f is continuous, it suffices to show f(x)—
f(z) is continuous for all ze £'; but as = generates E it suffices for
this to show f(x)—f(«") is continuous for all positive integers n. But
(@)= f(x)", so f(x)—f(z") is simply a restriction of the map 2—2" from
K into K, which is surely a continuous map. Hence f—f(x) is a
homeomorphism into K.

Proposition 2. Let E be an algebra cver any field F. The set M of
nonzero multiplicative linear forms is a linearly independent subset of E™,
the algebraic dual of E.

Proof. In Theorem 12 of [2, p. 34], Artin proves that if G is a
group, F a fleld, then the set of all nonzero homomorphisms from G
into the multiplicative semi-group of F' is a linearly independent subset
of the vector space ./ (G, F) of all functions from G into F. The
proof remains valid if ‘‘semi-group’’ replaces ‘‘ group’ in the state-
ment of the theorem, and thus modified the theorem may be applied
to the multiplicative semi-group of an algebra to yield the desired
result.

Henceforth, K[X] is the K-algebra of all polynomials in one in-
determinant, £ the subalgebra of those without constant term. K[X]
has a base {e}, with multiplication table ee,=e,.,; {e}i, is a base
for E. For ie K we let f, be the linear form defined on E by:
Sile;)=2'. Also for every positive integer 4, g, is the linear form de-
fined on E by: g,(e)=1, g,(e;)=0 for jz£3.

LEMMA 4. The set of all multiplicative linear forms on E s
[filie K].

Proof.  fiee)=rf\e; )=1"=1i"=f(e,)f(e;). This suffices to
show f, is multiplicative. Conversely, if f is any multiplicative linear
form, let 2= f(e;). Then for any positive integer i, f(e,)=f(e})=f(e))
=2'. Hence f=7f,.

LEMMA 5. {f,}iexaao U {9:}521 @s @ linearly independent subset of E*.

n »
Proof. Suppose Zl] a,g,+ Zl,@jf,\j=0, where the 2, are distinet
P i

from each other and all different from zero. Then for m>n, g,(e,)=0
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»
for 1<<i<n, so 3. f;f,(e.)=0. The subspace of E generated by
j=1

{€;} 7ns s clearly a subalgebra; the restrictions of the f,, 1<j<lp,
to this algebra are again clearly distinct from each other and different
from zero. Hence by Proposition 2 applied to this subalgebra, all

#,=0. Hence ﬁ a,9,=0; but a,=a,g,(e,)= i a;g,(e;)=0, so the lemma
i=1 Jj=1

is proved.

LEMMA 6. Let {1,};., be a denumerable family of distinct nonzero
elements of K. Then {f}i, separates the points of K.

Proof. For 2540, each f, has a unique extension to a multiplicative
linear form on K[X] obtained by setting f,(e,)=1. Let z= 37, e €
E. Then x=3} ,«ae, in K[X] where a;=0. Suppose f,,(x)=0 for
1<j<n+1. Then >} ,a,2i=0 for 1<j<n+1. But the determinant

of the system of linear equations >, £;4i=0, 1<j<m+1, is

U L {1 1 .o 1 |
R R . Y
. . e .o l= 11 (4,—=2,)%0
i : : . i 1<iCj<n+1

. |
|
i
1

0 1 Lo v
A1 )~n+1 cve M [ i VA

_

|

(this is the Vandermonde determinant). Hence the above system of
linear equations has only the trivial solution, and therefore «,=0,
0<7<nm, and hence =0. Thus the proof is complete.

Proposition 3. If L is any subset of K containing zero, there is
a Hausdorff, weak locally m-convex topology o on E such that the
canonical map f\—4 maps _7 (E) homeomorphically onto L. Further
if L is an infinite set, . may be so chosen that the completion of E ;
18 semi-simple; and if L is denumerable, .~ is metrizable.

Proof. Case 1: L is finite. Let M=[f,|1e L], and let £’ be the
subspace of E* generated by {g,}i>:\U M. Clearly E’ is a total sub-
space of E*, and so, as E’ has a denumerable linear base, «(E, E’) is
a metrizable weak topology on E. To show «(E, E’) is locally m-convex,
it clearly suffices to show that the condition of Theorem 1 holds for
all members of a base of E’. The condition holds trivially for all
ue M, since the kernel of ue M is already a weakly closed ideal.
Consider any g,: The linear subspace generated by {e;}7.;,, is clearly
of finite codimension, and the multiplication table shows that it is

actually an ideal. Further, it is identical with fb\g,;I(O) and thus is
k=1
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weakly closed and contained in the kernel of ¢,. Hence by Theorem 1,
o(E, E') is locally m-convex. By Lemma 5 the set of all multiplicative
linear forms in K’ is M. As the topological dual of E; «(E, E’) is E’
(see [7]), M is the set of all continuous multiplicative linear forms on
E; o(E, E'), and by Proposition 1 applied to x=e,, M is homeomorphic
with L.

Case 2: L is infinite. Again let M=[f,|1e L], and let E’ be the
subspace of E™ generated by M. By Lemma 6, E’ is total. The
condition of Theorem 1 is trivially satisfied by E’, so o(F, E’) is a
Hausdorff, weak locally m-convex topology on E. If L is denumerable,
E’ has a countable base and so o(F, E’) is metrizable. M is again the
set of all continuous multiplicative linear forms on E; «(&, E') and is
homeomorphic with L. The completion of E for this topology is E'*
([7]), and as M generates E’, M separates the points of E'*; thus the
completion of E for this topology is semi-simple by Corollary 5.5 of [8].

It is easy to see that K has no divisors of zero and that zero is
the only element having an adverse; thus the Jacobson radical is {0}
and E is semi-simple. If, in Proposition 3, L= {0} and the scalar field
is the complex numbers, E is a commutative, metrizable locally m-
convex algebra with no continuous nonzero multiplicative linear forms ;
the completion E of E then has no continuous nonzero multiplicative
linear forms and hence by Corollary 5.5 of [8] is a radical algebra.
Thus we have an example of a semi-simple metrizable algebra whose
completion is a radical algebra. This phenomenon is also known even
for normed algebras. For example, an elementary calculation shows
the following is a norm on E':

|

Eae

[(m~1De,l|l=1/m—0, so (m—1)!e,—0 for this norm topology. But for
any 2540, |fu(m—D!e,)|=(m—D!|A|">c, so f, is not continuous.
Hence £ has no continuous nonzero multiplicative linear forms and so,
assuming the scalar field is the complex numbers, the completion of E
for this norm is a radical algebra.
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GROUP-THEORETIC ORIGIN OF CERTAIN
GENERATING FUNCTIONS

Louls WEISNER

1. Introduction. A linear ordinary differential equation containing
a parameter # may be written in the form

(1.1) L(z, d/(dx), n)v=0.

Substituting A=y3/(3y) for n, supposing the left member a polynomial
in #, we construct the partial differential operator L=L(z, d/(dx), 4)
on functions of two independent variables. This operator is independent
of n and is commutative with 4. A solution of the simultaneous equation
Lu=0, Au=nu, where n is a constant, has the form u=v,(x)y", where
v=2,(x) is a solution of (1.1). Conversely, if v=wv,(2) is a solution of
(1.1), then u=v,(x)y” is a solution of the equations Lu=0, Au=nu.

Now suppose that, independently of the preceding considerations,
we have obtained an explicit solution w=g(x, ) of Lu=0, and that
from the properties of this function we know that it has an expansion
in powers of y of the form

(1.2) g(z, y)= Z Ia()y"

where n is not necessarily an integer. If termwise operation with L
on this series is permissible, then L annuls each term of the series,
and v=g,(z) is a solution of (1.1). Thus ¢(x, y) is a generating func-
tion for certain solutions of (1.1). The main problem is to find g(z, y);
its expansion is a detail of calculation.

It is difficult, in general, to find an explicit solution of Lu=0,
other than an artificial superposition of the functions v,(x)y”, for which
the generating function reduces to a tautology. However, if the
equation admits a group of transformations besides 2’ =z, y’' —ty (t40),
it is possible, in many cases, to find a solution which leads to a
significant generating function of the form (1.2). In this paper it
will be shown in detail how generating functions for the hypergeo-
metric functions F(—n, 3; r; ) may be obtained by this method. The
Kummer functions F\(—n; 7; z) and ,F\(«; n+1, x), the Bessel fune-
tions J.(x) and the Hermite functions H,(x) admit similar treatment.
The point to be emphasized is that the generating functions so obtained
owe their existence to the fact that the partial differential equation
derived from the ordinary differential equation in the manner described
above is invariant with respect to a nontrivial continuous group of
transformations.

Received February 1, 1934, and in revised form May 20, 1954.
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2. The hypergeometric functions F((—n, f; 7; «). Suppose that y
is not an integer; then the hypergeometric equation

@.1) o(1—2) g;’ +{r—(a+p+1)a) (‘Z —afr=0

has the linearly independent solutions
n=Fa, B;7; %), and v,=2""Fla—y+1, f—7r+1; 2—7; ).

A solution which is regular at =0 is a constant multiple of »,. Sub-
stituting —9/(%y) for «, so that —a« plays the role of the parameter
n of §1, we construct the operator

o o* ) ]
L=x(1-2)—+x + {r—(B+Dx -+ Py -
(1-2) 2 Yogoy U (B+1) }ax By -
Setting
G) 0 0
2.2 A= . B= “l(m —y- >,
(2.2) y oy Y ox yay
0 )
C——-y{x(l—x) -+y +r—ﬁx} ,
ox oy

it may be verified that
vL=CB+ A*+(r—1)A4,
2.3) [4, B]=—B, [A4, C]=C, [C, B]=24+7,

where [A, B]=AB— BA.

It follows from these relations, and may be verified by direct calcula-
tions, that L is commutative with 4, B and C and hence with R=
rmA+r,B+r,C+r, where the 7’s are arbitrary constants.

The commutator relations (2.8) show that the operators 1, 4, B, C
generate a Lie group /. The elements of this group may be re-
presented in the form e, but are more conveniently expressed as
products of a finite number of the operators e, €%, ¢, ¢°, where a,
b, ¢, d are constants. The operator 1 generates the multiplicative
group of complex numbers, while A generates the group z'=a, y' =ty
(t%£0). We shall use these two trivial groups for purposes of normali-
zation. We find that

(2.4) ee” f(x, y)=1—cy)* ' {1+c(@—1)y} * (€, 1),
f— . w ., (tbey=b
{A+c@—1)y} {Q+be)y—b} = l—cy '

where f(xz, y) is an arbitrary function. Since xL is commutative with
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B and C, it follows that if f(x, y) is annulled by L, so is the right
member of (2.4).

3. Conjugates sets of generators of the first order. The main
problem with which we shall be concerned is that of solving the
simultaneous partial differential equations Lu=0, Ru=0, where R=
rmA+r,B+r,C+r, for all choices of the ratios of the coefficients except
r=r,=1=0. A great deal of labor is saved by the following observa-
tion: If S is an element of the group /" of §2, then SRS-' has the
same form as R; and if » is annulled by L and R, then Su is annulled
by L and SRS-'. It is therefore sufficient for our purpose to find the
functions annulled by L and one operator from each of the conjugate
classes into which the operators R fall with respect to /7; and to apply
I" to these functions.

For any two linear operators X and Y with a common domain of
operands, we have the formal expansion

-

|

oo K
e<Yer =3 X, Y,

=~

where

[X, Y]():Yr [X, Y]LZXY_ YX; and [X’ Y]AZ[X: [Xv Y]Ic—l]!

(k=2, 3,-++).
Hence, utilizing (2.3), we have
(3.1) e Be "‘=¢"B, e 1Ce " =e'C,
3.2) e¢?Ae ""=A+bB, e"”’Ce "= —2bA—b'B+C—by ,
(3.3) eAde " =A4—cC, e’Be~** =2cA+B—c*C+cy .

Despite the use of infinite series in the derivation of these operator
identities, no questions of convergence arise in their application to an
operand. An arbitrary function f(x, y), whose partial derivatives of
the first order exist, is converted by the left member of each of these
identities into a function expressed in closed form with the aid of (2.4),
while the right member involves only a finite number of terms.

From the preceding identities we have

(3.4) (¢°¢") A(e%e"")~ = (1 +2be) A + bB— e(1 +be)C + ber .

It follows that R is a conjugate of 1A+ «, for suitable choices of the
constants 1 and «, except when 7i+4r,r;=0. In that case it may be
inferred from (3.3) and

(3.5) (¢"e~*)B(e"e~") "= —C
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that R is a conjugate of iB+«. Since only the ratios of the coefficients
of R are essential, we shall choose 1=1.

4. Generating functions. The general solution of the simultaneous
partial differential equations Lu=0, (A+a)u=0, is a linear combination,
with constant coefficients, of

wy=y“Fla, 3;7;2), U=y "a"Fla—r+1, f—r+1;2—7; 2).

It follows from (3.4) that the general solution of the equations
Lu=0, {(1+2bc)A+bB—c(1+bc)C+a+berlu=0

is a linear combination, with constant coefficients, of

G, y)=1—cy)* PV {(1+be)y—b} ~*{1+cle—L)y} "PF(a, #;7; &),

Gu@, y)=(zy) (L —cy)** 7 {(1+be)y — b} " {1+ e(w— L)y} =P+

F(a—7+1, f=r+1;2-7;¢),

where ¢ is given by (2.4). It is sufficient to consider only G,, as the

expansion of G, in powers of ¥y may be obtained from that of G, by
simple substitutions.

If =0, we normalize by choosing c¢=1, so that

Gi=y (L —y)** " {1+ (2— 1)y} PF (“’ pirs 1+(§~1)y> '

This function has an expansion of the form i g (x)y”"®. As noted in

§ 1, 9.(z) must be a solution of (2.1) with « replaced by a—n. Since
g.(x) is regular at the origin it must be a constant multiple of F(a—mn,
B 7;x). The constant is determined by setting #=0. Thus

4.1 (A=) {1 =y} P (e, 5 7 1+(f_ 1)y)

=3 (7_6(;”_1)1?(“—92, B o,

n=0

where 241, |y|<min(1, |1—x|"'). The region of convergence is deter-
mined by examining the singularities of the left member.
Similarly, if 6=1 and ¢=0, we obtain

42 Q-pF(« b rflt_“z):Z (“*‘2"1>F(—n, Bivi

lyl<min (1, 1—2|™"), (Feldheim [1. p. 120]).
If be=£0, we set b=—w™!, ¢=1, and obtain
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(4.3) (L= P {1+ (w—=1yt =1+ @—=1y} PF(a, #57:0)
-5 (HZ_l)F(—n, sy wE(=n, #5715 20"
r— o way 1= A= i=(w=1)(z—1)y]
{1+ =1y} {1+ (@1} 1+ w1y} {1+ - 1)y

lyl<min (1, [1—2|7, [1—w|™, 1—2"1—w|™).

The required coefficient in the right member is readily obtained since
the left member is unaltered by the permutation («f)(wz). The special
case w==0 is due to Feldheim [1, p. 120].

In accordance with the analysis of §3, we next examine the
simultaneous equations Lu=0, Bu=—u. The general solution of the
latter is u=-e'f(xy) and is annulled by L if f(X) satisfies the ordinary
differential equation

F B ar _
)ngz (r+X)dX+ﬂf 0.

Comparing with Kummer’s equation

d*v
@ -

dv
— —av=0,
d + @G —2) 0 av

it follows that « is a linear combination, with constant coefficients, of
(4.4) w=e'F(f; 75 —ay), w=e(—ay) "F(E—7r+1;2—7; —ay),

where the customary indices in Kummer’s function have been omitted.
The first of these functions is regular at =0, and we obtain

(4.5) SR T —ey)=3 ;,F(—n, 7y
(Humbert [2, p. 64]).

Substituting —wy for y in the first of the functions (4.4), we
obtain e *'F(3; v; way) which is annulled by I, and B—w. Operating
on this function with ¢ as suggested by (3.3) with ¢=1, we obtain
the left member of

BTl — - [—wy 3T o
(4.6) (1=l {1+(@—1)y} ’Bexpa1_y}F<ﬂ’7’(1—y){1+(x—1)y}>

— VLY@ (=n, i1 oy lyl<<min (1, [1—2[).
n=n
The required coefficient in the right member is obtained by setting

=0 and comparing with a known generating function for the Laguerre
polynomials (Szegé [4, p. 97]).
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By (3.5) and (4.4)

e (R (F; 75 —ay)h —exp Ly "}y =) 7F (8i7; ~7 )
y(l—2x)
is the only linearly independent solution of Lu=0, Cu=u that is regular
at x=0. Its expansion, when simplified, reads

@n  e-o2F (i )= SO P firiawt, @A),

We have now obtained, in normalized form, a solution of the
simultaneous equations Lu=0, (rA+rB+7r,C+r)u=0 for each admis-
sible choice of the 7’s, and its expansion in powers of y. Most of the
solutions are expansible in other regions of the y-plane than those
noted ; hence other generating functions may be obtained. For ex-
ample, the left member of (4.2) may be written

vy ) (e i 2 T ),
1— y"1
except for a numerical factor. This function has an expansion valid
for |y|>>1. The result, when simplified by cancelling y~% and replacing
y by y-', reads

A=per(a iy )= ST o

n=0

ly|<<min (1, [1—2().

5. Application to ultraspherical polynomials. Special cases of some
of the preceding formulas, involving ultraspherical polynomials, may be
obtained by means of the representation

PM(cos 0):<2'{+z—1>e—"""ff’(—n, A;22; 1—e),
which may be established by comparing the differential equations
satisfied by the two members of this equation. Thus we obtain from
4.3)

-y cos (O—g)+y} F (4, 45205 WsInfsing )

1—2ycos (0—¢)+y*
= S (¥ )Pi(eos p)P(eos By lyl<Je!==0).

Ossicini [3] expresses the left member in terms of Legendre functions
of the second kind, while Watson [5] expresses the result, for 1=1/2,
in terms of elliptic integrals.
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