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1. Introduction. Let S be the set of real sequences X=(x,). For
X, Ye S we define X+ Y=(x,+%,), 0 as the sequence x,=0 and introduce
order by writing X >0 when for some m, x,=0 for n<m and z,, > 0.
Thus S may be considered as an ordered abelian group with a non-
archimedian order. Let S be topologized by considering the open
intervals

X, V)={Z|XZY}

as a basis for the open sets. Then S is a topological group. We note
that S is not locally compact. We wish to define a measure on S which
is invariant with respect to translations of measurable sets by elements
in S and which assigns a nonzero measure to the sets in a basis for
the topology in S. It is evident from a consideration of the spheres
in Hilbert space that such a measure can not in general be real valued
for spaces which are not locally compact. In the example studied here
the range of the measure function is a subset of S.

The ring of measurable sets which serves as the domain of the
measure function is generated by a class of sets called intervals. We
shall show that these intervals are a basis for the topology of S defined
by the open intervals. They have some properties of the real half-open
intervals o’ <z <a’’ which are useful in deriving the properties of a
measure function.

For a positive integer p and real numbers

Y
Qyy ooy Uhyogy Opy Ap

let I,=I(ay, ---, a,_,; ay, a,) be the set of X=(x,)e S such that

X,=0, , for n<p,
ap <@, <Ay
—co <, <+, n>p.

If p=1 there are no conditions on the z, for n<p. If a, <a, then
I, is empty. That the sets I, and the open intervals (X, Y') are equiva-
lent as bases for neighborhood topologies is shown as follows:
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Consider
X=(@n) € Ity ++ -, Qper; Uy 07)
Then
T,=0y,, for n<p, and a, < z,<a, .
Now consider X, =(«}), X''=(x;) where
T =X, =X for n<»p,
Tpa1 < Bps1 < Ly -
Clearly
X, X el(ay, «++y Gp_q; Ups Op) 5
X << XX,
Now if Y==(y,)e (X’, X’’) then
T =Yy =Ty =0y, for n<p,
Wy S Ty =Tp=Yp =0 <y
and so Yel(a, +++,a,.; 0, a,). Hence
Xe X, X" Kayy ++-, ap—l;a/;o’ ay) .

Conversely, consider X=(w,) e (X', X'’) where X'=(x;) X" =(@,).
From the definition of order in S it follows that there is an integer p
such that

p=x,=w, for n<p, x,<wz,
and one of the following is true:
(1) =<z, <2,
(2) z,<wz,=wx,,
(3) @=w,<a; .
If (1) is true let
‘ a, =z, for n<p, a,=z,, a,=u, .
It follows that
Xel(a, ««cy Qpey; Oy ap) T(X', X)) .

Suppose (2) is true. Since X< X’’/, there is a smallest integer
g > p such that z,<z;. Now let

a,=x, for n<q, a;=2, and a; =z, .
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It follows that
Xel(ay, +++) tgor; O 7)) (X', X))

Suppose (3) is true. Since X’ <X, there is a smallest integer ¢ >p
such that z, <a,. Let

a,=x, for n<q, a;=w, a/=x,+1.
Again it follows that
Xel(a, <) tgy; @y o)y (X, X7) .

The equivalence of the two bases is established.
For each interval I, the element (x,) €S where

z,= max[a, —a,, 0] and z,=0 if n%p

is called the length of I, and is denoted by p(I,). Clearly x(I,)=0 in
S and the equality holds if and only if I, is empty. It will be shown
that: The intervals I, generate a ring over which the function ¢ can
be extended to an additive, nonnegative funetion with values in S. If
M is a set in the ring and X+ M is the set of X+Y for Ye M then
p(M)=p(X+M). The function g may be called an invariant measure
on the ring.

2. Properties of Intervals I,. Consider two intervals
I=I(t;y »*+y Qpoy; By, Ay ) I,=I(by, +++,by_1;b,0]) .

The following two lemmas are immediate consequences of the
definition of interval.

LEMMA 1. 021, I, if and only if p<gq, ond a,=b,, n<p,
a,<b,<a,, »<4q,
a,<b,<b,<a,, p=q.

Lemma 2. If p<<q and I,NI,540 then I, C1,.

Proof. Since p<Cq and there is some X=(z,)el,N1,, we have
a’n::mn:bn ’ 'ﬂ<p ’
o, < x,=b, < a, .

It follows from Lemma 1 that [, C1I,.
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LemmA 3. If I,N\1,5£0 then I,NI,=I, where r= max[p, q].

LEMMA 4. The union of a finite number of intervals is the union of
a finite number of disjoint intervals.

Proof. The statement is true for a single interval. Assume that
the statement is true for the union of any m intervals. Consider
(1) Ipi, t=1, «-+, m+1.

If the intervals (1) are disjoint the statement is true for them. Suppose
that for A7, I,,hﬂlpj#O. If p,<p, then, by Lemma 2, ijCIph.
Then the intervals (1) have the same union as some #m of them and

the statement follows from the assumption. If p,=p,=p then, since
I, , NI, #0, we have

L, =Ky, =+ 0pi; 0y 03) , I =I(ay, « =+, ay_i; ), )

and the real half open intervals [a,, a,), [b,, b,) have a nonempty inter-
section. If

¢y=min (a,, by), ¢, = max(a,,b,)
then [a,, a;) \U [b,, by)=[c,, ¢;) and
I, I, =I(a, « -, @15 Cp €;)=1, .

The intervals (1) have the same union as the m intervals I,, I, where

15 h, 7, and the statement again follows from the assumption. Induction
completes the proof.

LEMMA 5. If I, ©=1, --+,m, are disjoint nonempty subintervals of

I, and Ip=i©Ipi then p,=p for 1=1, ---,m, and
=1
wI)= 3 ul,) .

Proof. Let
L=I(at;, *+, Qp_y; CUpy Oy)
I,,i———I(a“, teey ai,pi—lia;iva;;,l) ) 1=1, .-, m.
Since 041, CI,, we have p <p;, and
Q=0 , n<p, 1=1, -, m,
a, < a,<ay, Di>D,
0y < ay <oy <ay P=p.
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Consider the half-open intervals [“;%’ a,) for p;=p and the numbers a;,

for p,>p. Let ¢, ---,¢, be the distinet numbers among those a,,.
Since U?;llpz;lp and the Ipi are disjoint,

[ @)= U [0, a5)) U (U e

2y

and the summands are disjoint sets. But a half-open real interval is
not such a union unless there are no sets [¢,] consisting of single points.
Hence p,=p for i=1, ---, m and

m
(1) ap"a’pz?gf(a’pi—a’pi) .

It pI,)=(2.), pI,)=(xy) then, since p=p and I, 70,

xn—:‘xm:O ’ n#p’ 7:=11 s, m,
Lp==y '—a‘;a ’
Tip=0p, — 0y, , i=1, ---,m,

and it follows from (1) that

S utt,)=( S en)=@a=pt,)

i=1
LEMMA 6. If Ipi, 9=1, -+, m, and qu, j=1, ««<, m, are two sets of
disjoint intervals with the same union then

S ul,)=3,)

Proof. Since, by Lemma 2, the intersection of two intervals is an
interval, possibly empty, the sets I, N qu are disjoint intervals. Since

the Ipi and the qu have the same union, we have

Cs

I~

(Ipiﬂqu) ’ ?;zly s, M,

fl
-

Jiy= UL, N o) i=1, -, m.

Applying Lemma 5 and recalling that g(I,)=0eS if I, is empty, we
obtain

#l)= 3yl N o)

)= S el N o) -
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Since S is an abelian group,

M§

wI,)= 3

i=1 j=

Mz

I, )= 3 () -
j=1

-
1

-
-

In order to obtain properties of differences of unions of intervals

Ip—‘UJq

1 ¢ 5o Y

Cs

it

i

it will be sufficient to consider the special class & of sets
E=I,—\I, ,
i=1 ¢

Iz'@ disjoint, Ipi I, i=1, .-, m.
Since I,,z 1, either p,=>p or I,,i-—-O.1 A set Ee &7 is called proper
if, among the I, Ipi used to represent it, p, > p.

LEMMA 7. If Ee€ & then E is the union of a finite number of
disjoint proper elements of <.

Proof. If Ee <7 then

where

I,,=I(a,1, sy Upog; a';v a;zl) ’

I, =K, «++) 51505, a75) 1=1,2, +--,m,
and the I, are disjoint subsets of I,. Hence p,=>p and a,=a, for

n<_p. If p;=p then a=la,, ;) Cla, a,)=0 and the o; are disjoint.

R
o— U o= J\_JITJ

pi=D»
where the r,=[b}, b)) are disjoint. Let
DB=Ia, +++,a,4; b3, b), a,= {ilaipe 7, and p;, >p}, J=1,---, k.

The «, are disjoint ; and Ipi C I} if and only if p,>>p and iea,. The
sets

E=I- \ I, j=1, -+, b,

ij

1 It will be assumed that the I,;,z in a representation of a set E are not empty. This
does not sacrifice any generality.
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are disjoint proper elements of & whose union is £. This is so because

n
I,— U [pi=]k=jllfr

p=p;

and every Iz'i with p, > p is in some IJ.

Lemma 8. If
E=I,—\UlI,, F=J,—\J,
i=1 j=t
are proper sets in < then E N\ F=0 if and only <f I, N\ J,=0.
Proof. Since E CI,, FF CJ,itis clear that £ N\ F=0 if I, N J,=0.
Suppose I, N\ J,7#0. Let
L=Ia, «++, Qp_1;Cp, ) , Jp=I(by, +++, by1; by, 0,)
Ipf_:l(a'u; ceey Oyp-15 a;z! alzlai) ’ Jpsz(th ceey by, -1 ; b;j’ b';,j) ’
?:—"—"1, oo, Mm, j=1, TR

Since E and F are proper, p;, ¢; >p. Since I,N\J,7#0, we have
a,=b,, n<p, and [a,, a;) N [b,, b,)=[c’, ¢'’)%0. The half-open interval
[¢’,¢’) contains a number z£ay, b,,, =1, .-, m, j=1,.-«,n. If
X=(=,) where z,=2 and z,=a,, for n<p, then Xe EN F. Hence if
E N F=0 then I, N J,=0.
For
E=I,— I, e

i=1

we define u(E)e S by
HE) =pl)— STy -

It is to be noted that a set £ may have two representations;
B=I,— JIL,=J,— \J J,,

and the uniqueness of u#(E) must be proved (cf. corollary to Lemma 11).
In order to do this and to prove the additivity of # as a funection on

2 to S we make some definitions which are useful.
If

Ip=I(a1, AR ¢ P a’;” a’;?,)

we call p the rank of I,, a, the nth point component of I, and [a,, a;)
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the interval component of I,. Given a set of nonempty intervals Ipi, cee,
Ipm the number N of distinet ranks p, is called the spread of the set
of intervals. For example, if £ is a proper set in <7, then the spread

of F is 1 if and only if F is an interval I,.

LEmMmaA 9. If
(@) I,, i=1,+--,m, are nonempty, disjoint intervals,
(b) Ej=J,1j—— Ukl 050 g=1, -+, h, are nonempty, disjoint, proper
sels in T,
() Ui, =i .E,
then

S ul)= S HE) .

Proof. Let N be the spread of the set of intervals I,, s Jos quk
If N=1, p,=¢,=p and the sets E, are the intervals Jq since the E,
are proper. The conclusion follows from Lemma 6.

Assume that N >1 and that the lemma is proved if the spread of
the set of intervals in (a), (b) is N—1.

First we show that if p=min(p, -+, p,), ¢g= min (g, ---, g,) then
p=q. Suppose p<_q. There is some p.,=p. The pth component of
I, is a half-open interval s and the pth component of J, is a point
b,. There is a number x€o—{b, ---,b,}. If X=(x,) where x,=2 and
z,, n<p, is the nth component of I,,r then

h m h
el, —\U quC Ul,— \UE,
j=1 i=1 J=1
contrary to (c). Hence ¢ <p. Suppose ¢ <p. There is some ¢,=¢ and
kT
ET:JQT_I}:{ quk#o’ Qrk>Qr~

The gth component of qu is a nonempty half-open interval z, the ¢th
components of J, , k=1,:-, k, and of I, are points, say ¢, -+-,¢.
There is a number ze€z—{¢;, *++, ¢}. If X=(x,) where x,=z and =z,,
n <_q, is the nth component of J,,
kT m
xe(7,-\d,)-UL,cUE- {1,
k=1 i=1 J=1 1

contrary to (¢). Hence p=gq.
Next, we show that

(1) U L= J,,.
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Let
A= \JlI,, A'=\J
Di=D

llj .
a;=p
Suppose A'"—A’=£0. For some ¢,=p, there is
X=(z)ed, — U I, .

py=p
Let
o=the interval component of Jos
o;=the interval component of I, where »,~p,
a={ilJ, NI, #0 and p,—p} .
Then

waG- U ag;

i€w
and so there is a nonempty, half-open interval : such that

TCJ_ U g; s

i€w

The pth components of the I,, p>p, and of J, , k=1,---,k, are
finite in number, say ¢, -++, c,. Hence there is a number y such that

yer—{c, *+-, ¢} .

If Y=(y,) where y,=y and y,, n<p, is the nth component of a0
kr m h m
Ye (J,,‘— U, k)— UrI, < \UE-\UI,,
rog=1 T i=1 1 =1 g=1 ¢

contrary to (¢). A similar argument shows that A’—A’/ %40 leads to
a contradiction. Hence (1) is proved.
Since the E, are disjoint proper sets in <7 it follows from Lemma
8 that Iqr N Iqs=:0 if p=q,=q; and r~s. Hence, from (1) and Lemma 6,
(2) 2 pdy)= 3 pldo)
;=7 4

=F

From (c) and (1)

ky
I = el > .
@) (Y LIV J)=( U (7= U)) V(Y B
It follows from (a), (1) that the two unions on the left are disjoint and
from (b) that the two unions on the right are disjoint. Hence

k

J
(4) (p¢\>Jp Ipi) v ( qu gl quk>= q>>jp E;.
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The ranks of the intervals 7,, J,,, J occurring in (4) exclude p since
;> P, ¢ > q;=p on the left and qj,c>qj>p on the right. Hence the
spread of the set of intervals in (4) is N—1. Since the E, are disjoint
it follows from Lemma 8 that the Jq, g;,=p, are disjoint. Since for
each j, the Jo,, are disjoint in % and J » S the Jo, are disjoint in
7, k for q,=p. It follows from (1), (a) that the intervals on the left
of (4) are disjoint. Thus the set of nonempty intervals on the left of
(4) satisfy (a) of the lemma, the set of E, on the right satisfy (b), and
(4) is (c) for the intervals involved. Since the spread is N—1, we have,
by the assumption of the lemma for N-1,

k
J
(5) 2 p)+ 20 3 p( )= 3 pE) .
D;i>D q;=p k=1 ;>0
Combining (2), (56), it follows that

)= 3 L)+ S pl)= 5 (#0) S a,))+ 3, ME)

nMs

=

= 2. mE)+ Z pE)= 2, p(E)) .

a;=r =

,_.

LEMMA 10. For Ee &, W(E)=0¢e S if E is empty and
HE)= 3 n(E)
iof E=\J%.E, where the E, are nonempty, disjoint, proper sets in .
Proof. If Fe &7, then
E-1,— 1,
Al

where the I,,i are disjoint subsets of I,. If E is empty, then

Cs

=
I

2~

1 2

-
1

and it follows from Lemma 5 that
HE)=pl,)— 2 md,)=0e S.

If E=\J%,E, where the E, are nonempty, disjoint, proper sets in

< then
~(9)u (i)

and the intervals in the set {I,, E,, I, 70} satisfy the conditions of
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Lemma 9. Since p(f,)=0 if I, is empty, it follows that
wL)= 3 mE)+ 30l

HE)= pl)— 3y i) = > ()

j=
J

Levma 11. If Ee & and E,, --+, E,, are disjoint elements of =
such that

then

HE)= 3 W(E) .

Proof. It follows from Lemma 10 that the statement is true if
E=0 and that if E=£0 only E,5 0 need be considered. By Lemma 7,

I
Ei=UEij’ ?’:11"'ym
J=1

where the E,;, j=1, --+,j;, are disjoint, nonempty, proper elements of
7. Since the E, are disjoint, the E;; are disjoint in 4,j5. Now

J

™

s

E={ UE,.

1

-
it
-

J

fl

By Lemma 10,
pE)= 5, 31 1) = 5B
COROLLARY. For Ee &, p(E) is unique.
This follo§vs from Lemma 11 with m=1,
LEMMA 12. For Ee &7, p(E)=>0 in the order in S.

Proof. If E=0, p(E)=0. If E is a nonempty, proper set in &
then

and p,>p. Now p(l,)=(2.), p(,)=(@w), i=1, ---,m, and
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z, >0, z,=0, nFEp
xin:‘O’ %§p<pu?;=1,"',m.

Since

HE)=pL)= 3 ull,)=@a= Sai)

Tp— D @y=1, >0,

i=1

it follows that u(E£) >0 in the order in S.
It now follows from Lemmas 7, 11 and the fact that the sum of
positive elements of S is positive that @(E)>=0 for Fe .

3. On Generating a Ring. The set of intervals 7,, having the
properties of Lemmas 2, 4 is an example of a class < of sets satisying
the following conditions :

(i) 0e &

(ii) If A,Be © then AN\ Be %

(iii) If A, .-.-, A,¢e & there are disjoint B, --+, B,€ < such that

i_\_jl A= J\=j‘ B;.
Let & be the class of sets E such that
(ivy E=A—-\JLA, A A ez, A disjoint, A, C A.
Let <7 be the class of sets M such that

(v) M=\J"FE, E,c¢ </, E, disjoint.
We note that C 2 C <. It will be shown that <2 is a ring.

LEMMA 13. If E,Fe & then KN\ Fe 7.

Proof. There are sets A, A;, B, B, satisfying (iv) such that
E=A— (’J 4,, F=B-— J_QBj .
Now
EnF=anB-(U@ne))u(Uwnm).

By (i), ANB, ANB,;, AN B are in «. It follows from (iii) that
there are disjoint C,, ---, C; e & such that
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(UanB)u(U@ns)=Uc..
Since C, C AN B and
E‘[\FzAﬂB—k\:le,c ,

we have E N\ Fe &.

LEMMA 14. E, Fe & there are disjoint E,, ---, E,€ & such that

E—F—=\JE,.
k=0

Proof. There are A, A;,, B, B,e & satisfying (iv) such that
E—=A—\JA,, F=B—\/B,.
i=1 j=1
Let

E=(A-ANB)N\E, E=B,NE, j=1, -, nm.
Now A—A N Be & and it follows from Lemma 13 that E,e &, j=0,
«--,n. Since E, "\ B=0, E;C B, C B and the B,, j=1, --+,n, are dis-
joint, E,, E,, -+, E, are disjoint. From
U E,CE
j=0
and
EENFCA-ANB)NB=0, E,NFCB,NF=0, j=1,---,n

follows
E,CE~F.
j=0

On the other hand

E—FC<A~ (’J A,.)~(B- ju B]->C(A—A nB)ﬂE&J(JQ(Bj r\E))
~UE,.

Jj=0

Hence

E—F—= juﬂ E,, EeZ, E, disjoint.
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THEOREM 1. . % 48 a ring.

Proof. For M, Ne .2 there are disjoint sets E,e¢ < and disjoint
sets /', e <7 such that

m n

M=\JE,, N=UF,.
The sets E, N\ F', are disjoint and, by Lemma 13, belong to <. Hence
(1) MﬂN=<U1E7>ﬂ<J_UIFj)=Ulul(Ebij)e.y?.

i= = V=1 j=

Now
m

MM\ N=U £~ U ENF)= U (E-En(UF))

i=1 j=1 i=1

= U NE-ENF) .

By Lemma 14, M,,;=FE,—FE; "\ F, is the union of a finite number of dis-
joint sets in % and so M;; e .%¢. 1t follows from (1) that

”
M= N\ M, e #, 1=1, ++-, m.
Jj=1

Since each M, C E, and the E, are disjoint, the M, are disjoint. FKach
M, is the union of a finite number of disjoint sets in <. Hence

(2) M—MNAN=\)Me?.
i=1

Finally,
M\JN=M-MNN)JMNN)JN-MNN).

It follows from (1), (2) that each summand is in .©#. Since the summands
are disjoint and are the unions of disjoint sets in 7,

(3) M\JNe 2.

That 22 is a ring follows from (1), (2), (3).

4. The Measure Function on .57 to S. The function «(I,) on the
class =’ of intervals I, to S is extended to a function on <~ to S which
is additive and nonnegative in the sense of the corollary to Lemma 11
and Lemma 12. If M is in the ring %% of unions of disjoint sets in
s then

M= E,

i=1
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where the E; are disjoint sets in &. We define

)= 3 u(EB) .

THEOREM 2. p(M) is a single valued function on 2 to S such that
p(M) =0 and

w(M)= ﬁn]p(Mi) if M= {Lj M, M,e Z#, M, disjoint.
i=1 i=1
Proof. Suppose
M=JE~=F,
i=1 =1

where the sets E; and the sets F, are disjoint elements of <7. Then

Ei“O(Eﬁﬂlj), i=1, -, m,
551

P;——G(Ei[\Fj), =1, -, n,
i=1

and the disjoint sets E, N\ F, are elements of & by Lemma 13. From
Lemma 11,

nE)= 3 1ENF)

ME)= 3 mENF) .

Since S is an abelian group,

3

M= 5 w(E)= 5, 3 wENF)= 35 p(F) .

i=1 j=1

Hence p#(M) is a single valued function on &2 to S.

Since p#(E)==0 in S for Ee <7 and the sum of nonnegative elements
in S is nonnegative, we have p(M) =0 in 2.

If M= \J".M, and the M, are disjoint elements in 2,

MiZUE“, izl,"‘,m,
1

and

.
I
-
(%
fl
-

where the E,; are disjoint elements in <. Hence
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n,
2

M) = 35 w(E)= 3 (M)

i=
THEOREM 3. If Me <2, XeS and
X+M={X+Y|YeM}
then X+Me # and p(X+M)=pM).

Proof. If I,=I(a, «++, @y; @), @) and X=(x,) then

XA L, =@+, + o+ Tpoy+ 0y, Tyt @y, &, +0y) € G F

and
(1) :U(X+Ip)=)u(Ip) .
If
M—E—I,— I, e =,
i=1
then
X+M=(X+1,)— p (X+1,)e 2C 7
and, by (1),
(2) X+ M)=pll) = 3% L) = (M) -

If M= \J.E, and the E, are disjoint sets in <7, then X+ E, are dis-
joint sets in & and, by (2), #(E))=p(X+E;). Since

X+M= Q (X+E)e &#,
we have

HE+M)= X X+ B)= 3 ml)=p(M) -

The following observations were suggested by O. Nikodym, to
whom the author is indebted for a helpful reading of the manusecript.
Given X=(x,) € S such that all but a finite number of the z, are zero,
there is a measurable Me % such that #(M)=X. The results obtained
here for real valued sequences (over the ordinals n < w) may be ex-
tended by the same methods to the space of real valued sequences x,
over any given initial section of ordinals a <é.
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