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COMPLEX BUNDLES WITH ABELIAN GROUP

N. S. HAWLEY

We shall be concerned here with certain complex bundles whose
bundle groups are Abelian and with some bundle spaces of such bundles,
when a particular fibre is employed. We begin with a general definition
of complex bundle and attempt to describe some of the work of Kodaira
and Spencer in this context. A general theory is then described. This
is followed by considering a special case, the group being that of a one
dimensional Abelian variety, that is, the additive group of complex numbers
reduced modulo a discrete subgroup which is generated by two complex
numbers whose ratio is not real. Certain efforts toward an explicit
classfication of such bundles are made, together with an attempt to relate
the concepts here introduced to some in the Kodaira-Spencer theory, and to
some more classical notions. A version of an AbeΓs theorem is given.

The last section of the paper is related to the "general theory",
mentioned above, only to the extent that the spaces considered are the
bundle spaces of bundles with an Abelian group. Most of the results
and statements in the last section are not dependent on the earlier sections
of the paper, and are perhaps related to the earlier sections only in the
author's mind, because they arose at the same time and from the same
considerations. The principal result there is a construction, involving
Hopf manifolds, which shows that Kahlerian structure is very rare among
compact complex manifolds.

1. Complex bundles and the Kodaira-Spencer theory • Let V be a
complex manifold, ^ - = {Z7J an indexed covering of V by coordinate
neighborhoods, N( W) the nerve of the covering ?/, G a complex Lie
group, © the sheaf of germs of complex analytic mappings of V into
G. Suppose analytic mappings θυ : Ut Γ\Uj->G are given, such that

θυ(x) θJJC(x) ^(aθ=identity, for xeUif\Ujf\Uk,

0M(#)== identity, for xe Ut.

We say the set {θυ} defines a ^-coordinate bundle with respect to G,
or merely a ^-bundle. The θυ are called the coordinate transformations.
Two ^-bundles {θtJ} and {θ^} are said to be //-equivalent (with respect
to G) if there exist analytic mappings λt: U% ~> G, such that

β'^λβ.^Ϋ for x in U%{\V3.
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66 N. S. HAWLEY

Let ^{V, G *?/) be the set of equivalence classes of ^-bundles over F.
If W' is a refinement of W, we have natural simplicial maps

μ : N("?/') -> N( ?/), which give rise to definite restriction maps μ* of
the ^/-bundles into the ^/'-bundles, (μ*θ)r8 = θμ(r)μ{8) in U'rf\U'8({U'r} =
*%"), thus defining a mapping μ:^~(V,G; //)-+.^(V, G; W) which
is independent of the particular μ chosen. Define ^(VfG) to be the
direct limit of the ^(V,G; W). The elements of ^~(V,G) are the
Cr-bundles over F.1

If we impose the restriction that G shall be Abelian then ^~(V, G)
becomes a group. For if B is a G-bundle defined by {θtJ} and if B' is
defined by {θ^} then 5", the G-bundle defined by θ'ύ=0%fl\5 (writing
the group operation in G multiplicatively) is the "sum" of B and B',
B"=B + B'. (The reason for choosing the multiplicative notation in one
case and the additive in the other will become clear later.)

From the definitions of ^(V9G) and Hι(V, ©) it is clear that we
may identify the two, so we write ^ ( F , G)^!!1^, &). (See [14] for
definitions of HP(V, S) where S is any sheaf.)

Kodaira and Spencer have developed a theory of multiplicative line
bundles [10]. In order to proceed by analogy let us first reformulate
the elements of their theory.

Consider the exact sequence of groups,

where Z is the additive group of integers, C is the additive group of
complex numbers, and C* is the multiplicative group of non-zero complex
numbers. The isomorphism of Z into C is defined by inclusion; the
homomorphism of C onto C* is defined by the exponential operator
e[c]=expc=elίCίc. We have the corresponding exact sequence of sheaves
over our manifold F,2

(2) 0->Z->ί2 — O*->0 .

ί2 is the sheaf of germs of holomorphic functions on V, and Γ2* is the
sheaf of germs of non-vanishing holomorphic functions on F; Z is merely
the sheaf VxZ.

Corresponding to (2) we have the exact cohomology sequence

0 -+H°(V, Z)-+Hd(V, Ω) — ίf°(F, 12*) -»R\V, Z) -> . . .

We observe that R\V,Z)^Z, H°(V,Ω)^C, iϊ°(F, Γ2*)^C*, Hq(V, Z)&
Hq(V, Z). Furthermore we know that HQ(V, Ω)=Hdq(V) and H\V, Ω,*) =
^~{V, C*), the group of multiplicative line bundles over F. With this

1 This approach to defining (r-bundles is due to M. F. Atiyah.
2 The manifolds in question are assumed to be compact. While many of the definitions

are applicable in general, most of the assertions will hold only if we assume compactness.



COMPLEX BUNDLES WITH ABELIAN GROUP 67

information, we can derive, from the sequence above, the exact sequence

(3) o^z^C-+C*-+H1(V,Z)-+HQ>\V)-+^~(V,C*)-+---

Denoting J^~(F, C*) by <J<% and using (1) on the first three terms
of (3) we have

(4) §-*Ή}{V,Z)-^Ή.^\V)-^^~^H\Y,Z)-> •••.

In case the manifold V is Kahler, the homomorphisms h, a, c all have
interpretations which are significant independent of this formalism. The
homomorphism h is simply the operator ΠOilH, where H is Hodge's
operator and ΓTM is a purification5 operator [4]. The homomorphism c
merely assigns to each C*-bundle /< e J^, its Chern class c(s)e H\V, Z).
The operator a is a little more difficult to describe. Let W be a co-
vering of V, let (i) be a point in U-h e '?/, let φ be a (0,1) form on V.

Define 0W= exp {(O>£ I when U^Uj^O. The 0^ define a ^/-bundle.
(J(i) )

Let ^ be its image (under the direct limit) in J^~. Then a maps ^
onto ^ .

The kernel of the homomorphism c is denoted by ^3; it is a(H0Λ(V))
and is isomorphic to HOtl(V),U (Hι(V, Z)). ψ is called, by Kodaira and
Spencer, the Picard variety of V. In case V is a Kahler manifold ψ
is a complex multitorus.

This material thus far is not particularly significant, it becomes so
when the connection between C*-bundles and divisors is revealed. A
relationship is thus established between the bundle-sheaf theory and the
classical theory of linear (and other) systems on algebraic varieties.

A divisor D on V determines a C*-bundle in the following way.
Let ^/be a covering of V such that D is defined in each coordinate
neighborhood Z7C by a minimal local equation i ^ = 0 . Define θtj by

W - f ^ ! for zeU^Uj.

The θυ determines a ^-bundle which, in turn, gives rise to a unique
C*-bundle, which we denote by \D\. Thus the divisors on V correspond
to 1-dimensional cocycles with coefficients in Ω*, and divisor classes (or
complete linear systems) correspond to cohomology class, or elements
of HWΏ*).

The central result of the Kodaira-Spencer theory is that, for the
case where V is an algebraic variety, every C*-bundle arises from a
divisor class.

2. The general theory. Let E denote a simply connected Abelian
3 This very descriptive term is due to E. Calabi.
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complex Lie group (not necessarily connected), and D a discrete sub-
group. Let G be the factor group so that we have

(5) 0->D~>E-+G->0 .

Denote the group J^"(Vy G) of G bundles over V by &?, and let

(6) 0->J-+E->Γ->0

be the sequence of sheaves over V arising from (5) above. The cor-
responding cohomology sequence is

0-+H0(V,4)->H°(V, E)->Hΰ(V, Γ)-»H\V,Δ)-** - .

By observing that H°(V, Δ)&D, H\V, E)&E, H(V, Γ)^G, and H*(V, Δ)
^HP(V, D), and by using (5) we may write

( 7 ) 0 -> Hι(V, D)-^+H\V, E)-^^ -Ϊ+H'(V, D) -+ H2(V, # ) - * . • • .

If ^ e & then c(/) is again the Chern class of the bundle 2 and a
could also be given direct interpretations, but this is not worthwhile in
general since the general theory lacks significance and is enunciated
only to gain perspective.

The kernel of c is ^=a(Hl{V, E)), it is again the group of
(7-bundles which are topologically trivial.

3 Elliptic bundles* To obtain results of significance (that is, which
can be interpreted geometrically on V) we must specialize G. The most
significant specialization is G=C*, the Kodaira-Spencer theory. Another
specialization of some interest is G=Tω, where Tω is the "elliptic" group
with periods ω=(ωlt ω2), that is, ωι and ω.λ are complex numbers such
that ω1fω2 is not real, and Tω is C mod (ωlf ω2).

Let Λω be the "lattice" subgroup of C which is generated by ωx

and α>2. We have the exact sequence

(8) 0 - > Λ - ^ C - ^ Γ ω - ^ 0 ,

where the homomorphism i is inclusion, and we denote by ω the homo-
morphism of C onto Tω arising from reduction mod (ωlf ω,). Of course,
the homomorphism ω of C onto T is not uniquely determined by the
analytic structure of Tω; this analytic structure on T determines (ω19

ωi) only up to a modular substitution. For the following discussion we
choose a fixed (but arbitrary) ω from among its equivalence class, under
the modular group. We may also note that for the previous theory of
multiplicative line bundles, the homomorphism e:C-+C* given by the
exponential map is not unique and is saved from "arbitrariness" only
by tradition. (We shall henceforth usually drop the subscript ω unless
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it becomes useful to discuss the different conformal structures on Tω.)
We have the sequence of sheaves over F,

This gives the cohomology sequence

(9) 0->H%V, A)-+H°(V,ίϊ)->H(V, T) ->H\Vy A) -> . .

Again we observe that H°(V,A)&Λ, H°(V,Ω)&C, Hc(V,T)xT, HP(V,A)
^Hp(VfA)f H»{V,Ω)τ&H* »(V), iΓ(F, r)==^==j^~(F, T). So, as
before we get an exact sequencebefore, we get an exact sequence

(10) 0 ->Hι(V, Λ)-^H«>ι{V)-^έ$ -^>i?2(F, A) ->H°\V) -> . . .

by using (8), (9), and the isomorphisms we just observed.
The homomorphism a is defined in the same way as a, when V is

( f ( j ) - }

Kahlerian, except we now define θiJ=ω\ \ ψ \, that is, we use the homo-
(J(i) )

morphism ω instead of e= exp, thus giving rise to an element of &
instead of J^T Since there is a natural mapping H\V, A)-+Hι(V>C)>
we can again realize % as the Hodge operator followed by a purification
operator. For / e ^ , c(^) is the Chern class of ^ it is an element
of H\V,A), since π^T), the "fundamental group" of Γ, is actually A.

From the homomorphism C-^-+C* and the homomorphism C-^ϊ 7 ,
we can define a homomorphism C*-^T such that ω=σeJ The mapping
σ induces a natural homomorphism of Jf into &, consequently we may
state: Every C*-bundle gives rise to a unique T-bundle (for each T).
Of course, many different C*-bundles may give rise to the same Γ-bundle.

In particular we see that every divisor gives rise to a T-bundle, thus
allowing us to introduce a new kind of equivalence among divisors on
F, elliptic equivalence, or more precisely ω-equivalence, since we get a
different equivalence for each T.

The general question naturally arises as to whether every T-bundle
arises from a C*-bundle and, more particularly, when V is algebraic,
does every T-bundle arise from a divisor ? The answer to these questions
is the negative. In order to see this we construct a new sequence.

Let Δ be the kernel of σ, so that C*jΔ = T, and let p be an iso-
morphism of Z onto Δ.5

Then we have

1 Of course, the σ we define is not unique. However, we pick such a ό for each ω,
and these σ's remain fixed for our entire discussion. Whenever any assertion of uniqueness
is made we must consider it in the light of this somewhat free choice of a.

5 We should remark that, like ω and σ, the isomorphism p is not unique.
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In fact we can write

(i) O - + J - ^ C - ^ Γ - > O

(ii) I i I

From these we can deduce the exact sequences with associated homo-
morphisms

(i) 0-+Hι(V,Λ) -* H 0 1 ( F ) - > ^ - * i ϊ 2 ( F , Λ) -• . . .
(12) I i I i

(ii) Q-+R\V,Z)-Z-»J7- -̂ -> ^ - * ί f 2 ( F , Z ) - ^ > . .

First, to draw a few conclusions from this, suppose Hι(V, Z) =
H\V, Z) = 0. Then, from the sequences (12), we have J ^ ^ ^ i / U ( F ) ,
that is to say that the groups of C*-bundles, C-bundles, and T-bundles
(for every T) are all isomorphic to each other. If Hι(V, Z)=0, then
J^ is isomorphic to a subgroup of έ%f. Conversely if Sf is isomorphic
to a subgroup of & then H\V, Z) = 0. From (12, ii) we see that if the
kernel of μ is not zero then there exist T-bundles which do not arise
from any CK-bundle. As we shall see, this is often the case even for
algebraic varieties.

Let gp=* dim £P °(F), gp= dimH°>p(V). When V is a Kahler mani-
fold (so in particular when it is algebraic) we have gp=gp. Furthermore
we denote the pth Betti number of V by Rp.

THEOREM I. If R,yRd + 2g.z on V then there exist T-bundles which
do not arise from Cγ'-bundles on V.

Proof. We shall need the exact sequences

(a) • JT-+ H\V9 Z) -> H°\V) -> H*(V, ί2*) -> H\V, Z)->-.

(β) 0 -+ Hι(V, Z) ~> JT -> & -> H\V, Z)-^H2(V, Ω*) -* .

We must show that the kernel of μ is not zero. Denote the component
of the identity of H\V, Ω*) by P(V, Ω*). Let k denote the rank of
H\V, Ω*)//2(F, Ω*), and let q denote the rank of that part of the image
of H2(V, Z) in # J ( F , Ω*) which lies in / 2(F, Ω*). From (a) We see that
/2(F, Ω*) is a complex vector space, of dim ί?2, reduced modulo a discrete
subgroup. The rank of this subgroup must be <L2g2. Also from (a)
we see that H2(V9 ί2*)//2(F, Ω*) is isomorphic to a subgroup of H\V, Z),
since H°\V) is connected. Thus k<LR3 and q<,2g2. Therefore the
image of H\V,Z) in H\Vy Ω*) must be of rank <^R3-b2g2 <R,. But
this means the kernel of μ is
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COROLLARY 1. If V is compact Kάhler then g2=R3=0 is sufficient
to insure the existence of T-bundles not arising frGm C*-bundles.

For in this case g2=g2 and R2^>0. Specific examples are furnished
by the complex projective spaces and, more generally, by the rational
homogeneous algebraic manifolds if we restrict the manifold to be an
algebraic surface, we can drop the condition of homogeneity. In fact,
for an algebraic surface we can state:

COROLLARY 2. If V is an algebraic surface and if I^>2(va — 1) then
there exist T-bundles not arising from any divisor.

Here pa means the arithmetic genus of the surface F, and / stands
for the Zeuthen-Segre invariant, which is defined as follows: if {CS?}
is an irreducible linear pencil of curves (on F), of genus π and degree
n, and if δ is the number of curves in {^} which are of genus π — 1,
then we define I=δ — n — 4π, [18]. In order to derive the corollary we
observe that, for an algebraic surface, g2=g.z=pg the geometric genus,
and R3=Rι=2q, where q=pg — pa is the irregularity of F. Furthermore
it is known that /+4 is equal to the Euler characteristic of F Hence
i23=/+4g + 2. By the theorem, I+4q + 2>2q + 2pg or / > 2 ( p , - g - l ) =
2(pa — l) is sufficient to imply the existence of the bundles asserted.

The task of classifying all T-bundles over F is made relatively easy
by the circumstance that &?' is the group H\V, T). Let r<g denote
the kernel of c in the exact sequence (10), and & denote the image
in Hι(V, yi) of B under c. We then have the sequence

0-> gf-> ^ - > ^ - > 0 .

Actually ^ is the component of the identity in £ύ\ thus £ί is discrete.
We may thus write

In order for this calculation to be effective we must "know" £? and
&. But we have at our disposal the information that

Furthermore, when Fis an algebraic variety, HOil(V) can be constructed
effectively and explicitly—as the space of conjugates of the Picard dif-
ferentials of the first kind. If HP(V) denotes the p-dimensional
cohomology group of p-forms with complex coefficients

®Hrs(V) .
r -t- s = v



72 N. S. HAWLEY

Let HP(V,C) denote the p-dimensional cohomology group with complex
coefficients. There is a natural isomorphism

n:Hp(V,C) >HP(V) ,
onto

there is also an inclusion map

c:Hp{V, A)->HP{V, C) .

Since C^CZHz(Vf A) goes into zero under the homomorphism of H2{V, A)
into H°'2(V) defined in (10), we see that

In case V is Kahler and #2=0, we may assert that nc££C.HlΛ{V), that
is, each element is of type (1,1).

Turning to the question of a geometric interpretation of the ω-
equivalence defined earlier, we are again thrown back on the sequence
(12, ii). Let D' and D" be two divisors on V and let D=Dr-Πr. In
order for Dr to be ^-equivalent to D"', or what is the same, for D to
be ω-equivalent to zero, it is necessary for D' to be homologous to D",
or D to be homologous to zero. (For if the T-bundle determined by
D'—D"=D is ω-trivial, it is certainly topologically trivial.) Thus let
us suppose D'-D'^D^O.

There exists on V a multiplicative meromorphic function having D as
its divisor [13]. Let z be a variable point on V and let f(z) be a
multiplicative meromorphic function having D as its divisor. Let γ be
a 1-cycle on V and let us continue f(z) around γ then f(z) goes into
XD{Ϊ) /(#)> where χD{γ) is a complex number of modulus 1. Another
way of getting at this number is

(13) ^d log /(*)= log χD(r), or yD(r)= exp ^d log /(s

From this expression it is easy to see that

Furthermore let γ and f be two representatives of the same element
of HX{V9Z)9 then

This last statement follows directly from (13). Finally, suppose g(z) is
another multiplicative meromorphic function having D as its divisor,
then g(z)lf(z)=c would be everywhere finite (and single valued) on F,
thus constant. Now,
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I d log g(z) = \ d log c/(z) = \ d log /(z) 4- I d log c =
J Y JY JY JY

so we see the multiplier χD actually depends only on D and not on the
particular multiplicative meromorphic function chosen.

The preceding discussion shows that χD is a homomorphism of
H^V, Z) (the lower index denotes homology) into Cf, the multiplicative
group of complex numbers of modulus 1. Such a homomorphism is
called a character of H^V, Z), [12]. Let Y be the direct product of the
group Z and the multiplicative group of positive real numbers. Let «
be a positive real number so that a? is a representative of an element
of H^V, Y). Then

\ dlogf(z)= Λ dlog/(«)=«log ^ ( r ) - l o g (χ^rΓ) >
>γ JY

SO

Thus χD defines a character of iϊi(F, Y).
The character group (or dual group) of Y is C*, so a character of

#X(F, F) is an element of Hι(V, C*).
The isomorphism p of (11, ii) induces an isomorphism p* of iΓ(F, Z)

into Hι{V, C*). As we have seen above, the character ## determines
an element of Hι(V, C*) which we also denote by χD. We say the
character χD is p-trivial if it lies in the image of H\V, Z) under p*. The
isomorphism p also induces the homomorphism p' of ΈL\V,Z) into
ί/^F, ί2*)==^7 shown in (12, ii).

If we denote by C* the sheaf of non-vanishing constants over F
then ίZXF, C*) is isomorphic in a natural way to Hι(V9 C*) and we
may identify them. There is an inclusion map i : C * C Ω * and this
induces a homomorphism i* of ff^^C*) into i ϊ : (F, ί2*)=^T Thus

we have 0 ->ίZ](F, Z)-^->H\V, C*)~^~+^r.
From this we see that p /=ί*p*.
Let <7; denote the homomorphism of J^~ into & induced by the

homomorphism ^ of C* into T. The images under a of elements of
H\V,Z) are all sent into the "zero" of & under a. The following
theorem is the result of this discussion.

THEOREM II. Two divisors Df and D" on V are ω-equivalent if and
only if

(i) Df is homologous to D"
(ii) The character of D'—D" is p-trivial.
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We should, of course, make explicit the observation that the iso-
morphism p depends on a in its definition, and σ depends on ω. The
isomorphism p is not unique, but it is quite clear that our results are
the same for any p compatible with ω. We can view this theorem as
a sort of Abel's theorem for ω-equivalence instead of linear equiva-
lence [17].

We should further remark that, since any element of Hι(V,C*) is
the image of an element of H\V, Z) under the homomorphism p* induced
by some isomorphism p:Z~+C*, and since p determines ω (because p
determines a by Cjp{Z\ and ω=σe) we see that two divisors are ω-
equivalent, for some ω, if they are homologous. We state this formally
as an addition to theorem II.

THEOREM Π A . // two divisors on V are homologous, they are ω-
equivalent for some ω.

This shows that the set of ω-equivalences, in some sense, bridges
the gap between linear equivalence and continuous equivalence in algebraic
geometry.

There is another question of some interest which arises naturally
at this point. We shall not dwell on it here, as the author intends to
consider it in a subsequent investigation (and in another contex). How-
ever, it is interesting enough to deserve mention. Given ω and ω', when
does ω-equivalence imply α/-equivalence? Another way of approaching
it: given ωy find all ω1 such that ^-equivalence implies α/-equivalence.
An obvious set of homomorphisms ωf is available, but sometimes there
are others. This is the question of the complex multiplications introduced
into the theory of elliptic functions by Abel [1]. For a brief account
see [9].

4 Hopf manifolds* H. Hopf has defined a class of compact complex
manifolds each member of which is topologically equivalent to the product
of a circle and an odd dimensional sphere, SιxS~n+\ [8]. These manifolds
may be generated as follows: let En+1 denote the space of the complex
variables (z0, , zn), and E£+1 is En+1 with the origin (0, , 0) deleted.
Let μ denote the transformation on E%+λ which sends (zQ9 •••,£») into
(2z0, , 2zn), μλ=μ*μ sends (zQ9 •• ,zn) into (4zύ9 , 4zw) etc. Let Δ
denote the group generated by μ. We define ξ>w+1 to be EZ+τ mod Δ.

Clearly &n+1 is topologically equivalent to SιxS2n+\ φ 1 is just a torus,
and ξ>n+ι carries a complex structure for 92=0,1,2, ••• . Furthermore,
instead of choosing Δ as a group generated by 2 6 C* we could have used
ΔT, generated by r e C * , satisfying | r | ^ l , and obtained an ξ^+1 which
is also topologically SιxS2n+\ but has different analytic structures (in
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general) for different r. For the present we shall concern ourselves
with <Qn+ι=ξ>Z+ι only.

A compact Kahler manifold must have non-vanishing second Betti
number; but i?2=0 for ξ)w+1 when n > 0 , thus ξ>w+1 is not Kahler and a
fortiori not algebraic, for n^> 0. This was (to the best of my knowledge)
the first example given of a compact complex manifold which could not
carry a Kahler structure. A closer study of this example will show us
that, actually, the compact Kdhler manifolds form a very small subclass
of the compact complex manifolds.

First we must observe that $n+1 is a T-bundle6 over the complex
protective w-space Sn. Let L denote a complex line through the origin
of En+1, and let L* be that part of L which is in E£+ι; then Δ maps
L* into itself, and L* mod Δ is isomorphically equivalent to T. An L*
passes through each point in 2££+I, and no two L*'s intersect, hence φn+ι
is fibred by T's. The lines through the origin in En+ι constitute Sn,
hence each T <Z &+ι corresponds in a unique way to a point of Sn.
The mapping φ n + 1 -*S n defined by this correspondence is easily shown
to be analytic.

PROPOSITION 1. Every subvariety V of $n+ι is that part of &n+1

which lies over a subvariety of Sn.

Proof. Let p be a point of V, and let Tp be that TCξ>n+1 which
passes through p. We must show that Tp lies entirely in V. Suppose
not, then the intersection number (F°ίF)>0, for the local contribution
to the intersection number is non-negative at each point and positive
at least at p. But this is impossible since Γp^-Ό, hence TpC Fand we
thus conclude that V is fibred.

PROPOSITION 2. The group of divisors on ξ>w+1 is isomorphic in a
natural way to the group of divisors on Sn.

In view of Proposition 1, we have only to remark that the coef-
ficients of the components of the divisors are associated in the obvious
manner. In fact Proposition 2 could have actually asserted an isomor-
phism between the group of algebraic 2&-cycles of ξ>w+1 and the group
of algebraic 2(k — l)-cycles of Sn.

PROPOSITION 3. Every meromorphic function on ξ>n+1 is constant
along the fibres and is thus associated in a bi-unique way with a rational
function on Sn.

This also follows directly from Proposition 1, since each meromorphic
6 We shall often refer to the bundle space as if it were the bundle and vice versa;

of course, the bundle space by no means determines the bundle, but in each instance the
exact meaning of the sentence is clear, and no ambiguity arises.
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function defines subvarieties. Thus the field of meromorphic functions
over ίgn+1 is the field of rational functions in n variables.

COROLLARY. The divisor class group on ξ>w+1 is isomorphic in a
natural way to the divisor class group on Sn.

Let Q be a point of a complex manifold, by a p-direction at Q we
mean a non-degenerate ccmplex p-vector at Q. We shall need the fol-
lowing lemma.

LEMMA 1. In an algebraic variety V, there exists, at a non-singular
point Q, an algebraic subvariety in each p-directicn at Q.

Froof. Let z1, , zn be local coordinates at Q. Since V is algebraic,
and Q is non-singular, there exist functions w1, , wn, rational on V,
which form a new local coordinate system at Q. The equations wp+1 =
...=wm=Q define an algebraic subvariety of V which passes through
Q in the p-direction of the p-vector Όp determined by the coordinates
w\ — ,wp. Let ΐ>'p be a given p~vector at Q. There exists a linear
transformation in the tangent space (of V) at Q which sends bp into Ό'p.
This sends w\ •--,wn into u\ -,un, where the &'s are linear com-
binations of the w's with constant coefficients. The p-vector to'p is
determined by u\ - — ,up, and M P + 1 = = H * = 0 defines an algebraic sub-
variety of V passing through Q in the p-direction b'p, which is what we
wanted to prove.

We can now prove a theorem which indicates the value of examining
the Hopf manifolds.

THEOREM III. Let V be any subvariety (of dimension greater than
zero) of Sn and let B be the part of $>n+1 which lies over V, then B is
non-algebraic.

Proof. Since V must have non-singular points, so must B. Let Q
be a non-singular point of B; choose local coordinates z\ *-',zn+ι at Q
so that the local equations of the fibre through Q are 21= =2 n = s 0.
Choose any p-direction through Q defined in terms of z\ *-',zn. If B
were algebraic there would exist a subvariety of B passing through Q
in this p-direction. But this would be a subvariety of ξ>n+1 which did
not contain the whole fibre passing through a point, Q, of it. By Pro-
position 1, such subvarieties do not exist, hence B is not algebraic. Let
us note explicitly that we did not require either V or B to be non-
singular.
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To distinguish ξ>n+ι explicitly (from among all other T-bundles over
Sn) we should give its coordinate transformations. We have said that
Sn consists of the set of (complex) lines through the origin in En+ι let

us complete En+ι into Sn+ι by adding Sn, a projective w-space "a t infinity",

to En+ι. Let O be the point of Sn+ι which comes from the origin in

En+19 and we replace O by Sn, that is, we perform a (local) quadratic trans-

formation (Hopf star-process) at O, this gives rise to a new space S*+1

(not a projective space). S£+ι is a line bundle, in the sense of Kodaira

and Spencer, over Sn. Let S'n be an ^-dimensional linear subspace of

Sn+ι which does not pass through 0. Let Sn-ι = (S'noSn) be the linear

subvariety of Sn which is the intersection. A unique subvariety Sn-ι of

Sn corresponds to Sn-λ in the obvious way (by bundle projection on Sn).
Let us define the divisor D on Sn by £)= — Sn-τ. Since Sn-λ is a linear
subspace of Sn and sin2e zo, - , zn, the coordinates in En+ι, serve as
homogeous coordinates in Sn, local minimal equations of D are easily
obtained and a C*-bundle is defined, as described in § 1. Let fυ(z)
designate coordinate transformations of this C*-bundle, where zeUΊfΛ
UjCZSnf and let σ:C*-+T be defined by C*/^/=Γ. Then θίj(z)=σfυ(^
are the coordinate transformations of φ n + 1 .

To proceed in another way, let p:Szn+ι-±Sn be the Hopf map, i.e.
the point (z3, , zn) e S *n+\ where |^|2H + \zn\

2=l, goes into (zQ, ,
zn)eSn, where zό, * ,zn are homogeneous coordinates on Sn [7]. This

defines S 2 n + 1 as a bundle of circles over Sn denote the fibre by S"1. Let

xeS1, seS'2n+ι, and q(x, 5)==i, this defines a mapping of SιxSln+ι onto

S2n+1. Let T=S1xS\ We consider the following arrangement

S1

If ίυ(2) are the coordinate transformations of S2n+ι over Sn, then
θtj(z):T-*T, the coordinate transformations of ξ)w+1 over Sw are defined
by

θυ{z): (a?, x) -> (a;, ^(^) ^), zeU.fχ UJ9 x e S\ x e Sι .

If we should replace T as fibre by any other complex manifold F,
on which T may act as transformation group through the coordinate
transformations θij9 we get a T-bundle with fibre F, and the bundle
space of this bundle is a complex manifold. Now let Sι be contained
in S'm+1 as one of the Hopf fibres over Sm. Then

^^S m+ι xS1 .
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Since the transformations θυ all act on T in such a way that Sι is left

fixed, we see that θυ : ξ> m + 1 -*φ m + 1

# Thus we get a bundle Mmtfl over Sn

with the Hopf manifold § w + 1 as fibre.

PROPOSITION 4, The bundle Mm>n is topologically equivalent to

Proof. Let π' be the projection of Mm>n onto Sn (induced by the π

of ξ)w+1). Let P be a point of Mm,n and z = π'(P). The point P is re-

presented by a system of pairs (hifz), where zeϋΊ and A ίe£>wι+1; if

ze Uj also, then the pair (hj9 z) represents the same point if θ^i& h^h^

Since ^m+ι=S2m+1xW\ λ£=(s t, αt) where s £ eS 2 m + 1 and xie'S1. But # o

does not act on S2m+ι (perhaps we should say its action is the identity),
so we may drop the subscript on 8t and write At='(s, xt). Thus the point
P is represented by (s, #*, 2:). If we note furthermore that

θtJ(z) hj=θtj(z)(s, Xj)=(s, xt) = (8, ti3(z)-x3) ,

we see that the pair (xt, z) represents a point s of S2n+\ Consequently
P is represented by the pair (s, s). This shows that Mm>n is topologically
equivalent to S 2 m + 1 xS 2 n + 1 .

The manifolds Mm>n were recently introduced and studied, from a
somewhat different point of view, by E. Calabi and B. Eckmann [2].
In fact, Calabi and Eckmann view Mm>n as a Γ-bundle over SmxSn.

Let r = ( m + l)(% +1) — 1, let wΰ9 * ,wm be homogeneous coordinates
in Sm, let z0, -",zn be homogeneous coordinates in Sn, and let ζljf i = 0 ,
. . .f m; i = 0 , , n9 be homogeneous coordinates in Sr. We may define
a natural imbedding of SmxSn into Sr by setting ζiJ=wJ'ZJf i=0, , m,
j=0f » 9n. Let & > r , and let 5^ be a linear subspace of Sk we say
that SmxSn has the natural imbedding in Sk if we imbed it naturally
in Sr and then consider it a subspace of Sk, [6].

PROPOSITION 5. Let k^>r(m-{-l){nΛ-1) — 1, and let SmxSn have the
natural imbedding in Sk, then the part of £>fc+1 which lies over SmxSn

is the manifold Mm>n .

This follows directly from the discussion centering around Proposi-
tion 4.

Remark. The part of £>fc+1 which lies over S r C S , is ξ>r+1.

The Calabi-Eckmann manifolds MmtΛ9 excluding the Hopf manifolds
Mhn=ίQn*1, occur as special cases of a class of manifolds studied by H.
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C. Wang [16]. By a Wang manifold we mean a compact complex-
homogeneous space which is simply connected. (Actually it is only
necessary to assume that the fundamental group is finite, but this causes
statements and proofs to be cumbersome, and we can expedite matters
by assuming simple connectedness the necessary modifications to prove
the more complete statements will be obvious in every instance.) On
the basis of Wang's work, M. Goto has shown:

"A Wang manifold is a complex fibre bundle, with a torus as the
fibre, over a rational variety,97 [5].

We should remark that, as used here, "torus" means a complex
torus of arbitrary complex dimension including zero. If the torus is of
dimension zero, this means the Wang manifold is itself a rational variety.

THEOREM IV. A Wang manifold W is Kdhlerian if and only if its
Euler characteristic χ(W) is non-vanishing. If it is Kdhlerian, it is
algebraic, and even rational.

Before we can prove the theorem, we need a simple lemma.

LEMMA 2. If F is a subvariety of V, and if F is homologous to zero
on V, then V is non-Kdhlerian.

Proof. Suppose the complex dimension of F is m, and of F is w,
and suppose V is Kahlerian. Let ω be the Hodge form on V, that is,
the exterior 2-form associated with the Kahler metric, and let ωm be
the exterior product of ω with itself m times. Then

(This integral is not zero since ωm is a volume element on F with the
induced metric.) But this integral is essentially the Kronecker index of
the cocycle ωm and the cycle F; since it does not vanish, F cannot be
homologous to zero. This lemma is merely an old theorem of Lefschetz',
on algebraic varieties, stated backwards. The Kahlerian dressing is, in
view of Hodge's work, a trivial addition.

Proof of theorem IV. If W is fibred by tori then χ(W)=Q. Thus,
if χ(W)Φ®, we see by Goto's theorem that W is a rational manifold.
Now suppose χ(W) = 0 and let T be a fibre. T is itself a group, and
can be considered as a subgroup of the group, say G, acting on W. Let
the complex dimension of T be m and let C19 •• ,C2TO be closed (real)
one parameter subgroups of T whose point sets are the carriers of basic
1-cycles of T. Let E be the closed subgroup of T generated by d, ,
C2TO-α; it is the carrier of a basic (2m — l)-cycle on 2\ Let xeE and
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Cx be the 1-cycle on T into which x sends C2m, that is, the coset of
x Clm of C,m. Wis simply connected, so there exists a 2-chain (actually
a 2-cell) Γι such that C2m bounds Γ\ Since we can view x as an element
of G, it sends Γz onto some 2-chain Γ\ such that Cx bounds Γ\. As #
ranges over E, the / I sweeps out a (2m-f l)--chain Γ~m+1. Now T bounds
Γ'zm+\ so is homologous to zero in W; by the lemma this shows that W
is non-Kahlerian. (We remark that all chains and cycles to which we
refered are singular chains and cycles.)

The Hopf manifolds can be utilized in still another construction
which proves interesting. Let En+1, 2£*+i, μ, Δ, etc., be as before; let
Lk+ι denote a linear (complex) (fe + l)-space through the origin of En+ι

and Lk+1 the part of Lk+1 in 2?*+1. Each Lk+ιζZEn+ι is a point of the
complex Grassmann variety Ω(k, N). The group Δ maps L*+1 into itself,
so each Lk+ι corresponds uniquely to an § fc+1 CΦ w + \ consequently Ω(k, N)
can be looked upon as a set of £>fc+1's in ξ)w+1. This gives a method for
generating ξ>k+1 bundles over an arbitrary compact complex variety F.
(By a complex variety, we mean a subvariety, not necessarily non singular,
of some complex manifold.)

Let φ be an analytic mapping of V into Ω(fc, N) we may generate,
in the usual manner, an ξ>fc+1 bundle whose bundle space we may denote
by B(V, k, JV, φ). Actually, for fixed V, k, N, φ, we get a continuum of
analytically distinct B(V, k, N, φ) by varying the analytic structure of
2\ thus of ξ)fc+1.

PROPOSITION 6. Evevy B(V, k, N, φ) is non-Kάhlerian.

This is obvious, since a non-singular subvariety of a Kahler variety
must be Kahler; but the fibres of each B(V, k, N, ψ) are non-Kahlerian.
This shows that the Kahler varieties must be a very small subclass of
the class of compact complex manifolds. In particular, to each algebraic
variety there corresponds, in a natural way, a continuum of distinct,
non-trivial, non-Kahlerian varieties.

PROPOSITION 7. The Calabi-Eckmann varieties are all generated by
linear varieties which lie on Grassmann varieties.

This follows directly from the details of the construction described
above and the discussion concerning Proposition 4.

Our construction can be generalized further. Let K be any complex
bundle of (complex) linear spaces over V, and let Lr+ι be the fibre of
the bundle, [15]. We may reduce L*+1 by Δ to get ϋΓ*, an φ r + 1 bundle
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over V. This construction has another interesting aspect. Let M be
the bundle space of the complex sphere bundle arising from K, [3]
Let &2r+1 be the fibre of the bundle M, and let Sι be such that

PROPOSITION 8. If M is the bundle space of a complex sphere bundle
over V which arises from a complex bundle of linear spaces then MxS1

carries natural complex structures all of which are non-Kahlerian,

Since the bundle group does not act on S\ in the product S2r+ιxS\
we see that MxS1 is an ξ)r+1 bundle over V, In the statement that all
are non-Kahlerian, we of course understand that r > 0 .

We cannot resist mentioning that the construction can be pushed
still further, since all we really need from K, the bundle of linear
spaces, is the underlying protective bundle. As one knows, not every
protective bundle arises as the underlying projective bundle of a bundle
of linear spaces, so this gives us a yet larger construction. Of course,
the path is now clear to begin new constructions by considering bundles
with some of these new non-Kahlerian manifolds we have constructed
as fibres and so on ad infinitum.
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