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1. Introduction. In 1948, R. W. Ball [2] presented methods for
obtaining information about the number of absolute points of a corre-
lation of a finite projective plane in which neither the theorem of
Desargues nor any other special property (except, of course, the existence
of the correlation) is assumed. This work was, in a sense, a continua-
tion of an earlier investigation by R. Baer [1] of the case that the
correlation is a polarity.

We shall show how, using an incidence-matrix approach!, one may
obtain the principal results of [2] somewhat more directly. Some of
the results are strengthened. In addition, our method is sufficiently
general to apply at once to the so-called symmetric group divisible
designs, a class of combinatorial configurations including the finite pro-
jective planes. For simplicity, we shall present our main discussion in
the language of planes, reserving to the end indications of the generali-
zation.

As pointed out in §8 3 and 4 the geometric problem with which we
are concerned leads naturally to the question: What are the irreducible
polynomials whose roots are roots of natural numbers? This question
is treated in the following section.

2. Polynomials whose roots are roots of natural numbers. Let
f(x) be an irreducible polynomial with integral coefficients and let one
of its roots be z=n"*¢, (n, k natural numbers, ¢ a root of unity). Clearly
z satisfies the equation

(1) 2 n=_%=(,

for some %, where from now on we use ¢, to denote a primitive Ath
root of unity. From (1) we see that @,(2*/n)=0, where @, is the
cyclotomic polynomial of order #. Hence

(2) S (@)|n*®0, (" [n) .

The problem is therefore reduced to that of finding the irreducible
factors of @,(x*/n) for arbitrary positive integers %, k, n. It will suffice

Received August 16, 1954. The work of the first two authors was supported (in part)
by the Office of Naval Research.

1 Arithmetic properties of the incidence matrix have been exploited with conspicuous
success ([4], [5]). In this paper we study its characteristic polynomial.
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for our purpose here to consider only the reducibility of @,(2*/n) (that
is the case k=2). The general case is settled in the note following
this paper [9].

If n¢™@,(x*/n) is divisible by an irreducible polynomial ¢(x), then
9(x) is not a polynomial in 2*. Hence ¢(—x), which also divides
n?™Q, (x*/n), is different from g¢(x) and is irreducible. Therefore,

(3) M, (2 n)= + g(x)g(—2) ,

for g(x)g(—=x) is a polynomial in a*, and n“™@,(a*/n) is irreducible in &*.
Then by (8), v/'ne, or —Vv/ng, is a root of g(x); thus &,=(+v'nc,)/n
is in the splitting field for g(x). Thus the splitting field for g(x) contains
the ~th roots of unity; but by (8), the degree of this splitting field is
¢(h). Therefore the splitting field for g(x) is the same as R(¢,). Con-
versely since 1/n¢, is a root of @,(x*/n), v/n¢, € R(¢,) implies that @,(x*/n)
is reducible. We are thus led to the following lemma:

LEMMA 1. The polynomial @,(x*/n) is reducible if and only if V/'ng,
s contained in R(C,).

LEMMA 2. The polynomial @,(x*/n) where n=n*n’, n’ squarefree, is
reducible vf and only +f n’|h and one of the following conditions holds :
(a) A=1 (mod 2) and »’ =1 (mod 4) ;
(b) 2=2 (mod 4) and n’ =3 (mod 4) ;
(¢) =4 (mod 8) and n’ =0 (mod 2).

Proof. We first list for convenience several facts to which we shall
make reference in the course of this proof and subsequently.

(i) The discriminant of a subfield of an algebraic number field
divides the discriminant of the whole field [7, p. 95, Satz 39].

(ii) The discriminant of R(y/ m), m a squarefree integer, is 4m if
m=2, 3 (mod 4), and m if m=1 (mod 4) [7, p. 157, Satz 95].

(iliy The discriminant of the field of the mth roots of unity is
divisible only by primes which divide m [7, p. 146, Satz 88].

A+iv'm if m=0 (mod 4)

(iv) ZCZ:= V'm if m=1 (mod 4)
g W m if m=3 (mod 4)

—-

[8, p. 177, Theorem 99].

(v) If (r,s)=1, then ¢, ¢, is a primitive rsth root of unity.

(vi) If m is odd and squarefree, m|r then {(—1)™VPm}'*e R(C,)
(This ecan be shown in a variety of ways: for example, from (iv) or
from (i), (ii), (iii)).
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We now turn to the proof proper. We first prove the necessity.
Assume @,(«*/n) is reducible; that is, by Lemma 1,

(4) V'n' g, e R(E) -

Therefore /5’ e R(1/¢,), so by (i), (ii), (iii), »’ is the product of primes
each of which divides 2k. If 4 is even, then »'|k. If A is odd, then
since ¢(2k)=¢(h), we have R(1¢,)=R(¢,), so that by (i), (ii) and (iii)
we have again »’|h. Next,

(a) Assume %~ odd. Then /¢, € R({,), so that (4) implies n’ € R({,,).
Further »’ is odd, since »’|%, so either n’ =1 (mod 4) or n’ =3 (mod 4).
But we cannot have n’ =38 (mod 4), for, by (ii), (i), and (iii), this would
imply 2|A.

(b) Assume A=2 (mod 4). Then, since ¢(2h) > ¢(k), it follows
that /¢, € R(C,), so VvV n'¢,€R(,) implies 'y’ € R(,). If n’ is odd,
this implies n’ =3 (mod 4), by the fact that »'|2 and (vi). Further »’
cannot be even. If n’ were even, write n’=2n". There are two cases:
n’=1 (mod 4), n’=3 (mod 4). If »”"=1 (mod 4), then 'n/¢,=
V' 2V ' VE, € R(¢,) implies 12V ¢, € R(¢,), since /' n’ € R(C,) by the
fact that »”’|k and (vi). But this means 1/ 2 € R(¢,), which is impossible.
For R(1/¢,) contains ¢; and if it also contains 1/2, it would contain
L=@1+9)/ 2. By (v), it follows that R(1/¢,) would then contain a
primitive 8(%/2)=4hth root of unity; therefore the degree of R(¢,)
would be at least ¢(4h) > ¢(2%); the actual degree of R(1/¢,).

If " =3 (mod 4), then /'y¢, € R(,), for iv/n’ € R((,) by the fact
that »’|2 and (vi), and it is easy to see (for example by (v)) that
W', e RC,). Therefere 1/ n” ¢, =@V n’')(—01V¢,)€R(,). Hence,
V' 2 eR(,), and a fortiori 2 € R(1/¢,), and the preceding argument
applies.

(¢) Assume finally 2=4 (mod 8). Then n’ cannot be odd. For
since R(¢,) contains 4, and »’|k, we learn from (vi) that 1/’ e R(C,).
Therefore, v/n’¢, € R(¢,) implies 1/¢, € R({,), which is impossible, since
@(2h) > ¢(h).

It remains to show that if =0 (mod 8), then 1/'n'¢, ¢ R(,) for
any n’. The argument used in (¢) shows that »’ cannot be odd. If »’
were even, n’=2n", then since &=(1+1)/1/2 and ieR(,), we have
V2 eR(,). Hence Vn'e,=V 2n"¢, €R(,) implies v'n¢, € R(Cn)-
Then we may use the argument just given to cover the case in which
n’ is odd. Hence we cannot have 2=0 (mod 8).

The sufficiency is established simply by constructing g(z) of (3).
We first prove that in cases (a), (b)

n’ -1 o X,/
(5) e=n*, S =",
j=0 h

=1

)
ny n’
S
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is a zero of @,(a*/n). Since ¢}/ is a primitive n’th root of unity we
obtain from (iv):
in case (a) 2z=n"V"nl,=1"n¢,=a zero of @,(a*/n);

in case (b) z=n™V'n't,=1"ntL,=a zero of @,(x*/n) .

In case (¢) we have
=1 g R . —
(6) z=—;—n*cn g] Gl =-—;—-n*1/2n’(1+%)Cn=%*l/n'é’s€n’

a zero of @,(a*/n). The conjugates 2 of z in R({,) are now obtained
simply by substituting ¢, for &, in (5) or (6) where ([, 2)=1. Thus we
obtain

n-1
g@)= 1 (x—2V).
=1

(l,;)-l

Later on we shall need the sum of the 2. We therefore establish
the following lemma :

LEMMA 3. If (8) holds, then the sum of the roots of g(x) is
(a) £n*n’ if h=£=0 (mod 4) and squarefree,

(b) O iof h=£=0 (mod 4) and & is not squarefree,
(e) +n*n’ ¢f k=0 (mod 4) and k/4 is odd and squarefree,
(d) 0 if h=0 (mod 4) and h/4 is odd and not squarefree.

Proof. Let us first note that, by Lemma 2, the foregoing enumera-
tion aceounts for all cases in which n*™@,(z*/n) may be reducible. Also,
the + in (a) and (c) is to be expected, since we are clearly unable to
distinguish between g(x) and g(—«).

We now set A=2°p---pi, n'=2°ph...px where e, =0,1; and
write hy=2°, hy=pii; n=2%, ni=pi; Ly=Chy Cp=C,

Then &,=Cww -+ L and its conjugates ¢, are the products of the
conjugates v, (i, -++, (t where [=[, (mod k). Cases (a), (b) of this
lemma correspond to cases (a), (b) of Lemma 2. Here ¢,=+1 so that
we obtain from (5)

h.—1
i

) Surman S h S e

J=0 i=1 Li=1 @
t,rp)=1

As j runs from 0 to n’—1 its residues (mod n;) run independently
from 0 to n;—1; hence we can write
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n—lhl

(8) a=S20=4n* 11 S ST M — gpra,e e,

i=1 fj=0 L=t @
(Ltv =1

In order to evaluate the a; we first observe that the sum of the primi-

tive mth roots of unity

(9) T Ca=ulm) .

(ymy=1
This is seen most simply by observing that
0, ()= ,,13,, (22— 1)“‘m’d’=x"(m)—;t(m)w‘p(m*“+ ceo
Now for %, >>n; we have C(‘i')”?’"’*” a primitive A;th root of unity
and therefore
- ny-1

(10) G= 3 % gy 5, ) =nigh) .

JL-U -1
(zt,pt)-d

For h,=n; we have A/n’ relatively prime to p, so that

@

nt:l s n,/-1 1/_?5 if anl (mOd 4)
S-Sy —i{, -
5=0 0/ p, if p,=38 (mod 4).

Where the sign depends on whether %/n’ is or is not a quadratic
residue (mod p,). Similarly
n /-1 n ’-1
l 2 {
J =22 Iy R 2 e
(12) Z < ( > > Ly (p) Legendre symbol.

p,/ d=o @

From (11) and (12) we obtain

n’ 1 n /-1

(13) ==+ l% ( )Ca) jzz“o C(z) .
(Lt’pi)=1
Now
(14) z(‘f) Cy = S Clo— Sl

where I, ranges over those s in 1,-...,p,—1 which are quadratic
residues (mod p;) and 3, ranges over those £ in 1, ..., p,—1, which are
quadratic nonresidues (mod p;). According to (9)

(15) 2u o+ 2ulhy=pmp)=—1
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and obviously
nl’-l 5
(16) ’Zﬂo Cff) =1+23,¢ -

Combining (15) and (16) we have

[
72£ 1

(17 S Clo— Sallo= X L
e
Substitution in (13) now yields
nt'-—l 2 \2
(18) = i( PN ) =+ p=Fnph) .
i=0

From (8), (10) and (18) we now obtain
(19) a=+n*n'ph) ,

which proves cases (a), (b). In cases (c), (d) we have case (c) of Lemma
(2) and therefore equation (6) obtains. We now have a=+n*aa,---a;
where a,, -+, a, are the same as in (10) and (18). The only new factor
is according to (6)

3 3 o
(20) =t 3 S Ll
2 5=t 550 @
loodd

If A,>>4 then, as in (10), we obtain
(21) ay=2p(hy) =nopt(y) = nop(y[2) =0 .
If k0=4 then C(l))=7; and

22)  a= ; [€ o + Loy + Loy + Loy + Loy + Lloy + City + Cop] = — 2=m0p2( o/ 2)

Thus, finally, in cases (c), (d)
(23) a=+n*n'p(h|2)

which proves these cases.

3. The incidence matrix. We assume that we have a finite pro-
jective plane /I with n+1 points on a line, »>>1, and consequently
N=n’+n+1 points in the plane. We further assume that the plane
admits a correlation p, that is a one-to-one mapping of the set of points
of JI onto the set of lines of //, together with a one-to-one mapping of
the set of lines of // onto the set of points of // such that a point is on
a line if and only if the image of the point is on the image of the line.
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Our attack on the study of the number of absolute points of a
correlation, that is, the set of points each of which lies on its image,
is based on the following:

LEMMA 4. Let p be a correlation of a finite projective plane II, and
let the points P, -+, Py and lines 1, +++,ly of I be so numbered that
pP,=l; (i=1, +++, N). Let A=(a;;) be a square matrix of order N defined
by the rule a,;=1 if P; is on l;, and 0 otherwise, and let P=(p,) be a
permutation matrixc defined by p,;=1 if p*P,=P;, and 0 otherwise. Then
iof AT denotes the transpose of A, we have (i) AT=PA, and (ii) the number
of absolute points of p is tr A (the trace of A).

Proof. The second part of the lemma is immediate. To prove (i),
observe that the (¢, 7)th element of AT is 1<&a,;,=1¢(P; is on [,{;=pP,
is on pl;=p*P;,. But from the definition of P, the (7, 7)th element of PA,
is 1p*P; is on l;. Hence A"=PA.

Of course, it is also true that if A is an incidence matrix of a
finite projective plane, and there exists a permutation matrix P=/(p;,)
such that A”=PA, then the mappings P,—!;; [,— P;, where p;=1,
define a correlation.

Because of (ii), it is clear that knowledge of the eigenvalues of A
will contribute to the solution of our problem. Now, A7=PA implies
A is normal. For if AT=PA, then A=A"P?. Hence AA"=A"PTPA=ATA.
Thus the eigenvalues of AA” are the squares of the moduli of the
eigenvalues of A. But the eigenvalues of AA” can easily be computed
from the fact that the incidence properties of a plane imply

(24) AAT=nI+J

where I is the identity matrix and J is the matrix every element of
which is unity [4]. The eigenvalues of 4A” are

(25) n+1),n,n, -, n.

But by (24), n+1 is an eigenvalue of A with (1,1, ---, 1) as correspond-
ing eigenvector; hence the eigenvalues of A4 are

(26) n+1,1 ne®, vV net%, «o0, 1/ neer-

Let the permutation P split up into cycles of length d,,d,, ---,d,;
d,+d,++--+d,=N. Then the eigenvalues of P are the d,th roots of

unity, the d,th roots of unity, ---, and the d,th roots of unity. If
we write out these eigenvalues of P as

(27) 1, 9591, eioz’ cee, Py -1

then it follows from A7A-'=P, the normality of A4, (26), and (27) that
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(28) e~ 1= g% j=1,2, ..., N—1.
These elementary consideraticns alone suffice to prove the following :
THEOREM 1 (see [2, Theorem 2.1] and [1, Theorem 4]). If n=n*n’,
where n' 18 squarefree, and M is the number of absolute points of p, then
M =1 (mod n*n’).
Proof. By (26) and Lemma 4, we have
(29) M=n+14+1v"nt,

where t=3/7'¢"®; is an algebraic integer, by (27) and (28). Therefore,
(M—(n+1)))=0 (mod n), which implies the theorem.

4. The characteristic polynomial. By virtue of (26), the character-
istic polynomial of 4 may be written

(30) (= (n+1))Q(2) ,

where Q(x)=(x—1 ne*)(@x—1 ne*)..-(x—1 ne*~-1). Then since N—1
=n’+n is even, we have

(31) Q(2)Q(—x)=(a* — ne’**1)(a* — ne*). « « (x* — me**¥-1) .

From (27), the fact that the complex conjugate of a dth root of
unity is a dth root of unity, and the definition of d,, d,, ---, d,, we may
write the characteristic polynomial of P as

(32) 1 @) =(@—D@—e ) @—e %) -+ (z—e 1)

In (22), replace = by «*/n and multiply both sides by n”. There
results

(33) lrl (x‘zdt__ndi)z(xz_n)(x‘l___ne—wl)_ . .(xz_ne—-iezv_l) .
i=1

Comparing (33) and (31) we deduce

(34) 1oy (r**—nt)=Qx)Q(—2) ,

XP—n i=1
so that the irreducible factors of Q(x) are of the type discussed in §2.
5. The number of absolute points of p. In this section we apply

the results of §2 to present criteria sufficient to insure that M=n+1.
If we write
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Q@)= '+ax¥ 2+ bx¥ P4 ...,

Then by (30), M=n+1—aqa.

We wish to prove that, under certain circumstances, a=0, and this
will certainly hold if every irreducible factor of the left side of (34) is
a polynomial in a*. These factors are the irreducible factors of @,(x*/n),
hld,, which were investigated in § 2.

On the basis of Lemma 2, we can assert the following.

THEOREM 2. If, for each divisor of the orders d, d,, ---,d, of the
cycles of P, none of the conditions of Lemma 2 holds, then M=n+1. In
particular (see [2]), M=n+1 iof »' and d=l.c.m.{d;} satlisfy one of the
Sollowing :

(@) n' td;

(b) 2n'kd and n' =1 (mod 4);

(c) there exist odd primes p and q such that p==q (mod 2d) and
(' [p)(n'[q)=—1, where (a|b) is the generalized Legendre-Jacobi
symbol ;

(d) d=1,2, or p*, where p is a prime==3 (mod 4), £k « positive
wnteger, n’ > 1.

Proof. The principal statement is an immediate consequence of
Lemma 2.

Proof of (a): Since »'td implies n’' t % for any %|d,, the irreduci-
bility of each @,(a*/n) follows from Lemma 2.

Proof of (b): Assume (b) false. Then by virtue of (a), we may
assume there exists a positive integer % such that for some d;, we have
n'|k|d;, and @,(a*/n) reducible. If 2 is odd, then we obtain the contra-
diction »’ =1 (mod 4) by Lemma 2. If % is even, then »’ must be even,
otherwise 2n/|h. But by Lemma 2 (¢), »’ even implies ~2=0 (mod 8),
hence we are forced to the contradiction 2n’|A.

Proof of (¢): We have (n'/p)(n'[q)=—1. Assume @,(x*/n) reducible
for some %|d. Then if %2 is odd, n'=1 (mod 4), thus (n'/p)=(p/n’),
(7'/q)=(q/n’), by the quadratic reciprocity law. Hence —1=(»'/p)(n'/q)
=(p/n')qg/n’). But p=q (mod 2d) implies p=¢q (mod »’), since »’|A|d.
Therefore (p/n')=(q/n’). Combined with —1=(p/n’)(g/n’), this yields a
contradiction.

Now let ~2 be even, =2 (mod 4). Then by Lemma 2(b), n’' =3
(mod 4). By the quadratic reciprocity law

— 1= [p)(w [g)=(~ 1)+

implies p+¢=0 (mod 4).
But p=q (mod 2d) implies p—¢==0 (mod 4), since z|d. Therefore,
2p==0 (mod 4), contrary to the fact that p is an odd prime.
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Finally, let =0 (mod 4). Then by Lemma 2 (c), »’ is even. Write
n’=2n". Then

=1=(n'[p)(n’'[9)=2[p)2|O) (" [ )" |q)= (" [p)(n"[q) ,

since p==¢q (mod 8). If »”" =1 (mod 4), we obtain a contradiction as
in the first case considered above. If »’"==8 (mod 4), we obtain a
contradiction as in the second case. Note that the hypothesis p=
(mod d) (instead of p==¢q (mod 2d)) is sufficient in all cases except when
simultaneously n’ =38 (mod 4) and d=£0 (mod 4).

Proof of (d): If d=1 (see [1, Theorem 6]) or d=2, then the only
hld are h=1 or h=2. If A=1 we cannot have »’|h. If =2, then n’'|h
implies n'=2, contrary to Lemma 2 (b). If d=p*, p a prime=3 (mod
4), then h|d implies %~ is also of this form. Assume now @,(x*/n) re-
ducible. Since n'|h, n'=p. By Lemma 2 (b), this implies % is even, a
contradiction.

Even in case one or more of the polynomials »n‘®®,(x*/n) where A
divides some d; is reducible, we may still obtain information about M.
We can use the results of Lemma 38 as follows. Let d,, -+, d, be the
lengths of the disjoint cycles of P. For each 1=1, ---, r let k, be defined
as follows:

(i) if »’ =1 (mod 4), let %, be the number of divisors of d, each
of which is odd, squarefree and a multiple of n’;

(ii) if »' =38 (mod 4), let %k, be the number of divisors of d; each
of which is even, squarefree and a multiple of #’;

(iii) if »’ =2 (mod 4), let k&, be the number of divisors of d; each
of which is a multiple of »’, and of the form 4¢, ¢ odd and squarefree.
Then we have the following theorem.

THEOREM 3. If k; is defined as above, then M=mn+1+sn*n’, where
S <s< S k. Further, s= 3k (mod 2).
i=1 i=1 i=1

Proof. All that remains to be verified is the second sentence,
which follows immediately from the fact that the sum of the roots of
Q(x) in (34) is the sum of 3k, numbers +n*n’.

6. In this section, we compare the number of absolute points of
p’, where j is any number prime to twice the order of p?, with the
number of absolute points of p. The results obtained coincide with
those of [2], so we shall merely sketch the present approach.

The index j in what follows is an integer prime to twice the order
of p*=2d. Let M, be the number of absolute points of p’, so that
M,=M in our previous notation. If we let j=2c+1, then P°A is an
incidence matrix for /I that bears the same relation to p’ that A does
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to p. In particular, M,= tr P-°A. Referring back to (26), (27), and
(28), we see that

M=n+1+1"n(%+ - +&*v-1)
M,=n+14+1 p(e1+ .- 4eilov-1)

But from Theorem 1, n~"*(M,—(n+1)) is of the form u\/n’/, where u is
a rational integer. Further, if m is the least common multiple of the
orders of the a’s, then n~'*(M,—(n+1)) is the image of uy/n’ under
the automorphism of R(&,) which sends &, — &, .

Now m=d if d is odd, m=2d if d is even. In either case, however,
the indices 5 considered correspond biuniquely to all automorphisms of
R(,). Thus, if M=%~ n+1 (so that we know /%’ € R({,)), we have

M,=M, if the automorphism ¢, — &}, fixes /¢’
M,=2(n+1)— M, the automorphism ¢,, — &/, sends 1/ »’ into —1/ 5n’.

One may use the Gauss sums of Lemma 2(iv) to show explicitly
that in general

M=/ [))(M;—(n+1))+(n+1) ,

where (n’[7) is defined to be 1 if (4,m’)>1. Among other things, this
formula includes the equation M,=M, if » is a square.

7. We now show how the preceding results may be extended to
symmetric group divisible designs. (See [3] and [6] for a definition and
discussion of the interesting properties of these designs.) For our
purpose, it is appropriate to employ the following:

DEFINITION. A symmetric group divisible design 4 is a combinatorial
configuration consisting of a set with v elements and v distinguished
subsets such that

(i) each subset is incident with exactly % elements, and

(i) the subsets can be partitioned into g groups, each group con-
taining s subsets (gs=v), such that two distinct subsets in the same
group have exactly 1, elements in common, two subsets in different
groups have exactly 4, elements in common.

We assume that the design 4 admits a correlation p; that is, a one-to-
one mapping of the elements of 4 onto the distinguished subsets of 4,
together with a one-to-one mapping of the subsets onto the elements such
that an element is in a subset if and only if the image of the element
contains the image of the subset. Now the existence of p implies that
in the definition given above, we may interchange, in (i) and (ii) the
words subset and element. Number the elements E,, E, -.-, E, such
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that E,,E,, ---,E, are the elements of the first group, E,.,, E.,,
..., F,; are the elements of the second group, and so on. Number the
subsets S,,S,, ---, S, so that pE;=S,. Define the incidence matrix
A=(a;;) of order v, by the stipulation a,,=1 if E,; is in S, 0 otherwise,
and the permutation matrix P=(p,;) such that p,;=1 if and only if
o*E;=E,;. Then as in the case of planes, we have

(35) AT=PA, so A is normal. Further
(36) AAT=(k =)+ (L —W)E+ A0

where I and J are as before, and K is the direct sum of g matrices of
order s each of which consists entirely of 1’s.

Our object, as before, is to obtain a count on the number of absolute
points of p=tr A=M.

Since the vector (1,1, ---,1) is an eigenvector of A and A" corres-
ponding to the eigenvalue %k, and is also an eigenvector of K with
eigenvalue s, we have from (27) that i*—2v=k—4,+3s(2,—4). Hence,
we may compute [1] that

(37) |AAT — oI = (& — @)+ 4 + 84 — ) — 2]~ (k— A —a)°~7 .

Henceforth, let us assume v >¢ >1. This is no restriction for the
combinatorial configurations apparently so excluded arc realized by al-
lowing 4,=4,. (Indeed, the case 4, =4, with the further trivial restrictions
v >k>4=2,>0 is an important class of designs known as balanced
symmetric incomplete block designs. Further, 4,=41,=1 characterizes
finite projective planes.)

Because A is normal, the eigenvalues of AA” are the squares of the
moduli of the eigenvalues of 4. Hence, by (37), the eigenvalues of A
are

k, ]/Eewl, 1/%19“”2, cee, -l/%lewa—l, ]/;Z_zei%, ces, 1/"){;6'5“”‘1 ,

where n,=k—2A+s(4,—4,), n,=k—12,.

On the other hand, if P is a product of disjoint cycles of lengths
di,dyy s+, d,, d+++-+d,=v, then the eigenvalues of P are the d;th
roots of unity, the d,th roots of unity, ---, the d,th roots of unity,
namely

(38) 1, e, g%, <. glfo-1 |
Now by (35) and (36) we have
(39) A=(k—2)P"+ A, — )P K+ (4, —2,)J .

Further, each of A, P?, K, J commutes with the three others (for example,
to check that P’ commutes with K multiply (39) on the left and right
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by P and apply (35)). Hence all four of these normal matrices can be
simultaneously diagonalized. Let us imagine then that (39) is in diagonal
form, and examine the diagonal elements. Note that one eigenvalue of
J is v, the rest are 0, and that g eigenvalues of K are s, the rest are
0. Clearly, then, we have

E=(k—4) 1+ (h—=2)-s+4-v,
(40) 1
g% = (k— A)e~ ", + (A — A,)se~ ",

for t=1,2, ---,9—1 and some g—1 indices j, in the set 1,---,v—1,
and also L

(41) nze'”‘”u=(k—21)e"°’f‘

for u=g,9+1, --+,v—1, and {j,} the indices in 1,2, -.-,v—1 not in
{d.}.

We contend that the e~*; appearing in (40) can be partitioned into
classes, each class consisting of a conjugate set of roots of unity. For
the characteristic polynomial of P7K is (x—{)x*~?f(x), where

(42) fla)—= jni (@ —se=9,) .

But since P’K has rational coefficients, its characteristic polynomial is
rational, hence f(x) has rational coefficients. Let 2(x)=s""®,(x/s) be the
irreducible polynomial satisfied by se~%; that is, e %5 is a primitive Ath
root of unity. Then A(x) and f(x) have a root in common, so, by the
irreducibility of Z(x), the set of roots of f(x) contains all roots of A(x),
namely all numbers s¢,. Divide f(x) by A(z), apply the same argument
to the quotient, and continue. This verifies our statement.

We may now imitate our previous polynomial construction in § 4 for
the case of planes as follows: If the characteristic polynomial of A is

written as (x—k)Q(x) and the characteristic polynomial of P as ilT ?,,(x),
=1
then from the foregoing we have

(43) + Q@)Q(—z)=n{"'n;™* 1 @), (*[n,) 11 D, (2*|n,)

where the %, and %; are divisors of the cycle lengths d,,d,, ---,d,,
S e(h)=g—1, >, ¢(h;)=v—g. One can then proceed from (43) by the
techniques previously used in studying the consequences of (34).
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