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1. Introduction. One of the problems in the theory of trigono-
metric series in the form
(1.1) ~;~a‘,+ i (a, cos nx + b, sin nx)= ian(w)
n=1

n=0

is that of suitably defining a process of integration such that, if the
series (1.1) converges to a function f(x), then f(x) is integrable and
the coefficients a,, b, are given in Fourier form. The problem has been
solved by Denjoy [3], Verblunsky [10], Marcinkiewicz and Zygmund [8],
Burkill [1], [2], and James [6]. In Verblunsky’s paper and in Burkill’s
first paper, additional hypotheses other than the convergence of (1.1)
were made, and in all the papers some modification of the form of the
Fourier formulas was necessary:

An extension of the problem is to consider series that are summable
(C, k), k=1. This has been solved by Wolf [11] when the sum func-
tion is Perron integrable. The problem of defining a process of inte-
gration which may be applied to any series summable (C, k) may be
solved if an additional condition involving the conjugate series

1.2) S (@, sin nz—b, cos nax)= — 3 by(x)
n=1 n=1

is imposed. With this extra condition, it is proved, in §2, that the
formal product of cos px or sin pr and a series summable (C, k) to f(x)
is also summable (C, k) to f(x)cos px or f(x)sin px.

In § 3, some properties of integrated series are discussed and then,
in §4, it is shown that the generalized P:+*-integral [7] integrates any
trigonometric series summable (C, k) and satisfying the extra condition.
In addition, the coefficients are given by a natural modification of the
Fourier formulas. These are the principal results of the paper. They
were described briefly for the special case k=2 in the author’s invited
address at the 1954 Summer Meeting of the American Mathematical
Society.

It is also possible to improve the results slightly and only require
summability for all z in [0, 27] with the possible exception of a count-
able set. This requires a minor modification in the definition of the
P***integral and these changes are indicated in §§5 and 6.

'Recéived December 20, 1954. Presented to the American Mathematical Society, June
19, 1954.
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2. Formal multiplication of summable trigonometric series. Follow-
ing the notation of Hardy [4, §5.4], let

@1 A@=A@=Fal@), Ai@)=3 4@,
(2.2) Bi@)=B,(#)=%b(), Bi@)=3%B @),
where

ayx)=a,/2, a,(x)=a, cos nx+b, sin nx,

b.(x)=>b, cos nx—a, sin nx, n=>1,

and let Ex=(n+k)!/nlk!. If A%x)/E:— f(x) as n—> oo, the series (1.1)
is said to be summable (C, k) to f(x) and the notation is

Z.a,.(.’z:)=f(x) (C’ k) .

The formal product of g(x)=2cos px+ g sin px, p =1, and the series
(1.1) is the series obtained by multiplying each term by g(x), replacing
the trigonometric products by sums of cosines and sines, and rearrang-
ing the terms in the form

> (u, cos nx + v, sin nx)= >\ u(x),
n=0 n=0

where
@)=ty (0, + )
(2.3)
@) =] 2 {8y (0) + s @ = B s =@} |
2 p n+p n-—p n+p ’
with the usual convention that a_,.(z)=a,.(x), b(x)=0, b_.(x)=—b.(x).

Similarly, the formal product of g(x) and the conjugate series (1.2) is
i (v, cos nr—u, sin nr)=— i (),
n=1 n=1

where

@2.4) @)= ] A Bums(@) 4 b))+ {0 (0) = (@) |

Before proving the main result of this section, it is convenient to
find expressions for Uj(x) and VXx). It will be seen later that it is suf-
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ficient to consider the case x=0. The method is similar to that of Zyg-
mund [12], who proved the analogous result for Abel (or Poisson) sum-
mability.

The definitions (2.1), with =0, are equivalent to the identity

25) S (Ui-anr—( —z)—k-lzp{%,(ua—zao) +3 (un—la,,)z"} .

When the formulas (2.3), (2.4), with =0, are substituted in the right
side of (2.5), the coefficient of /2 may be written in the form
(1—2)"‘"[(1—z”)2(%ao+ﬂ§anz")
(2.6)
~{5-at-2)+ SaE -2},
2 n=1

and the coefficient of p/2,

@7 (1=~ [(1~2) 5b2 = S b, (e —277)]

The first series in (2.6) becomes

2p—-2

2.8) {zzocz}{ a —z)—'”l(..;—(wr iaz)} — { 5 cnz"}{ 5 AZ""z”} ,

n=0

where
c={n+1 0<n<p-1,
2p—n—1 pn<2p—2.
The second series in (2.6) is
(2.9) P()(1—2)"*=P(2) > E5'2",
n=0

where P(z) is a polynomial of degree 2p—1 at most. Similarly, the
series in (2.7) become

2.10) SrS Bzt and Qo SE,

where @Q(z) is a polynomial of degree 2p—2 at most.
Since E}'~n*'/(k—1)!, it follows by equating coefficients in (2.5)
and (2.8), (2.9), (2.10), that

(2.11) U5—1A5=~;—1 SV Cpeprdi L S B0
1

r=n—p+2 2 " r=n-p+
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A similar computation shows that

2.12) V';—zBf,=KpE::+_12_x < cw_,B':-ﬂ—__;_p N A OmEY)
r=n-p+2 r=n-p+1

where
1 p-1 1 -1
Kp=7ﬂ(a0+ap+2 g{as)—--z—l(bp-i—zs; bs) .

The main result of the section now follows from (2.11) and (2.12).

THEOREM 2.1. If

(2.13) A§_2(xo) =0('nk)’ B () =0(nk) ’

then

(2.14) 3 (o) —g(an)an(@)} =0 (C, B,
(2.15) Uy (@) =o(n¥), Vi i(z)=o(n").

Proof. Since
a,(xy+ ) =a,(x,) cos nx +b,(x,) sin nx ,

with similar expressions for b,(x,+2) and ¢g(x,+x), formula (2.11) is
valid with U%, 2, A%, replaced respectively by Uk(w,), g9(x,), Ak(x,), and
with similar replacements on the right side. Thus,

U(@,) — 9(@0) A5(20) = 0(n*)
and this is equivalent to (2.14).
Similarly, since (2.13) imply
A @) =o0(n"), B '(a)=o0(n")

for » <k, the other conclusions of the theorem follow from (2.11) and (2.12)
with k replaced by £—2 and k—1, respectively.

3. Integrated trigonometric series. In the work of Riemann there
are two fundamental results for series (1.1) with coefficients a, and b,
tending to zero [13, §11.2]. These results have been generalized for
series in which a,=o(n*), b,=o(n*). They involve generalized (symmet-
ric) derivatives [13, §10.41] defined successively by

D*F(x)= lim 0,(z, k)= lim 0,(F; z, h),
h—Q h—0

where, for p=2m,
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hzm

(3.1) o Oom(2, h)—w {Fle+h)+Fe—h)} — Z --------- D“F (@)

and, for p=2m+1,

h2m+1 m-1 +1

= i, B)y="—{F(x+h)—F(x—Fh — L D**F

Gt 1)1 1= s F@+h)—Fe-h} -3, (ZsH), (@).

The generalizations of Riemann’s results are given in [11, Theorem

B] and [13, §10.42] and are conveniently stated in terms of the follow-
ing conditions that may be imposed on the series (1.1):

(3.2)

(3.3) a,=o(n*), b,=o(n"),
(8.4) A5 (@) =0(n¥)
(8.5) %—a(,+ ij (@) =1 () (C, k).

THEOREM 8.1. If condition (3.3) 4s satisfied, then the series obtained
by integrating (1.1) formally term-by-term k+ 2 times converges uniformly
to a continuous function F(x). If conditions (3.3) and (3.4) are both
satisfied, then D***~*F(x,) exists for 1 <r < (k+1)/2 and

(3.6) hOio(@g, ) >0  as h—0.
If conditions (3.3) and (3.5) are both satisfied, then (3.6) holds and, in

addrtion,

3.7) é%)-lﬂu( 1%, S8). —pror(a) (C, k—2r)

for 0 <r < (k+1)/2.

It may happen that the derivatives exist for all  in an interval
(a, b). For later purposes it is necessary to know under what conditions
no derivative has an ordinary discontinuity in (@, b). A sufficient con-
dition involves the series

(3.8) %aow— S e@),

where c¢,(x)=b,(x)/n. This series is, of course, obtained from (1.1) by
integrating formally term-by-term.

THEOREM 3.2. If conditions (3.3), (3.4), and
(3.9) C (@) =0(n""")

are all satisfied for every z, in an interval (a, b), then no derivative
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D7 F(x), 1<r<(k+1)/2, has an ordinary discontinuity in (a, b).

Proof. The function F(x) of Theorem 3.1 is also the function ob-
tained by integrating (8.8) formally term-by-term k+1 times. Since
conditions (3.8) imply that the coefficients of (3.8) are o(n*~?), it follows
from (3.9) and Theorem 3.1 that each of %0,.,(x,, 2) and A8,,.(x,, k) tends
to zero as A — 0. If k is even, definitions (3.1) and (3.2) show that

(k-2)/2 h2s+ 1

1 = / 25 +1 %
i 2~A{F(x°+k)—F(w0—h)} = go _Zég"}' 1)' D F(ivo)'l—O(h ) ’
%_ (B0 + 1)+ Fay—h)} = F(x,) + %(;%T DIz + o)

and there are similar results when % is odd.
Hence, by addition and subtraction,

Fla,+h)=F(a,) + z( é;_’?iDTF(xD) +o(h") .

But this is precisely the definition [13, §10.41] of the generalized non-
symmetric derivatives of F(x). Thus D"F(x,)=F\(x,) and it is known
[7, Lemma 8.1] that when F(x) is continuous, then F',,(x) cannot have
an ordinary discontinuity.

4. The expression of an everywhere summable trigonometric series
in Fourier form. This section contains the principal results of the
paper.

THEOREM 4.1. If the series (1.1) is summable (C, k) for all x to a
JSinite function f(x), and if condition (3.9) holds for all x, then f(x) is
Pr+2-integrable [7, Definition 5.1] over (a;; x) for every x in [a, B]. Here
[a, B] is any finite closed interval and

a—<_—_a1<az<"' <ak+z_g_‘8-

Proof. Since the series is summable (C, k) for all z, conditions
(8.3) are satisfied [13, § 11.11] and (3.4) holds for all . It follows from
Theorem 3.1 that (3.6) and (3.7) are valid for all . By Theorem 3.2,
no derivative D***-*F(x), 1 < r < (k+1)/2, has an ordinary discontinuity.
Let

(4.1 Q@)=F@)— 5 4(@; @)F(@),

where
Ay a)=I(x—aj)/(a;—ay)
¥t

is a polynomial of degree k+1. Then
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h0,.o(Q; x, h)y=h0,,.(F; x, k),
Qa;)=0, =1, «++, k+2,
D**+*Q(z) =D***F(x)= f ().

Thus Q(x) satisfies all the conditions [7, Definition 5.1] for both a major
and a minor function of f(z), and f(x) is therefore P***-integrable over
(a;; x).

THEOREM 4.2. Under the hypotheses of Theorem 4.1, but with (3.9)
replaced by

(4.2) Bi-Y(x)=o0(n*) for all x,

the functions f(x)cos px and f(x)sin px, p>1, are each P *-integrable
over (a;; x).

Proof. It is not difficult to see (for example, by the method of
proof of [4, Theorem 50]) that (4.2) implies (8.9), so that the hypotheses
of Theorem 4.2 are stronger than those of Theorem 4.1.

All the hypotheses of Theorem 2.1 are satisfied for all « so that
(2.14) is true. Thus, with 1=1, =0,

1

(4.3) 5

u,+ Z%tn(x)=f(x) cos px (C, k)
and u,=o(n*), v,=o0(n*). By Theorem 3.1, the series obtained by inte-
grating (4.3) formally term-by-term %£+2 times converges uniformly to
a continuous function G,(x) such that (3.6) and (3.7) hold, with F re-
placed by G,, for all «.

It remains to show that no derivative of G,(x) has an ordinary dis-
continuity. The series corresponding to (3.8) is

; w— 3 w,(x)

where w,(x)=v,(x)/n. By (2.15) of Theorem 2.1, Vi~!(x)=o0(n*) and this,
as noted above, implies W:*(x)=o(n*-?). Thus, by the proof of Theorem
4.1, f(x)cos px is Pt**-integrable over («a; «).

By taking 1=0, pg=1 in (2.14), it follows in a similar fashion that
the same result is true for f(x)sin px.

COROLLARY. If k=2m—2, let 1,=(2m)!/(m!) and let (a,) be the set
(4.4) (—2mmn, -+, —2r, 27, +++, 2mn).
If k=2m—1, let r,=C2m+1)!/ml(m+1)! and let (a;) be the set

(—2mm, +e», =27, 2m, =+, (2m+2)7) .
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Then, under the hypotheses of Theorem 4.2, the coefficients of the series
(1.1) are given by

I 0

(4.5) Ap= 2“1;“2 S(a}f)'(w) coS P& dy 4 ,
- T ° :

(4.6) bf’—"gzéli;'iﬁ S(a{)‘(x) sin px d;, .. .

Proof. Only the case k=2m—2 will be considered, since the de-
tails for k=2m—1 are quite similar. It follows from the proof of
Theorem 4.1 and the definition of the P*™-integral that, for «, <=z

<am+1 ’

@n (1|} £ @z =F@)= S )F(@)

When k=2m—2, F(x) may be written in the form G(x)+ H(x), where
G(x)=ax™/2(2m)! and H(x) is a periodic function with period 2. If
() is the set (4.4) and x=0, the right side of (4.7) becomes

(4.8) G(0) — ?f'j 20; @)G(a) +H(0)—§ 20; @) H(0) .

The terms involving G(x) are equal to III™(—«,) multiplied by a divided
difference [9, Chapter I] of order 2m for the function G(zx). Since every
divided difference of order 2m for the function 2*™ is equal to 1 and
the divided difference of the constant H(0) is equal to 0, the expression
(4.8) reduces to

% T (—a)= (=1)ma,2r+1mt+?
2(2m)! i=1 Tk

by (4.4). This, together with (4.7) shows that (4.5) is true when p=0.

If p>1, it is only necessary to consider the formal product of (1.1)
and g(x) with either 1=1, #=0 or 1=0, #=1. In the first case the
constant term of the new series is a,/2 and, in the second, it is b,/2.
Hence (4.5) and (4.6) are true for p>1.

5. Upper and lower sums (C, k). Let S*(x) and s*(z) denote the
lim sup and lim inf, respectively, as n—co, of Ak(x)/E%. In order to
extend the results of §4 to the case where (1.1) is not summable for
every z, some information is needed concerning the behavior of S*(x)
and s*(x) at points of non-summability.

LEMMA 5.1. Let P denote the set of points x for which
— 00 < (@) < SH@) < + co.
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Then P is a set F,.

Proof. Let S%x) and sk(x) denote the sup and the inf, respectively,
of the set A%(x)/EY for m—>n. Then Sk(x) is a monotone decreasing
sequence of lower semicontinuous functions with limit S*(x) and si(x) is
a monotone increasing sequence of upper semicontinuous functions with
limit s*(x). If P, denotes the set of points z for which Si(x)—si(x) < n,
then each P, is closed and, clearly,

LEMMA 5.2. If condition (8.3) is satisfied and F(x) s the function
of Theorem 3.1, let A***F(x) and o&***F(x) denote the lim sup and lim
inf, respectively, as h—0 of (8.1) if k+2=2m and of (3.2) of k+2=2m
+1. Then 4***F(x) and 6***F(x) lie in the interval

(@)= C ¥ (), ¢*(x) 4 C,d*()) ,
where
2¢%(x) =S*(x) +s*(x), 2¢*(x)=S*(x)—s"(x),
and C, depends only on k.

Proof. 'This result is equivalent (when k+2=2m) to [11, Theorem
B] and it may also be proved by the method of [13, § 10.42].

THEOREM 5.1 Suppose that the series (1.1) is summable (C, k) to a
finite function f(x) for all x<[0, 2z]—E, where E is at most countable.
Then the set S of points x for which either 4*+*F(x)=+ oo or 6***F(x)
=—o 4s @ Scattered set (clairseme, [3, p. 90]), that is, a set which
contains no subset that is demse-in-itself.

Proof. It follows from (3.7) with »=0 that SC E so that S is at
most countable. By Lemma 5.2, S is the complement of the set P and
is therefore a set G;. But a set GG; that is at most countable cannot
contain a subset that is dense-in-itself [5, VIII, p. 136].

6. A new definition of the P**’integral. Since only the case k=
2m—2 is considered in detail in [7], the same restriction will be made
in this section. Two of the requirements for a major function Q(x) and
a minor function ¢(x) are [7, Definition 5.1]

(6.1) FQ@) = f(x) = £mq(w) xe(a, b),
(6.2) F"QEX) F —oo,  AMg(x) F + oo xe(a, b).

Under the hypotheses of Theorem 5.1, the function Q(x) defined by
(4.1) satisfies (6.1) only for x € [0, 27]—E, where E is at most countable,



108 R. D. JAMES

and (6.2), only for xze€[0, 27]—S, where S is scattered. In order to ex-
tend the results of §4, it must be possible to weaken (6.1) and (6.2)
and still define an integral.

It is not difficult to see that there is no change in the P*-integral
if (6.1) holds only for ze (a, b)—E,, where E, is of measure zero. The
method is similar to that used for the Perron integral and the P*-inte-
gral [6, Theorem 38.1]. The modification of (6.2) is not quite so easy.

If the reasons for requiring (6.1) and (6.2) are examined, it is seen
that they are needed to make sure that the difference

" Q(x) — 47q(x)

is defined and nonnegative for ze€ (a, ). This, in turn, goes back to
[7, Theorem 4.1] which gives sufficient conditions that a continuous
function F(x) should satisfy in order that D*™-*F(x) should be convex.
For convenience, the theorem is restated here :

If F(x) satisfies conditions A,, and B,,-, [7, §2] in (a, b) and if
(6.3) L£mF(x) >0 ze(a,d),

then D*™~*F(x) is convex and, for 1 <r<m-—1, each D™ *F(x) is conti-
nuous in (a, b).

It is therefore necessary to establish the conclusions of this theo-
rem under weaker hypotheses.

LEMMA 6.1. The conclusions of [7, Theorem 4.1] remain true if
(6.3) 4s replaced by 4™F(x) >0, x € (a, b).

Proof. For each positive integer =, let
F (x)=F(x)+2™|n(2m)! .
Then, for 1 <r<m -1,
D=2 R (x)=D"™=*" F(x) + "™ [n(2m — 2r)!
and
4LmF, () =4"F(x)+1/n>0.

Thus F,.(x) satisfies all the original conditions of [7, Theorem 4.1].
Since each D~ F,(x) tends uniformly to D**~*F(x) the same conclusions
hold for D*™-*F(x).

THEOREM 6.1. If in the hypotheses of [7, Theorem 4.1], the con-
dition (6.3) is replaced by the two conditions

(6.4) A™F(x) =0 ze(a, b)—S,



SUMMABLE TRIGONOMETRIC SERIES 109

where S s scattered, and

(6.5) lim sup A0,.(x, ) = 0= lim inf 40,,(x, &) zeS,
h—0 h—0

then the conclusions remain true.

Proof. Let H denote the set of points x in (a, b) for which 4 F(x)
< 0. From (6.4) it follows that HC S, and if H is not empty, it must
contain at least one isolated point x, and there is an interval («, )
containing x, but no other points of H. All the conditions of Lemma
6.1 are satisfied in each of the intervals («, x,), (%, B) and the conclu-
sions are valid in each interval. By [7, Lemma 3.4] they are also valid
in each of the closed intervals [«, x,], [%), 8]

Therefore, for the function p(x)=D*-*F(zx), the difference quotient
{p(,) — p(z,— )} [h is monotone increasing as ~— 0. Hence the left-hand
derivative p_(x) exists (possibly equal to + o), and, similarly, so does
the right-hand derivative pi(x,) (possibly equal to — o). Then, since

2h0,(p; @4, 1) = {p(24+ 1)+ p(y—h) —2p(20)} [,
(6.6) lim 2k0,(p; @, 1)=p'(@) — () -

But, since each D™ *F(x) is continuous in [«, 8], it follows [11,
Lemma 7] that F(x) has continuous ordinary derivatives F*(z), 1<s
<2m-—2, and in particular, F®?(x)=D""-*F(x). Hence, from (6.5) by
repeated application of the theorem on indeterminate forms,

lim sup %26.(0; ,, /) =0=> lin’} inf 26,(p; xy, ) .
h—0 —0

Then, from (6.6), p.(x,)=p-(x,) and p(x) is smooth at z=wx, It follows
[13, § 11.31] that p(x) is convex in [«, 8] and, in particular, that &*o(x,)
=>0. But then, by another application of the theorem on indeterminate
forms,

A (0) 2 0 F (@) Z0°p(20) =0,

which contradicts the fact that 2, H. Hence H must be empty and
£mF(x) =0 in (a, ). The conclusions of Theorem 6.1 now follow from
Lemma 6.1.

Once Theorem 6.1 (replacing [7, Theorem 4.1]) has been established,
there is no further difficulty in defining a modified P™-integral. The
only difference between the new and old definitions is that (6.4) and
(6.5) are replaced by

™Q(x) = f(x) = 4™q(x) ze(a, b)—E,,

where E, is of measure zero, and
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FmQE) £ — oo,  Lm(w)FE + oo ze(x b)—S,

where S is scattered, provided that Q(x) and ¢(x) satisfy (6.5).
The final result is the following :

THEOREM 6.2. Suppose that the series (1.1) is summable (C, k) to a
finite function f(x) for all xe[0, 2z]—FE, where E is at most countable,
and let f(x)=0, xe E. If Al '(w)=o0(n*) for xe E and BE'(x)=o(n*) for
x€[0, 2], then f(x), f(x)cos pz, f(x)sin px are each P***-integrable and
the coefficients of (1.1) are given by (4.5) and (4.6).

7. Remark on the P’integral. It was noted in [7, § 6] that the
P*m-integral for m=1 was possibly not the same as the original P*-inte-
gral. It is, however, not difficult to see that the new P*™-integral for
m=1 is the same as the original. The reason is that the set of points
where 0°Q(x)= — o« or Lg(x)=+ = is a set Gs and, if at most countable,
it must be scattered.
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