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Introduction. The purpose of this note is to dispose of certain pre-
liminaries (and of some peripheral remarks) in the direction of a structure
theory of the Wedderburn-Artin-Jacobson type for a rather restricted
class of topological rings—namely, bounded ones. The notion of bounded-
ness, which may be looked on as an algebraic analogue of compactness,
was introduced by Shafarevich [6] and later considered by Kaplansky [3].
It is not unexpected that in an algebraic approach to the study of
topological rings the concept of boundedness should prove fruitful; where,
by an algebraic approach is meant one in which the use of deep topo-
logical facts is avoided—thus, for example, we shall not use any results
about the structure of locally compact groups, since such results depend
on Haar measure, the Peter-Weyl theorem and Pontrjagin duality.

Since the study of the radical is one of the foundation stones of
the classical structure theory of rings, and in view of our self-imposed
restrictions on available techniques, it is natural to attempt to extend
the notion of radical in such a way as to take the topology of the ring
into account. Such an attempt is the primary concern of this note.
The proofs will often be merely slight extensions of the standard ones
for discrete rings.

1. Definitions and preliminaries. As usual, (see, for example, [3])
by a topological ring we mean a set B which is a ring and a Hausdorff
space and such that the mappings (z,y)—>x—y and (z,y)—>ay of
RxR— R are both continuous. A subset S of R is left bounded if for
any neighborhood U of 0 there exists a neighborhood V of 0 (V depends
on U) such that V-SC U, where V-S={aylxe V,ye S}. Right bounded-
ness is defined in an analogous way. We say that S is bounded if it is
both left and right bounded. It is clear that a subset S of R is bounded
if and only if, for any neighborhood U of 0, there exists a neighborhood
V of 0 such that V-S-V < U. If the set R itself is bounded, we say
that R is a bounded ring.

Let M be a left R-module; M is called a topological left R-module
when: R is a topological ring, M is a topological group (this includes
Hausdorff), and the map («, z) — ax of R x M — M is continuous. Similarly,
the notion of topological right R-module is defined. Since there is no
essential distinction between right and left, we shall usually state things
only for topological left R-modules.
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DEFINITION 1. Let M be a topological left R-module. A subset S
of M is R-bounded if for every neighborhood U of 0 in M, there exists
a neighborhood V of 0 in R such that V-SCU. A subset S of R is
M-bounded is for every neighborhood U of 0 in M there exists a neigh-
borhood V of 0 in M such that S-VCU. If M is an R-bounded set,
we say that M is R-bounded; and similarly we define R ¢s M-bounded.

Some of the elementary properties' of topological left R-modules
are the following:

(1) If for each «, M, is a topological left R-module, then the direct
product M= 1 M, becomes a topological left R-module in a

natural way; moreover, if each M, is R-bounded, then M s
R-bounded.

(2) Any finite set in a topological left R-module M is R-bounded.

(3) Any subset of an R-bounded set is R-bounded.

(4) The union of a finite number of R-bounded sets is R-bounded.

(5) The closure of an R-bounded set is R-bounded.

(6) Every compact set in M is R-bounded.

(7) If S and T are both R-bounded, then S+T is R-bounded.

(8) If M is discrete, then R is M-bounded.

(9) If R is discrete, then M is R-bounded.

(10) Any convergent sequence {a,} in M is R-bounded.

(A1) If T ¢s an R-bounded subset of M, and S is a left bounded
subset of R, then S-T s an R-bounded subset of M.

It should be noted that the above statements are true when R and M
are interchanged—provided the new statement has meaning. The proofs
are rather trivial ; however, for the convenience of the reader, we remark
that the proof of (6) is essentially the same as that of [3, Lemma 10],
and we also give the proof of (5). Let _# denote the set of all neighbor-
hoods of 0 in M, and %2 denote the set of all neighborhoods of 0 in R.
Suppose that S is an R-bounded subset of M, and let Ue .#"; there exists
a U e _# such that U+ U’ CU; by boundedness, there exists V' ¢ &2 such
that V.S CU’; finally, there exist V" e <% and W’ e _# such that V".

W CU'. Since S= N\ (S+ W), for V=V"N V" we have: V.S V.
weM

S+wWHYCV-S+V. WcCU.

Suppose that R is a topological ring, then R*, the additive group
of R, may be viewed as either a topological left R-module or as a
topological right R-module. Thus, to show that a subset S of R is

1 Most of these are merely translations to the module case of statements to be found
in [3, p. 161].
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bounded, is equivalent to showing that S is an R-bounded subset of R*
in the left and right module cases. In particular, the properties listed
above are valid for topological rings—for example, a compact subset of
a topological ring is bounded.?

Since in the sequel, we shall be concerned mostly with the study
of bounded rings, it is perhaps of interest to determine what applicability
our results can have to normed algebras. The answer is given in the
following :

THEOREM 1. Let R be a topological ring, and suppose that R is a
locally convex topological linear space over F (the reals or complexes).
Then, for any bounded additive subgroup B of R, we have R - B=(0).

Proof. Suppose that B is bounded as a subset of B. Let f be a
fixed continuous linear functional on R*, and let I;,= {a € R|f(a - B)=(0)};
so I,7%¢. I, is a subgroup of R*, so that if we show that it is open
then it is also closed, and therefore, I,=R since R is connected. From
this it follows that f(R - B)=(0) for all continuous linear functionals f;
hence, by the Hahn-Banach theorem, R - B=(0).

It remains to show that I, is open. Let U be a neighborhood of 0
in R* such that f(U)<%; by boundedness of B, there exists Ve & such
that V. BCU. It suffices to show that VCI,. For every e V and
every integer n, we have neB=x(nB) CxB C U; hence, for every beB
and every integer =, f(nwb)=nf(xb)<_%; therefore, f(xB)=(0) and
VC_i,.

From the theorem we have immediately:

COROLLARY 1. Let R be a normed algebra, then R cannot be a
bounded topological ring unless its multiplication is trivial.

It may be remarked that essentially the same proof as that given
for Theorem 1 yields:

PROPOSITION 1. Let M be a locally convex topological linear space
over F (reals or complexes), then M contains no F-bounded subgroups
other than (0).

2. Topological right quasi-regularity.

DEFINITION 2. An element z of a topological ring R is topologically
right quasi-regular® if for any neighborhood U of 0 in R, there exists
an element y (depending on U) such that xoy e U, where woy=a+ay+y.

2 This is precisely [3, Lemma 10].
3 A generalization of the notion of right quasi-regularity, [2, Def. 1].
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An ideal I of R is topologically right quasi-regular if every element of I
is topologically right quasi regular. We shall abbreviate both of these
by top rqr.

Our immediate aim is to prove:

THEOREM 2. Let R be a left bounded topological ring, and let N
denote the sum of all top rqr right ideals. Then N is a closed two-sided
edeal of R.

The proof will be an immediate corollary of the lemmas which
follow:

LEMMA 1. Let I be a top rqr right ideal in the left bounded ring R;
of wel and if y is any top rqr element of R, then xz+y is top rqr.

Proof. Suppose we are given U e 7 ; there exists We &2 such that
W+ W+ W CU; and, by left-boundedness, there exists a Ve <2 such
that VC Wand V - RC W ; also, since y is top rar, there exists y' e R
with yoy’ € V. We have then:

(B+y)oy' =w+ay +y+yy +y' =x+ay +yoy .
Finally, since x+ay’el, there exists ze R such that (x+ay)oze V;
consequently,
(x+y)oyoze (@+ay)oz+V+V -2 V+V+WCU.

COROLLARY 2. In a left bounded ring, the sum of two top rqr right
adeals is a top rgr right ideal.

From this corollary, it follows immediately that N is a top rqr
right ideal.

LEMMA 2. Let S be any set of top rqr elements in the loft bounded
ring R. Then any element x tn the closure of S s top rqr.

Proof. Given any Ue 7, there exists Ve & such that V4V +
V C U ; then there is a We & such that: W=—-W, W-.-RCV and
W C V. Since xz+ W is a neighborhood of z, there exists ye S with
y € x+ W ; also, there is a ¥’ € R, such that yoy’'e W. From the identity,

xoy' =yoy' +(@—y)+(@—y) ,
it follows that
roye W+W+W - -RCV4+V+VCU.
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The lemma clearly implies:

COROLLARY 3. In a left bounded topological ring R, both N and the
set of all top rqr elements are closed sets.

LemMA 8. In a left bounded ring R, z€ N if and only +f {nz+za} is
top rqr for all integers n and all a< R.

Proof. Trivial, since N is a top rqr right idea land {nz4za} is the
smallest right ideal containing z.

LeMMA 4. In a left bounded ring B, if the element zb is top rqr,
then so is bz.

Proof. Given Ue .27, there exists We <% such that (=0) - W U;
and, by boundedness, there is a Ve. % with V. R W ; hence, (—0) -
V-RCU. Now, there exists we R such that (zbjow = V' ; therefore,

(bz)o(—bz—bwz)=bz— bz — bwz — bebz — bzbwz = — b(zbow)z € (—b)- V-R C U .

COROLLARY 4. In a left bounded ring B, N is ¢ left ideal.
This also completes the proof of Theorem 2.

3. Some properties of V.

PROPOSITION 2. izt R be wleft bounded ring, and denote its Jacobson
radical* by J, then JC N ; moreover, if R is discrete or compact, J=N.

Proof. The inclusion J C N requires no boundedness assumption.
The diserete case is trivial; while the statement for the compact case
follows from:

LEMMA 5. In o compact ring B, x is top vqr < x is rqr.

Proof. xis top rqr implies that 0 e ok ; but zoR is the continuous
image of a compact set, hence is closed; thus, 0¢€ xoR which means that
x is rqr.

An example of a situation in which J=£ N is the following: ULet P
be the ring of p-adic integers, R the ring of row-finite matrices over
P. Topologizing R with the finite topology, namely, by taking as
neighborhoods of 0 all matrices with first » rows all 0, gives R the

+ See {2, p. 303].



154 EDWIN WEISS

structure of a left bounded ring. It is known® that in this case J is not
closed; hence J=£ N.

PrOPOSITION 8. Let R be a left bounded ring, then N contains no
sdempotents other than 0.

Proof. Letee N be an idempotent. Given any U e &2, there exists
Ve &2 such that eV C U. Since —ee N, it is top rqr, hence there exists
ye R with (—e)oye V. Thus, —e—ey+yeV and —e—ey+eyceV CU.
This means that —ee U for every Ue ., therefore e=0.

For every element ae R, we denote by Z, the right ideal of R
composed of all the elements {x+ax} where & runs over R.

PROPOSITION 4. In any topological ring R, Z, is dense in R if and
only if a s top rqr.

Proof. Suppose that Z,—R; then, in particular, for any Ve .#
there exists an zeR such that x+axe —a+ V; that is, there exists
xe R with aox e V. Conversely, suppose that a is top rqr; then given
any Ue 2 there exists ye R with aoye U; this means that ae —y+

a(—y)+U C Z,+U. Therefore, ac Z, and Z,—R.

LEMMA 6. In any topological ring R, if a subsequence of {x"} ap-
proaches 0, then x is top rqr.

Proof. Clearly, for every positive integer ¢, we have: a‘+a'*'e Z,.
For even integers 2n, this gives: x*4xe Z, while for odd integers
2n+1 we have: ™*'—x e Z,. Since a subsequence of either {a*} or {z"*}

approaches 0, we see that xe€Z,; so Z,—=R and « is top rqr.

DEFINITION 8. Let R be a topological ring; we say that xeR is
topologically nilpotent (top nilpotent) if z*—0. An ideal is top nil if
every element is top nilpotent. An ideal I is top nilpotent if given
Ue &% there exists an integer m with I C U for n =>m.

Lemma 6 thus implies:

COROLLARY 5. In a left bounded ring, N contains all top nil right
vdeals.

LEMMA 7. Let S denote the set of all top rqr elements of R.

5 See [5, p. 810].
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(1) If R s left bounded then:
beb(—S) = b=0;

(2) Let M be a topological right R-module such that R is M-
bounded, then if be M is such that be b(—S) then b=0.

Proof. We prove (1) only, the proof of (2) being identical. To be
more explicit, we must show that, if b € R satisfies the following condition :
for every Ue <# there is an x, e R with —x,; top rqr and such that
bry=b+p, where pe U, then b=0.

Now, starting with U, there exists a symmetric U’ € &2 such that
U-RCUand U+U+U CU; and, there is a symmetric We .# with
WCU and W .RCU; finally, there is a symmetric Ve & with
bV C W. By hypothesis, we have:

(i) bxy—b—w=0 for some we W ;

and since —ay is top rqr, there exists ye R with (—xy)oye V; that is,
—y+y—axyye V. From (i) we have:

(ii) bayy —by —wy=0 .

Adding, (i) and (ii) yield b(zyy+xy—y)—b—w—wy=0. Hence b=>b(xyy+
Ty—yY)—w—wycbV+ W+ W -RCU. Thus, beU for every Ue Z#,
and 6=0.

It may be remarked that Lemma 7 is important for applications.
It is decisive for the proof of the next theorem. The module formulation
will be needed in the consideration of irreducible rings of endomorphisms.

THEOREM 3. Let R be a left bounded ring with descending chain
condition on closed 1right ideals, then N is algebraically nilpotent.

Proof. Consider: N=NDON*DN*D> .-+ DN"D.-.. This is a
descending chain of closed right ideals; hence, for some integer n,
N*=N* for all k>n. We show that M=N"=(0). Note first that:

N®»C M*C M and that since N**=M, we have: M?=M. Suppose
M = (0); then since M?*is dense in M, M*s4(0). Let .~ be the collection
of all closed right ideals I satisfying the two conditions: I M and

I-M=(0). .&is nonempty as Me .&. Let Ie.% be a minimal element.
Since IM =~ (0) there exists be I, b=~ 0 such that bM =~ (0). Now bM C M
and bMM D bM? =~ (0), since bM*=(0) = bM*=(0) = bM=(0). Hence,
bMe & and bM C I; thus, by minimality of I, 5M—=I. Therefore, the
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conditions of Lemma 7 are satisfied, which implies that 6=0, a contra-
diction. Hence M=(0).

COROLLARY 6. In a left bounded ring with descending chain condition
on closed right ideals, every algebraically nil ideal is algebraically nilpotent ;
in fact, every top mil right ideal s algebraically nilpotent.

The following may be considered as a slight generalization of a
theorem of Kaplansky.’

THEOREM 4. Let R be a left bounded dual ring with no algebraically
nilpotent ideals, then N=(0).

Proof. N is closed; hence, by [4, Theorem 2] N is also a dual ring.

Take any x€ N ; since in the dual ring N, xe 2N, we have z=uxy,+¢
with e arbitrarily close to 0 in N. Now, y.e N, so —y, is top rqr; hence,
given Ue 7 there exists z,eR with (—y,)oz,=ucU. Therefore,
r=(x—ay.)1+z,)—au; and thus z=e+ez,—xu. Hence x=0, because
the right side can be made as near to 0 as desired.

4. Miscellany. Kaplansky’ has defined the notion of @, ring. We
extend this somewhat to the following.

DEFINITION 4. A topological ring R is L@, if the set of all rqr
elements contains a neighborhood of 0. We say that R is T7Q, if the
set S of all top rar elements is open, and that R is LTQ, if S contains
a neighborhood of 0.

It is known® that in any topological ring, LQ, and @, are equivalent;
we now show:

PROPOSITION 5. Let R be a lgft bounded ring, then R is LTQ, +f
and only if it is TQ,.

Proof. Suppose that R is LTQ,, and let x be any element of S, U any
element of 2, and O, a neighborhood of 0 all elements of which are
top rqr. There then exist: We &% with W+ W+ W CU and Ve &
such that VC Wand V- RC W. Next, we have y e R with zoye V, and
Ve & such that V'4+ V' -RCO,. Thus, for any ae V', a+ay is top
rqr; so there exists ze R such that (a+ay)oze V. From the identity:

6 See [4, Theorem 3].
7 [3, p. 154].
8 [3, Lemma 2].
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(a+ z)oyoz=(a+ ay)oz+ xoy + (xoy)z
it follows that
(a+x)oyoze V+V+WCU ;

so that any element of z+ V' is top rqr. Hence, B is TQ, and the
proof is complete.

PROPOSITION 6. Let R be a left bounded LTQ, ring, then in R*=
R|N, N*=(0).

Proof. The natural map = : R— R/N is continuous and open; also,
N* is a closed two sided ideal of R* of form M/N where M is a closed
two sided ideal of R, containing N. To show N*=(0), it suffices to show
that any o e M is top rqr. Given any Ue <72, let O, be a neighborhood
of 0 with all elements top rqr; since n(x) is top rqr, there exists ye R
with z(x)on(y) € 2(0,). Hence, zoy e O,+ N and xoy is top rqr; therefore,
z is top rar.

PROPOSITION 7. Let R be a left bounded LTQ, ring, then:
(1) 2ze N&OR:RCN;
(2) ze N&Sza is top rqr for every ac R.

Proof. The standard one goes through ; see for example, [2, Corollary
to Theorem 5].

LEMMA 8. Let R be a left bounded LTQ, ring, then N is open.

Proof. Let O, be as above, then thereisa Ve .&# with V- RCO,.
Therefore, given € V, we have xa is top rqr for every ae R; hence
xeN. Thus VN and N is open.

COROLLARY 7. A left bounded LTQ, ring with N=(0) is discrete.

COROLLARY 8. A compuct, semi-simple’ LTQ, ring is finite.

PrOPOSITION 8. Let R be a locally compact left bounded ring satisfy-
ing the 2nd awxiom of countability, then: R is LTQ,.&> R contains o
netghborhood W of 0 all of whose elements are top nilpotent.

Proof. 1If such a neighborhood W exists, every element of W is
top rqr by a previous lemma.
For the converse, let U be a compact neighborhood of 0. There

9 Meaning that N=J=(0).
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exists We <2 such that W - RC U ; hence, for xe¢ W, we have z"e U

for every positive integer #. Thus, {2*} has a limit point a € U=U, and
there exists a subsequence {z"} such that a":—a. Then a sub-
sequence of {x™i+1~™} approaches some ye U. Clearly ay=a. Now, U
can be taken symmetric and small enough so that all its elements are
top rqr. In particular, —y is top rqr; so that for any Ve 2 there
exists z, such that (—y)oz,€ V' where V'€ .&# is such that aV' C V.
Thus —y+2,—yz,-€ V' and —ay—az, —ayz, € aV’ C V, that is: —aye V
for every Ve <. Hence, ay=0=a and every element of W is top
nilpotent.

The definition of a regular ring® is standard; we generalize slightly
to:

DEFINITION 5. A topological ring R is topologically regular if for

any ae€ R, acaRa ; that is, for any Ue &# there exists v,¢ R with
avya=a+u, we U.

PROPOSITION 9. In a left bounded topologically regular ring, N=/(0).

Proof. Givenanyaee Rand Ue &#. If ae N, we have: av,a=a+u,
with »,e U. Also, since —v,a is top rqr, there exists y, such that
(—vpa)oy,=u,e€ U. It follows that: —av,a+ay,—avyay,=au,, and there-
fore: —a—u,+ay,—ayy—uYyy=au,, that is: —a=u,+uy,+au,. Now,
by a standard use of left boundedness, the right side can be made as
small as desired.
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