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1. Introduction. In solving certain characteristic boundary-value
problems by the method of separation of variables [2], the problem
arose of expanding an arbitrary function f(x) in terms of the eigenfunc-
tions of the equation (A4+ AB)u=0, where A is a second-order and B a
first-order differential operator. In this paper we consider a special
case of this problem, namely the following:

Expand a function f(x) in terms of the eigenfunctions of the equation

(1.1) u’ +q(x)u+ p(x)u—u)=0,

where u(0)=u(1)=0. There has been a long series of investigations
concerned with the corresponding self-adjoint problem for the equation
(A—u==0, which often occurs in connection with the boundary-value
problems of mathematical physics. However, the problem we are con-
cerned with here does not seem to have been considered previously.
F. Browder [1] has considered the eigenfunctions of A+1B where A4
and B are general partial differential operators, but he has always
assumed that B is positive definite. We shall show that the lack of
definiteness in B gives rise to peculiar results in the expansion theorem.
R. E. Langer [3] has considered the expansion theorem for the following
equation, which is similar to (1.1)%.

W+ {pud+ Do+ {pph’ + Pud+ Dyt u=0 .
This equation of course reduces to (1.1) if we put
Dp=0n=0, ou=-—1, D=0, D=4

However, Langer in his paper made the assumption that the roots of
r*+p,r+p,=0 were distinet and nonvanishing. For (1.1), it is clear that
=0, r=+1, and hence Langer’s conditions do not apply. In fact, the
results we shall obtain are strikingly different from those of Langer.

Since the operator B is not self-adjoint, we must also consider the
adjoint of (1.1), namely

Received February 2, 1955, This research has been made possible through support
and sponsorship extended by the Office of Scientific Research, .Q., Air Research and
Development Command, U.S.A F., Baltimore, Maryland, under Contract No. AF-18(600)-367.

1) A detailed treatment of this expansion problem and related questions has been
given by Titchmarsh [4].
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1.2) v+ @)+ Apv+v)=0,

where »(0)=v(1)=0. Let u,(x) and v,(x) be the eigenfunctions of (1.1)
and (1.2) respectively, corresponding to the eigenvalue A,. It is well
known that

SlunB*vmdxzo , n=Em.
0
We normalize the solutions so that
gl u,B*v,dx=1.
0
Then we prove the following theorem.

THEOREM. Let q(x) be continuous and p(x) be such that the second
derivative exists and 4s continuous. If F(z) is of bounded variation in
(0,1) and if
(1.3) F(0+)+exp [— PO, DIF(1—)=0, P, m)=Szp(t)dt

€

then the series

(1.4) S ),

N=—o0

where
== Sl F(t)(pv, +v,)dt,
0
converges to ; [F(x+0)+ F(x—0)]. If F(x) does not satisfy the condition
(1.3) then the series (1.4) converges to

9(@)= ; [F(@+0)+ F(z—0)—c exp [P0, )],
where

c=%{F(O+)+F(1—)exp[—P(O, 1.

2. Expansion Theorem. In this section we first derive an orthogo-
nality relationship which will indicate the form of the expansion if it
exists; then we derive a contour integral representation for the ex-
pansion.

Denote the operator d*/dx*+q(x) by A and its adjoint by A4*; A=A4*.
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Denote the operator p—d/dxz by B and its adjoint, p+d/dz, by B*. We
shall now derive the orthogonality relationship

( 1 ) Sl un(x)[p(x)vm(x) + v:n(x)]deO y for 77’1/#% .

We begin with the differential equations
(2) w, + (@), + A(p(@,—un)=0, or (A+2,Bu,=0,
(3) Vit Q@Y+ 2 (D@0 +0,,) =0, or (A% +2,B%),,=0.
Multiplying (2) and (3) by v,(x) and u,(x) respectively, we obtain
(4)  w/(@)vu(@) + @)U (@)0(@) + Lup(@)(€)0,0(2) — Al X)V(€) =0
(5)  vn@)un(@)+ q(@)0n(@)n(@) + 75, D(@)0 (@)t () + 202N () =0 .
Subtracting (4) from (5) we have
(6) Uy (1) 0,() = V5 (@), (@) + (s — Do) D()il(X)0(2)

= Al @) 0n(@) = 2 V(@) n(2) =0,

which can be written in the form

(7) & o) =00 = @) = )

+ (zn - Zm)p(x)un(x)vm(x)z 0.

If (7) is integrated over the interval (0, 1), it becomes

(8)  Ioulaus(a) —u@ol(a)], | @)= | v (o)

+(a=2) | P2 )on(@)do=0
0
By an integration by parts it follows that
I i 1
(9) =i wEwaerde= - { @] - | e
0

Therefore (8) becomes
A0)  Donlaa(a) = @l@)], ol on(a)], + 4| o)l )

- ,imS: V(@) @) + (2 — Zm)gip(x)un(x)vm(w) 0.

Imposing the boundary conditions u(1)=u(0)=v(1)=v(0)=0, we find
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1
0

(11) (An— lm)S Un(T) V(@) + (20— im)S: D( Y (@)Vi()d=0
Combining the two integrals in (11) we obtain
(12) On=2)| (&) Dl vn() + 2@ =0,

from which the desired orthogonality relationship (1) follows.
Now assume an eigenfunction expansion exists, and let

F(o)= >, at(x) .
Then
[P(2)v(@) + V(@) ] F () = 2; Al (@) [D(T) 0 (@) + V()] -

As a consequence of (1) we have

13) | F@Ip@)n(e) +v@)]dr—an] un@p@)n(@)+vi @)
Hence, we obtain

SIF(x)[p(x)vm(x) + vi(x)]d
(14) Qe 20— T

[ @p(@)n(@) + va@de

We derive now a formula for the Wronskian of the differential
equation
(15) w’ + e(@)u + Apu—u)=0.
Let u, and u, be two fundamental solutions of this equation. We have
(16) w, + quy + A(pu, —u;)=0
17) uy + qu, + Apu, —uy)=0 .
Multiplying (16) by %, and (17) by «, and then subtracting we obtain

U Uy — Uy Uy — AUy 4 AUt =0,

which can be written in the form

d . , ’ ’
o (o2 — Uty = A, — u07)

Consequently, the Wronskian is given by

() =upu, —uu;=C()e** .
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Let w,(x) and wu(x) be solutions of (15), and let »(x) and wv,(z) be
solutions of the adjoint equation

(18) v+ q(@)w+ A(pv+2v)=0.

Consider the evaluation by residues of the integral

. L galf F(s)@(s;(g)w&s)) ()e
N Sl F(E)(p(ﬁ)cg(g) + () u(x)dg}
E1 S F(5)<56' U, (@[MEE;)EHM(E)] dz)de
v Ll me(f " (w)[p(sév&(f)+vg<s)] a2)is.

For 1=, the Wronskian vanishes, and hence the function C(2) has
zeros. We may therefore write

(20) 2%1% %(9@)[8(5)073(1%&)‘+vi(5)]; a2
S, 2 )[p(s)vl(s,cf()z;vl(s, 2]

and

(1) 1 j; ()[p(E)vzg());-v(E)] a
S, ). [p(é)vz(é,cjé; ;v (& 2

where the integrals have been evaluated by means of their residues at
the zeros of C(2).
The vanishing of the Wronskian implies that

- B vl(E) R ()
m(@)=ku (), )= k() ()= kQ)

Using the relation above we rewrite (21) as

(22) Sk, xn)g r(g){p@)vl(cij( f%”;(é’ AP

—Su(x, )S F(E)fp(s)vl(ffcjzz‘;%(& n)}
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Using (20) and (22) and combining the two integrals we obtain the
desired expansion of (19), namely,

(23) S, zn)gl R {POE C’;?L();") Uil Au) Jaz.

Using the relations obtained from the vanishing of the Wronskian we
may write (23) as

(24) S, 2| Fo{HEME LT olE g

3. Asymptotic evaluations. In this section asymptotic forms will
be derived for the quantities u., u,, C(2), pv,+v;, and pv,+v; which
appear in (19). These forms will be used in the section following this
to show that the value of the integral (19) taken over a large contour
in the 2 plane is F(z) in the interval 0<xz<{1, if F(x) satisfies certain
conditions.

In equation (16) we make the substitution u,=e**”w,. Then (16)
becomes

)

w§’+(q+/2p— Z)w1=0 .
Write this as follows:

~ 1 ) »’ 3p™
25 : —[* A—2py+ P o4 W,
(25) v 4 ( P) A—2p (A—Zp)z_\w

e T 3 )
=—| P+ -+ +q |w
[p i—2p T (—2py LM
=—g(x)w, .
Note that g(x) is bounded as |2|— oo.

It can now be easily verified that the solution of (25) satisfies the
equation

(26) w,= e e —
Va=2p(x) V1=2p0) Jo Va—=2p(x) 1V 21—2p(€)

w,(0)=0, wy(0)=1.

2sinh [ PO, ) 2sinh{ 4 (a—&)— P& )o(ew(E)is

In (26) we make the substitution
w,=1[2exp [lolr/2]1Z,(x) ,

where o is the real part of 2, Then we obtain
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Z{exp[ ——(lal—i)w —P(0, w)] exp[—-4(lal+l)x+P(0 ”)—(}
A= @)V A= 2p(0)

i exp| = 5 (ol = =)= P&, | ~exp[ = (bl + Da—0)+ Ple.o) |

T VA= 2p(@)V = 2p(8)

*9(6)Z:(§)dé
Now

- ’ —— and - - - 72
Vi=2p(x) 1V 2—2p(0) Va—2p(x) V' 2A—2p(&)

are both bounded as |4 — « by some constant C,, say. Also

| ex0| = Ldol=De=8) = Pe,0) |~ exo] = L (ol+ D=0+ P&, ) ||

and
| exp[—; (o] = Da—P(0, x)]—expl:—;(\ ol + N+ P(0, w):H
are obviously bounded by some constant C,, say. Consequently

| Z(@) | < C,C,+ ?u S 98] 1 2:0) | de .

Let ¢ be the maximum value of Z,(x) in the interval 0<x<1. Then

Cl C’-z

r=CGC+ "1
4]

ARFCIE

and hence

C.C, .
S | 9(8)| dz

*
”/\

GG,

1-
(4]

Therefore p, and consequently Z,(x), is bounded as |1|— oo.
From (26), then,

2 sinh{ﬁz”? — P(0, w)}
U= " ep(a) Vi—2p(0)
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,exp| Li@—g)+ L lole—Pe,2) | exp] — La@—8)+ Llole+P,o) |

o S“ o Vi—2p(@)V1—2p(E)
-0(8)Z(8)d3

Now, the second term on the right-hand side of this equation is equal to

— exp[—%»l o Im]

exp| (= loD@—8)—P(, @) |~exp| —L(+lo)(z—8) +PE)
' So AV a—2p()V a—2d(8)
- H(OZ()de

=o[eXp[é'”' 3 J

1

Also
(Vi=2p(x) V1—2p(0)) "= ; +0 (;) ,

and therefore we have in the interval 0<z<{1

2 sinh {*® —p(0, )| expl L (o]
g P9 few] ]J'

w@= .

A
Similarly, substituting u,=exp [1127 (:)3~-1)}w2 into (17) yields the
equation
2sinh{é (x——l)—P(l,x)}
Va-2p(@) 1V 2—2p(0)

wy(w)=

, 2sinh{ 4 (@—9)—P(&, o)} g, (e)e
- S  Via—2p@) Vi-2p)
w,(1)=0, wy(1)=1.
In this case we let

_ exp[(1-a)sl2] 5

W,
2

and by arguments essentially the same as those previously given Z(x)
can easily be shown to be bounded. Finally, using arguments similar
to those given for w,(x) we obtain
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2sinh{ (2= 1)~ P(1,2)} [exp[%(l—@lal}]

wz(w)= 2 +0 ”}";“
Now
2p/(2) sinh | % —P(0, x)}»
o VA=2p(@) (w0 ) , [ 2
wl(ac)~]/,l 2p(0) oshl 9 P(0, @)] + Vi—2p(0) (—2p(a)):
-, {‘éj ey cosh |} (@=9)—P(&,2)]

2p'(x) sinh { ; (@—8&)— P(¢, x) }

T Va—ope)  (—2p(@)

}wl(é)g(é)df .

Since we have already shown that w1(§)=gfpf[llr{—"l;/g]Zl(s), where Z,(¢)

is bounded, it is quite easy to show that

- lola@
7O} P, ) {““LA]]
wi(x)= V= 2p(0) osh{—z—f— P(0, x);+0 p .
Since
V' 2=2p(x) _ A—2p(x) _A=2p (1
V/1—2p(0) Vi=2p(x) VA—2p(0) T (z)

where p is the minimum value of p(x), we have

A exp [%]a[a:]
wlx)= A= P cosh { ;x P(0, m)} +0 — -1

By similar reasoning,

(oliunr]]

wiw)= ,2,","22?1 cosh{ ; (x— 1)——P(1,9:)} +0 ;

Using the fact that

A

wy(x)=wi(x) exp [éw]ﬁ— 9

exp [ ; x]wl(w) ,

and
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, , 2 p p
u(x)=wiy(w) exp L 9 (x— 1)] + 5 eXp [2 (z—1) ]wz(w) ,
we obtain for Z1>0

- 1 _ _ e}\x
m= {exp [4x— P(0, @)]—exp[P(0, )]} +O(7_)
1

© {exp[iw—1)—P(L, &) —exp[P(L, 2)]} +0(7{)

>H

" (@=p)expLiw—P(0, 2)]—p exp [P0, 2)]} +0( )

>o|p—1

(1= exp iz —1) = P(L, )]—p exp [P(L, a)]} +O( 1) .

Also, the Wronskian o(x) is equal to
gty — U,
= ; {(2—p) exp [A(22—1) — P(1, ) — P(0, )] — (A—p) exp [A(x—1) + P(0, 1)]

—p exp [z — P(0, 1)]+p exp [P(0, )+ P(1, x)]
—(A—p) exp [A(2x—1)— P(1, ) — P(0, x)]+ (A—p) exp [Ax — P(0, 1)]

+pexp [Az—1)+P(0, 1)]—p exp [P0, )+ P(1, @)]} + 0(,6;)
— i—z_?ﬂ {exp [z — P(0, 1)]—exp [A(@—1) + P(0, 1)]} + o(e[)
- }1 exp [42—P(0, 1)]—exp [A(z—1)+ P(0, 1)]+ 0(‘?) .
Since w(x)=C(1)e, we obtain
)= } {exp [— P(0, 1]—exp [— 2+ P(0, 1)]} + 0( 11) .
For <72<0, we obtain
= i {exp [z — P(0, )] —exp [P(O, 2)]} +0( %)

_ 1 {eXp[x(x 1)—P(1, #)]—exp [P(L, x)]1+0< ; D)
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U= )1 {(A—p) exp [z — P(0, ®)]— p exp [P(0, x)]} +O<,}, )

. 1 ek(z—l)
= 7 {(4=p) exp [ia—1)—P(L, @)] - pexp [P(1, ) +0(¢ )

For #2<0 we also obtain, by an argument analogous to that given
for . #21>0,

of@)= T {exp o= PO, Dl=exp [e—1)+ 10, 11} +0(7 ),
and

1 e
C)= - {exp[—P(0, 1] —exp[~2+P(0, 1]} +0( . )
If we make the substitution u(x)=e*v(x) in equation (15) we obtain
our adjoint differential equation (18). Consequently
¢(x) = p(x)v, () + v (@) = p(x)eu () + e~ ui(x) — e~ *u ()
=e " {(p(x) — Dus() +w (@)}

Now

w(x)=exp (A;) wy(x) .

(@)=} exp ( *;” Ya(a)+exp ( ‘;’ )uwi@),
and therefore,

p@)=e” i)~ § @) +ui@)]

2p/(z) sinh [ o~ P, x)]

T a—2p(0) (- 2p@)”
20@)sinb| 3 (0=9=P(&, @) [, (Du(@)ds
oo Va-2pe) -2p@)”

_ S %:;i((g {cosh [;‘ (@—2)— P&, x)]
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—sinh| 2 (o-9)— Pz, o) |} oteo(erae

2p'(x) sinh[fgf — P(0, :v)]

— Vi—2p(x) — % po
exp| = 5 rPO.9)]+ Vi=2p(0) (i—2p(@)"

1V 1—2p(0)

‘©fexp| & — £ (lo|—1) | —exp| — 22 € (o

B A ) s b S L)
’ V/2—2p(&) (A—2p(@))*"

*9(6)Z,(€)de

_ © '1/2—‘——2@ —_A,x, i "
Som“p[ 5+ P&, )| exp| S0+ lo]) @z

It is evident that in the above equation, the expressions

2p’(m)sinh{}»29-0——P(0, a,-)}
Vi—2p(0) (A—2p(@)"

and

i 2 @exp] o= PEa)+ | (ol=0) |—exp] — gt P, @)+ Lo+ |

0 2/ 2—2p(&) (A—2p(z)"*
- 9(8)Z,(§)de

are both at least of order M .

For #1>0

V=26 e[ L £ (o
So 11/):;’1%5 exp [ 5 @+ P(&, x)] exp }: 5 A+ I):| 9(8)Z\(&)ds

of L e o)

while for #1< 0 this expression is of order _(gpw[__*;—lxﬂl .

Using the fact that. ]/’1;2?(@=1+O<71> , we conclude that
V' 1—2p(0) A

¢ (@) —exp [ 2z + P(0, x)]+0(,9_;”<)+0<%) . @0,
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and
di(x)=exp [—lx+ PO, )]+ O <9:;i-) , #2<0.
We have also
w(@)=e @) =e exp| 4 (a=1) wz)=exp| = L @+ 1) |uta),
and, therefore,
gua)=pv,+vi—exp| = 2 @+ D) [{(p= 1 )@+ ui@)} -

In this case we find by arguments similar to those given for ¢,(x) that
for F2>0

(@) —exp [— i+ P(1, x)}+o(6”}”)
and for “#1<0,

dy(x)= exp [— 2+ P(1, )]+ 0(—6;2) + 0(?‘) :

4. Proof of the expansion theorem. We have already seen that
the integral (19), taken over a contour in the JA-plane enclosing the
eigenvalues of the system (A+21B)u=0, u(0)=u(1)=0, is equal to an
expansion of the form (23). We shall now show that this integral,
taken over a circle whose radius tends to infinity in the A-plane®, tends
to Fi(x), provided F(x) satisfies certain conditions. It is evident that
this circle is a contour of the sort described above.

A precise statement of the theorem we shall prove is as follows.

THEOREM. Let F(x) be a function of bounded variation for 0 a1
and let u,(x) be the eigenfunctions of the system (A+iB)u=0, u(0)=u(l)
=0, where A is the operator d*/dx*+q(x) and where B is the operator
—d/dx+p(x). Furthermore, let v,(x) be the eigenfunctions of the system
adjoint to (A+iBu=0, u(0)=u(1l)=0; and let C()e** be the Wronskian
of the equation (A+1Bu=0. If

2) We require, of course, that our contour does not intersect the eigenvalues of the
system. Since the eigenvalues are discrete, it is always possible to choose such a contour.
In fact from the form of C(2) we see that the large eigenvalues tend to An=2nnt+2P(0, 1);
consequently if we define the radius of our n!” circle, Rn, as (|n|+|4n+1])/2, then for
sufficiently large = our contour will not intersect any eigenvalues. In this manner we
obtain our desired sequence of circles with radii tending to infinity as 7 — .
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(27 FO+)+exp[—P(0, 1)]JF(1—-)=0,
then the series
S 1 P(E)vn(E) +v(€)
(28) S @) P { PO L0 g
converges to F(x) at every point where F(x) is continuous in 0<x<1.

At all other points the series (28) converges to -%F(ac+0)+ %F(x——O).

If F(x) does not satisfy the boundary condition (27), then the series (28)
converges to

; F(z+0) + ; Fz—0)— ; -exp[P(0, )] {F(0+)+exp[— P(0, 1)]F(1—)} .

Using the notation of the previous section we may write the integral
(19) in the form

L @ (@)
omi ¥ CO) S F(§)¢1(S)dédx+ﬁ—w jS 0 gF(E)gbz(g)dgdg.

Denote the first integrand by 7(x, 4), and the second integrand by ¢(«, 2).
For &#1>0 we find from our previously developed forms that

(e, )= {,e,xp,,[%@ —1)—P(1, 2)]—exp [P(1, 2)]+ O/ 4),}
’ exp [—P(0, 1)]—exp [— A+ P(0, 1)]+0(1/2) )~

-S:F(g){eXp [— 2+ P(0, 5)]+0(‘i;§) +0(1)}ae

It is quite easily seen that in the term

(29) exp [A(x—1)—P(1, x)]—exp [P(1, z)]+O(1/2)
exp [—P(0, 1)]—exp [— 2+ P(0, 1)]+0@1/2) '

we may immediately pass to the limit as |1| — o, since this limit exists.

Also, the terms
[eof Jae-o( )

[men(  y-o( ).

both can be seen to tend to zero when integrated over the semi-circle
C; for which .“22>0 and whose radius tends to infinity. Since the
limit of (29) as [1| > o is —exp[P(0, 2)], we conclude that

L e, pa= TR IPO DN [exp [ 224 PO, 91z

2 fid)

and

(30)
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Now

g ¢ exp [P(0, £)]F(E)de—F(0+) SD e exp[ P (0, £)]d2 — S:e“”’

o

- exp [P(0, H{F(0+)—F(£)}ds .

Integrating by parts, we have

PO-+)| e texp PO, 9lde=FO+){| — © exp[—i+P0, 9] |

4 1 S:p@ exp [~ 2+ P(0, &)lds}

=00 )+l )

—-Az
The terms O<—e—;~> and O( 21> contribute zero when integrated over

the contour, while

Sn F (O;r) di= Si@'F(O+)d0=niF(0+) .

Since F' is of bounded variation we can write F(0+)—F(§)=n(&)—k(&),
where A(&) and k(¢) are positive, steadily increasing, and tend to zero
as £€—0. We write the integral from 0 to 2 as the sum of two integrals:

[ exp [ =22+ PO, R (0+)— F(@a={exo [ - 26+ PO, 0100~ k(©)dz

_ S:N exp [ — A&+ P(0, £)1(A(E) — k(£))dé

7, exp[-24-P(O, 1)~ k(e .

VK
Note that 0<1/117£x as |A|—co.
Now

’ - age—of expl—14]2] exp[—V/[1]]
SﬁxfeXp[ 26+ P(0, &)(8)dz=0 ( . >+O<’”Ml , )

and both of these order terms integrated over C, tend to zero. By the
second mean-value theorem,
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Sm % exp [— A6+ P(0, &)Jh(e)de

1

_ (ﬂlﬂ) o g:'f*ﬂ" exp [— i€ + P(0, £)]de=0 (@Q{ 1{.#&,)

where oga<ﬁ .

Since lgim n(&)=0, we see that this order term tends to zero when in-
—0

tegrated over the contour. Similarly, the corresponding terms with
(&) replaced by k(¢) tend to zero. Using these results together with
equation (30) we have

41~.—S 7(@, Hdi=— ,_,1_F(0+) exp [P(0, )], FBAr>0.
2m1 Joy 2

Consider y(z, 2) for &2 41<0. We have

expliz—1)— P(1,2)|—expP(L :v)]+0< " ”)
r@, )=9-——— SR

exp[—P(0, 1)]—exp[— 14 P(0, 1)]+0( )

S F(@) | exp [ 2+ P, s)]+o(; m>}d5

Multiplying the numerator and demoninator of the term in braces by
e\, factoring ¢ out of the resulting product and multiplying the integral
term by e, we obtain

e 2)={eXp[P(l x)]—exp [(1—2)+ P(1, )]+ O(1/2) )
’ exp [2— P(0, 1)]—exp [P(0, 1)]+0(1/2)
-S:F(E){exp [A(z— &)+ P(0, s)]+o(.‘ikf;f‘3) de .

Again, since #1<0,

i €XD [—P(L, )] ~exp[1(1—2)+ P(1, )]+ O(1/) _

I l=ee exp [1—P(0,1)]—exp [P(0, 1)]+O(1/2) —exp [P0, 2)],

and

S:F(E)O (9() g’) dE=O( 21 ) :

so that
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1

S r(a, Nda— —eXP PO, ‘”)]S szzF(E) exp [z — &)+ P(0, £)]de ,
270 Joy 2 o Jo

T

where C, is the semicircle for which <21</0 and whose radius tends
to infinity. Write

S F(&) exp [4(w— &) + P(0, &)]de=F(z— O)S =9 exp[P(0, £)]de

=[[ew exp [P0, O10FE@—0)-F@)z
Integrating by parts we obtain

Flo= O)S A=0 exp [P(0, &)]dé= F(x—O){[*eiffiD e);p [P(0, &)] ]

+ } S: p(€) exp [A(x— &)+ P(0, E)]df}

- TeDSEI0 1o T o),

Az
The terms O(e'{ >, and O( ) then give zero when integrated over

the contour, while

SC —F (,”4«",0)3’?9[? 0, 2)1 3)— _ 2iF(x—0) exp [P(0, z)] .

We again make use of the bounded variation of F to write F(x—0)
—F(&)=I1(§) —m(&), where I(¢) and m(¢) are positive, steadily decreasing
and tend to zero as & tends to x.

Proceeding as before we write

S M-8 oxp [P(0, E)(F(x— 0)— F(¢))de= S Ae=8 exp [P(0, £)](I(8)— m(&))dE

_ Sr-m =P exp [P(0, £)1((6) —m(&))dé

+ S . @ exp [P0, £)](U(E) —m(£)de -
VI

In this case

S: AT =9 exp [P(0, &)]1(&)= O( l)l"”)+0<exp [l—“[/llx]>’

and both of these order terms tend to zero when integrated over the
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contour, while by the second mean value theorem, this time applied to
a monotonic decreasing function, we obtain

1
[, oosoxp [P0, OeME=0 [ o [xz Vil JJJ .
VI

Since {(£) tends to zero as & tends to @, the above order term also tends
to zero upon integration over C,. Consequently, we have

oo, T 0d

Uy

— —exp[=P(0, z)] S —F(z—0) exp [P(0,2) ;,
271 Cy i

— é Fz—0) (2i<0).
Combining our results for .Z#4i>0 and 2 1< 0, we obtain

G }m § (@, Ndi— — ; F(0+) exp [P0, x)]+ 4§-(F(w-0) .

Consider now —21. 56 ¢(x, )dA. From our previously developed forms we
s}

obtain for Z21>0

b(w, )= { _exp [z —P(0, w)] —exp [P(0, 2)] +0(¢*/4) }
’ exp [—P(0, 1)]—exp [— 2+ P(0, 1)]+0(1/2)

AE

-SlF(E){eXp [—26+P(1, 5)]+0(,9{>} dé.

Factoring e¢** out of the term in brackets and combining it in the integral
term we obtain

b, H={ =P [P0, o)] —exp [ = kot P(O, 2)+ O(Lj2)}
’ exp [—F(0, 1)]—exp [— 2+ P(0, 1]+ O(1/2)

| peexoie—a+ P, e1+0(7 ") az.

Since #i>0,

lim ,{@,sp,,[ —P(0, 2)]—exp [ — 22+ P(0, 2)]+ O(1/4)

exp [—P(0, 1)]—exp [— 2+ P(0, 1)]+O0(1/) f=exp [P, 1,

[AJ>oo

and

[moo( Jeo( 1)

we conclude that
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b S b(z, Ndi— EXP [P, 1)]

; S g F(2) exp [Nz —&) + P(L, &)deda .
271 1 277 (AW E

Proceeding as before we write
[ 7(0) exp L@ =) + P(L, d=Fa+ 0) =0 exp[P(1, &)}z

| exo Do -9+ P1, N+ 0) - Pz,

and again integrating by parts, we obtain

1

Fla+ O)S \=-0 oxp [P(1,c)]d~—F(x+0){[ TeeoexpP(L E)]J

+ 1 00) exp L@—o)+ P(L, 21a]
F(w+0) exp [P(1, a)]+o( A D)+0(.3 )

I)(J

Again by arguments the same as those given twice before, the last two
order terms both tend to zero when integrated over the contour. If
we write

|, exp [ia—8)+ P(L, &))(F(ar+0)— F(&))ds
~ " exp Lia—8)+ P, 1@+ 0) - oz
[ exp lite—2)+ PA, 1 +0)- FE):

T+
AN

then by arguments essentially the same as those given for the corre-
sponding term in r(z, 1), the integrals above tend to zero when inte-
grated over the contour. Hence we have

“21__5 Pz, g)dng?ﬁ&[ﬂﬁz,l)] S F(x+0) exp [P(1, x)] d2=}-F(x+O),
0 Je 271 o )l 2

(=#2>>0).
For &#1<0 we obtain

S A.)_{f_ exp [2z—P(0, z)]—exp [P(0, 2)]+0(1/1) )
’ xp [—P(0, 1)]—exp [— 1+ P(0, 1)]+0(e-/2))

'SLF(E){GXD[—RSJrP(l )]+o< )+0< )}
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Multiplying the denominator of the term in braces and the integral term
by e¢* we obtain

exp [z —P(0, )] —exp [P(0, )]+ O(1/2)
@, )= {exp [1—P(0, x)]—exp [P(0, ac)]+0(1//z)}

1)

[ r@{exvtia—e+ P, e1+0( ") +0( L)} ae.

xl
Since
. exp [Ax—P(0, x)]—exp [2+ P(0, )]+ O(1/2)] _
1 D PO, DI oxp PO, 11201 |~ 1T

S;F(g)o@f;fi) a:—0( ;) ,

and
|.#e0( ;) ae=0(;).

we have

-'2%—5 S% (@, di= P [;Z@"' 1l Lz SlF (&) exp [(1—&)+ P(1, §)ldeda .
Again write
SlF (&) exp [A(1—8) + P(1, §)lde=F(1 —)S;em-@ exp [P(1, £)]de

! 0 exp tp(1, g0 -~ @)

Integrating by parts we obtain

F-)| 90 exp [P(L, e =F(1—){| 1 e -0 exp [P(L, 91
2 ;p(a exp i(L— &)+ P(L, O)de}

=B cofe)vo( ).

As before, the last two order terms tend to zero when integrated over
the contour, as well as the integrals

g; &9 exp [P(1, &)|(F(1—)—F(£))dé
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1-- 1 1
g
® 1

, Jexp -8 P, 910F0-) ~ Freas .

VIR
Thus we have
"1‘-’S P, Hdi= rﬁ?lﬁl[??_(??’,,l),] S Fl-) 4,
211 Jo, 2me 0y A

- ; exp[—P, DIF(1-),  (#1<0).

Combining the results for .%#21>0 and for 1< 0, we obtain
(32) 1. Sﬁ b(@, Hdi=-L F(z+0)— L exp[— Pz, 1]F(1-).
2 2 2
From (81) and (32) we obtain®

1 1 1 a1
R 3€ @, Ddi+ 35' War, Ddi= — F@—0)+ _Fa+0)

— + exD [P0, D)IFO+)— J exp[—P(e, DIF(L-).

But we have already shown from our residue expansion given in §2
that (33) is equal to

< (e ! P(EYVAE, )+ V&, 1)
= S, 2| 7o G e, .

- o

We have, therefore,

0 1 £ ’
(34) S ltn(fc)g F(g){,??(s)?!n(?) +0a(8) }dg
= 0 C'(2,)

3) From the nature of the order terms and the fact that no singularities occur on
the contour we see at once that we need only consider the cases R1>0 and Ri<0.
To be precise we imagine our circle in the A plane to be made up of 6 parts:

TE

T T ™ s T T 4
- < — - <l ——— << < . Jhad
2:argflj_ 5 TE 2+£:arglj_2 &,y e.t,arglr,z, Zgargxsz

+ g, —ﬁz—+e§arglg— %—— g, and -
shown that as &€-—>0, the integrals taken over those parts of the contour which tend to
C: and C; tend to our desired result. The integrals over the remaining parts of the
contour certainly tend to zero as &€->0, since the order terms are the same as in the
corresponding cases we have considered, and they also tend to zero over the parts of the
contour that we have not considered. The contributing terms in each case are of order
Be, where B is a bounded function and hence these terms tend to zero as -0,

—egarglg—% (where &>0). We have

wola
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%F(m 0)+—~F(x+0)
;{exp [P0, 2)]F(0+)+ exp[— P(x, 1)]F(1—)}
;F(x 0)+~~F(w+0)
— 5 exp [P0, #)}LF(0+)+exp [~ PO, DIF(1-)} -

Hence, if the boundary condition (27) is satisfied, (34) converges to
;F(x—0)+ é F@+0). If F@) is continuous, then F(z—0)—=F(z+0)
and we have

(35) S ute) | me{ OGO g riz).

Finally, since C’(1,) is a constant for each value of », we may define

V() _
C(h) Va(8),

and (35) applied to the case F(x)=u,x) shows that g‘u,lB*Vndx=1.
0

Consequently
Fla)= o) | FOWOV.O+Va@nae,

which is the form of the expansion indicated in the Introduction
(equation (1.4)).

The authors wish to thank Mr. Bertram Levy for his assistance in
preparing this paper for publication.

REFERENCES

1. F. Browder, On the eigenfunctions and eigenvalues of the general linear elliptic dif-
ferential operalor, Proc. Nat. Acad. Sci U.S.A., 39 (1953), 433-439.

2. L Kay, Diffraction of an arbilrary pulse by a wedge, Mathematics Research Group,
New York University, Research Report No. EM-43.

3. R. E. Langer, The expansion problem in the theory of ordinary differential systems
of tlie second order, Trans. Amer. Math. Soc., 31 (1929), 863-906.

4. E. C. Titchmarsh, Eigenfunction expansions associated with second order differential
equations, Oxford, Clarendon Press, 1946.

NEW YORK UNIVERSITY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. L. Roypex R. P. DiLworTH
Stanford University California Institute of Technology
Stanford, California Pasadena 4, California
E. Hewitr A. Horn*
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH M. HALL M. S. KNEBELMAN J. J. STOKER

C. E. BURGESS P. R. HALMOS I. NIVEN G. SZEKERES

H. BUSEMANN V. GANAPATHY IYER T. G. OSTROM F. WOLF

H. FEDERER R. D. JAMES M. M. SCHIFFER K. YOSIDA
SPONSORS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF UTAH

UNIVERSITY OF CALIFORNIA WASHINGTON STATE COLLEGE

CALIFORNIA RESEARCH CORPORATION UNIVERSITY OF WASHINGTON

MONTANA STATE UNIVERSITY

* * *

UNIVERSITY OF NEVADA

OREGON STATE COLLEGE AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON HUGHES AIRCRAFT COMPANY

UNIVERSITY OF SOUTHERN CALIFORNIA

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent
to their successors. All other communications to the editors should be addressed to the
managing editor, Alfred Horn at the University of California, Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained
at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, c/o University of California Press, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10,
1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

* During the absence of E. G. Straus.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
COPYRIGHT 1956 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics

Vol. 6, No. 2 December, 1956

Louis Auslander, Remark on the use of forms in variational

Calculations ......... ... 209
Hubert Spence Butts, Jr. and Henry B. Mann, Corresponding residue

systems in algebraic number fields . .............. ... ... .. ... ... 211
L. Carlitz and John Herbert Hodges, Distribution of matrices in a finite

Jield . . . 225
Paul Civin and Bertram Yood, Invariant functionals ...................... 231
David James Dickinson, Henry Pollak and G. H. Wannier, On a class of

polynomials orthogonal over a denumerable set ..................... 239
Bernard Friedman and Luna Mishoe, Eigenfunction expansions associated

with a non-self-adjoint differential equation......................... 249
Luna Mishoe and G. C. Ford, On the uniform convergence of a certain

CLGENFUNCIION SETIES . .\t v e ettt et ettt eeeeee s 271
John W. Green, Mean values of harmonic functions on homothetic

CUTVES . . oo e ettt e e e e e e e e e e e 279
Charles John August Halberg, Jr. and Angus E. Taylor, On the spectra of

linked Operarors. ......... ... 283
Chuan Chih Hsiung, Some integral formulas for closed hypersurfaces in

Riemannian space . ............. .o o oo 291
Norman D. Lane, Differentiable points of arcs in conformql n-space 01

Louis F. McAuley, A relation between perfect separability
and normality in semi-metric spaces ...............
G. Power and D. L. Scott-Hutton, The slow shearing motic
a semi-infinite plane . ........... ... .. ... ... .. ...
A. C. Schaeffer, Entire functions .......................
Edward Silverman, An intrinsic inequality for Lebesgue ar
Choy-Tak Taam, Asymptotic relations between systems of
CQUALTOMS . .« oot v e e ettt
Ti Yen, Quotient algebra of a finite AW*-algebra. .......


http://dx.doi.org/10.2140/pjm.1956.6.209
http://dx.doi.org/10.2140/pjm.1956.6.209
http://dx.doi.org/10.2140/pjm.1956.6.211
http://dx.doi.org/10.2140/pjm.1956.6.211
http://dx.doi.org/10.2140/pjm.1956.6.225
http://dx.doi.org/10.2140/pjm.1956.6.225
http://dx.doi.org/10.2140/pjm.1956.6.231
http://dx.doi.org/10.2140/pjm.1956.6.239
http://dx.doi.org/10.2140/pjm.1956.6.239
http://dx.doi.org/10.2140/pjm.1956.6.271
http://dx.doi.org/10.2140/pjm.1956.6.271
http://dx.doi.org/10.2140/pjm.1956.6.279
http://dx.doi.org/10.2140/pjm.1956.6.279
http://dx.doi.org/10.2140/pjm.1956.6.283
http://dx.doi.org/10.2140/pjm.1956.6.283
http://dx.doi.org/10.2140/pjm.1956.6.291
http://dx.doi.org/10.2140/pjm.1956.6.291
http://dx.doi.org/10.2140/pjm.1956.6.301
http://dx.doi.org/10.2140/pjm.1956.6.315
http://dx.doi.org/10.2140/pjm.1956.6.315
http://dx.doi.org/10.2140/pjm.1956.6.327
http://dx.doi.org/10.2140/pjm.1956.6.327
http://dx.doi.org/10.2140/pjm.1956.6.351
http://dx.doi.org/10.2140/pjm.1956.6.363
http://dx.doi.org/10.2140/pjm.1956.6.373
http://dx.doi.org/10.2140/pjm.1956.6.373
http://dx.doi.org/10.2140/pjm.1956.6.389

	
	
	

