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1. Introduction. In the attempt to solve certain problems in mathe-
matical physics, such as diffraction of an arbitrary pulse by a wedge as
considered by Irvin Kay [1], one encounters a hyperbolic differential
equation of the type

(a) Uy — (YU =y, — P2,

where u(x, t) must satisfy the boundary conditions u(1, £)=u(0, t)=0 and
w(x, 0)=F(x). In attempting to solve equation (a) by separation of
variables, one is led to the consideration of expanding an arbitrary
function F'(x) in terms of the eigenfunctions u,(x) of the equation

w4+ g(x)u+ A(pleyu —u')=0

satisfying the boundary conditions u(0)=u(1)=0.

In the previous paper [2] by B. Friedman and L. I. Mishoe, it was
proved that a function F(x) of bounded variation for 0z <1 could be
expanded in terms of the eigenfunctions u,(x) of the system u’' -+qu-

2pu—w)=0, u(0)=u(1)=0, provided F(0*)+ F(1-) exp <-—Slpdt>=0. How-
G

ever, the question of uniform convergence of the series ianun(m) to F(x)
was not considered. In this paper we establish sufficient conditions for
the series ianun(x) to converge uniformly to F(z) for 0<z<_1.

The following theorem has already been proved [2]:

THEOREM 1. Let F(x) be a function of bounded variation for 0 <z <1.
Let w,(z) be the eigenfunctions of the system

(1) (A+2Bu=0; u(0)=u(1)=0,

where A is the operator d*/dx*+q(xz), and where B is the operator —d/dx
+p(2).

Let ¢g(x) be continuous and p(x) have a continuous second derivative.
Furthermore, let v,(x) be the eigenfunctions of the system adjoint to
1. If
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(2) F(0*)+ F(1-) exp (— S:p(t)dt>=0 ,

then the series

(3) S (@)
where
[ e[ PO +0i8)
(4) a,= | ey PO Jae

and where the Wronskian o(x) of the two independent solutions u(x)
and %.(x) has the form

(5) o(x)=uuy—u=C(2)e*

with
(6)  C()=1"exp (— S:p(t)dt> — exp (_z + S:fp(t)dt> +00Y) ,

converges to F(x) at every point where F(x) is continuous in 0<x<{1.
At all other points, the series converges to (F(x+0)+ F(x—0)). If F(x)
does not satisfy the boundary conditions (2), then the series (3) con-
verges to

(7) ;I:F(w+ 0)+ Fz—0)— {F’(O“) + F(17)exp <— S:p(t)dt)} exp (S:p(t)dt)].
In this paper, we prove:

THEOREM 2. If F'(x) exists and is of bounded variation for 0 <z <1,
then a sufficient condition for the series ianun(x) to converge uniformly

to F(x) for 0<a<"1 is that F(0)=F(1)=0.

2. An asymptotic form for C'(1,). Using (5) and the boundary
conditions u(0)=u(1)=0 and «'(0)=u'(1)=1, we have

(8) C()=eu(l, 2) .
Then it follows that

(9) ()= %C(l)= —C)+ (1, D)+ e‘*’zgzwl(m, 2) at z=1

where

(10) %1=emlz'wl .
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Now (10) transforms the equation (4 + AB)u=0 into w; + (q +Ap— i >w1= 0.

It can be verified [2] that w, satisfies the equation

__sinh B(0, x) _ {* sinh R(¢, ?) -
D e [r(x)r(0)]" So [r(2)r(E)1"” alEpo EMe
where
gy P 30"
(12) 9@ =+ Ty gy
and
(13) r(w):%—p(x) R @)= S:r(t)dt .

We note that g(x) and ¢'(z)= %g(m) are bounded for |1| sufficiently large.
Also, if in (11) we make the substitution
(14) w=2"" exp (}|o]@)Z\(2)

where o=, we note that Z,(x) is bounded [2] for || sufficiently large.
Differentiating (11) with respect to 1, we obtain

(15) w, =% cosh R(0, #) _ [r(z)+(0)] sinh R(0, =)

2r(@)r(0)]" ALr@)r(O)]"
-{ L P aewi(e)ds ~ ) e € (©)ds

~ | =9 O EE D s orie

L1 Sm [r@)+r(@]sinh B(E, 2) )0, )qe

e rerers

If we substitute
(16) w,=2""p(x) exp ({[ol2) ,
we obtain that

A7) p(w) =" exXP (—2lol) cosh R(0, »

[r(2)r(0)]'"
_ Ar(@)+7r(0)] exp (—4lole) sinh R(0, z)

Alr(@)yr(0)]"
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exp [—3lol(x—¢)] sinh E(¢, )

R e

~[reel=d "[’q'((ﬁ)rfg]ii“hR(g’ Dy (@ 26)de

So (@— E)exp[ lfri((z)ré))]]ﬁoshR(f"”)g(E)Z (&)ds
N -

where g'(5)=d ig(E)- Now A[r(x)r(¢)]™” and hence [r(x)+r(E)I[r(@)r)]™"

are both bounded by some constant C as || —>o. Also, exp[—3|ol(x—8)]
x cosh R(%, ), and exp[—2|s|(x—¢&)]sinh R(€, x) are both bounded by some
constant C as |i|-> o and 0=<¢£<x. Using these results we obtain from
equation (17) that

18 p@l=ac S 10(8) p(&) i + mS (&) Z(8)\de

+.C g L e—ello@Z)\de+

o S l9(6)Z(9)|de .

1l

If we set p(2) equal to the maximum of |p(x)] in 0<_xr<{1, then we
certainly have that

el S (7 OZE+ Ho= W21+ O ZENE

1- mgla(é)ld 1— wgtg(s)td-

Therefore, yp, and consequently p(x) are bounded as [1|—>c. Rewrite
equation (15) as follows:

19)  wi(e, )=  cosh R(0, ) _[r(x)+7(0)] sinh R(0, )

2[r(@)r(0)]" A[r(@)r(O)]"
1 exp(3lol) | eXp["?'(’['?f(wx)rg]f}fh B 2) g eyp(e)as
— 1 exp(3lole) S exp[=% '”[Lf(z )r%]f}j’h R 2) ye)7,(6)de
~exp(lola) || @ - SPITHEE S OLE A D g7, 600
+77 exp(dlolo) | L3I f[?j([;;fgg]gz@] S RGE. 2) o) 26)de
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The above four integrals are all at least O(1*exp [#|s]2]). Also,
[r@)r(O)] =17+ 0~ |
and
[r(@)] T (0)]- =274+ 0(~) .
So it follows that

20)  w((1, )= 2" cosh (g;r(t)dt> +0(-2 exp [3]o]) Jz sinh ( g:r(t)dt>

+0(1 % exp [}]o]]) .
Using this result for wi(1, 1) in equation (9), we have, for #1>0,
@1) C’(Z)=2“1[exp <~z + glp(t)dtﬂ
[

- % P [exp (— S:p(t)dt> — exp (- 2+ S:p(?f)dtﬂ +0(-%)+0() ,

and for <#2<0,

(22) C’(/l)=2‘1[exp ( y g:p(t)thI

- ; P [exp (- g;p(t)dt> — exp (——/1 + S;p(t)dtﬂ%— 0@(~%e") .

3. Distribution of the eigenvalues. Since by [2]

C(A)=2A"exp[— Za](exp [— gZp(t)dtJ —exp [— (b—a)+ S:p(t)dt:l + 0(2—1)>
=A"rexp [—1a]C\(2) for #2120,
C) =2 exp [ — 8] (eXp [——Z(a—b)— S:p(t)dt]— exp H:p(t)dt}r 0(/1—1))

=)""exp [—0]C,(A) for #1<0,

and where a¢ and b equal 0 and 1 respectively.
The condition that 4 be an eigenvalue is that C(2) and hence either C,(2)
or C,(1) be zero. Equating Ci(4) to zero we obtain

(23) exp [— Ab—a)+ S:p(t)dt]-: exp [— S:p(t)dt] +00™Y

—exp [— S:p(t)dt](l +0(Y) .
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By taking the logarithm of both sides of the above equation (23) and

expanding the term log (1+0(17')) we obtain that the large eigenvalues
satisfy the equation

=2 Slp(t)dt+2nml+0(/1;1), n=+N, +N+1,--- .
0

Hence the eigenvalues with positive real parts, if they exist, are given
by

(24) dy=2mmi + 2 SI p(t)dt+0(l> .
0 n

The equation C,(4)=0 leads to the same result for those eigenvalues with
negative real parts. Consequently, all the eigenvalues are represented
by equation (24).

4. On the uniform convergence of series (3). Consider equation
(4). In [2] it was shown that

(25) B*V(w)=exp [— i+ S p(t)dt] +0,,
where
{0(2‘2)4—0(2“1 exp [ —Ax]) for F1>0
oG exp [—ia]) for .#1<0.
Similarly,
(26) B* V()= exp [—Ax + Szp(t)dt]+ﬂz,
where
O(A~texp [—Az]) for F#1>0
- {0(1—1 exp[—a])+0(- exp[—b])  for P1<0.

Also from [2], we have that

@) w(@)=1"]exp [zx - § p(t)dt] — exp Se p(t)dt]} O3

and
@8)  u(x) =z-1{ exp [Z(x— 1)— S p(t)dt] _ exp S p(t)dt]} +00™) .

Using equations (26) and (27), for <% 21>0, we have
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1 B‘i» |7£(E)
J=u\ FE) g
A =u So (&) C(L) &

-

0 C'(h)

+0(%; ¢) Slﬁﬁ)%(gj%) a

o) )| exp (- 2.6+ | porat) Jas

4
_Af F(@) exp (~ s+ Slp(”“t) gz A | FOOUT o™y,

A, Jo C'(4,) 2, Jo C' ()
where A is bounded.
By equation (22), C'(2,)=0(2;"), therefore C—%} ):O(Zn) .

Hence
(29) anulanSIF(é) exp (—Xné—i— Sgp(t)dt>d5+B% SIF(E)O(/?;le‘A"E)dé

where B,=17'0(1,)A is also bounded. Using equation (26) for .<#/.>0,
and observing that O~ exp (—1,£)) is the indefinite integral of a bounded
function, it can be easily shown that

(30) SlF(E)()(A;Te“ng)déz()(z,;z) .
Consider now the first integral in equation (29). Setting H(¢)=

£
F(¢)exp <§ p(t)dt) and integrating by parts, we obtain

G) | HE exp (—hddi— 1 HE exp (- 18) |
| 4 @) exp (<2000
Since F(1)=F(0)=0, then H(1)=H(0)=0, and the first term on the right

hand side of equation (81) vanishes.
Now

G2 HEO-p@F@ exp (| pat) + @ exp (| st )

F'(¢) is of bounded variation on (0, 1) and p’(¢) is continuous on (0, 1).
Therefore, H'(¢) is of bounded variation on (0,1). Hence,

H(&)=¢\(&)—¢.8)
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where ¢,(£) and ¢,(&) are two bounded, positive, monotone functions,
either both nonincreasing or both nondecreasing. Now 4;'exp (—41,8) is
bounded and integrable for 0<{¢<{1. Assume ¢,(£) to be a monotone
decreasing function, then

@) | 5@ exp (—hee

— )] 35" exp (—du)de— M»S 177 exp (—4,8)dE=0(15%)

where & and & are on the interval (0,1).
Combining the results of (30) and (33) we have

Sl (@)= % 0+ 3 au@)+ 35007

where Nifanun(x) is finite for 0<{x<{1l. From (24) it is clear that
oy
A,=0(n) for n==+N, £N+1,--- Therefore

R

Z Win(@)= 3 = + 2 () + Z O(l)

where O(1) is a bounded function.
o). M : = 1 o
Since <2 M >0 and the series M Y converges, it is
n* n* ¥

clear that ianun(:c) converges uniformly to F(x) for 0<lax<{l. And

our theorem is proved.

We note, however, that while Theorem 2 is sufficient, it is not a
necessary condition for uniform convergence. For suppose F(0) and
F(Q1) differ from zero, then by equations (81) and (33) we have

ianun= i O( 1) which may or may not converge uniformly.
= T n

In fact, o necessary and sufficient condition for the uniform con-
vergence of this series does not seem to be known.

The authors wish to thank Professor Bernard Friedman and Mr.
Bertram Levy of New York University, and Miss Noel Cousins of Morgan
State College for their assistance in preparing this paper for publication.
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