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N. D. LANE

Introduction. This paper is a generalization to n dimensions of the
classification of the differentiable points in the conformal plane [2], and
in conformal 3-space [3]. In the present paper, this classification de-
pends on the intersection and support properties of certain families of
tangent (n—1)-spheres, and on the nature of the osculating m-spheres
at such a point (m=1,2, ---, n—1).

The discussion is also related to the classification [4] of the dif-
ferentiable points of ares in projective (n+ 1)-space, since conformal n-
space can be represented on the surface of an n-sphere in projective
(n+1)-space.

1. Pencils of m.spheres. p, ¢, P, P,, ---, will denote points of con-
formal n-space and S™ will denote an m-sphere. When there is no
ambiguity, the superseript (n—1) will be omitted in the case of S*-V;
thus an (n—1)-sphere S®-" will usually be denoted by S alone. Such
an (n—1)-sphere S decomposes the mn-space into two open regions, its
interior S, and its exterior S. If P S, the interior of S may be de-
fined as the set of all points which do not lie on S and which are not
separated from P by S; the exterior of S is then defined as the set
of all points which are separated from P by S. An m-sphere through
an (m—1)-sphere S™-? and a point P ¢ S™-V will be denoted by S™[P;
S-U1 The m-sphere through (m+ 2)-points P,, P;, ---, P,.., not all
lying on the same (m —1)-sphere, will occasionally be denoted by S™(P,,
P, +++, P,..). Such a set of points is said to be independent. Most of
the following discussion will involve the use of pencils 7™ of m-spheres
determined by certain incidence and tangency conditions. An (m—1)-
sphere which is common to all the m-spheres of a pencil 7™ is called
Sundamental (m—1)-sphere of z™. In the pencil z™ through a funda-
mental (m —1)-sphere S~V there is one and only one m-sphere S™ (P, =™)
of 7 through each point P which does not lie on S™-9, Similarly,
in the pencil =™ of all the m-spheres which touch a given m-sphere at
a given point @, there is one and only one m-sphere S™(P, ™) through
each point P~ Q. The fundamental point @ is regarded as a point
m-sphere belonging to =™.
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2. Convergence. We call a sequence of points P,, P,, ---, con-
vergent to P if to every (n—1)-sphere S with P S, there corresponds
a positive integer N==N(S) such that P, S if 2> N. We define the
convergence of m-spheres to a point in a similar fasion.

We call a sequence of (n—1)-spheres S, S,, ---, convergent to S if
to every pair of points P <" S and @ S there corresponds a positive
integer N=N(P, Q) such that P S, and @ C S, for every 1> N.

Finally, a sequence of m-spheres S, S{™ ... will be called con-
vergent to an m-sphere S™ if to every S-"-Y which links [5; §77]
with S™ there exists a positive integer N=N(S"-"-D) such that S™
links with S®-"-Y whenever A >N, (m=1,2,+---, n—2).

3. Arcs. An arc A is the continuous image of a real interval.
The images of distinct points of this parameter interval are considered
to be different points of A even though they may coincide in space.
The notation ¢ p will indicate that the points ¢ and p do not coincide.
If a sequence of points of the parameter interval converges to a point
p, we define the corresponding sequence of image points on the arc 4
to be convergent to the image of p. We shall use the same small
italics p, ¢, -+« , to denote both the points of the parameter interval
and their image points on A. The end- (interior) points of A are the
images of the end- (interior) points of the parameter interval. A
netghbourhood of p on A is the image of a neighbourhood of the para-
meter on the parameter interval. If p is an interior point of A, this
neighbourhood is decomposed by p into two (open) one-sided neighbour-
hoods.

4. Differentiability. Let p be a fixed point of an are A, and let
t be a variable point of A. Let 1<m <n. If p,P,, -+, P,.: do not
lie on the same (m—1)-sphere, then there exists a unique m-sphere S™
(Py, +++, Pns1, p) through these points. It is convenient to denote this
m-sphere by the symbol S{™=S“(P, -+, P,.,; 7,); here z, indicates
that this m-sphere passes through p. In the following, the m-sphere
S™(Py, + ¢, Ppii,; 7,) is defined induectively by means of the conditions
'™ given below (the r, in the symbol S™(P,, ---, P,,,,-,; 7,) indicates
that this sphere is a tangent sphere of the arc A at the point p meet-
ing A (r+1)-times at p). We call A (m+1)-times differentiable at p if
the following sequence of conditions is satisfied.

I'™p=1,2, -+, m+1]: If the parameter t is sufficiently close to,
but different from, the parameter p, then the wm-sphere S™(P,,---,
P,iip, t; 7,-1) i uniquely defined. It converges if ¢ tends to p. Thus
its limit sphere, which will be denoted by
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SE~M)=S(M)(P1’ ctty, Pm+1—r ; Tr)y

will be independent of the way ¢ converges to p [econdition /'™, reads:
St ; r,) exists and converges to S, —S"(z,,.1)].

It is convenient to use the symbols S to denote pairs of points
P, p, and S to denote the point pair p, p (or the point p).

We call A once differentiable at p if ['(" is satisfied. The point p
is called a differentiable point of A if A is n-times differentiable at p.

Let =™ denote the family of all the S™”’s. Thus (™, consists only
of S, the osculating m-sphere of A at p.

5. The structure of the families 7™ of m-spheres S{™ through p.

THEOREM 1. Suppose A satisfies condition '™ at p. Let S™V be
any (m—1)-sphere. Then there is a neighbourhood N of p on A such
that if te N, t%£p, then t g S™ Y, (m=1, 2, ---, n—1).

Proof. The assertion is evidently true if p g S™ V. Suppose
p < S™-v  Choose points Py, -+, P,, on S such that p, P, -+, P,
are independent. If the parameter ¢ is sufficiently close to, but different
from, the parameter p, condition /(™ implies that S™ (P,, «-+, P,, t;
7,) is uniquely defined. Thus ¢ & S™ ™ (Py, -+, P,; t,)=S""",

COROLLARY. If A satisfies condition '™ at p, and S® 4s any k-
sphere, then t - S® when the parameter t s sufficiently close to, but
different from, the parameter p (k=0,1, .-+, m—1).

In particular, this holds when m=n—1.

THEOREM 2. Let 1<<m<n; 1< k<m. If A satisfies '™, ---,
'™ at p, then '™V, oo I'"D ynll hold there and
(1) S(m_l)(Plv crty, Pm—r; T'r):HS(m}(PD tecy Pm—r; P; Tr) .
-
Conversely, let A satisfy '™V, .., I'™Y at p, and let S¢"V£p if

k=m. If P, _,.,ZS™YP, +++,P,_,;7,), then I'™ will hold for the
points P, «++-, P,,_,.; and

(2) S(M)(PI’ ctty Pm—r+1; T7'):S(m)[Pm-r+l; S(m—l)(P“ cecy Pm—r; Tr)]
(r=1, -+, k).

REMARK. In general, /™%, ... '™ do not imply '™, «.., '™

(see [3], §7).

Proof. (by induction with respect to k): Suppose k=1; 1 <m <n.
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Let I'™ hold. If P, .-, P,_;, P, p are independent points, S™(P,,- - -,
P,._., P, t; r,) exists when ¢ is sufficiently close to p,t=£p, te A. Thus
P,.-., P, P, t, p, are also independent, S (P, -+-, P,_1, t; 7,) €x-
ists, and

S(m—l)(Ply e 7P'm—11 t; TU):H S(ﬂ”(Pu crty Pm—lr Pr t! T(J)-
P

If ¢t »p, S™(P, -+, Pn_y, P, t; 7,) converges, and hence S™-Y(P, ---,
P, t; 7)) also converges, "™~V is satisfied, and

S“n_l)(Pl’ ttty Pm—l; TI):H S(m)(PI! ctty Pm—ly P; Tl) .
P

Next, suppose that 7"{™-V is satisfied, and P,, & S™ (P, -« , P, _y;
;). Then P, S™ VP, -+, P,_, t; 7,) when ¢ is sufficiently close to
p, te A, t%~p, and

S(m)(PI; M) Pm’ t; TO):S(m)[Pm: S(m_“(Ph ttty Pm—l; ty To)]

exists. Hence when t—p, S™(P, ---,P,, t; r,) converges, ['™ is
satisfied relative to the points P, ---, P,, and

S(m)(Pl! ety Pm; TI)ZS(m)[Pm; S(m—l)(Pl, tey Pm—-l; TI)] .

Thus Theorem 2 is satisfied when %&=1.

Assume that Theorem 2 holds when %k is replaced by 1,2,---, %
where 1 <A<k m.

Let I'{™, -+, I'" hold. Then S™(P,, «++, Pp_»_1i, P, t;7,) exists
when ¢ is sufficiently close to p, t£p, te 4. Now ['™, ... ['™ imply
re=s oo rm-vo It h=m—1, [ V=717 implies that S{-V=
Sm=I(t; 7,,.,) exists, if ¢tz£p. If A<m-—1, ™Y ... '™ imply
re-» ... emen Thus S™2(P,y, ««« , Po-yp_y; 7,) exists. Furthermore,
™Y and Theorem 1 imply that ¢ S™2(P, «-+, P, _,-1; 7,). But
then Theorem 2, equation (2), with %k replaced by %, implies that

b

S(m—l)(PJ; ctcty Pm—h—h t; T/L)ZS(”L—U[t; S(m—z)(Pl’ D) Pm—h—l; Th)]
exists. By Theorem 2, equation (1), with k£ replaced by 4,

S“n_])(Plr ttty Pm—h—ly tr T/L):II S(m)(Ph ctty Pm—h—-ly Py t; Tn)«
P

When ¢t —p, S™(P,, +++, Pp_—1, P, t; r,) converges, hence S™- (P, ---
P, _..1, t; 7,) also converges, "7V is satisfied, and

S(m_l)(Pl’ trty, Pm—la——l; Th+l)=];;[ S(M)(Plr ttt Pm—h,—b P; T/L+l) .

Next, suppose [~V ... [ hold, and let P,_, & S™ (P, «--
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Py noi; Ths). Then P, _, & S™ (P, +++, Ppoy-, t; 7,) if ¢ is sufficiently
close to p, te A, t%p. But Theorem 2, with k& replaced by #%, then
implies that

S(m)(Ply crty Pm—h-—lv Pm—]u t; Th):S(m)[Pm—h; S(m—l)(P“ ttcy Pm-—h—h t; Th)]

exists. Hence When t_)pr S(m)(Plr ctty Pm—hr tr Th) converges, 1—"(:'7:)[ iS
satisfied for P,, -+-, P,_,, and

S(m)(Pu M) Pm—h; Tn+1)=s(m)[Pm-h: S<m_”(P1, M) Pm—h—l; Tn+1)] .

COROLLARY 1. Let 1<m < n. If A is (m+1)-times differentiable
at p then it is m-times differentiable there.

COROLLARY 2. If A satisfies "™V, ... P at p, then it s
(m+1)-times differentiable there (0 < m <n).

COROLLARY 3.
S%n—l)cs’%rgl (m:17 2y Tty n'—"l)'
Proof. By (1),
S™(t; ) D L S™P; 0a) =S
v
Hence S, > Sm-b,
The last remark implies the following.

COROLLARY 4. Let 1<m<n. If Si\=p, then ST =p (r=0, 1,

r+1

«, m—1). Thus there is an index ¢, where 1 <1i <n such that S,=p
Sfor r=0,1, ---,¢—1, but S\ %p, iof r=>%.

COROLLARY 5. Let 1< m<n; 1< r<m. Then
S™(Py, v ooy Pryroyp; 7)) DS™ Py, + ¢ ¢y Prsioy; Tpo1) -
Proof.
SO(Py « s Praaeri 7)=HmS™(Py, <+, Prasors 15 70)
DSMOPyy ey Praier 7o)
From Corollary 5, we get the following.

COROLLARY 6. Let 1<m<n; 1< r<m. If P, S™P,, «+-
Piioy; ) and Py, S D(Py, oo v L Pryyroys 7oo1) then



306 N.D. LANE
S(M)(Ply M) Pm+1—r; TT)ZS(m)(Plr ) Pm+2—7'; Tr—l) .

THEOREM 8. Let 1<r<m<_n. Suppose [, ... [I'™ gre
satisfied at p.

(i) If Sr-Yz£p, f™ consists of all the m-spheres through S&-V.
(ii) Let S"-Y=p. Choose any S ez, Then ™ is the set of
all the m-spheres which touch S at p.
Proof of (i). By Theorem 2, equation (1),
S(m)(Plr ) Pm+1—r; Tr)) S(m——l)(Pl’ tety, Pm—r; TT)D e D S(T)(Pl; TT)D S,(.T_U.

Let S be any m-sphere through S"-%. By Theorem 2, if P, S™),
P, Sr7,

SUPs; S¢)=S(Py; 7) S 5™,

Suppose S“(Py, «++, Pysioy; 7,) CS™, (r <k <m). Choose P,,,., T S™,
Piosrr &S®(Py, <+, Pyy1or; 7). Then by Theorem 2,

SED(P,, wev, Pryyers 1) =8 V[Pyyuer; SOPy, + vy Prarey; 7,)] C S™,
For k=m—1, this yields S™(@P,, ++-, Ppi1-p; 7,)=8™. Thus S™ e ™.

Proof of (ii). Suppose S"-V=p. As above, we have
Sim=8"(Py, «++ , Ppsi-p; 7,) D <+ DSV(Py; 1)
Let S(Q; z,) be any SV e ™. By Theorem 2, equation (1),
STP, t; 7,-1) NS, t; 7,-1) D ST-I(E; 7,-1).

Let P and @ be variable points and let S“-» be a variable (r—1)-
sphere converging to a fixed point. Suppose there is an (n—1)-sphere
which separates this point from P and . Then

lim < [S™(P; 87-), S™(Q; ST=)]=0

whether or not the spheres S“(P; S-9) and S™(Q; S”~V) themselves
converge. In particular,

(3) lim C[ST(P, t; 7,-1), S™(Q, ¢; 7,-1)]=0.

Thus S™(P; r,) touches S™(Q; z,) at p. Furthermore, if SV(P;c,)
and S™(Q; r,) have a point % p in common, they coincide. Thus "
consists of the family of 7-spheres which touch S (Q; z,) at p.

Suppose r < m and an m-sphere S™=S™(P,, ++-, P,.1-,; 7,) of z[™
has a point R#%p in common with S™(Q;z). From the above,
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S™(R; 7,)=8S"(Q; r,). If R S"(P;;r.) we have
S > ST(Py; 7,)=S"(K; ©,)=8"(Q; <)
while if R S“(P;; z,), we have, by Theorem 2,

S D STLR; S(P; <)
—=S"P,, R; 7,) =80 I[Py; SO(R; £,)] D ST(R; 7,)=S"(Q; =) -

On the other hand, suppose an m-sphere S™ touches S =S"(Q; z,)
at p. If S™ > S™ it follows, as in the proof of part (i), that S™
er™. Suppose S™ N S”=p. Choose an ST S guch that S
touches S(Q; r,) at p. Thus S C ™. It again follows that S

e ™

COROLLARY 1. Let 'V, .-« , 'Y hold and let S~ V=p. Suppose
lim 8"(P, t; r,_,) exists for a single point P, Pz p. Then I'(" holds at

t—>p

p A<r<m).

Proof. This follows from equation (3).

COROLLARY 2. There is only one S™ of the pencil =™ which con-
tains (m+1—v) points which do not lie on the same SV

Proof. Such an S™ can be uniquely constructed as in the proof of
(i), Theorem 3.

COROLLARY 3. If two S™’s ¢ntersect in an S™V then this S™-V
€ v,

Proof. The S™’s and hence also S™-? contain S¢-Y. In case
Sir-D=p, let RCS™ Y, Rz%£p. Then each of the S™'s and hence also
S contains ST(R; 7,).

COROLLARY 4.
o D™ D s D

Proof. When k< _m, or when k=m and S{"V=£p, Theorem 3
implies that z{™ is the set of all the m-spheres through Si*-». Hence
S, being the limit of a sequence of such m-spheres, must itself con-
tain S*-», and by Theorem 3, S e r{™. Suppose k=m and ST V=p.
By Theorem 3, %™ is the set of all the m-spheres which touch a given
m-sphere S =£p of i at p. Hence S, being the limit of a se-
quence of such m-spheres, must itself touch S{ at p, and, again by
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Theorem 3, S e (™,

THEOREM 4. Let 1<Im<n; 1<Ek<m, and suppose that Sy

~“+p iof k=m. If the conditions I'™, <+« , '™ hold at p, then I'{™, also
holds there.

Proof. By Theorem 2, '™V, .-  I'{™" hold at p. Hence if p,
P, .--,P,_. are independent points S™ V(P +++, P,_s; ) is defined.
Furthermore, by Theorem 1, we can assume that ¢ ¢ S™ (P, ..., P
7,) and by Theorem 2 again,

m=kK»

ST(Py, ooy Pogy b5 wp)=S"™[t; S™Py, o oo, Pry_y; o)l

Thus S™(P, -+, Pn_x, t; 7;) exists when ¢ is close to p, te 4, t£p.
Choose Pm+1—k C S(Mﬂl)(Ply Tty Pm—lc; Tlc); Pm+1—7c ¢ S(7n~2)(P1y Tty Pnz—lc;
t4—1). Then Theorem 2 implies that

S(mnl)(Pl: cee, Py Tlc)zs(m_l)(‘plr ttty Pm+1—-lc; Tlc—~1)

when k£ <m, or k=m and S ¥ p; if k=m and S»;»=p, this equa-
tion follows from Theorem 3, Corollary 4. Hence

lim S(m)(Ply ctty Pm—-lc’ t’ Tlc)zhm S(m)[t’ S“n—-l)(Plr ctty, Pm+1—lc; T}c—l)]

t—p t—p

th S(m)(Plr ctey Pm+l—7cy t; Z-Ic“"l):-'s(m)(Ph crtty Pm+1—k; Tlc) .

t—p

Thus '™, holds at p and

SONP,, vovy Py Tlc+1)=S(m)(P1y ooy Prick ) -

COROLLARY 1. If I'™ holds at p, then I'S™ holds there, r=1, 2,
-, m. Furthermore, tf S V=%p, A is m+1 times differentiable
at p.

COROLLARY 2. If I'*V holds at p, then p is a differentiable point
of A if and only of lim S®-V(t; r,-,) exists and converges if t tends to p.

t—=>p

COROLLARY 3. If 'Y holds at p, and ST¥ =L p, then pis a dif-
Jerentiable point of A.

COROLLARY 4. If I'™ holds at p, all the conditions 1'’, except
possibly '™, automatically hold at p A k< r+1<m+1).

Let p be a differentiable point of 4. We define the index 7 of p
as in Theorem 2, Corollary 4. Let P C S{%, P=%p. Let SW=8"™(P;
Tw), m=0,1, -+« 4. Then the set of {™’s is completely determined by
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the sequence
8P 8P C e CSP=S S C e S8

Its structure is determined by the single index 7.

6. Support and intersection. Let p be an interior point of A.
Then we call p a point of support (intersection) with respect to an
(n—1)-sphere S if a sufficiently small neighbourhcod of p is decomposed
by p into two one-sided neighbourboods which lie in the same region (in
different regions) bounded by S. S is then called a supporting (inter-
secting) (n—1)-sphere of A at p. Thus S supports 4 at p if pS.
By definition, the point (n—1)-sphere p always supports 4 at p.

It is possible for an (z—1)-sphere to have points %9 in common
with every neighbourhood of » on A. In this case, S neither supports
nor intersects 4 at .

7. Support and intersection properties of "N —z7Y. Let p be a
differentiable interior point of A. In the following,

(n-1) _ .(n—1)
Tr Tr+1

will denote the family of those (n—1)-spheres of z®-» which do not
belong to %1% (cf. Theorem 3, Corollary 4). Our classification of the
differentiable points » of 4 will be based on the index ¢ of p, and on
the support and intersection properties of S&*-" and the families -V
—%5Y, r=0,1,+-+-,n—1. We shall omit the superscript (n—1) of
7"~V when there is no ambiguity; thus r,=z""".

THEOREM b. FKvery (n—1)-sphere = STV either supports or inter-
sects A at p.

Proof. If an (n--1)-sphere S neither supports nor intersects A at
p, then p C S and there exists a sequence of points ¢t >p, ¢t CANS,
t*~p. Suppose p,P,, ---,P, are independent points on S. Suppose
that for some », 0 <r<n—-1, S=S*->P, -+, P,_,; r.). By Theorem
2, equation (1),

S(n—-l)(P“ ttty Pn—r; Tr) i) Sm—-Z)(PI’ M) Pn—r—-l; Tr) .

By Theorem 1, t & S*->(P, +++, P,_,_;; 7,) and again by Theorem 2,
equation (2),

S:‘S(n_]>[t; ‘Sm—ﬂ)(PI’ ) Pn—r-—l; Tr)]:‘S(n—D(PD ) Pn—r—ly t; Tr)

for each ¢t. Condition /'%7" now implies that
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S=S(n—])(P1y D) Pn—-r—l; Tr+1) .
Thus we get, in this way, |
st(n_l)(Pl; Tp-1) +

By Theorem 2, S > S»7», and by Theorem 1, ¢ & S7;” when the para-
meter ¢ is close to, but different from, the parameter p. If S¥7% =%y,
Theorem 2, equation 2, implies that S=S"-V[¢; ST = S"1(¢; rp-1),
while if S¢7?=p, Theorem 8 implies that S=S®-(¢; r,.,). Applying
condition 'Y we are led to the conclusion S=8"-V.

THEOREM 6. If S¢-VY=p, then the (n—1)-spheres of t,-1—7, all
wntersect A at p, or they all support.

Proof. Let S and S° be two distinet (n—1)-spheres of ¢,-,—z,.
Since SP-Y=p, Theorem 2, Corollary 4 implies that S{7¥=p, and
Theorem 3 implies that S and S’ touch at p. Thus we may assume
that S"CT(p\US) and ST(p\JS). Suppose now, for example, that
S supports A at p while S’ intersects. Then A NS’ is not void and
AC(P\US). Let t—p in ANS’. Hence S®V; r,-,) C(S" N SHUp.
Consequently, S(¢; z,-,) can not converge to S V=p, as ¢ tends to ».
Thus S and S” must both support, or both intersect 4 at p.

THEOREM 7. If S0 7% p while Si~'=p, then every (n—1)-sphere of
T,— 7,41 SUpPOrts A at p A1 <r<n—1).

Proof. Suppose S"-P=p, go that by Theorem 3, the r-spheres of
77 all touch any (n—1)-sphere of r.. Let Ser,—r.., S#p. If a

sequence of points ¢ exists such that ¢t CANS, ¢t—p, then each

S™(¢t; z,) lies in the closure of S. Hence S, will also lie in the same
closed domain. Since S, e, either S%,=p, or it touches S at p.

Since S¢€r,,;, S¢. must lie in p\/S. Similarly, the existence of a
sequence t' S N A4, t' —p, implies that S, Cp\US. Thus if S inter-
sects 4 at p, S, T (p\JS) N (p\US)=p; that is, S=p.

THEOREM 8. All the (n—1)-spheres of t.—rz.,, support A at p, or
they all intersect; r=0,1,---,n—1.

Proof. Let S" and S” be two distinet (»—1)-spheres of .. Sup-
pose, for the moment, that the intersection S" N\ S” is a proper (n—2)-
sphere S®-?(P, «--, P,_._;7,). Suppose, for example, that S” inter-

sects, while S” supports 4 at p.. Thus 4\ S and AN S are not void.
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With no loss in generality, we may assume that AC S \Up. If ¢ is
close to p, t % p, Theorem 1 implies that ¢ S®-2(P, -+, P,y 7,)
and Theorem 2, equation 2, implies that

S(n_l)[t; S(n—2)(P1, ttty Pn-—r—l; Tr)]:S(n_l)(Plr ] Pn—r-ly t; T’I') .
IftcCANS, then S* VP, -+, P,_,_,, t; 7,) lies in the closure of
S NSHYUE NS .

Letting ¢ tend to p, we conclude that S®»-2(P,, «--, P,_._;; 7,4,) lies in

the same closed domain. By letting ¢ converge to p through S' N 4, we
obtain symmetrically that S®-9(@P,, ---, P,_._.; 7,.1) also lies in the
closure of

S"NSHIVE NS

Hence S”"(P,, +++, P,_,_3; 7,.,) lies in the intersection S \J S” of these
two domains, that is, S™~V(Py, «--, P,_._1; 7,..) is either S” or S”, in other
words, one of the (n—1)-spheres S” and S belongs to z,,,. Thus if S’
and S” belong to r,~rz,,, and have a proper S® » in common, they both
support or both of them intersect.

Suppose now that S’ N\ S”=p. Theorem 3 implies that SV V=9,
In view of Theorems 6 and 7, there remain to be considered only the
cases where < n—1, and, indeed, when » <n—2, we have only to
consider those cases for which S, =p.

By Theorem 3, any S™-V which touches an S¢”, but which does not
touch an SU7” belongs to r,—r,.;. Hence there exists an (n—1)-sphere
S of r,—z,,; which intersects S” and S” respectively in a proper (n—2)-
sphere. From the above, S and S’, and also S and S” both support or
both intersect 4 at p. Thus S" and S” both support or both intersect
A at p in this case also.

8. Characteristic and classification of the differentiable points. The
characteristic (a,, a4, +++, a,; %) of a differentiable point » of an arc A is
defined as follows:

a,=1 or 2 when » <n; a,=1, 2, or . The index ¢=1,2,---, n.

a,+++-+a, is even or odd aceording as every SV of r,—r,,, sup-
ports or intersects A at p; r=0,1, .-+, n—1.

@+ -+ +a, is even if S supports, odd if S$V intersects, while

,=co if 8¢V neither supports nor intersects A at p.

Finally the characteristic of p has index ¢ if and only if S{V=p,
while S§?, =~ p.

Theorem 7, and the convention that S~V supports A at p when
S¢-V=p, lead to the following restriction on the characteristic (a,, a,,

<, Uy 1)
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Si_‘_,a,czo (mod 2) .
k=0

As a result of this restriction, the number of types of differentia-
ble points corresponding to each value of ¢ <% is 8(2)*"!, and there are
2" types when i=n. Thus there are (3n—1)2""! types altogether.

If we introduce a rectangular Cartesian coordinate system into the
conformal n-space, examples of each of the (83n—1)2""! types are given
by the curves

(I) Ty=t"™, x,=1t"2, eee, x,=1"n

in the cases a,=1 or 2, and

tregin 7t if 0 <[t]<L1
(1) b=t et e | <<

0 , if t=0

for the cases in which a,=co, all relative to the point ¢=0. The m,
are positive integers and m, < m, < -++ <m,. The different types are
determined by the parities of the m, and by the relative magnitudes of
the m, and 2m,. In each of these examples, the S{™ touch the a;-axis
at the origin; m=1,2, ---, n—1.

When m; <~ 2m, < m,.;, the point t=0 has a characteristic of the
form (ay, @y, +-- , @,; 7) where a, can be 1, 2, or o, and i< n.

When m, < 2m,, the point ¢=0 has a characteristic of the form
(o, @y, +++ , @,; ®) Where a, is either 1 or 2. The following table lists
some of the properties of a differentiable point p having the characteris-
tie (ag, ay, <+, a,; 1):

(a/O! a/lr ttt a’n; 7:)

i T Ty ‘
i Osculating ‘ . ‘ ‘ |
| i i
Index Qy, T el Sufpa;;(i%l‘ltmg i Restriction | Example ‘
| | (i—1)-sphere | i-sphere | Yo | i
o | I N N L B
| | | ! | 1 [ I
‘. | ap=1or 2' \ i | ‘ I !‘
[Z<77 0 ‘ Sgi-)lip Ty Tl % Zi:a —0 | gmi<2m1<m1+x‘
{ Ay = o0 ‘ Sgl—lhp | iAo 111 ]
[ o \ (mod 2); | B
| ‘ :
i i=n'!a,=1or 2 | T ‘ I }m<2mL |
A | \
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