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THE SLOW SHEARING MOTION OF A LIQUID
PAST A SEMI-INFINITE PLANE

G. POWER AND D. L. SCOTT-HUTTON

The problem of slow shearing motion of liquid past a semi-infinite
plane, which was first attempted by Dean [1], is treated in a rather
more straightforward manner, and a different type of solution is found.
The stream-function is biharmonic and vanishes, together with its normal
derivative, at all points of the fluid boundary Γand must be such as to
yield uniform shearing at a great distance from the boundary. It has
not been found possible to satisfy all boundary conditions exactly, but a
solution, involving an infinite number of arbitrary constants, is obtained
which satisfies most of the necessary conditions. These arbitrary con-
stants, here restricted to eight as a first approximation, are chosen to
give the best possible result. Expressions for the stream-function and
fluid pressure are obtained for specific regions, verifying known results
including those for shear flow, for flow between parallel planes and for
flow at a sharp corner. Finally, a plane elastic state analogy is pointed
out.
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Fig. 1.

We shall here consider the slow two-dimensional flow of a viscous
incompressible fluid bounded by the infinite plane AB, and the semi-
infinite plane CD, as shown in Fig. 1. The motion at great distances
from the planes is that of uniform shearing, and between the planes
is that due to a uniform pressure gradient. W. R. Dean [1] has con-
sidered a similar type of boundary, but with the flow between the
planes at great distance from the origin being due to a constant pressure,
so that the type of motion produced here is fundamentally different, as
is the method used to solve the problem.

We have to find a stream function satisfying the biharmonic equation
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328 G. POWER AND D. L. SCOTT-HUTTON

and giving zero velocities on the boundaries. We may take AB, CD
to be respectively the stream lines Φ=0, ψ=l, and we must also have

--- = 0 on AB, CD where denotes the normal derivative.
dn dn

That is to say, we seek solutions of

( 1 )

where

( 2 )

(2.1)

( 3 )

(3.1)

The transformation

( 4 )

where

gives

71

dy ~

dl=0

dy

z=x + iy ,

when 2/=0 ,

when y=--0 ,

when ?/=l ,

when 2/=l ,

[og«M-«r-l,

w=ιι-\-iv = re'n ,

πx=u — log r — 1 ,

and so transforms the area in the upper half of the £-plane in Fig. 1
into the upper half of the w-plane as shown in Fig. 2, the boundaries
becoming the real axis of the w-plane.

w-planc

B B'
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Now we have

3 __ du d dv 3
dy dy du dy dv

where

dll dv ̂  dW _ dw _ . JW _

dy dy dy dz w — l '

Therefore when

__Γ) dU _ n 3 ^ _ U

dy ' 3j/ u — i'

1 = TΓ̂  Γ 3 0 1
jυ=o U — l L

and so

L 3?/ Jυ=o % — 1L dv Jy=o

A satisfactory solution is

( 5 ) Φ-

provided that U and Fare harmonic functions, chosen so that y(V—U)-

does not tend to infinity as y tends to infinity.

We easily see that on AB

(6) 2/ = 0 , 0=π , ψ=0, so that

and on B'CΏ

(6.1) 2/=l , # = 0 , ψ = l , so that [V]θ=Q=0 .

Also we have

so that when y=0, θ=π,

(6.2) W=_*ujϋ+V^E

32/ u — 1 3f

and when 2/=l, ^=0,

(6.3) ^ = 2 4 - - 7 r M - 9 F - ^ = F say.
dy u—1 dv

The boundary conditions require that equations (6) and (6.1) are satisfied,
together with E=F=0.

It has not been found possible to find functions such that all the
boundary conditions are satisfied exactly. However, expressions are
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determined for U and V which will satisfy (6) and (6.1) exactly, and
the arbitrary constants contained in them will be chosen so that E and
F are as small as possible at all points of the boundary. Physically
this means that in the fluid motion represented by the solution there
will be a small velocity of slip along the boundaries, which can be
made as small as desired.
Let

where

( 7 )

»»•=! L l — %ιvllιΛ

? \ogw

il, By C, D, H, G, an, bn are real constants to be determined.

It is assumed that the amplitude of ιvφ is between 0 and π/2 and
those of logw1/2, logw, log(l + w1/2), log (i-hw112) between 0 and π. These
expressions satisfy (6) and (6.1) exactly at any point of the boundary,

( 2iWι^z \ 1-4- iwι^z

, , , are

i + iϋφy l — iw11'2
iw

2iϋιi'z

real, and on BCD wιli = rll>2, giving real values to log

Now we have

div

and

d

Using these results and the fact that
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dU fy . d ~, v
-=,y% f{w)

dv dw

where

U=^ f(w) ,

we obtain

( 8 ) Wι=-.

1 Γ 2^1/2

iv

(8 i) 3U2 = __ ^ y nan Γl + ίw[l2Ύ-1

In a similar manner, we get

(8.2) ^ . - A ^ - * . Γlog V s T

f- log-2?? 1 ' a

( 1 4- ^ x / -)

2 J

We note that on AB

and

Hence we obtain

(9)

πu aC7 = πr dU
— l dv r-h 1 dv

dv Jβ~* 2(14- r 1 / 2 )(l 4- r ) L 1 + r1 '2 J

5τr Γ 2r1 / 2 Ί CV
(1 + r1/2)(l + r) L ϊ+"r 1 / 2 J 2(1+V' 2)(14- r)

(1 + r) 7Γ»^
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Now put

1 + p

then as r varies between 0, 1 and + oo, p takes values between 1, 0
and — 1. Also we see that

(1 + V) (I+Pf

leading to

For Fx we have

(9.2) [V^^A^ Γ l o g ^ Ί V ^ Γlog-2^1'; T

where

log [ j ^ y = log 2 + f| + log (1-^)-

It is easy to see that

i ( l - p ) ] = X log [2(l + p2)] + ̂  tan-1-1—
2 1 +2 p

= j log 2 + -1 log (1 + p2) +"i(~— tan-1?) ,

and so

log ^ ^ \ log 2 + log (1 - p) - 1 - log (1 -f p2) + ΐ( ^ + tair 1 ?)

=a-hiβ , say .
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We can thus write

(9.3) [V1]Θ=7C

In the same way we get

Subsituting these values in the expression for E, the velocity of slip
along AB is

(10) E- - f ^4+^-tlog (1 -p)γ- B-'L ( ί ± ^ log (1-
8 1 + p2 4 1 + p'

8

»-i L

We shall chose the constants involved so that Z^O when p=±l, and
then expand E in powers of p. Equating to zero the confidents of p°>
p1, pι, etc. we will thus obtain a set of simultaneous equations for the
determination of the arbitrary constants. By this procedure E can be
made as small as we please in the range — l ^ p < I l . When p=— 1,
we see that

0 = 0 ,

and

E=Hπ ,

so therefore

(11) # = 0 .

As p tends to 1, we see that β tends to —, and a can be taken to be

\oge(l-p) = l , say,

so that E approximates to

2
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Therefore we must have

(12) Aπ" + Όπ + Cπ -Gπ =0 .
v ; 8 2 2

Before continuing with the calculation by expanding in terms of p, it
has been found convenient at this stage to obtain a similar type of
expression for F. Along the boundary BCD we have IΌ=U = V, SO that

Now set

1 + 8

so that as r1/2 varies between 0, 1, and -f oo, s takes values between
1, 0, and — 1 . Using the relations

s)(l + s)* r1'3

8s ' (1+r I ' ί ) ϊ (

we get

(13)

~ 8s

& 16

Again, we have

log /

so that

(13.1) [ ^ = 0 A ( / 3 3 α / ? ) 2 5 α / 3 C / J 7 r J D + . _ ^ Σ « J ! t v ί v
«=i Ll-fs —^(1 —s)

Finally we obtain
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( 1 3 . 2 ) ^ = ^ " 7 r

<*''π (1 + β ) 3 - H

Λ

π ( l + sγ+± ^L
16s 4s «=L 16

2β - j83) + 2Baβ + Cβ + πD- ,> Γ Σ α J 2s + ^ ( 1 ~ ̂  T .
«=ί L 1 + s2 J

We must have i^=0 when s = ± l , and also F must be finite when
s=0. When s = - l ,

and since this must vanish,

(14) Z)=-2/τr.

As s tends to 1, /5 tends to 7r/2, and a may be taken to be loge(l~s) = Z
as before, so that F approximates to

2πAPBπl GHπ + AΪ3F
2 2 L 2 8

Using equations (11) and (14), we see that

(15) Gπ -Cπ +A-7ϋ-i-=0 .
2 2 8

Also we notice that F contains the term π (bι — G) , and since F is
16s

to be finite when s=0, we must have

(16) bx = G .

Adding equations (12) and (15) we get

(17) A^ + Dπ^Q ,
4

giving

(17) ^ = -8- .

We also have from (15)

(18) C=6,4- 2 .
π

Using these results, the velocities of slip on AB and BCD become
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(19)

(20) F = — - 3

2τr2 s

iΓ/5 - £ ( 1 + s)3Ί -h 2-'- + —(Scfβ - /3s) -I- 2Baβ
L 16 J π πs

»-i L

As a first approximation, we will restrict the infinite series to four
terms each. We will expand these results for E and F in powers of
p and s, equate to zero the coefficients of p\ p\ p3, and s°, s1, s2, and
ignoring the remaining terms of O(p3), O(s3), we will get a set of
simultaneous equations for which aίf a2, a3f blf b.z, b3, are determined in
terms of α4, 6X and B. The conditions at infinity will give the values
of aίf δ4, in terms of B. If greater accuracy is required more terms
may be included in the series and higher powers of p and s neglected.
Expanding E in powers of p as far as p1, we have

-p1^- +1)] + a, |

,(1 -

where

ί = ~ loge2 .

Equating to zero the coefficients of p°, p1, p2, we have the equations
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Q ~-*2 O '
O TV £

= -0.69802-0.544415,

(22) δ ] ( l - 3 | ) + - J α 1 + J α 2 - 4 6 2 = - 4
V 8 / 4 4 4

+ s(-*—2ί)-8δ< ,

= -0.44416 + 0.092245-86, ,

(23) ( ^ ) | f
π \ π π π

= 1.76168 + 0.821935 .

Similarly expanding F in powers of s, as far as s1, we get

+ δί- - + s - ff (1 + 3s + 3s2)] + δ2-
π-(l + 2s) + δ3 — (β + 2s2)

L 4 16 J 8 16

— — 3 8 — 3--82

64 16 4
2B\t- -hslt— -) —SΊ--- + 1)

-α,( l -2s2) - 4α2s -α 3 ( -14- 18s2) -f 8α,s .

Equating to zero the coefficient of s'\ s\ s\ we get

(24) 8 ^ + .jΛ-* + * — J "6 <> J - a ( J +ί

= -0.44802-0.937115 .

(25) δ / l - 3 π)+ π δ., + 3 π 6s-4α,= 3 ( ' . 1 . - 8 - - + 4-
V 16/ 4 ' 16 ' π\2π π~ π

2π V 16/
B ( 2 t )

2π V 16/

=0.32121-0.496815-8^ .
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(26) - 3 'τ-61 + 37Γ-6.J + 2α,-18α J== •-( 2+4 ί 4-16 l

16 8 π\π π π

-1.565644-1.672755- ~ 6 4 .
4

Solving the equations (21)-(26) we obtain

(27.1) ^=2.41918 4-3.295305 4-0.88575α, 4-2.185756, ,

(27.2) α2=0.325234-0.6060154-2.24986a, 4-0.677666, ,

(27.3) α3=0.093894-0.1761154-0.08255a,4-0.241846, ,

(27.4) 6L=2.837644-3.3074054-0.98227αt +1.640536, ,

(27.5) 62=0.52365 4- 0.5957654- 0.57194α,4- 2.489226, ,

(27.6) 63=0.075354-0.1700354-0.24870αt4-0.137996, .

The coefficients α, and 6, will be found in terms of 5 by considering
the conditions for ψ when \w\ is large. 5 will be chosen so that E and
F are small at all points of the boundary.

When w is large, we have the following expansions:—

log
l4-w1/2

log

Γlog
L

i 4- w
112

Γlog -2^T-(log2)^-3ί(log2y%-1/2--Γ 3 (Iog2)24-31og2]w-1

L ί4-w1/2J L2 J

On setting L=log2, and neglecting terms O(wm)f we get
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JS(ί- l)ΓJιv-ιlt + 3(L34-2L)w-1]
2π2

— ιv-ι]\ +
2 J 1 7Γ

r , — 1 / 2Γ J? Ί
ϋιl2(i-l)\ 24^ +2LS-fδ1 +

L π6
 TC J J π

Again we have

ri-^

= ( - l) n[l - 2nw1

and

Γ
LI —i

so that

K - U,=J? {(2b, - Ah + 6&3 - 864)w-1/3 - (2α, - 4α2

"1(261 -8δ 2 4-18&3- 3264 + 2αt - 8α, 4- 18α3- 32α4)} ,

neglecting O(ιo~'m). Also when 2/ is large

C/-V- 2 (0-π) .
7Γ

Now we know that ψ must tend to y2 when y is large. This means
that the coefficients of yw~Ul and iyw11* in 2/(Vi —ΣTx-f F2 —Z72) must
vanish. We therefore have

(28) 24 L " +2LJ5 + 614- 2 - (2α 1 -4α 2 + 6α 3 -8α0=0 ,

and

(29) 2 4 U +2LB + bl-(26,-46,-1-663-8δ4)-0 .
πό

Using equations (27) these last two equations become

(28.1) 0.25461+ 0.529525-15.71491α4+l. 471376.!=0,

(29.1) 0.82323 +0.558245+0.18671^-15.488416, = 0 ,
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which give

(30) α4=0.02120 + 0.03712B ,

and

(30.1) δ,=0.053414- 0.036415 .

Also y^w1 is proportional to sin2# when y is large, so that we see
that the stream function tends to

— - 2 ) + (Constant) sin2 θ + 2 - 2Θ ,
π / π

=2/2—-2Λ + (Constant) sin2 0 + 2-2--- .
V π / π

Now when 2/ is large —->2/, so that the most important term in the

stream function is if, the other terms being always finite, thus giving
uniform shearing motion above the points A and D.

With the values of α4 and 64 given by (30) (30.1), the other coef-
ficients are

(31.1) ^=2.55469 + 3.40794 5 ,

(31.2) α2=0.40912 + 0.714265 ,

(31.3) 03=0.10855 + 0.187995,

(31.4) 61=2.94607 + 3.403725 ,

(31.5) b,-0.66870 + 0.707825 ,

(31.6) 63=0.08799 + 0.18430B .

With these values of an, bn, n = l, 2, 3, 4 the velocities of slip at
different points on the boundary are calculated in terms of B. Table
1 gives the values of E and F at the points

p, s : ± 0 . 1 , ± 0 . 3 , ± 0 . 7 , ± 0 . 8 , ± 0 . 9 .

Using the method of least squares, the mean value of B is —0.52,
and the velocities of slip are shown in Table 2.

The values of E and F are small, and can be made still smaller if
more than four terms are included in the series for U2 and y2.

It will be noticed that F is exactly zero at the sharp edge C where
s = 0. The values of the coefficients are given in Table 3,
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Table 1.

V

0.9

0.8

0.7

0.3

0.1

i -0.1

-0.3

-0.7

! -0.8

I - 0 . 9

E

.13946+. 32042 5

.22416+. 56262 5

.18632+. 53530 B

.00738+. 03768 B

.00078+. 00196 B

.00313 +.00214 B

.00128 +.00930 B

.00303+.00444 73

.00711+. 00286 B

.00487+. 00014 B

Table 2.

8

0.9

0.8

0.7

0.3

0.1

-0.1

-0.3

-0.7

-0.8

-0.9

F

0.22003+0

0.32998 + 0

0.33664+0

0.05672 + 0

0.00148 + 0

-0.00065-0

-0.00503-0

-0.00063-0

-0.00088-0

-0.00013-0

.32776 B

.50692B

.55284 5

.083515

.00192 5

.00122 5

.00958 5

.00100 5

.00152 5

.00105 5

V

0.9

0.8

0.7

0.3

0.1

-0.1

-0.3

-0.7

-0.8

-0.9

E

-0.0272

-0.0684

-0.0920

-0.0122

-0.0002

0.0020

0.0036

0.0007

0.0056

0.0048

s

0.9

0.8

0.7

0.3

0.1

-0.1

-0.3

-0.7

-0.8

-0.9

F

-0.0504

0.0664

0.0492

0.0133

0.0002

-0.0001

-0.0001

-0.0001

-0.0001

0.0004

Table 3.

a
n

0.78257

0.03771

0.01080

0.00190

b
n

1.14148

0.30063

-0.00788

0.03462

The motion between the barriers at a great distance from 0 is con-
sidered next, that is to say the motion in the region ^ = 0 .

When \w\ is small, we have the following expansions

log log w 4- log 2 + O(

log . ' -a = log w 4- log 2 — iπ4- O(w]jA) .

Also when \w\ is small, the transformation (4) may be taken as

πz= — log IV 4- iπ — 1 ,

which gives

log -=^--t = log 2 + i (iπ -1 - πz) + O(ivι'η ,
1 ~h w Δ
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log -.ψ1 =\og2+ U

We thus have approximately

- - y-Dπy,
Δ

and

since all other terms tend to zero as to—>0 because Lt wll2logw=0.
tϋ->0

The stream function thus becomes

Now

Cπ , τ-i GTC
^π =1 and

8 2 2

and so we have

(32) ψ=3yA~2y:i , "-=62/(1 — 2/),

This is the stream function for the flow in an infinite channel under a
uniform pressure gradient with

ψ=0 when y=0,

φ=l when ?y=l ,

and v ' vanishing when ?/=0, ?y=l.
92/

We will now consider the motion near the sharp edge C. In this region
z is nearly i and w is nearly 1, so that if we put
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z=i + z', y=l-hy\ ιvll2==l + ζ,

then z, y and ζ are small.

The stream function must be found to order ζ\ To this order the
transformation gives

(33) π(

and so y is of the order ζ\
Now

so that we have to find V to order C3 3,nd V—U to order ζ.

We now use the expansions

=-ί--—C2+ 7

2 8 24

log . 2 w /

1 / 2 = ϊ I o g 2 - i "
+ W1 '2 2 4

To order C on putting t=—^loge2, we obtain
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and to order C3

Again we have

Ll + i ^ J V 27 V 2

so that

, CV"
27 '

' approximately.

Also we note that

[

and so

iζ) - α2(l 4- 2iζ) - a,i(l 4- Siζ) 4- α,(l 4- iiζ)}, approximately.

Therefore to order C3> we have

iζ) + 0,(1 + 2*C) + αsi(l + 3iC) - α*(l + 4iC)
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Now from equation (33),

so that subsituting for ^βrC in the last equation, we get

- 7 5 +
24 8 6

It is easily seen from equation (24) that the coefficient of y in the
above equation for </> is zero. A little calculation shows that the coef-
ficients of y'^'ζ, y'^'iζ, Jfζ* respectively, are given by

d = 0.68720 , C2= -0.66384 , C3=0.28182 .

So φ is now of the form

Now set

z=i + z'=i + r'(cos θ' + i sin θι),

so that r\ θ' are then polar coordinates with C as pole, where we
assume Q<LΘ'<L2π. From equation (33) we have as a first approxi-
mation

and so in terms of these polar coordinates

This must be a biharmonic function which is equal to 1 on the bound-
aries 0' = O, 2π and whose normal derivative vanishes on these bound^
aries. In order to satisfy these conditions, we must have
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Subsituting the values previously obtained for C2, C3, we find that the
error is only 0.0003.

We also find that ψ=l when #' = 144° 18' and this gives the angle
at which the stream line ψ=l leaves the barrier.

The pressure v is given by the equations of motion

ox dy

μWφ.
dy dx

where μ is the coefficient of viscosity of the fluid. That is to say, p is
the function conjugate to μvV

Remembering that U and V are harmonic, we have

so that

^ = 2 / / a" (V-U),
dy dxdy

and

d%) o d /γr τ-r\μ (VU) 2μ (V-U)
dx dy* dχ2

Therefore, apart from a constant,

p=2μI (V-U).
dx

If V-U=J?f(w), then we have

πW f f(w) ,
—1 cfe#'

and using the expressions for V and U, we obtain

* \ZA\L [ l o g .

^ -D ^v- nbniΰ
11

S-Λ %naniΌ
λϊ'1

JC i /-t 1/2V2/ 1 - ΐ w 1 ' 2 J
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We will now calculate the pressure along the curve ^ = 0 , which inside
the channel approximates to the central line.

^1/2

Now when w=rei7tl2 then wm=y -(l + i)=ρ(l + ϊ) say, and w=2ip2.

The expression for the pressure p can be simplified as follows.
Let

9W/

l o g •- =:λ + ίγ , say,

l4-w1/2

then

λ 4- iγ=log 2 + log p 4- log (1 + i) — log (14- p -f ip)

so that
= X log

2 l 4
= tan- ]

2 14- 2p 4- 2pι 14- 2p

Similarly we have

Again we see that

(l4-w1/2) 14-2/0 4-2^

i ^ l+_p -hip
i + w112

IV
,1/2

w1'2)2 L l + w ^ J (l + 4/>'j L 1 + 2 ^ + 2(0 J '

= εn + idn say,

and

Therefore terms of the type

are the difference of two conjugate quantities, and putting in the
values of A, C, D, and G, the expression for p is
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(34) P = \ A 2 4 (\oz 2wΦ Y+ 2 B lojr 2wV

2μπ V Lπ\l + wll2)\ (1 + w1'2)/ (1 + Wm) Ϊ + W2μ \ ) ( ) ( )

Ji 1 ί L / 2)J

^ - _, Ί Σ rcsn (δw - αn) + i Σ ŵ n(6n + αw) [

An arbitrary constant could be added to this expression, but as the
formula stands p is zero when \w\ is large, and so it denotes the
excess of pressure at any point above that at a distant point outside
the channel.

It can now be verified that at a distance from 0 outside the barriers,
the pressure is approximately a linear function of x.

We have the exact relation between z and p

πz=2ip2 — log 2ipι -hiπ — 1 ,

giving

When \w\ is small the pressure is given approximately by

Γ l o g 2 + l o g / 5
2μπ τr3 2 L 2 r J 2

and substituting for log p in terms of x we get

p--=12μx± l 2 μ(l-2\θg2)-Bπ2μ,
π

that is to say

It has been shown that in this region ψ=3y*-2y3, and it can be
seen that 12// is indeed the pressure gradient required to maintain the
motion given by this stream function in an infinite channel. This fact
provides a check on the calculated value for p for large x.

Figure 3 shows the graph of p\μ potted against x9 as calculated
from formula (34), with ra=4.

It has been assumed in our work that the distance between the
barriers is unity, and that if is the stream function of the undisturbed
motion, giving 2 as the undisturbed velocity at a unit distance from
the infinite boundary. If the distance between the barriers is α, and q
is the undisturbed velocity at a distance a from the infinite boundary,
then we have to apply a factor g/2α to our results.
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Fig. 3.

Since the equations of slow steady flow of a viscous incompressible
fluid are the same as those of an equilibrium state of an incompressible
elastic solid, the previous results can be immediately used for the solu-
tion to a certain two-dimensional elastic problem, if one simply replaces
velocity and coefficient of viscosity by displacement and shear modulus.
In the fluid problem there is ideally no velocity along the boundaries,
so that in the corresponding elastic problem the boundaries could be
free from tractions. A method of obtaining solutions to a large number
of two-dimensional viscous flow problems from known elastic fields has
been discussed by Goodier [2], who pointed out that an elastic stress-
function, being biharmonic, could be regarded as the stream-function of
a viscous flow, and that the boundary conditions on the elastic stresses
could be related to those on the fluid velocity.
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