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1. Introduction. An inequality for Lebesgue area which corresponds
to the fact that the measure of a quadrilateral is not less than the
product of the distances between the two pairs of opposite sides may
sometimes be useful for the study of this area. This inequality is an
extension of a result of Besicovitch |2].

The important results of Cesari [4] and IFederer [8] showing the
equivalence of Gebeze and Lebesgue area will be used to show that
several other ‘areas’ are equivalent to these two.

This paper depends upon definitions and results of [11] and [12].
In particular we shall use the area defined in [11] which agrees with
Lebesgue area for surfaces in Euclidean space.

Let @ be the square 0<Cwu, v<_1 having consecutive sides «, b, ¢,
and d. The set of continuous functions on @ into m, the space of bound-
ed sequences [1], will be denoted by C, and the family of homeomor-
phisms of @ into @ by H.

Let 2, ye C. Then Z is defined on @%@ to the nonnegative real
numbers by

(v, O)=l{®)—x()}
for (p, ¢) e @ x Q. 1f there exists a positive real number M such that
#(p, )=Mlp—q|

for all (p, ¢)e @ x Q then x is Lipschitzian. If Z(p, ¢)=%(p, g) for all
(p, 9)e @xQ, then we shall write Z={7. The Lebesgue area of x is
denoted by L(x). If =7y then L(x)<{L(y) [Kolmogoroff’s principle].

If 4 and % are distinet positive integers, let =,, be the plane in m
consisting of those points all of whose components, except the ¢th and
kth, are zero. The set of all planes =,, is //. Let E* be the Euclidean
plane provided with a cartesian coordinate system, and let T, be the
homeomorphism of E* onto z;, defined by

Tz’k(sr {’): {u"j} y

where (s, 1) e E*, w'=s, w*=t, and w'=0 for i%j%k. If ECE® and
L/ is Lebesgue measurable, then the measure of T,.(&), |T;.(E)|, is the
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Lebesgue measure of £.

If @, 2,eC, n=1, 2, -.., we write x,—2 for uniform convergence
of @, to . If f and ¢ are two functions with range f C domain g,
then gf is the composition of f and g.

In [12] we were interested in geodetic properties of Lebesgue area,
and definitions were framed accordingly. Now we are interested in pro-
perties which are analogous, equivalent for light mappings, but possibly
different in general. The geodetic distance between two points in the
parameter square ¢ is obtained by considering curves in @ joining these
two points. In this paper we shall define a pseudo-geodetic distance by
considering curves in a ‘‘ middle-space’’. Every curve in @ corresponds
to a curve in the middle-space, but not conversely. Consequently the
pseudo-geodetic distance may be less than the geodetic distance, and
the results of [12] will necessarily hold with the modified definition.

If f is continuous on [0, 1] into m let ¢(f)=diameter range f. If
xeC, define &, on @xQ by

Zup, q)= i’pf H@g) (p, e @xQ

for all continuous functions ¢ on [0, 1] into @ with ¢(0)=p and g(1)=q¢.
In [12] a function x,€ C was constructed such that (rxv,L):a?'M. Further-
more, if @,—a then x,,—x,. Finally, &, is the monotone factor in a
monotone-light factorization of & and has the same Lebesgue area as .

2. An inequality for Lebesgue area. In this section the funda-
mental inequality of the paper is proved.

LemMMA 1. Let =e!l. If feC is Lipschilziun, and range [ 7,
then L(f) = f(Q)].

Proof. Let J be the Jacobian of f, and let R be the set on which
J is defined. Then |Q—R|=0 and, consequently, f(Q)|=1f(R)|. Now,
by Federer’s Theorem [6],

L(f):ﬁv J(u, v)[dud’u:HH}J(zL, V) dudv

=[] N, 0, Byasat = ey =1 @),

where N((s, t), /', R) is the number, possibly infinite, of points (u, v) e @
such that f(u, v)=(s, ?).

If ¢ is an oriented simple closed curve in the plane, and f is continu-
ous on some region containing ¢ into £ (the plane of ordered pairs of
real numbers with the topology of the Kuclidean plane), then for each



AN INTRINSIC INEQUALITY 365
pe R let p(p, f, ¢) be the index of p relative to f and ¢ [9, TI. 4.34].

LEMMA 2. Let [ be continuous from Q into R L p(p, [, @F)F#0,
where Q" is the boundary of Q, then pe f(Q).

This lemma is proved in [9, IV. 1.4-26].

LEMMA 3. Let f=(f1, /) be continuous from Q into R’. Suppose
pea= fi(p)=0, peb= f(p)=0,
pec= fi(p)=r>0, ped= fH(p)=s>0.

If y and z are real nmuwmbers with 0-"y<r ond 0< z<_s, then (y, 2) €

J(Q).

Proof. If we use the notation of Lemma 2 and the result of [9,

I1. 4.835] we see that pu(p, f, @)7%~0 if p=(y, 2). An application of
Lemma 2 completes the proof.

Let € C and x=IM be a monotone-light factorization of . If (p, ¢)
e@xQ, and G is the set of continuous functions ¢ defined on |0, 1] into
range M with ¢(0)=M(p) and g(1)=M(q) then define

&.(p, @)= inf {length lg} for all geG.

This definition is independent of the particular factorization of . Finally,
if =z, is the indicated monotone-light factorization of x, and ge
(for M=zx,), then

length lg <length ¢ .
From this it follows that
536’ === (ﬁzwt)(: .
DEFINITION 1. If e C define

a(x)= min Z(p, ¢) and A(m)— 1nf x, (p, Q).
PEa, g€c

Define #(x) and B(x) by replacing « by b and ¢ by d. Let

rir=1{ min |a'(1, v)—2*0, w)|}{ min I’c"(u 1) —ak(w, 0)]} .

0=, w=l 0=sw, w=

LEMMA 4. If x,—x in C then A(w,k)g;lim inf A(w,,).

Proof. We may suppose that for some M >0, A(z,,)<M for all n.
Hence there exist continuous functions g, on [0, 1] into range z,, with
9.(0) e z,(a) and g¢,(1) € z,.(c), such that

length g, << A(x,.)+1/n<" M+2 for all n.



360 I, SILVERMAN

We may now use Hilbert’s Theorem (o conclude that a subsequence
(still denoted by the same subscript) ol the ¢, converges in the sense
of Fréchet to a continuous function y. Let perange ¢g. There exist
Fréchet equivalent representations y, of ¢,, and a point ¢e [0, 1], such
that 7,(&)—p. Let

P, e alr.(6)].

A subsequence of P, (still denoted by the same subseript) will converge
to a point Pe Q. Then

”p_Q‘H(P)”‘<”p_m“u(Pn)” + "ixn,u.(P“)—Q’rP_(]JH)H
+ |z (P,) —2.(P)]| .

Thus range ¢ is contained in range w,. Also ¢(0)e x,(a) and ¢(1) e ,(b).
Hence

A(z,) <length g <lim inf length ¢,=liminf A(x,,) .

it »co 1—>c0

If ze C is quasilinear (@ may be subdivided into a finite number of
triangles on each of which z is linear) then there exists a z,€ C such

that z, is Lipschitzian, %,,:(zf),;é,,, and L(z)=L(z,) [12].
LEMMA 5. If ze C is quasilinear then
L(z) = A(z,)B(z,)
Proof. 1t is sufficient to show that
L(ze) = (26)B(20) -
Let f be the flat transformation from @ to =, defined by
f(p)={(p)} (reQ@),

where
S(p)= mei{l Zd(p, @), [A(p)= r{lleip Zidp, q), f(p)=0 (1>2).
If p, q, p’ €@, then

%G‘(pr q):<; %ﬁ(py p/) + 5lv'(p,y (I) ’
min zZ,(p, ¢) < Z.(p, ')+ min Z.(p" q),
9€a q€a

min Z,(p, ) — min Z(p", N =Zdp, V) .
aca g€
The interchange of p and p’, and of « and b, shows that

ILf ()= f(p)il=Z:(p, D) .

Then by Kolmogoroff’s principle and Lemmas 1 and 3,
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Lze) = LOF) L@z (zq) -

We now make the convention that .co=0.
THEOREM 1. L(x)=>A(w,)B(x,) > A(x)B(x) .

Proof. Let {z,} be a sequence of quasilinear functions in C such
that z,—~a and L(z,)— L(x). Then

L(z)=lim L(z,) > hm | sup A(z,,)B(z,,.)

4 —rco

= {lim inf A(zm)} ’hm 1nf B(z,,)}

n—>00

Q_A(%)B(%)ZA(%)B(%) :

3. Functionals related to Lebesgue area. The alternative definitions

of Lebesgue area given in this section may be of some interest to the
reader,

For convenience we reserve the letter F' to denote a finite subset

of H such that ranges of distinet elements of F' have no interior points
in common,

DEFINITION 2. The functionals ¢*, ¢, and @ are defined on C by
¢ ()= sup 3 sup7.(ah),
o)== sup >:, al(xh)3(ah)
O(x)= sup A(@h)B(ach)

TuEOREM 2. If we C s light and if @(x)< oo then there exists an
arc g connecting o and ¢ such that xg is rectifiable.

Proof. If « is light then x, is a homeomorphism and B(x,)70.
Since A(xz,)B(z,)< o we can conclude that A(x) < A(z,) <, from which

the theorem follows.

Let 2 be any of the three functionals ¢*, ¢, or @. A familiar
argument gives the following.

LEMMA 6. Q)= 2(zh).
hEF
LEMMA 7. ¢*<Zoe<0<LL.
Proof. Tt is sufficient to recall that L(x)>>) L(zh) .
he#

After we show that ¢*=1 for flat transformations we can use the
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results of Cesari and Federer to conclude that the inequalities in the
lemma arc actually equalities. It will be more convenient for us to use
the equality of Peano and Lebesgue rather than that of Gebeze and Le-
besgue area. If weC, then P(x) is the Peano area of x. 1f L(z)<
then it is known that P(x)=IL(z) [11].

If N is a positive integer let =V be the transformation on m inlo
itself determined by

= (1) = {s'}
where

S,:{tj j<N,
0 Jjo-N.

Lemma 8. P(x%z)=L(z"x).

Proof. Let T map range =¥ into EV by

T({s'})=1s} -

Then T and T-! are both Lipschitzian with constants not exceeding N'*
and 1, respectively. Thus if ze C is quasilinear we can use the defini-
tion of area in m [11] to conclude that

(1/N)area Tn"z <_arean"z < area T="z.
Thus

(1/N)L,(T7TN.’,L‘) g L(?TAQ') 7<L/(T7"Va;)

where I/ is Lebesgue area in EV, and an analogous inequality relates P
and P/, where P’ is Peano area in EY. If P(z"x) is finite then P'(T»"x)
=L/(T="x) are also, and furthermore, so is L{z"z). From what has al-
ready been said we can conclude that P(xVx)==L(x"x).

Let f be continuous from @ into =,. If pem, and p(p, f,e)£0
for a simple closed curve ¢ bounding a Jordan region J contained in Q,
then there are open oriented rectangles (sides parallel to the coordinate
axes) R" and R with pe R'Cclosure R"C R closure R and p(q, f, ¢)540
for all ge R.

LEMMA 9. Under the conditions of the preceding paragraph there
s a stmple closed curve B with f(B) R —closure R’ and such that p(q, f, B)
#0 for all qe R'.

Proof. There are only a finite number of components 4, j=1, 2,
<.+, n of ! (closure R’) whose intersection with f~'(p) is not empty.
The minimum distance between any two of these components is positive
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as is the distance between any of these components and the complement
of f~Y(R). Hence there exist simple closed curves ¢; bounding Jordan
regions J; with 4,CJ,C f-'(R). Some of the curves will not be con-
tained in Jordan regions bounded by any of the other curves. Let d,,
=1, 2, --., m, be this set of curves and denote the regions they bound
by K,. Suppose that g(p, f, d;)=0 for all 4. By introducing (m+1)
arcs joining ¢ to d,, d; to d,., for 1<i<m—~1 and d,, to ¢, we can de-
compose J—\JK, into Jordan regions I, and L, with bounding curves
e, and e,. Furthermore

O#;u(p, f! C)—Z/J(]?, I d):ﬂ(ﬁ, I el)+,u(/p, f: eZ)-
Hence either p(p, f, e)=0 or p(p, f, e.)5%~0, which implies that

0=UKNJI-UK)DSfRINJT-UK)D
SN~ U K)FA0 .

Therefore u(p, f, d,)7=0 for some d,. Let B be this d,.
LeMMA 10. Let he H with (Q*)=B. Then ¢*(fh)=|R'|.

Proof. Choose ¢>0 and less than (width R’)/10. Take R so that
the distance between the boundary of R’ and the boundary of R is less
than e¢. Let the sides of R' be X, Y, Z, and T. Since p(p, f, B)7%0
there is a point ¢e B such that the distance between f(¢) and one side,
say X, of R’ is less than e. Start from ¢ and traverse B in a positive
sense (with respect to the Jordan region J which it bounds). There will
be a point ¢; € B such that if » is between ¢ and ¢, (going from ¢ to ¢,
on B) the distance from f(») to X does not exceed 2e¢, and no point be-
yond ¢, has this property. Now start from ¢, and obtain ¢, such that
for any point s between ¢, and ¢, the distance between f(s) and Y, a
side of R’ adjoining X, does not exceed 2e but that no point beyond ¢,
has this property. (It may be, of course, that points beyond ¢, have
images close to X.) In this manner B is divided into a finite number
N of closed intervals having only endpoints in common such that the
image of a single interval will be within distance 2¢ of one of the sides
of R'. Since u(p, f, B)7%0, it is necessary that N >3.

If N=4 take he H so that the images of the sides of @ are the
four intervals into which B is divided. Then

() =(A—4e)(B—4e)

where A and B are the lengths of adjoing sides of R'.
If N>>4 let W be a strip of width e whose centerline w is parallel
to one of the coodinate axes and which divides R into congruent rectang-
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les S, and S,. There exists an open rectangle S” which contains the
closure of S| and for which (p, f, )20 if peS”. Thus there is a
Jordan curve B with f(B")CS”—S, and p(p, f, B")740 for pe S. Let
m be a component of B”"—B which contains a point whose image is
within a distance e of the center of R. If m were all of B” we could
conclude that p(p, f, B)7%0 for all pe f(B”), but this is false for any
peS,—R’. Thus m connects two points of B whose images lie near
opposite sides of R” and thus divides J into two Jordan regions J, and
J, with bounding curves B, and B,. The image of B, is contained in
R—R —W as is the image of B,.

Two of the intervals into which B was divided, which correspond
to opposite sides of R’, will each have been divided into two smaller
intervals by the arc m. One of each of these pairs of smaller intervals
will belong to B, and the other to B,.

The appropriate intervals for B, are all those contained in B, which
originally belonged to B plus the arc m, i=1, 2. Thus

N1+NZ=N+4

where N, is the number of intervals into which B, is divided.

For the proof of Lemma 11 we shall wish to remember that J, and
J, have no interior points in common.

If N;=4 and N,=4 then %, and %, can be defined as was 2 in the
case N=4. If W were chosen so as to make A4/2 and B the width and
length of the rectangles into which R" was divided then

7(f 1) + 11 P) > (A—5e)(B—4e) .

If either N,>>4 or N, >4, the preceding procedure can be repeated
using a sufficiently narrow dividing strip. Since N is finite we can con-
clude that ¢*(fh)=|R|.

LemMA 11. If he H, B=h(Q"), G={p|s(p, f, B)#0}, then ¢*(fh)
=Gl

Proof. Choose ¢>0. Let R;,i=1,2,.--, N, be a finite set of non-
overlapping open (oriented) rectangles contained in G with |\J R;|>|G]| —e.
For each ¢ take another such rectangle R; whose closure is contained in &,
and such that |R;|>>|R;| —e/N. By Lemmas 9 and 10 there exist 2, ¢ H
with ¢*(fh;)>=|R;| and B,, N\ B,=0 for m=~n where B,=h,(Q"). Let J,
=h,(Q). If we knew that J, N\ J,=0 the lemma would follow since we
could take F to be this collection of 4.

Suppose that J, N\J.7%0. Since B, N\ B,=0, we may assume that
Jn T, Fix w>0 and use the method of the proof of Lemma 10 to
biseet B, into rectangles S, and S, containing rectangles S| and S; respec-
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tively such that

(1) 181+ 18> Byl ~w,

(ii) If K, and K, are appropriate Jordan regions for S, and S, then
K\JK,=J, and K, and K, have no interior points in common.

In a similar manner we can subdivide S; and S,. Take ;7 so that
anl [29<w. The area of a rectangle of the collection .& into which R,
is divided will be less than w. Let . be a collection of smaller rec-
tangles, one contained in each element of .5 Let .97 be the collection
of associated Jordan regions. We can take .&°" and .57 so that

(1) |USI>R|—w,
S'eg!
(i) distinet elements of .27 have no interior points in common and

U K=J,.
KE_J(

Let H,={he H\rangehe .2#}. For some he H,, J,C rangeh. Let
h* be one such A. Now put s =H,— {#*}. Then

S h) =P (fha)+ > (R 2R, + | Ry —w—| R, |27 .
he%
Thus
P*(fha) =Ry + | Ry if T, T,
In a similar manner we can conclude that if
hm)(Q)Chﬂz(Q) jzl, 2 cty, M
then
()= SR |+ R,

Now let F' consist of those 4, for which range %, is not contained
in range A, for m=%n. Then

) 220" () = 2R > |G = 2e .

LEMMA 12. ¢*(f)=L(f)

Proof. By a result of Cesari [5], similar to results of Rado and
Reichelderfer [10] and Federer [6],

L(f)= sup 3|G,|
F hEF
where

Gh={p|:”’(pr f7 h(Q*))#O} .
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Thus, by the preceding lemma,
YIS LN=sup DG sup SR ZH().
THEOREM 3. P=¢*=¢=0=L.
Proof. We saw in [11] that L(z)= %HI,L L(z"z) and P(x)= glinw P(z"x).

By Lemma 9 we can conclude that P=L. Since ¢*=L=P for flat trans-
formations, we have that P(x)<¢*(x) for all xeC. Thus

L=P<¢*<¢<0<L.

Let Zq(p, ¢) be the geodetic distance between p and ¢, that is,
Ze(p, Q)=inf length xg for all g continuous on [0, 1] into @ with ¢(0)=p
and ¢g(1)=¢q. According to Busemann [3] an area S is intrinsic if S(z)
=S(y) whenever Z;=%. Let C,={xeC|z is light}. If we use the
definition of @ and the fact that x, is a homeomorphism if ve C, we
see that @, and therefore L, is intrinsic on C,.

Choquet suggested an inequality stronger than that the author was
able to prove. His inequality would be that of Theorem 1 if geodetic
rather than pseudo-geodetic distances were used.
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