ON SOME SPECIAL SYSTEMS OF EQUATIONS

Harry Herbert Corson, III
ON SOME SPECIAL SYSTEMS OF EQUATIONS

H. H. CORSON

1. Let F be an arbitrary field. Let S be a system of equations which, when solved for two of its variables, takes the following form:

\begin{align*}
 x_1^k &= f(x_3, \ldots, x_n), \\
 x_2^k &= g(x_3, \ldots, x_n),
\end{align*}

(1)

where f and g are arbitrary functions of the indicated variables. Consider also the equation

\begin{equation}
y_1^{k_2} = f^{s_k_2}(y_3, \ldots, y_n)g^{r_k_1}(y_3, \ldots, y_n).
\end{equation}

THEOREM 1. If $(k_1, k_2) = 1$ and $rk_1 + sk_2 = 1$, then the distinct solutions of (1) in F with $x_1x_2 \neq 0$ may be put in one-to-one correspondence with the distinct solutions of (2) in F with $y \neq 0$. Moreover, these solutions of (1), $x_1x_2 \neq 0$, may be determined from the solutions of (2), $y \neq 0$, and conversely, by means of transformations (3) and (4) below.

Proof. Assuming for the rest of this section that $x_1x_2 \neq 0$, $y \neq 0$, we put

\begin{align*}
 x_1 &= y_1^{k_2} \left\{ \frac{f(y_3, \ldots, y_n)}{g(y_3, \ldots, y_n)} \right\}^r, \\
 x_2 &= y_1^{k_1} \left\{ \frac{g(y_3, \ldots, y_n)}{f(y_3, \ldots, y_n)} \right\}^s, \\
 x_i &= y_i \quad \text{for} \quad i = 3, \ldots, n
\end{align*}

(3)

and notice that if (y, y_3, \ldots, y_n) is a solution of (2) then (3) determines a solution of (1). Now let

\begin{align*}
 y &= x_1^r x_2^s, \\
 y_i &= x_i \quad \text{for} \quad i = 3, \ldots, n.
\end{align*}

(4)

It may be verified directly that if (x_1, x_2, \ldots, x_n) is a solution of (1) then (4) determines a solution of (2). Further, given a solution (x_1, x_2, \ldots, x_n) of (1) and a solution (y, y_3, \ldots, y_n) of (2) with $x_i = y_i \ (i = 3, \ldots, n)$, then (3) implies (4) and conversely—which may be verified with the use of the relation $rk_1 + sk_2 = 1$.

Received August 8, 1955.
We note that Theorem 1 may be extended by induction to apply to a system like (1) with an arbitrary number of equations, with z_i, z_2^2, \ldots, z_n^{kn} as left members, and with arbitrary functions of z_{m+1}, \ldots, z_n as right members if $(k_i, k_j)=1, i \neq j$. The argument is the same in going from n to $n+1$ equations, and transformations corresponding to (3) and (4) may be constructed.

Use will also be made of the fact that Theorem 1 is still valid if x_3, \ldots, x_n are restricted to values in A, a subset of F, as long as y_3, \ldots, y_n are similarly restricted.

2. Let F now be a finite field $GF(q), q=p^k$. Assume f and g to be homogeneous polynomials of degrees m_1 and m_2 respectively, where $(m_1, k_1)=1$ and $(m_2, k_2)=1$. The solutions of (2) can be determined by the following method used by Hua and Vandiver [1] and Morgan Ward [2].

As $(k_1k_2, sk_1m_1+rk_1m_2)=1$, there are integers a, b, and c such that $ak_1k_2+b(sk_1m_1+rk_1m_2)+c(q-1)=1$ with $(a, q-1)=1$. First assuming that $y \neq 0$, set

$$ y = \lambda^a $$

$$ y_i = \lambda^{-b}z_i \quad (i=3, \ldots, n). $$

Equation (2) then assumes the following form:

$$ \lambda = f^s k_2(z_3, \ldots, z_n)g^{r_1}(z_3, \ldots, z_n). $$

Thus every choice of z_3, \ldots, z_n such that $f \neq 0, g \neq 0$ determines a solution of (2).

Now consider the system (1). Determine as above integers $u, v,$ and w such that $uk_1+v=vm_2+w(q-1)=1, (u, q-1)=1$. Assuming $x_3 \neq 0$, set

$$ x_3 = \gamma^u $$

$$ x_i = \gamma^{-v}t_i \quad (i=3, \ldots, n). $$

It is readily seen that all values of t_3, \ldots, t_n such that $f(t_3, \ldots, t_n)=0$ determine solutions of the system (1) whether $g(t_3, \ldots, t_n)=0$ or not.

The same argument is valid if g is assumed zero, which proves the following.

THEOREM 2. If f and g are homogeneous polynomials of degrees m_1 and m_2 respectively, $(m_1, k_1)=1$ and $(m_2, k_2)=1$, then the total number of solutions of the system (1) in $GF(q)$ is q^{n-2}.

A similar application of Theorem 1 is the following. First let S be
where \((k_1, k_2) = 1\). Also if \(M\) is the least common multiple of \(m_3, \ldots, m_n\), assume \((eM, k_i) = 1\) and \((dM, k_i) = 1\). In place of (5) we employ the following transformation in (2), following Carlitz [3]:

\[
y = \lambda^a \\
y_i = \lambda^{-b} M^m z_i \quad (i = 3, \ldots, n),
\]

where \(ak_j k_i + bM(sk_i e + rk_i d) + c(q-1) = 1\), \((a, q-1) = 1\). Exactly as above follows the next theorem.

Theorem 3. The total number of solutions of (8) subject to the conditions stated above is \(q^{n-2}\).

Also [3] suggests the following generalization of Theorem 2. Let \(f_3(x_3), f_4(x_4), \ldots, f_n(x_n)\) and \(g_3(x_3), g_4(x_4), \ldots, g_n(x_n)\) be homogeneous polynomials of degrees \(em_3, em_4, \ldots, em_n\) and \(dm_3, dm_4, \ldots, dm_n\) respectively, where now \((x_i) = (x_{i1}, x_{i2}, \ldots, x_{is_i}) \quad (i = 3, \ldots, n)\). Thus by the same argument follows the next theorem.

Theorem 4. Replacing in (8) \(x_i^{m_i}\) by \(f_i(x_i)\) and \(x_i^{m_i}\) by \(g_i(x_i)\), \((i = 3, \ldots, n)\), then the total number of solutions of the resulting system is \(q^{s_3 + \cdots + s_n}\).

3. Now let \(F\) be the rational field and let \(f\) and \(g\) in (1) be polynomials with integral coefficients. If \(x_3, \ldots, x_n\) are restricted to be integers, then \(x_1\) and \(x_2\) in any solution must be integers.

In the equation \(rk_1 + sk_2 = 1\) we may assume that \(r > 0, s < 0\). In place of system (1) write

\[
x_1^{k_1} = 1 = \frac{1}{f(x_3, \ldots, x_n)} = f(x_3, \ldots, x_n) \\
x_2^{k_2} = g(x_3, \ldots, x_n).
\]

we assume as in Theorem 2 that \(f\) and \(g\) are homogeneous of degrees \(m_1\) and \(m_2\) respectively, \((m_1, k_1) = 1\) and \((m_2, k_2) = 1\). Let \(a, b\) and \(c\) satisfy \(ak_1 k_2 + b(rk_1 m_2 - sk_2 m_1) + c(q-1) = 1\), \((a, q-1) = 1\); then (5) determines a family of solutions in integers of

\[
y^{k_1 k_2} = f^{k_1 k_2}(y_3, \ldots, y_n) g^{k_2}(y_3, \ldots, y_n),
\]

\(y \neq 0\). By Theorem 1, (3) determines a family of solutions of (10) with
Theorem 5. If f and g are homogeneous polynomials with integral coefficients of degrees m_1 and m_2 respectively, $(m_1, k_1)=1$ and $(m_2, k_2)=1$ then a family of solutions in integers may be found for equations (1) by the method above.

See [2] for remarks on the solution of equation (11) under the above hypotheses. Note especially the above method does not in general give all solutions.

I should like to thank Professor L. Carlitz for his very helpful interest in this material.

References

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, Alfred Horn at the University of California, Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, c/o University of California Press, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

* During the absence of E. G. Straus.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Arens and James Eells, Jr.</td>
<td>On embedding uniform and topological spaces</td>
<td>397</td>
</tr>
<tr>
<td>N. Aronszajn and Poom Panitchpakdi</td>
<td>Extension of uniformly continuous transformations and hyperconvex metric spaces</td>
<td>405</td>
</tr>
<tr>
<td>Kai Lai Chung and Cyrus Derman</td>
<td>Non-recurrent random walks</td>
<td>441</td>
</tr>
<tr>
<td>Harry Herbert Corson, III</td>
<td>On some special systems of equations</td>
<td>449</td>
</tr>
<tr>
<td>Charles W. Curtis</td>
<td>On Lie algebras of algebraic linear transformations</td>
<td>453</td>
</tr>
<tr>
<td>Isidore Heller</td>
<td>Neighbor relations on the convex of cyclic permutations</td>
<td>467</td>
</tr>
<tr>
<td>Solomon Leader</td>
<td>Convergence topologies for measures and the existence of transition probabilities</td>
<td>479</td>
</tr>
<tr>
<td>D. H. Lehmer</td>
<td>On certain character matrices</td>
<td>491</td>
</tr>
<tr>
<td>Michael Bahir Maschler</td>
<td>Minimal domains and their Bergman kernel function</td>
<td>501</td>
</tr>
<tr>
<td>Wm. M. Myers</td>
<td>Functionals associated with a continuous transformation</td>
<td>517</td>
</tr>
<tr>
<td>Irving Reiner and Jonathan Dean Swift</td>
<td>Congruence subgroups of matrix groups</td>
<td>529</td>
</tr>
<tr>
<td>Andrew Sobczyk</td>
<td>Simple families of lines</td>
<td>541</td>
</tr>
<tr>
<td>Charles Standish</td>
<td>A class of measure preserving transformations</td>
<td>553</td>
</tr>
<tr>
<td>Jeremiah Milton Stark</td>
<td>On distortion in pseudo-conformal mapping</td>
<td>565</td>
</tr>
</tbody>
</table>