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1. Introduction. A recent approach to measure theory is the in-
troduction of measures as functionals on spaces of continuous functions
[2]. To the probabilist, however, the measures are of primary concern,
with the functions occurring as integrands playing a secondary role as
random variables. We are thus motivated to reverse the modern pro-
cedure. We sghall introduce various topologies into spaces of measures
and shall in each case investigate the dual space consisting of all con-
tinuous linear functionals on the measures. From this point of view
the continuous functions form only one of many possible dual spaces to
a space of measures.

The study of the dual spaces yields a necessary and sufficient con-
tinuity condition for the existence of transition probabilities in a sto-
chastic semigroup, thus solving a problem posed by W. Feller.

We introduce topologies through the convergence of nets [5], an
elegant device for analysis. The spaces of measures considered are
vector spaces and usually vector lattices [1]. We admit any topology
for which the vector operations are continuous, but do not require that
the lattice operations be continuous.

- Let A be a Boolean algebra of sets in an abstract space X. Where-
ver A is required to be a os-algebra, it shall be denoted by 2,. A
partition p of X is a finite collection {E;} of sets in A which form a
disjoint covering of X. The partitions of X form a lattice [1] if we
define p<p" whenever p’ is a refinement of p. In this way the parti-
tions p will be used extensively as directed indices for nets.

For each z in X define the unit point mass H, by

0 if = is not in £ .

(1.2) Hx(E)={
1 if zis in E.

Such H, will belong to all spaces of measures considered below. A
discrete measure is any finite linear combination of point masses. We
shall use the symbol E to denote the characteristic function of a set

E, since the context will serve to distinguish between the set and its
characteristic funetion. Thus,
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1.2) E(x)=HJE) .

A step function is any finite linear combination of characteristic func-
tions of sets in 9. For each step function f there exists a partition
p={E,} such that

(1.3) f(@)=2 a.E(z).

If f is any real-valued function on X, f(E) will denote the set of all
f(x) for z in E. Bars will be used to denote the diameter of a set of
numbers. Thus,

(1.4) |f(E)|=sup f(E)—inf f(E) .

2. The topology of simple convergence. Let S consist of all finitely
additive functions on . That is, F belongs to S if

2.1) — o< F(E)<co for all £ in 2, and
(2.2) F(A+ E)=F(A)+ F(E) for A and E disjoint.

S is a vector space with the obvious definitions of addition and sealar
multiplication.

Let {F,} be a net in 5. We induce a topology in S by defining:
F,, converges simply to F if lim F,(E)=F(F) for each F in .

THEOREM 1. The discrete measures are dense in S. In particular,
(2.3) =\ Hirw),
JX

where the latter integral is defined to be lim >, F(E,)H, —with p={E,}
PP

and w, in E,. S*, the dual space of S, comsists of all step functions
(1.8). With the topology of stepwise convergence in S*, defined below,
S**=8S,

Proof. For p fine enough to partition E and its complement E’,
>, F(E\)H, (E)=F(E). Hence, (2.3).
P

Each ¢ in S* defines a function f on X through
(2.4) fx)=¢(H,) for all # in X.

Suppose f were not a step function. Then, for each partition p
we could choose 2, and ¥, in some set E, in p such that f(x,)~ f(¥,).
Define
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(2.5) G,= - oL (H,,—H,,) .
f (xp)"_f (yp)
Then, ¢(G,)=1 for all p. But, for all p>{E, E}, G(E)=0. Hence,
G, converges simply to 0. Since ¢ is continuous, lim ¢(G,)=0, a con-
P

tradiction. So f must be of the form (1.3). Then, of course,

2.6) ¢<F)=;akF(Ek)=§f dF.

A sequence of step functions f, converges step-wise to a step fune-
tion f, if there exists a partition p such that eventually

(2.7) Su(@)= ; B (2)
and
(2.8) f(@)=>3lim a,, E() .

In this topology, every linear functional on S* is continuous. Since
every linear funectional on S* defines an additive function on A with
a unique linear extension to S*, S=S**,

3. The topology of bounded convergence. The functions in S that
are bounded form the space B:. The condition (2.1) is strengthened to

(3.1) —M<F(EY)<M  for all E.

The usual topology for B is the topology of uniform convergence, that
is, the topology induced by the norm

(3.2) || Fl|=sup f'”(E')—l*“(l*3’)=1ipm 2 FE) -

With this norm B is a Banach space [1]. The norm topology is defec-
tive in that there may exist bounded (that is, continuous) linear func-
tionals on B which have no representation as integrable functions on
X, and B is not reflexive.

These defects are removed by introducing the topology of bounded
convergence: F, converges boundedly to F' if lim F(E)=F(E) for each
E in U, and |F(E)|<M for all aZ>«a, and all £ in .

THEOREM 2. In the topology of bounded convergence the discrete
measures are dense in B. In particular,

(3.3) F:SH AF() ,

defined as in (2.3). The dual space B* consists of uniform limits of
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step functions (1.3). That s, to every continuous linear functional ¢
there corresponds biuniquely a function f on X such that f is a uniform
limat of step functions and, for all F in B,

(3.4) #)=| @) dF@).
With the topology of umsform convergence on B*, B¥**=B.

Proof. By Theorem 1, (3.3) holds for simple convergence. Since
| > F(E,) H (E)| < 3 |F(EL)<||F||, the convergence is bounded for ¥
in B.

For ¢ in B* let f be defined by (2.4). Now, suppose f were not
a uniform limit of step functions. Then there would exist some ¢ >0

such that for each partition p we could choose z, and y, in some set
E, belonging to p such that |f(x,)— f(y,)|>¢. Define

(3.5) F,=H,—H,,.

Then, F, converges boundedly to 0, since [|F,||=2 for all p and F,(E)
=0 for p>{E, E'}. Since ¢ is continuous, lim ¢(#,)=0. But, since ¢
P

is linear, ¢(F,)=f(x,)— f(y,). Hence, |p(F,)|>>¢, a contradiction. So
S is a uniform limit of step functions. The existence of (3.4) follows
from (3.3) and the continuity of ¢. Since step functions are bounded,
f is bounded.

Conversely, the integral (3.4) exists for any uniform limit of step
functions f and thus defines a linear functional ¢ on B. For, given
any ¢ >0 there exists a partition p, such that |f(4;)| < e for all 4; in p,.
Hence, 3. |f(E)| |F(E)< 3 e|F(E)| <e||F'|| for all p=p,. Moreover,

o P
the functional ¢ defined by (3.4) is continuous. For, let F, converge
boundedly to 0. Now,

(3.6) % AF.~\(f = )P+ |, dP.

where f,=> 0,E, and |[f(x)—f.(x)|< e for all z. Hence,
3.7 || Far. |<eip+ 1S apus)

and

3.8) Tm Sde“ < Tm|F)|<2Me.

So, lim ¢(F,)=0.

For f in B* define
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(3.9) |5 H=sgp [f(@) .

Then B* is a Banach space and the norm topology is equivalent to the
topology of uniform convergence. With this topology a continuous linear
functional on B* is a bounded linear functional. A bounded linear func-
tional @ an B* defines, a fortiori, a bounded additive set function on
A. Since N is fundamental in B*, the correspondence between @ and F
is biunique. Hence, B**=B.

For positive measures bounded convergence is equivalent to simple
convergence, and hence to weak convergence over B*. To show that
bounded convergence in B is, in general, stronger than weak conver-
gence over B* we prove the following.

THEOREM 3. There may ewist a net {Fa} in B such that lim S FdF,
=0 for every f in B*, but F, does not converge boundedly.

Proof. Let X consist of all real-valued functions 2(¢) on (— o0, o).
Let 2A, be the s-algebra in X generated by sets of the form
(3.10) I,={x|z@®)el}

where I is any interval. Let {E,} be the class of all E in A, which
contain the zero function 0. The indexing set {a} is directed by de-
fining a <" whenever E,, CFE,. For each real s define x, by

0 for tss.
(3.11) :cs(t)={
1 for t=s.

Then each E, containg all but a countable set of z,. Hence, we may
choose x;, in E,. Also, choose a, such that lima,=c. Finally, define

(3.12) F,=a,(H,, —H) .

Then, ||F.|=2la.]. So lim||F}j|—. For f in B*, gde(, exists.
Therefore, lim |f(E,)|=0. Iw{ence, |f(2s) — f(0)| >1/n for only countably
many values wof s, and thus f(a,)5~ £(0) for only countably many values
of s. Therefore, f(x,,)=,(0) eventually. Since S fAF,=a,[f(x,)

— £ 0), SdeFo eventually. A fortiori, lim Sde,,.:o.

A modification of the above example shows that the lattice opera-
tions [1] need not be continuous. Let A be the algebra generated by
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sets of the form (3.10). Then, H,, converges boundedly to H,, where
x, is defined by (3.11). However, H, /A H,=0 which does not converge
to Hy=H,\H,.

If our algebra of sets is also a s-algebra 2(,, we may consider the
space of countably additive set functions on ,. With the topology of
bounded convergence, this space L is dense in B because of (38.3). The
proof of theorem 2 shows that L*=B*. However, L is reflexive only
with respect to the pseudo-topology on L* induced by the bounded
convergence of sequences: f, converges to f if lim f,.(x)=f(x) for

each z in X, and || f,||<M for all n. That L**=L follows from the Le-
besgue bounded convergence theorem [4].

4. The topology of regular convergence. Let X be a normal
Hausdorff space and A, be the Borel sets in X. Let R be the space
of bounded, regular, signed measures on 2,. That is, F' is in R if

(4.1) Y E) =X F(E)

for every sequence {E,} of disjoint sets in 2,
(4.2) |F(E)| <M

for all £ in %A, and if {4,} is the class of all open sets containing E
and |F| is the total variation of F' [1], then

(4.8) inf |F|(4s—E)=0.

With norm (3.2) R is a Banach space and with the natural ordering a
Banach lattice [1]. Since every F' in R is the difference of two positive
measures in B, we may define convergence for positive measures, a net
of signed measures being convergent if it is the difference of two posi-
tive convergent nets.

A net {F,) of positive measures in R converges regularly to F in
R if
“4.4) F(bdy E)=0 implies lim F,(E)=F(E),

where bdy E is the boundary of E. Since bdy X is empty, (4.4) im-
plies that eventually
(4.5) [|Fll <M.

This type of convergence, under more restrictive conditions, has been
considered by de La Vallée Pousisn [6].

THEOREM 4. For a net of positive measures in R the following
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conditions are equivalent:
(i) F, converges regularly to F.
(ii) For every bounded, measurable function f on X continuous al-

most everywhere relative to F, S faF, converges to S fdaFr.
(ili) For every bounded, continuous function f on X, S fdF, con-

verges to S fdF.

(iv) F,X) converges to F(X) and, for every closed set E, lim F(E)
<F(E). )
The dual space R*™ of R consists of all bounded, continuous functions f
on X with the functionals defined by (3.4). Thus, for positive measures
regular convergence is equivalent to weak convergence over R*.

Proof. Given (i) and f bounded, measurable, and continuous almost
everywhere relative to F, consider the sets A,=f-'(¢). Since F is
additive and bounded, and the sets A, are disjoint, F(4, 540 for at
most countably many values of ¢. Hence, for arbitrary ¢>0 we can
partition the range of f by means of ¢ <¢,<--.<¢, so that t;.,—¢t:
<eand F(4,,)=0. Let E,=A, +f'(t;, tu.)). Then bdy E, A, +4,,,,
+D where D consists of discontinuities of f. Hence, F(bdy E)=0.
By (1), lim Fo(E,)=F(E}).

Let p={E,} and f,=3¢E,. Then
P

(4.6) |[rar— | rar|<||-roar.

+ \ gfp dF,— Sfp dF‘ + | S(f,,——f)dFl
e ||l +] pZ LLFAE)—F(E)]| +e|lF]|.
Hence,

(4.7) lim

Sf de—gde\:gZMe.
Since ¢ is arbitrary,
(4.8) lim S f dpﬁs Far.

Since a continuous function is, a fortiori, continuous almost every-
where as well as measurable, (ii) implies (iii).

Given (iii), the convergence of F,(X) to F(X) follows if we take
S(@)=1 in (iii). Given a closed set E, let A be any open set containing
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E. By Urysohn’s lemma [7], there exists a continuous funclion g such
that E<g<A. Hence FuyE)< Sng,, and SnggF(A). Thus, (iii)

gives lim F(E)<F(A). (iv) follows from (4.3).

Given (iv), let E be any set with F(bdy E)=0. Let E=E\Jbdy E,
a closed set. Then FL(E)<F,E), so limF,(E)<lim F(E)<F(E) by
(iv). But F(E)=F(E) since F(bdy E)=0." Hence

4.9 lim F(E) < F(F) .
Similarly (4.9) holds for the complement E’, since bdy E'=hbdy E. Thus
(4.10) lim F(X—-E)<F(X—E).

Since F,(X) converges to F(X) by (iv), (4.10) gives

(4.11) F(X)—lim F(E) < F(X)—-F(E) .
Hence
(4.12) FE)<limF(F).

Thus, (i) follows from (4.9) and (4.12).

Since (i) implies (iii), every bounded, continuous function f on X
defines a continuous linear functional ¢ on R of the form (3.4). We
need only prove conversely that every ¢ is of this form.

Since H, is regular and simple convergence implies regular conver-
gence for positive measures, we have (3.3). So discrete measures are
dense in R. Hence, for ¢ in R* we have (3.4) with f defined by (2.4).
Moreover, f is continuous: If {x,} is a net in X converging to ,
then H,, converges regularly to H,. Hence, f(x,) converges to f(x).
Also, f is bounded: Otherwise there would exist a sequence {z,} such

that |f(x,)|>2". We could then define Fm=§,(1/ Sf(@,) H,,. Let F(E)
=lim F,(£). Then F, converges regularly to F in R. Hence, ¢(F,)
converges to ¢(F). But, ¢(F,)=m which diverges, a contradiction.

5. Transition probabilities for stochastic semigroups. A system of
stationary transition probabilities is a function p(x, ¢, E) of three vari-
ables: « in the sample space X, ¢t in (0, ), and E in the os-algebra
A, in X such that

(5.1) o(z, t, ) is a probability measure on 9, for each z and ¢,

(5.2) o( , t, E) is a measurable function on X for each ¢ and E,
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and
(5.3) oy, s+1, E)=Sxp(x, t, E) ply, s, da) .

Such a system defines a family of operators {T.} on L through

(5.4) FTE(E)sz(w, t, E) dF(z)

with the readily verified properties:

(5.5) T, is a positive linear operator on L.
(5.6) For F>0, ||FT.)|=|F]| .

(57) Tth:Tt+s

We call any {T,} satisfying (5.5)—(5.7) a stochastic semigroup. These
have been studied by W. Feller [3].

If we try to define Markov processes abstractly by means of sto-
chastic semigroups, we encounter the following obstacle:

THEOREM 5. There exist stochastic semigroups {T,} for which there
are no transition probabilities satisfying (5.1)—(5.4).

Proof. This simple, but striking, example is due to Feller. Let
X be the real numbers and 9, the Borel sets of X. For each F in L
let F=F,+F be the Lebesgue decomposition [4] where F, is absolutely
continuous and F is singular. Define

(5.8) T.E={x|x—tek}
for each E in U, and
(5.9) FT(E)=F/(T- .E)+F(T.E).

Thus, continuous measures drift to the right and singular measures drift
to the left as ¢ increases. If transition probabilities exist for this pro-
cess, (5.4) implies

(5.10) @, t, B)=H,T(E)=H,T.E) .
Hence,
(5.11) FT(E)= SXH:G(T&E) dF(x)=F(T.Ek),

1 We express operators on measures as right operators and their adjoints as left opera-
tors, using the same symbol for both.
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which contradicts (5.9) if F' is absolutely continuous.

The preceding example suggests that we examine the adjoint oper-
ators to {7,}. We see then that a system of transition probabilities
defines a semigroup of operators on L* through

(5.12 T.f@)=| @ w0y, ¢, da) .

That T,f is a bounded, measurable function follows from the fact that
f is a uniform limit of step functions f,, so T,f is a uniform limit of
T.fn and T,f, is bounded and measurable. Thus, L* is invariant under
{T';}. The topological significance of this is given by the following.

THEOREM 6. A linear operator T on B (or L) is continuous in the
topology of bounded convergence if, and only if, the adjoint to T defines
o bounded operator on the dual space B* (resp. L*).

Proof. Let the adjeint to 7 be a bounded operator on B*. Then,
if F, converges boundedly to F', we have lim F,TE=FTFE for all E, since

TE is in B*. Thus, F,T converges simply to F'T. Since 7 is bounded,
|F.T\| <I||F T, so F,T converges boundedly to F7. Hence, T is
continuous with respect to bounded convergence.

Conversely, if 7 is continuous in the topology of bounded conver-
gence, then 7 is bounded. To prove this we need only show that the

function u(x)=||H,T|| is bounded, since by (3.3), FT=SHZT dF(x), so
NFT|| <supu(x)||Fl|. Suppose u(x) were unbounded. Then, by Zorn’s

lemma, there is a maximal collection 9t of sets such that 9t has the
finite intersection property and wu(x) is unbounded on every finite inter-
section of sets in M. Thus, for each partition p there exists a unique
E, belonging to both p and 9. Choose «, and y, in E, such that
limw(x,) —u(y,)=co. Let F,=H, —H,. Then F, converges boundedly

tg 0. So F,T converges boundedly to 0. Hence, ||F,T| is eventually bound-
ed. But u(wx,)—u(y,) <||F.T]|, a contradiction. So u(x) must be bounded.

Now, the dual of a continuous operator always exists; that is, the
dual space is invariant under the adjoint operator. For, if F, converges
to F, F,T converges to FT, and so F,T¢ converges to F'T¢ for each ¢
in the dual space. Thus, T'¢ is a continuous, linear functional. Hence,
T¢ is in the dual space.

The same proof holds for the space L. With an analogous argu-
ment, theorem 4 gives a similar result for the space R:

THEOREM 7. A positive linear operator on R 1is continuous in the
topology of regular convergence if, and only if, the adjoint defines «
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positive operator on the dual space R*.

We can now remedy the defect given by Theorem 5. To (5.5)—
(56.7) we add the condition

(5.13) T, is continuous in the topology of bounded convergence.

THEOREM 8. To every system of transition probabilities p(x, t, K)
there corresponds biuniquely a stochastic semigroup {T,} satisfying (5.13)
such that (5.4) holds.

Proof. We need only prove that (5.5)—(5.7) and (5.13) are suf-
ficient, since the necessity of these conditions has already been discussed.
Given {7,} we define

(5.14) p(z, ¢, B)=H.T,E.

Condition (5.13) implies, by Theorem 6, that T,E is in L*. Hence,
(5.2). (5.1) follows from (5.5), (5.6), and (5.14). (5.3) is a direct result
of (5.7), (5.14), and

(5.15) FT5E=§ HT,EdF(z) .
X

which results from 7,F being in L*. Finally, (5.4) follows from (5.14)
and (5.15).

For the space R we have the following.

THEOREM 9. Suppose (5.4) defines a stochastic semigroup of opera-
tors on R. Then the following conditions are equivalent:

(i) oz, t, E) s continuous at x +f p(x, t, bdy E)=0.

(ii) T, 4s continuous in the topology of regular convergence.

(iii) If f is a bounded, continuous function, then so is T,f.

Proof. The equivalence of (ii) and (iii) follows directly from
Theorem 7.

Given (ii), let @, converge to  in X. Then H,, converges regularly
to H, so H,, T, converges regularly to H/T,. Thus, H, T,E converges
to H,T,F if HT,(bdy E)=0. This, through (5.14), gives (i).

Given (i), consider positive measures such that F, converges regu-
larly to #. Let FT,(bdy E)=0. Then (5.4) implies p(z, ¢, bdy E)=0
except for « in D, where F(D)=0. Let f(x)=p(x, ¢, E). By (i), f is
continuous almost everywhere relative to F. Thus, condition (ii) of
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Theorem 4 applied to (5.4) gives lim F,T\E=FT,E. So F,T converges
regularly to F7T. IHence, (ii). '

REFERENCES

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Pub., New York, 1940.

2. N. Bourbaki, Elements de mathématiques. Inlégration., Hermann, Paris, 1952.

3. W. Feller, The parabolic differential equations and the associated semi-groups of
transformations, Ann. of Math., 55 (1952), 468-519.

4. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.

5. J. L. Kelley, Convergence in topology, Duke Math. J., 17 (1950), 277-283.

6. C. de la Vallée Poussin, Extension de la méthode du balayage de Poincaré et probléme
de Dirichlet, Note I, Ann. Inst. H. Poincaré, 2 (1932), 219.

7. W. Sierpinski, General Topology, Univ. of Toronto Press, Toronto, 1952.

RUTGERS UNIVERSITY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. L. RoypEn R. P. DiLworTH
Stanford University California Institute of Technology
Stanford, California Pasadena 4, California
E. HEwitr A. Horn*
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH M. HALL M. S. KNEBELMAN J. J. STOKER

C. E. BURGESS P. R. HALMOS I. NIVEN G. SZEKERES

H. BUSEMANN V. GANAPATHY IYER T. G. OSTROM F. WOLF

H. FEDERER R. D. JAMES M. M. SCHIFFER K. YOSIDA
SPONSORS

UNIVERSITY OF BRITISH COLUMBIA STANFORD RESEARCH INSTITUTE

CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA, BERKELEY UNIVERSITY OF UTAH

UNIVERSITY OF CALIFORNIA, DAVIS WASHINGTON STATE COLLEGE

UNIVERSITY OF CALIFORNIA, LOS ANGELES UNIVERSITY OF WASHINGTON

UNIVERSITY OF CALIFORNIA, SANTA BARBARA " " %

MONTANA STATE UNIVERSITY

UNIVERSITY OF NEVADA AMERICAN MATHEMATICAL SOCIETY

OREGON STATE COLLEGE HUGHES AIRCRAFT COMPANY

UNIVERSITY OF OREGON SHELL DEVELOPMENT COMPANY

UNIVERSITY OF SOUTHERN CALIFORNIA

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent
to their successors. All other communications to the editors should be addressed to the
managing editor, Alfred Horn at the University of California, Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained
at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, c/o University of California Press, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10,
1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

* During the absence of E. G. Straus.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
COPYRIGHT 1956 BY PACIFIC JOURNAL OF MATHEMATICS



Pacific Journal of Mathematics

Vol. 6, No. 3 BadMonth, 1956

Richard Arens and James Eells, Jr., On embedding uniform and topological

SPACES . .o v e et e et e e e e e e e 397
N. Aronszajn and Prom Panitchpakdi, Extension of uniformly continuous

transformations and hyperconvex metric Spaces ..................... 405
Kai Lai Chung and Cyrus Derman, Non-recurrent random walks . ......... 441
Harry Herbert Corson, III, On some special systems of equations . . ........ 449
Charles W. Curtis, On Lie algebras of algebraic linear transformations .... 453
Isidore Heller, Neighbor relations on the convex of cyclic permutations. . . .. 467
Solomon Leader, Convergence topologies for measures and the existence of

transition probabilities. .. ... ... ... .. ... . . i 479
D. H. Lehmer, On certain character matrices . ..............c.c.c.cviuueo... 491
Michael Bahir Maschler, Minimal domains and their Bergman kernel

JURCHION . ..o oo e 501
Wm. M. Myers, Functionals associated with a continuous

FanSOrMAtioON . . ... ... e 517
Irving Reiner and Jonathan Dean Swift, Congruence subgroups of matrix

BTOUDS « oottt e e 529
Andrew Sobczyk, Simple families of lines . .............................. 541
Charles Standish, A class of measure preserving transformations . . ........ 553

Jeremiah Milton Stark, On distortion in pseudo-conforma




	
	
	

