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In this paper we shall consider the following class of transformations
of the unit interval onto itself. Let = be a permutation of the positive
integers, that is, a one-to-one mapping of the positive integers onto
themselves. Let ¢ (0<_t<1) be represented in its dyadic expansion:

t:iek(t). , e,=0o0r 1.
=1 2F

Then we define
<% )
Tt k; or

T.t) “shuffles” the digits in the dyadic expansion of ¢.

Our motivation in considering these transformations lies in the fact
that they form a nontrivial class of measurable transformations with a
simple intuitive interpretation and may be utilized to illustrate several
of the concepts of ergodic theory.

1. Measurability and ergodicity considerations.

THEOREM 1.1. For every choice of =, T, 18 a measure preserving
transformation.

Proof, Let X, (i=1, 2-.+) be the space consisting of the two real
numbers 0 and 1 endowed with a measure m defined by m(0)=1/2

m(1)=1/2. Consider the product space X= ﬁ X, (where we omit those
4=1
produets for which all but a finite number of factors=1) and define
the measure of a “rectangle” ﬁ E,E CX, by ;1(H1Ei)=H m(E;) then
i=1 = =1

it can be shown [1, p. 159] that the above measure is capable of exten-
sion to a measure on a o algebra of subsets containing the rectangles
in such a fashion that the mapping

¢: X0, 1]
defined by
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90(1')=i T ;=0 or 1
k=1 2!

sends the measurable subsets S of X onto the Lebesgue measurable
sets of [0, 1], with x(S)=Lebesgue measure of ¢(S). To demonstrate
that 7', is measure preserving we need only show that this is the case
for product sets. But this is trivial since 7', merely rearranges the
factors in a product set and the measure of a product set is obviously
invariant under a permutation of its factors.

THEOREM 1.2. A necessary and sufficient condition for T.(t) to be
a metrically transitive (ergodic) transformation is that neither the per-
mutation ™ nor any of its iterates possess a fixed point.

Proof. For the definition of metric transitivity we refer to [2,
p. 29]. We note that transformations satisfying the hypotheses of the
theorem exist for example, =(1)=2, n(2k)=2k+2, n(2k+1)==(2k—1)
consisting of a single infinite cycle is easily seen to have the desired
properties. The demonstration of necessity is quite easy. Suppose that
a® (z™ denoting the nth iterate of =) has a fixed point %k,. That is,
m (k) =k, Let n(k))=Fk, 7@ (k)=k,,- -+, 7" V(ko)=Fk,_,, then 7 permutes
the set S: (k,, k,,++-, k,_,). Consider the set

oo

B=04, A~=X, kéS

k=1

A,=1, keS

This set has measure 27" and is clearly invariant under 7', but a trans-
formation leaving a set of positive measure invariant is not metrically
transitive. The sufficiency requires a more extended argument. It is
our object to show that if 4 and B are measurable sets with charac-
teristic functions ¢, and ¢, respectively and if neither = nor any of
its iterates has a fixed point then

ay)  tim | TP ] | e P)an®) ] | eaPrine) ]

n—>o0

which is of course equivalent to
(1.2) }gg wT(A) \B)=p(A)(B) .

But this is the strong mixing property which implies metric transitivity
and ergodicity [2, p. 36]. Our proof is in two parts. First we demon-
strate the theorem for the case where ¢, (P) and ¢,(P) depend only
upon a finite number of factors in the product space and then reduce
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the general case to this special one. Suppose now that ¢,(P) and ¢x(P)
depend only on a finite number of factors, say

Pu(P)=0 Xy s+, Xi,)
SDB(P):QDB(XICV ttty an)

Since neither = nor any of its iterates has a fixed point there exists
an N such that for n >N, ¢, (T"P) does not depend on any of the
factors X,,,---, X;,, but for all such »

[eaaPres@an@) | {e.Prin®) ] |esprin@))].
which proves our assertion for the special case. In the general case
we observe that the characteristic function of any measurable set may
be approximated in the L' sense arbitrarily closely by the characteristic
function of a set depending on only a finite number of factors. (For

a proof see [2, pp. 4, 57]). Now given ¢,(P), ¢x(P) and ¢ >0 we choose
¢.(P) and ¢, (P) such that

§1¢A<P>~¢A/<P)td/z(P><e

§1¢B(P>—¢B,<P)ldﬁ(P><s

where ¢, and ¢, depend on only a finite number of factors. Then
(eumPeuPrin® - (e.Pan® ] [osPrane) |
13)  =||eT P PP = [0 T Pros (PP

at)  +| fee@anp] fenPrin® |- [e.aprarm ] {eprine) |

@) +|fee@u e PP~ o @anm | jepanm ]|

Our choice of ¢, (P) and ¢, (P) together with the measure preserving
property of T, implies that (1.8) and (1.4) are each smaller than 2e.
Assuming (1.1) is true for the special case we have (1.5) <{e for
n=N(e). Hence

lim p(T2(A) N\ B)=1(A)-1(B) ,

and the theorem is completely demonstrated. The techniques employed

in the sufficiency proof were utilized for another purpose by Hopf [2,
p. 57].
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2. Convergence of certain series. We now turn our attention to
an examination of the convergence of

) i
k=0 k
and
2.2) i S (Twx) 2, a subsequence of
ik ’ the positive integers.

The almost everywhere convergence of (2.1) yields a strengthened form
of the Birkhoff ergodic theorem, for if (2.1) converges,

lim n=' S £(T)=0 .
k=0

n=—>»o00

This fact is an immediate consequence of the well known theorem that

th convergence of > c,/n implies
n=1

lim (1/n) Lz =0 .
We are not able to establish convergence of (2.1) under the very mild
restrictions placed on f(x) in order for the ergodic theorem to hold. It
is clear from the example f(x)=constant that mere integrability of f
is not enough. Our consideration of series of the form (2.2) is moti-
vated by studies of Kac [3, 4] regarding series of the form

(2.3) o f (i’?x) T(z)=2z (mod 1)

and

(2.4) iﬂ%@ , n integers, /g, >q >1.
k=0

The techniques employed in the study of (2.4) can be made to yield
some results concerning convergence of (2.2) although, as would be
expected from the greater complexity of the transformations considered
here, the results are not so sharp as those obtained by Kac.

Before stating and fproving the results of this section we must
make some preliminary remarks. Our main tool will be the concept of
quasi-orthogonal functions developed by Menchoff.

DEFINITION 2.1. A sequence of functions {f,(x)}n=1, 2, .-+ is said
to be quasi-orthogonal on a set A if the quadratic form
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S ap={ £ () f )

is bounded in Hilbert space, that is, there exists a constant B indepen-
dent of the z; such that

oo

<BX4.

> @32 %
Jy k=1

Observe that an orthogonal sequence of functions is quasi-orthogonal
since in this case a,,=4d;, and

DN U S X5
Jy k=1 j=1

The importance of quasi-orthogonality lies in the fact that Bessel’s
inequality holds in the sense that if

LF(x) fi@)dz—=C,

then there exists a constant D such that
Swmmgniq
4 k=1

thus every theorem on sequences of orthogonal functions which utilizes
only Bessel’s inequality in its proof is also valid for sequences of quasi-
orthogonal functions. In particular we shall need the fact that the
following theorem of Menchoff [5, p. 236] is valid for quasi-orthogonal
functions.

THEOREM 2.1. If {0x)} is a sequence of orthogonal functions then

S el(@) converges almost everywhere provided
k=1

i‘, ¢; log?hk< oo
k=1

DEFINITION 2.2. Let t=kil 32%)— then the Rademacher functions 7,(t)
are defined as follows
r 1 if e(¢)=0
ri(t)=
| =1 if eu(t)=1.

It is well known that the Rademacher functions form an incomplete
orthonormal set on [0, 1]. Moreover the Rademacher functions are sta-
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tistically independent, that is, denoting Lebesgue measure by g, we
have

© {t]?‘](t) <a‘h ) 7’7’z(t) <a’n} =Lii[1 H {tlrk(t) <alc} .

DEFINITION 2.3. The sequence of functions {¢,(x)} defined by
dy(@)=1
Su(@)=7p () + 1, () fOr n=2714+.. 2%

where the 7,(x) are Rademacher functions, are called the Walsh func-
tions. They form a complete orthonormal set (the completion of the
Rademacher functions) and hence for every f(x) € L* on [0, 1] the Walsh-
Fourier series

S eu(@) e | Flaa)da

converges to f(x) in the I’ mean.
We are now ready to prove our theorems. In each of them it will
be assumed that neither = nor any of its iterates has a fixed point.

THEOREM 2.2. The series (2.1) either converges almost everywhere
or diverges almost everywhere in [0, 1].

Proof. Denote by C the set of points where the series converges.
This set is invariant under 7, but since 7, is metrically transitive,
either C or its complement is a zero set.

THEOREM 2.3. Suppose f(x) satisfies
(a) lf@)— @) |z—a|” a>1/2,

(b) S;f(w)dx=0

then g_“‘c,c F(TEx) converges almost everywhere provided
k=1

oo

S eilog?k < oo

k=1

Proof. We shall demonstrate that hypotheses (a) and (b) insure
that the sequence {f(T%zx)} is quasi-orthogonal. To do this we expand
f(z) in a Walsh-Fourier series
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FO~Se@, o] f@ads .
Then

FIR)~S, el Tha) .

But the transformation T, permutes the Walsh functions. Hence

f(Tv)m)"’;C:po\, @)

where the ¢, i, are the Walsh-Fourier coefficients of f(z) in some order.
It was shown by Fine [6, p. 394] that the conditions (a) on f(x) is
sufficient to insure the absolute convergence of the Walsh-Fourier deve-
lopment of f(x). By Parseval’s relation,

1 oo
[ @ Txa=3, et
Hence

5

A=1

(Sl )(Z lewannl) -

Since the Walsh-Fourier series of f(x) is absolutely convergent, its
sum is independent of a rearrangement of its terms and

Z CxCo(r, k)

[ r@r@]< S

0

2 leoo sl <<M  (independent of k) .
Thus
S [ rr@aiz =m S i<
Setting
an=| F@F(Ts )z,
we have

Sl 3 || rer @i <ea.

By the triangular inequality and the trivial inequality
Ixjwk!:<__~w§+x?c s

we have
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DL G| D @, P S lag ek S4AM? Y o .
=t w21 k=1 =

J

Therefore {f(T%x)} is quasi-orthogonal, and applying Theorem 2.1 we
have our result. For the case of convergence in the L*> mean we have
as an almost immediate consequence of Theorem 2.3 the following.

THEOREM 2.4, If {f(Tix)} is quasi-orthogonal the series

Sionf (T)

converges in the mean of order 2 provided that

2,6 .
k=1

Proof. we have

(] Sewr @) |-

OLA=m

$ e £ ] < S et

J.k=m k=m

But the convergence of f_",c,i implies the last term is arbitrarily small
k=1

for m and » large enough.

The smoothness restrictions on f(z) in the above two theorems are
heavy, and it might be conjectured that as in the case of the ergodic
theorem only the restrictions that f(x) be integrable (or of course square
integrable in the case of Theorem 2.4) are necessary. We are unable
to answer this for the case of pointwise convergence, but in the case
of mean convergence the answer is in the negative. For Halmos has
shown [7, pp. 286-88] that for an arbitrary metrically transitive trans-
formation 7' there functions in L* for which

& f (T )
76;1 k

does not converge in the mean. His proof depends upon the spectral
resolution of the unitary operator U in the Hilbert space of L* functions
defined by Uf(x)=f(Tx).

We now turn our attention to the convergence of certain gap series
of the form (2.2).

THEOREM 2.5. Suppose

(a) (@)= s @) <|le—a'l*, 0Za<1,
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(b) [f@dz=0.

Then there exists a subsequence {2} of the positive integers (the subse-
quence depneding on the permutation = but not on f(x)) such that

S f (Tira)

converges almost everywhere, provided that

M

Cr < .

k=1

[

Proof. Utilizing a device of Kac [8, p. 6562] we construct a sequence
of functions {f.(x)} satisfying

(1) [ £eterdz=0,

(2) S et Fitada <o,

(3) Lf () — fu(@)| < BJ2" (0<a <),
(4) {f(T%x)} is a subsequence of independent functions.

The construction goes as follows. Divide the interval [0, 1] into 2*
parts. Let

1 (reet r r+1
=g\ rwar, L <e<"E

v =0 L, 2

An easy calculation shows that (1) holds. Since
sup | f (@) <sup|f@)| <M
o0 1 oo
Setl| Ir@rde < S el
k=1 0 k=1
which proves (2).

The construction of the f(x) and hypothesis (a) imply (3). To
prove (4) we need the following.

LEMMA. Let J be a fixed finite collection of integers. Let w be the
permutation defining T, then an integer n, can be so chosen that {m"(1),
«o, k) NT=¢ if n>n, (P denotes the empty set.)

Proof. x is a permutation without fixed points, hence there exists



562 CHARLES STANDISH

an integer n», such that for n>n, n"(1) N\J=¢. Similarily there exist
n; such that 7z°(j) \J=¢, n>n,, j=1,---, k. Now choose n,=max (7,
M) Ink)'

If x=il e(x)/2%, f.(x) being a step function with jumps at points
k=

r/2%, is of the form [f(x)=Fy(e;, &,--+, ¢;,). Suppose we have chosen
Ayt **y A, SO that f(T™Mx). .- f(T"x) are independent. Now choose 1,.;
such that #*nni(j)zs£rx*s(m), m<4y, k=1,---,m, j=1,--., n+1. To see
that this is possible take J={z“(m)}, m <A, k=1, ---,n, and apply
our lemma. Now

an(T)‘n’fl.T)=Fn+1(€;\t”+1(1), oo 5:"“(” +1))

is independent of f,(T*¢x), 4,<m, and (4) is proved. The series
S\ 6 fu(Ta)

converges almost everywhere by the Kolmogoroff three series theorem.
Since |f(T™x)— f(T™x)| < B|2%*, i‘,ck f(T*sz) converges almost every-
where, and the proof of Theorem L2=.15 is complete.

Upon specializing the permutation 7 our results can be considerably
strengthened. We illustrate by an example. Let m=(---5312468---)
Then if f(x) satisfies the hypotheses of Theorem 2.5, ki]lck SF(T™x) con-

verges for all sequences of integers {2,} such that

lim *;H Se>2.

k—>o00 &

One sees this by noting that for % sufficiently large
Aosr >4+ (k+2) .

But then the sequence of functions {f,(7%+x)} is independent. It might
be conjectured that for a suitable permutation even the sequence
{fo(T%z)} is independent. This is not the case, however, by virtue of
the following combinatorial lemma, which is of possible independent
interest.

LEMMA. If 7 is a permutation containing at least one infinite cycle
then it is tmpossible that

71'(1)’ 72'2(1)7 m(2),+ -, ﬂk(l)r o '”k(k)r' °

are all distinct integers.
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Proof. Let (-+-k, k,,--+) be an infinite cycle. Then it is impossible
that =(k,) <k, for all except a finite number of 2, since if this were
the case then {k,} for i sufficiently large would be a strictly decreasing
infinite sequence of positive integers which is impossible. Hence there
exist infinitely many 21 such that =(k,) >k, Call this sequence again
{k,}. If n(k;)=u, then u,+1>k, and 7" (k;)=n"s(u;)

3. A statistical remark.
THEOREM 38.1. Given a transformation T, there exists a subsequence

{2} of positive integers depending on wm but not on f(x) such that if
f(x) satisfies a Lipschitz condition of order o and

tim 1|8 e, p(7t) | =20 S e <M,
n—oo P WE=0 k=0
where
[
r={ e,
then

fo /’ﬂ%ckf(wt) bpj> L [ :12%)d
<0<y (e (cwize,

that s, the sequence
=2 3 o, f(T0)
k=0
1s asymptotically normally distributed.

Proof. By the proof of Theorem 2.5 we can find a sequence of
statistically independent functions {f.(T%x)} such that
| st - puzso|< 2

= G

Hence

|5 euf @t) = 3 o (T2t

Thus given ¢ >0

<B i-2£v~<constant (B’=max|c,|+ B).
K=0 2F%

S o f (Dat)= 3 cof lT)

e
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if n is sufficiently large. We may now proceed exactly as in the proof
of a theorem of Kac [4, Theorem 1, pp. 41-42] with f,(T%=x) playing
the role of ¢.(Tx) and with 2% replaced by 7% to obtain our result.
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