NOTE ON A THEOREM OF HADWIGER

ROBERT STEINBERG
NOTE ON A THEOREM OF HADWIGER

R. STEINBERG

Throughout this paper, H denotes a Hilbert space over the real or complex numbers and (x, y) denotes the inner product of the vectors x, y of H. The only projections we consider are orthogonal ones.

Our starting point is the basic fact that, if $\{u_a\}$ is an orthonormal basis of H, then the Parseval relation

\[(x, y) = \sum (x, u_a)(u_a, y) \quad (1)\]

is valid for each pair of vectors x, y of H. It is easy to see that (1) is also valid if $\{u_a\}$ is the projection of an orthonormal basis $\{w_a\}$ and if we restrict x and y to the range of the projection. Indeed, if E is the projection, so that $w_aE = u_a$ for each a, then

\[(x, y) = \sum (x, w_a)(w_a, y) = \sum (xE, w_a)(w_a, yE) = \sum (x, w_aE)(w_aE, y) = \sum (x, u_a)(u_a, y),\]

The theorem referred to in the title deals with this result and also with the converse question:

Theorem 1. If the Parseval relation (1) is valid for each pair of vectors x and y of H, then the set $\{u_a\}$ is the projection of an orthonormal basis of a superspace K of H.

This result was first proved by Hadwiger [1], and, then, by Julia [2]. We first give a simple proof of Theorem 1 that depends on a simple imbedding procedure, and then consider some related questions concerning projections of orthogonal sets of vectors.

Proof of Theorem 1. We choose as K coordinate Hilbert space [4, p. 120] of dimension equal to the cardinality of the set $\{u_a\}$. We see from (1), with $x = u_\beta$, $y = u_\gamma$, that the matrix $U = ((u_a, u_\beta))$ is idempotent. Since U is also Hermitian, it may be interpreted as a projection acting on K. We now imbed H in K by making correspond to x in H the (row) coordinate vector $x' = \{(x, u_a)\}$ in K. In particular, to the vector u_β there corresponds the βth row of U which is manifestly the image, under the projection U, of the βth coordinate basis vector. Finally, if $x' = \{(x, u_a)\}$ and $y' = \{(y, u_a)\}$, then $(x', y') = \sum (x, u_a)(y, u_a) = \sum (x, u_a)(u_a, y) = (x, y)$; thus the imbedding is isometric and we are done.

We next prove a related result which is due to Julia [2, (c)].

Received November 23, 1955.
THEOREM 2. If the Parseval relation (1) is valid relative to the set \(\{u_a\} \) of \(H \), and, if no \(u_a \) is in the closed subspace spanned by the others, then \(\{u_a\} \) is an orthonormal basis.

Proof. The second assumption implies the existence of a dual set \(\{v_\alpha\} \) in \(H \) such that \((u_a, v_\beta) = \delta_{a\beta} \) [see 3, p. 264]. Then, using (1), we get

\[
\delta_{a\beta} = (u_a, v_\beta) = \Sigma_j (u_a, u_j)(u_j, v_\beta) = \Sigma_j (u_a, u_j) \delta_{j\beta} = (u_a, u_\beta).
\]

We remark at this point that the methods of proof of Theorems 1 and 2 can be used to give proofs of the corresponding results about projections of biorthonormal bases of vectors \(\{u_a; v_\alpha\} \) for which \((u_a, v_\beta) = \delta_{a\beta} \). These methods are also used in our next proof [see 2, (b)].

THEOREM 3. A necessary and sufficient condition that a set of vectors \(\{u_a\} \) of \(H \) be the projection of an orthonormal set (not necessarily a basis) in some superspace \(K \) is that, for each \(x \in H \),

\[
\Sigma_j |(x, u_a)|^2 \leq (x, x).
\]

Proof. By the remarks preceding Theorem 1, the necessity is clear. In proving sufficiency, we may suppose \(\{u_a\} \) is complete in \(H \), since, otherwise, by adding to \(\{u_a\} \) an orthonormal basis of the orthogonal complement of \(\{u_a\} \) in \(H \), we get a larger set which is complete, and for which the condition (2) is still valid. Next we show that, if \(U \) is the matrix \(((u_a, u_\beta))\), then \(0 \leq U \leq 1 \), in the sense that both \(U \) and \(I - U \) are nonnegative [4, p. 213]. Let \(\xi_\alpha \) be any set of scalars of which all but a finite number are zero. Then, using Schwarz' inequality and (2), we get

\[
0 \leq (\Sigma_\alpha \xi_\alpha u_a, \Sigma_\beta \xi_\beta u_\beta) = \Sigma_{a,\beta} \xi_a \xi_\beta (u_a, u_\beta) \leq \Sigma_\beta |\xi_\beta|^2 (\Sigma_\alpha |\xi_\alpha|^2)^{1/2} \leq \Sigma_\beta |\xi_\beta|^2 (\Sigma_\alpha |\xi_\alpha|^2)^{1/2} (
\Sigma_a \xi_a u_a, \Sigma_\gamma \xi_\gamma u_\gamma)^{1/2}.
\]

Thus \(0 \leq \Sigma_{a,\beta} \xi_a \xi_\beta (u_a, u_\beta) \leq \Sigma_\beta |\xi_\beta|^2 \); so that \(0 \leq U \leq 1 \), \(U^2 \) exists and \(0 \leq U - U^2 \) [4, p. 217]. Consider now the matrix \(E = \begin{pmatrix} U & \sqrt{U-U^2} \\ \sqrt{U-U^2} & 1-U \end{pmatrix} \). [See 4, pp. 215, 224]. This is Hermitian and idempotent and hence represents a projection in coordinate Hilbert space \(K \) of the appropriate dimension. As in Theorem 1, the (row) vectors given by the upper half of \(E \) not only are the images, under \(E \), of “half” of the coordinate basis vectors of \(K \), but also constitute an isometric imbedding of the set \(\{u_a\} \) in \(K \). Since \(\{u_a\} \) is complete in \(H \), the imbedding can be extended to all of \(H \); and the proof is complete.

At this stage, we introduce the following definition: A set of vectors \(\{u_a\} \) in \(H \) has the property \(P \) if each \(x \in H \) is orthogonal to all but a countable number of \(u_a \).
Theorem of Hadwiger

Lemma (1) Any orthogonal set has property P. (2) Property P is invariant under projection: if \(\{u_a\} \) has property P and \(E \) is a projection, then so does \(\{u_aE\} \).

Proof. The statement (1) is a classical result [4, p. 114]. To prove (2) we select any \(x \) in \(H \). Then \((x, u_aE) = (xE, u_a) \) which is zero for all but countably many \(u_a \).

This lemma leads us to the following conjecture: A necessary and sufficient condition that \(\{u_a\} \) be the projection of an orthogonal set (not necessarily normal) is that \(\{u_a\} \) has property P.

The lemma proves necessity. We have been unable to prove sufficiency. However, we can prove the following special case:

Theorem 4. A necessary and sufficient condition for the set of non-zero vectors \(\{u_a\} \) in a separable Hilbert space \(H \) to be the projection of an orthogonal set is that the set be countable.

Proof. Suppose first that \(\{u_a\} \) is the projection of an orthogonal set. Then, by the lemma, it has property P. Let \(\{x_i\} \) be a (countable) basis for \(H \). Then all but a countable number of \(u_a \) are orthogonal to each \(x_i \) and hence to their union \(\{x_i\} \). That is, all but countably many \(u_a \) are 0. This proves the necessity. To prove sufficiency, we suppose that \(\{u_a\} \) is countable and indexed by the positive integers. We then define \(v_a = 2^{-a}u_a|u_a, u_a|^{1/2} \), for each \(\alpha \). Then, if \(x \) is any vector of \(H \), it follows, by Schwarz' inequality, that \(\Sigma[(x, v_a)]^2 \leq (x, x)\Sigma(v_a, v_a) = (x, x)\Sigma 2^{-2a} \leq (x, x) \). Thus, by Theorem 3, \(\{v_a\} \) is the projection of an orthogonal set and so is \(\{u_a\} \).

We close with an example of a set \(\{u_a\} \) which is not the projection of an orthogonal set. Let \(\{x_a\} \) be an uncountable orthonormal set in nonseparable Hilbert space and set \(u_a = x_1 + x_a \), for each \(\alpha \). Then \(\{u_a\} \) does not have property P and hence, by the lemma, is not the projection of an orthogonal set. It is to be noted that Theorem 4 cannot be used to prove this result since every uncountable subset of \(\{u_a\} \) spans a nonseparable subspace of \(H \).

References

University of California, Los Angeles
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsuisha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Seymour Ginsburg, On mappings from the family of well ordered subsets of
a set ... 583
Leon Ehrenpreis, Some properties of distributions on Lie groups 591
Marion K. Fort, Jr., A geometric problem of Sherman Stein 607
Paul R. Garabedian, Calculation of axially symmetric cavities and jets 611
Walter Mossman Gilbert, Completely monotonic functions on cones 685
William L. Hart and T. S. Motzkin, A composite Newton-Raphson gradient
method for the solution of systems of equations 691
C. W. Mendel and I. A. Barnett, A functional independence theorem for
square matrices ... 709
Howard Ashley Osborn, The problem of continuous programs 721
William T. Reid, Oscillation criteria for linear differential systems with
complex coefficients .. 733
Irma Reiner, On the two-adic density of representations by quadratic
forms .. 753
Shoichiro Sakai, A characterization of W^*-algebras 763
Robert Steinberg, Note on a theorem of Hadwiger 775
J. Eldon Whitesitt, Construction of the lattice of complemented ideals within
the unit group .. 779
Paul Civin, Correction to “Some ergodic theorems involving two
operators” .. 795