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ZERO-DIMENSIONAL COMPACT GROUPS

OF HOMEOMORPHISMS

R. D. ANDERSON

l Introduction* All spaces and topological groups referred to in
this paper will be compact and metric. All topological groups will ad-
ditionally be zero-dimensional, that is, either finite or homeomorphic to
a Cantor set. As general references we cite Zippin [6] and Montgomery
and Zippin [4]. Several of our definitions are similar to those in [6].

A topological transformation group of a topological space is an as-
sociation of a topological group G and a topological space E in the sense
that each element g of G and point x of E determine a unique point
of E. If this point be called x'f we write gx=x'. The association is
subject to the following conditions:

(1) if e denotes the identity of G, ex=x for all xeE,
(2) g{gfx)-{ggf)x, g, gf eG, xeE, and
(3) gx is continuous simultaneously in g and x.

Each element of G may, under the association, be regarded as a
homeomorphism of E onto itself.

The topological transformation group G is said to be effective if for
each g e G not the identity, there is an xge E for which gxg Φ xg and
is said to be strongly effective (or fixed-point-free) if for each g eG not
the identity and for each x e E, gxφx. We shall use the symbol
Tg(G, E) to denote a particular association of G with E such that G is
an effective topological transformation group of Έ. Thus by Tg(G, E)
we mean a particular group of homeomorphisms of E onto itself, the
group being isomorphic to and identified with G. If Tg(G9 E) is strong-
ly effective we write TgS(G, E).

For x e E, G(x) will denote the set of all images of x under G and
will be called the orbit of x under G. Similarly for X C E, G(X) will
denote the set of images of X under G. The individual orbits may be
regarded as the "points" of a space, the orbit space, O[Tg(G, E)~] of
Tg(G, E). O[Tg(G, E)] is a continuous decomposition of E.

The main purpose of this paper is to prove the following theorems:

THEOREM 1. Let G be any compact zero-dimensional topological
group. Let M be the universal curve.1 Then there exists a TgS(G, M)

Received May 11, 1956. Presented to the American Mathematical Society August 1956,
and in part, December 1954. The research leading to this paper was supported in part by
National Science Foundation Grant G 1013.

1 The universal curve is a particular one-dimensional locally connected continuum. Its
description and a characterization of it are given in § 3.
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such that O[TgS(G, M)] is homeomorphic to M.

THEOREM 2. Let G be any infinite compact zero-dimensional topologi-
cal group. Let M be the universal curve. Then there exists a TgS(G, M)
such that O[TgS(G, M)] is a regular curve1.

Theorem 1 asserts that the universal curve is also universal in the
sense that every compact zero-dimensional group can operate on it in a
fixed-point-free fashion. It is well known and is easy to prove —see
Example 1 —that the Cantor set also has this property.

The following two theorems are corollaries of some of the methods
used in the proofs of theorems 1 and 2. In particular, the argument
of § 5 gives the essential structure of an argument for Theorem 3.
Theorem 4 is a corollary of Theorem 3.

THEOREM 3. Let G be any finite group. Then there exists in E3 a
3-manifold M with connected boundary such that TgS(G, M) exists.

THEOREM 4. Let G be any finite group. Then there exists in E3 a
2-manifold K {without boundary) such that TgS(G, K) exists.

Any zero-dimensional compact group G can be expressed as the in-
verse (or protective) limit (simultaneously in both a topological and a
group sense) of a sequence {Gt} of finite groups under a sequence {πt}
of homomorphisms with, for each i, πt carrying Gi+1 onto Gt (see §§ 2.5-
2.7 of [4]). The group G is said to be p-adic if, for each i, Gt can be
taken as a cyclic group with, for each i, πt not an isomorphism. If G
is a p-adic group and sequences {GJ and {πt} exist such that, for each
i, πi is two-to-one then G is called the dyadic group.

AGREEMENT 1. We shall assume henceforth that G is a particular
compact zero-dimensional topological group.

AGREEMENT 2. We shall assume that sequences {Gt} and {πt} with
respect to which G is an inverse limit are given and to avoid subdivision
of the ensuing arguments into cases we shall further assume that G is
infinite and that, for no i, is π% an isomorphism.

It will be clear that the argument we give for Theorem 1 actually
includes the essentials of the argument for the case of G finite.

2 A locally connected continuum is said to be a regular curve provided every point
of it has arbitrarily small neighborhoods with finite boundaries or, equivalently, provided
every pair of points of it can be separated by a finite point set,
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NOTATION. Let e be the identity of G and, for each i, let et be
the identity of G,t. For each i, let n{G%) be the number of elements in
Gt.

REMARKS. At the heart of the theory of topological transforma-
tion groups is the open question as to whether any infinite compact
zero-dimensional group can operate effectively on a Euclidean manifold
E. In studying such a question it is natural to consider the ' i nice ''
spaces on which such a group can operate and to consider the charac-
teristics of the group operation3. Zippin [6] has observed that the
known examples of even the dyadic group D effective on locally con-
nected continua involve a type of " branching " about subsets on which
D is not strongly effective, and, in fact, usually a type of " branching "
about points or sets which have periodic orbits under G (see Example
2). Thus our theorems and arguments contribute to the knowledge of
the ways zero-dimensional infinite compact groups can operate on locally
connected continua. In this connection, we also note in Example 3
that any p-adic group can be strongly effective on the infinite dimen-
sional compact torus.

We mention the following questions: For E a continuum and G
infinite, is it possible for TgS{G, E) to be such that the dimension of
O[TgS(G, E)] exceeds the dimension of EΊ If such is possible, can E
be one-dimensional ?, locally connected ?, the universal curve ?, locally
Euclidean? What are conditions on E for which dim(O[TgS(G, E)])
must be <LdimE?

In the classic example of Kolmogoroff [3], G (not made explicit by
him) operated effectively but not strongly effectively on a one-dimen-
sional locally connected continuum E, and O[Tg(G, E)~\ was two-
dimensional. The more recent example by Keldys [2] of a light open
mapping of a one-dimensional continuum onto a square also involved a
"branching" type operation.

2. Examples. In this section we wish to give three examples of
topological transformation groups. Of these A and B, at least, are

3 Smith, in [5], states " There exist, however, nearly periodic transformations which
are not periodic. In all known examples the space M under transformation is of a highly
irregular local structure which suggests the problem referred to above: Can there exist
a non-periodic nearly periodic transformation T operating in M if M is fairly regular in
its local structure, for example, locally Euclidean." If G is a p-adic group, if TgS(G, M)
exists, and if gQG with gφe, then g as a homeomorphism of M is a non-periodic nearly
periodic transformation. As the universal curve is homogeneous, it is, in a sense, fairly
regular in its local structure and thus our Theorems 1 and 2 contribute to this question of
Smith.
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well known.

A. The group G can operate on itself as follows: for each g, heG
with h thought of as a point of a space, gh=h; where h' is the group-
theoretic gh. With this definition G is transitive on itself. For each h,
h'eG there is one (and only one) element geG for which gh=h'.

If, contrary to our Agreement 2, G is finite then G can operate on
itself in this same way and also G can operate on a Cantor set C as
follows: let H be a collection of disjoint open and closed subsets of C
such that4 H* = C and H admits a one-to-one transformation φ onto G.
For some he H and any g e G let pg be a homeomorphism of h onto
φ~ι{gφ{h)) with pe the identity on h. For any point pe C, there exists
a g' eG such that p-,\p)eh. Define #p to be pg^(pό^(p)) where g"=ggr.
The technique which we use here is similar to one we shall use for
Lemma 2 later in the argument for Theorems 1 and 2.

B. In this example we show that G can operate on a locally con-

nected continuum in the plane, in fact, on a tree, the particular tree,

however, depending on G. Let / be the unit interval 0<Iα?<Il, y=0.

Let Kτ be a collection on n(G^ disjoint subintervals of / formed by

choosing every other element of a subdivision of I into 2n{G1) — l equal

subintervals. Inductively, for each i > 1, let Kt be a collection of n(Gι)

disjoint subintervals of / formed by choosing every other one of a sub-

division of each interval of K^λ into 2( -^ " ) - 1 equal subintervals.

Then f\iKf is a Cantor set C which may, in the obvious way, be
identified with G.

For each i, let Qt be a set of w(Gέ) points on y=2~i such that for
each element k oί Ku Qt contains a point q(k) whose ^-coordinate is the
^-coordinate of the midpoint of k. Let Qo be the point (£, 1). Let t
be \J Q«+ f\Kf +for each i l > 0 , the sum of all intervals with endpoints

one in Q, and the other in Q ί + 1 which project parallel to the 2/-axis into
iff. Then G may be considered as operating effectively but not strongly
effectively on t such that the "branchings" of the operation of G on
t occur at the points of \J Q.£ and such that each point p of t — C has

a finite orbit under G consisting of those points of t on the horizontal
line through p. In developing G we may consider that, for each i, Gt

permutes the elements of Kt consistent with πί_1 and Gί-1 permuting
the elements of Kt-.x.

C. Let G be a £>-adic group and hence let, for each i, Gt be cyclic.
4 If H is a collection of point sets, H* denotes the sum of the elements of H,
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Let E be the infinite dimensional compact torus J1 x J2 x where, for
each i, Jt may be thought of as the circle of radius 2~* and center at
(0, 0). Then TgS(G, E) exists. For each i, let ψ% be the group of
order ni of rotations of Ji and let Tg(Giy E) be the cyclic group of order
nt on E defined coordinatewise as ψj for j <i i and as the identity for
j > i . Then TgS(G, E) may be defined coordinatewise as φt on Jif for
each i.

3* Definitions and the universal curve. Let N be the set of points
in E3 for which 0<Iί£<ll, 0 ̂ y <L1, 0<Lz<Ll. For w=x, y, z and
i = l , 2, let Dt(w) be the set of all open intervals on the w-axis of
length 3~* whose endpoints have ^-coordinates which are positive ra-
tional numbers less than 1, the expression for each such rational num-
ber having 3* as a denominator when in lowest terms. The length of
D*{w), for any i, is \. Let M be the set of all points (x, y, z) of N
for which, for no i, do two or more of the points (a, 0, 0), (0, y, 0),
and (0, 0, z) belong to the set Df(x)-hDf(y)±Df(z). The set M is call-
ed the universal curve.

It is not hard to verify that M is a locally connected one-dimen-
sional continuum with no local separating points. M is called " the
universal curve " as every one-dimensional continuum can be imbedded
in it.

We need several further definitions before characterizing the univer-
sal curve. We use a special case of the characterization given in [1]
with resultant simpler definitions than those of [1].

If H and Hr are collections of point sets, H is said to be a refine-
ment of H' if each element of H is a subset of an element of Hr and
each element of Ή! contains an element of H. A collection H of point
sets is said to be one-dimensional provided no three elements of H
intersect.

A collection H of point sets is said to be simple provided that (1)
H is finite, and H* is connected, (2) each element of J? is a (closed) 3-
cell, and (3) if two elements of H intersect their intersection is a 2-
cell on the bounding 2-sphere of each such element.

Let H and H' be simple collections with H a refinement of H'.
Let h be an element of H' and let Z be the collection of those elements
of H in h which intersect elements of H not in h. Then H is said to
interlace h provided that for any subdivision of Z into disjoint sets Zx

and Z2 with ZXΛ-Z^=Z there exist non-null connected sums of elements
of H in h, namely X1 and X2 with Xτ ^ Zf, X2 3 Zf, and X1 and X2

having no element of H in common. H is said to interlace Hr if H
interlaces each element of Hf'.

A sequence {FJ is said to be a λ-defining sequence of a continuum
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M provided

(1) for each i, Ft is a simple one-dimensional collection covering M,
(2) for each i, Fί+1 is a refinement of Fi9

(3) Λf-Π*^f
(4)5 for any e ]> 0 there exists a number % such that m{Fn) <[ e,
(5) for each i, Fi+1 is interlaced in 2^, and
(6) if two elements of Ft intersect then each contains two elements

of Fi+1 intersecting elements of Fi+1 in the other but neither contains
any element of Fi+1 intersecting two elements of Ft distinct from the
one containing it.

A non-degenerate continuum for which there exists a ^-defining
sequence is called a C-set.

The following theorem is proved in [1]:

THEOREM. Each C-set is homeomorphic to the universal curve.

NOTATION. If Et is a finite collection of closed point sets and
Tg(Gt, Ef) or TgS{Giy Ef) is such that for h e Et, and any g e Gt, gh is
an element of Et then we will write Tg(G, Ef, Et) or TgS(Gt, Ef, Et)
respectively. If {Et} is a ^-defining sequence and TgS(Gίf Ef, Et) and
TgS(Gi+1, Et+i, Ei+1) exist, then TgS(Gί+1, Ef+1, EM) is said to refine
TgS(Giy Ef, Ei) provided that for any geGί+1 and any xeEi+1, if x'
denotes the element of E% containing x, πt(g)x' contains gx.

AGREEMENT 3. In what follows we shall make many constructions in
E3 using 3-cells and homeomorphisms. Every S-cell used is to be poly-
hedral and every homeomorphism defined over finite sums of 3-cells is
to be piecewise-linear, that is, is to carry polyhedra into polyhedra. We
interpret this understanding to apply also to appropriate subsets (2-cells)
and homeomorphism over these subsets, such being used in the construc-
tions and lemmas. All constructions are to be in E3.

4. Statements of lemmas and proof that the lemmas imply Theorems
1 and 2

LEMMA 1. Let n be any positive integer. Let K and K' be elements
of a simple one-dimensional collection of 3-cells in E3. Let D and Df be
collections of n disjoint 2-cells on the boundaries of K and K' respec-
tively. Let φ be a homeomorphism of D* onto Z)'* preserving orientation
on the elements of D and Dr relative respectively to K and Kr as embed-

5 If H is a finite collection of point sets, m(H) denotes the mesh of iJ, that is, the
l.u.b. of the diameters of BΓ.
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ded in E3. Then there exists an orientation-preserving6 homeomorphism
ψ of K onto Kr such that for each point peD*, ψ(p)=φ(p).

Proof. This lemma is geometrically obvious and is well known.

LEMMA 2. Let, for any i, Xu •••, Xn(σ.ϊ be a set Xof disjoint con-
tinua all homeomorphic to each other. For each j , l<±j^n(Gt)9 let η5

be a homeomorphism of Xx onto Xj with rjτ the identity on Xx. Let pi
be a one-to-one transformation of X onto Gt with piXj^gj for each j .
Then TgS(Gg, X*, X) exists with gx defined as follows:

for xeXj, gjx=7]Jc,7}K1x where g^=gjgk.

Proof of Lemma 2. This lemma is almost obvious and is well
known. We state it separately to simplify the argument for Lemmas
3, 3' and 3". To prove the lemma it is sufficient to note that

dh{gh^)=-{ghg3.)x for xexk and gh, gheGu

where gk, is ghgk and gk,, is ghgw Therefore gk,, is (ghgό^gk as was to
be shown.

LEMMA 3. There exists a continuum M and a λ-defining sequence
{Ft} of M such that for each i, TgS{Gt, Ff, Ft) exists with TgS(Gt+1,
Ftu Ft+1) refining TgS(G, Ff, Ft) and for each element f of Fif Gt(f)
consists of n(Gi) disjoint elements of Ft.

LEMMA 3\ The same as Lemma 3 with the added condition that
there exist a λ-de fining sequence {Hi} and a sequence {//J such that

(1) for each if μt is a mapping of Ff onto Hf with for feFiy

μt(f) β Ht and μt a homeomorphism over f
(2) for any geGt and xeFf, μi{x)=μi{gx), and

(3) for each i, feFt and feFi+l9 μt(f) D μί+i(f) if and only if

LEMMA 3 " . The same as Lemma 3 with the added condition that
there exists a sequence {Ht} of simple collections and a sequence {/̂ }
such that

6 Orientation-preserving with respect to embedding in E3.
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(1) for each i, μi is an n{G^)-to-one mapping of Ff onto Hf with
for feFif μt(f)eHt and μi a homeomorphism over f,

(2) for any geGt and xeFf, μi{x)=μi{gx)

(3) for each i, feFt and feFt+1, μ^f) Z> μt+ι(f) if and only if

(4) for each h, h' e Hi for which h-h' exists, Hί+1 contains exactly
one element in h intersecting an element of Hi+1 in h, and

(5) for any ε^>0 there exists an n such that m(Hn) < ε .

Before proving Lemmas 3, 3' and 3" in §§ 5 and 6 we wish to
note that Lemma 3 implies a weaker form of Theorem 1 to the effect
that TgS{G, M) exists, that Lemma 3' implies the full strength of
Theorem 1, and that Lemma 3" implies Theorem 2.

Clearly, from the characterization of the universal curve cited in
§3, C\iFt=M is a universal curve. Let geG. Then g is defined by a
unique sequence {gt} with, for each i, g^eGi and ̂ gi+1=gt. For any
point peM, gp is defined as Γ\tgtft where {/,} is a sequence such that
for each i, feFu / O / i + i , and pef. But gp must be unique for
m{Fi) -> 0 and if {/,-} is another such sequence then, for each i, gj[
intersects gtft.

That such definition of the association of G and M satisfies the
conditions of the definition of topological transformation group is straigt-
forward. First, ex=x for all xeM as, for each i, e% leaves all elements
of Ft fixed. Second, as for each i, g, g'eGi and feFίy g(g'f)=(gg')f,
it follows that g{gfx)={ggf)x for g, g'eG and xeE. Third gx is con-
tinuous simultaneously in g and x. Let gj -> g in G and let xj -> x in
M. We wish to show that gjxj -> vx in M. Let ε > 0. Let k be an
integer such that (1) m(Fk) < e, (2) for all i > k, xι is in an element
of FJC containing x, and (3) for a l l i > & , πkgί+1 = πkgk+1 where gl+1 and
gk+ι are the elements of Gk+ι of the sequences {g{} and {̂ λ} defining
gj and g respectively. Then for all j > k, gjxj is at a distance of less
than ε from gx as was to be shown.

We have now established that Lemma 3 imphes the weak form of
Theorem 1 and it remains to show that Lemmas 3' and 3" establish
additionally that O[TgS(G, M)] is, in the first case, a universal curve
and, in the second, a regular curve.

We wish to show next that fl"=f\tiϊf is homeomorphic to O\TgS(G,
MJ] with {Ht} and TgS(G, M) as in either Lemma 3' or Lemma 3".
For any xeH, let {ht} be a sequence such that, for each i, h^ hi+1,
hiβHi, and xeht. But then there exists a sequence {f} such that,
for each i, Λ^fi+1, /, e Fif and ^ ( / , ) = ^ . For zeH, let »(x) = G(f\Jt)
for such a sequences {/J. For any other such sequence {/,-}, G(f\ifi)
is G{Γ\Ji). As miH^-^O, m(Ft)->0, and for hif h\eHi ht intersects
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fit if and only if and only if for any/^ei^ with Pi(fi)=hi there exists
an /• with Pi(fd=h't and ft intersecting /•, then it follows that v is
one-to-one onto. A standard argument shows the continuity of v. Hence
v is the desired homeomorphism of H onto O[TgS(G, Mj\.

Finally for Theorem 1 we note that by the condition that {JEfJ is
a Λ-defining sequence in Lemma 3' it follows that H is a universal
curve.

For Theorem 2 by Condition (4) of Lemma 3" we note that if pe H
and k% denotes the sum of all elements of Z^ containing p then for any
i, H ki has only a finite number of points on its boundary with respect
to H. Hence H is a regular curve.

5 The first step of the proof of Lemmas 3, 3' and 3" The de-
monstration of the existence of suitable F1 and TgS(G, Ff, Fx) is ap-
plicable to each of the Lemmas 3, 3' and 3" and thus only one argu-
ment need be given.

DEFINITION. Let S denote a set of k disjoint 3-cells. A collection
R is said to be an n-developed collection about S provided (1) R is a
simple one-dimensional collection, (2) R contains S as a sub-collection,

(3) R—S contains 3n(n) elements, (4) for each pair of elements sλ and

s2 of S there exist exactly n simple chains of elements of R—S each
consisting of 3 links and each having one end link intersecting sλ and
the other intersecting s2, and (5) no link of any such 3-link chain inter-
sects more than two elements of R distinct from itself.

Let Sί be a set of n(G2) disjoint 3-cells and let Rλ be an n{Gλ)-
developed collection about SΊ. Let Rλ be the desired set Fλ.

For s, sf e S1 let B(s, s') be the set of chains of R1—Si which join
s and s'. Let ^ be a one-to-one transformation of S1 onto Gλ and for
s, s/eS1 let μSiSr be a one-to-one transformation of B(s, sr) onto Gx.

In defining Tg(Gu F*, Fx) which we shall show to be strongly
effective and hence TgS{Gu Fϊ, Fλ) we impose consecutively the follow-
ing conditions:

(A) For any seS1 and geGly gs=-λ~ιgλs.
(B) For any g e Gu s, s' e Sl9 and / a link of an element bf of

B(s, sf), gf is that link of /^!^/(#[#5,5/(6/)]) which intersects gs, intersects
gs' or intersects neither gs nor gs' according a s / intersects, s, intersects
sf or intersects neither s nor s\

With these conditions being satisfied, Gλ acts in a strongly effective
way on the finite set Fλ as we show. (A) implies that Gλ thus acts on
S1 by permuting the elements of Si among themselves, for seS» and
sfeS1 there is a unique geG1 for which gs=s' and if s=sf, g=e1. For
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fe F.-S,, ej=f by (B). For g, g' e Gλ and fe bf e B(s, s'), g(gf) must
be {gg')f for

and consistent with this, g(g'f) and (gg')f are each determined solely
by the orders on bf and b'f and on b'j respectively relative to s and
s' and g's and g'sf on the one hand and (gg')s and {gg')s! on the
other. It is easy to see that such operation is not only strongly ef-
fective but if /, / ' 6 FL with for some g e Gl9 gf=f then / and / ' do
not intersect the same element of Fλ.

Furthermore, it follows directly from the construction that if /,
/ ' 6 FL intersect then for any g e Gi9 gf and gf intersect.

With this information in mind we proceed to define Tg(GL, Ff, Fλ).
Let d be the set of all 2-cells which are the intersections of elements
of Flm Then we may think of Gx acting on CL consistent with Gx acting
on Flt that is, for ceCu c is /•/' for some /, f'eFu and for geGlf

gc is gf gf. But G1 structures Cx into orbits. From Lemma 2 by
considering these orbits one at a time we may define TgS(Gly Cf, Cx)
such that gc is gc as defined above and such that g is a homeomorphism
of c onto gc which is oriented to be consistent with some orientation
preserving homeomorphism of fΛ-f onto gf-\-gf,r carrying / onto gf and
f onto gf. That the orientation property of this latter statement is
true follows from a consideration like that of the proof of Lemma 2.
The orientation property may be made valid directly for the homeomor-
phisms from an element c to the elements in its orbit but any other
homeomorphism between elements of such orbit is composed from these
and for any/, / ' , f"eFL with/' intersecting / " there is at most one
geG{ for which gf=f or fn.

But now Lemma 1 and Lemma 2 applied to the various orbits of
the elements of F} under Gx assert the existence of TgS(Gly FT, Fy) as
we set out to show. Clearly there exists an HL as in Lemmas 3' and
3" such that we may map Ff onto Hf as in the Lemma.

6 The inductive step of the proofs of Lemmas 3, 3% and 3".
To complete the proofs of Lemmas 3, 3 ;, and 3r/ it now suffices to
define and establish the existence of F\ and TgS(Git Ft, F^), i > l ,
given F1 and TgS(G, FT, Fί) defined as above and F3 and TgS(Gu F]\
Fj), l < i < i , defined by the inductive procedure to be given. We
seek to do this so that applicable parts of Lemma 3 are satisfied. Then
we shall note variations on the argument to yield Lemmas 3' and 3'\

The construction we give will be similar in many ways to that of
the preceding section. We shall require that m(F i )<2" i .
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Let Cί-x denote the collection of intersections of the various elements
of ίVx with each other. Each element of C ^ is a 2-cell. Let ceC t-i
and let f(c) and f'(c) be the two elements of Ft-λ for which c=f(c)-f'(c).

Let St(c, f(c)) and St(c, f'(c)) be collections of exactly **&\- disjoint 3-
n(G)

cells in f{c) and fr{c) respectively such that
(1) each element of St(c, f{c)) intersects exactly one element of

Si(c, f'{c)) and that in a 2-cell in c,
(2) each element of St(cf f(c)) or St(c, f'(c)) intersects B(f{c))7 or

B{ff{c)) respectively in a 2-cell and such 2-cell is in S£(c, f'{c)) or
S*(c, f(c)) respectively, and

(3) there exist Rt{c, f(c)) and R^c, ff(c)) which are ^(G^-developed
collections about S^c, f(c)) and S^c, ff(c)) respectively such that (a)
lRt(c, /(c))~^(c, f(c)ψ df(c)-B(f(c)) and [Rt(c, f'(c))-St(c, /'(c))]*
CΓ(c)-B(f'(c)) and (b) mlRfa f(c))]<ε and mlR^c, /'(c))] < ε.

As it is possible to define such sets Sι(c, f(c)), Ri(c, /(c)), St(c, ff{c))
and Rt(c, /'(c)) for all c e C w such that for c ' # c , Rf(c, f{c)) + Rf{c,
f'(c)) does not intersect R*(c', f(c')) + R*(c', ff(c')), we consider such a
collection of sets to exist, each ce Cί-1 being identified with just two
elements R^c, f{c)) and #*(c, f'(c)).

For/eF^-x let Rt(f) and St(f) be the union of all such sets R^c,
f) and Si(c, f) respectively for ceQ-i and c C / . Thus St(f), for ex-
ample, is a particular collection of disjoint 3-cells in /.

DEFINITION. Let S denote a set of n disjoint 3-cells. A collec-
tion R is said to be an (n, m)-weakly developed collection about S provid-
ed (1) R is a simple one-dimensional collection, (2) R contains S as a
subcollection, (3) R—S contains w& ίo) elements, and (4) for each pair
of elements sL and s2 there is a simple chain of ra elements of R — S
having one end link intersecting sL and the other intersecting s2 such
that no link of any such chain intersects more than two elements of R
distinct from itself.

Let n(St(f)) be the number of elements of S^f). For some fixed
integer m and any feF^x let Q(f) be an (rc(£4(/)), m)-weakly developed
collection about S^f) such that (1) each element of Qι(f) — St(f)CZf
-B{f)} (2) no element of Qι(f)-St(f) intersects any element of Rt{f)
-S t (A and (3) m{Qi{f))<2'\

Let Lt(f) be that subset of Qt(f) consisting of St(f) and all links
of all chains of the development of Qt(f) between elements of St(f)
not both in any one set St(c, f) for ce Ci-1 and

Let St= W St(f), Rι- \J Riif) and L,= \J Lt(f).

By B(f) is meant the boundary of /.
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The set Ft is defined as the set of all elements in one or more of Si,
Riy and L^

Next we shall define Gt acting on Ft in a strongly effective man-
ner such that

(a) for feFt, and g eGίf f and gf do not intersect the same element
of Fif

(b) if/, f'eFi for which/-/' exists then for each geGu gf-gf
exists, and

(c) for feFi9 feF^ with f^f and for any geGu gf Cπi-ι{g)f.
Let A-i be the collection of all sets G -̂i(c) for c e C H . Each ele-

ment of A-i consists of n(G,,-•?) 2-cells. For deDί-1, let f(d) and f'(d)
be the two sets each of which is an element of F^λ containing an
element of d plus the sum of its images under Gi-1. Let S(f(d)) and
S(f'(d)) be the collection of those elements of £* which (1) intersect
d* and (2) lie in f(d) and f'(d) respectively. Then S(f(d)) and S(f'(d))
each consist of (̂G*) disjoint 3-cells.

For d e Di-ι let Λ/(d) and Λrc<o be one-to-one transformations of
S(f(d)) and S(ff(d)) respectively onto Ĝ  such that

(1) for s e S(f(d)) and s' e S(f'(d)), s intersects sf if and only if
λ/ω(s) is λf,^(s') and

(2) for geGt, s e S(f(d)) and / e F H for which β C / , ^

Each element of S4 belongs to exactly one set S(f(d)) or S(ff(d))
and thus S4 is structured by these sets. We may now define TgS(Gif

Si) as follows: for geGt and seS(f(d)), gs is λj^gλfω(s).
Next, for any s, s ' e ^ for which s, s' e S(f)d)) for some i e f l ^

and for which for some feFi-u s + sf C/, let £(s, s') denote the set
of 3-element chains from s to s' of the definition of Rt and let μSiS, be
a one-to-one transformation of B(s, s') onto Gt.

Then we may define TgS(Gly Rt). For s e ^ and seS^ and for any
geGu gs is #s as defined in TgS(Gίf St). For any geGt and s, s 'eS,
for which B(s, sf) is defined as above and for any x a link of an ele-
ment b of B(s, sf), gx is that link of μgS)gS'{glμs,s>Φ)\) which intersects
gs, intersects gs' or intersects neither gs nor gs' according as / inter-
sects s, intersects sf or intersects neither s nor sf.

Next we define TgS(Gίf L^. For s e Lt and seS^ and for any
geGiy gs is gs as defined in TgS(Giy S^. For s, s'e Si9 feFt-u with
s + s'Zϊ>f and s and sr not both elements of any set S(c, f(c)), there
is a simple chain /?(s, s') of exactly m elements of Lt(/) — ̂ (/) with
^(s, s') having one end element intersecting s and the other s'. For
each link a; of β(s, s') let, for geGίy gx be that link of β(gs, gsf) which
is the same number of links removed from gs as is x from s.

The definition of Tg(Gi9 Ft) is now complete and it may easily be
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verified that conditions (a)-(c) above are satisfied.
Let Ct be the set of all intersections of pairs of elements of Ft.

Let TgS(Gίf Ct) be defined as follows: for ceCi9 c is a 2-cell which is
the intersection of some two elements /, f e Ft; for geGiy gc is gf gf.
Then as in § 5 employing Lemma 2, we may define TgS(Gif C*, Ct) so
that gc is gc as defined immediately above and g preserves orientation
on c and gc relative to the orientations on (/, / ') and {gf, gf) re-
spectively.

Finally employing Lemmas 1 and 2 we may define TgS(Gif Ff, Ft)
consistent with TgS(Gif F,) and TgS(Gif Cf, C4) so that with this in-
ductive definition, Lemma 3 is satisfied. In this connection we note
that under TgS(Gίf Ft), for feFif G4(/) consists of rc(G4) disjoint 3-cells
so that Lemma 2 is applicable.

To modify the argument given so as to prove Lemma 3" we must
introduce some extra conditions. The sets HJf l ^ i ϋ i —1 exist
as in the Lemma. Then when we define Si we also define a set
Si(H) where for h, hf e Hi-ι with h intersecting h' exactly one 3-cell is
introduced in S^H) in each of h and h! intersecting the other. In de-
fining Rt we also define a set Rt(H) where Rt(H) — Si(H) consists of exactly
3 n(Gi) N elements with N the number of elements in S^H) and with
for each element s of S^H) there being n(G^) 3-link simple chains in
Ri(H)--Si(H), both end links of each such chain intersecting s. We may
additionally require that m(Ri(H)) <C 2~\ Then for each pair of elements
of Si(H) in the same element of Hί-1 we introduce a simple chain of
3-cells joining them, the simple chain having m links with m being so
chosen that m(iϊi)<^2~ί. This imposes an extra condition on the "m"
of the preceding argument. It is now straightforward to see that the
sequences of Lemma 3" can be asserted to exist.

Finally to prove Lemma 3' we need one extra device. For each c
6 Ci-i, we choose not one but two pairs of sets [S^c, f(c)), Si(c, /(c))]

and [S't(c, /(c)), S (c, /(c))] such that we may introduce two pairs of
sets [Rt(c, f(c)\ Rt(c, ff(c))] and [2ζ(c, f(c)), R[(cf f(c))] similar to the
one pair we introduced before with additionally Rf(c, f(c)) + R*(c, ff(c))
and i?ί*(c, f(c)) 4- R'*{c, f'(c)) not intersecting each other. Finally for
any feFi-1 we may define S^f) in the similar fashion to that used be-
fore but with St(f) here containing twice as many elements as the cor-
responding set in the preceding argument. Then we may form the set
Qt(f) as an (n(St(f)), m)-weakly developed collection about St(f) and
proceed as before using extra conditions analogous to those of the argu-
ment sketched for Lemma 3".

It is clear that under such conditions {£Γ4} and {μ J can be defined
so that {Ht} will be a /{-defining sequence.

Thus Lemma 3' is proved and our argument for Theorems 1 and 2
is completed,
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