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1. Introduction. The problem of estimating the least positive
primitive root g(p) of a prime p seems to have been first considered by
Vinogradov. His first result was [4, v. 2 part 7 chap. 14]

(1.1) g(p) < 2mp'log p ,

where m denotes the number of distinct prime factors of p-1. In 1930,
[6], he improved this to

1.2 <2m7p_17 1/2
(1.2) o)=2r

where ¢(n) is the Euler ¢-function. Next, in 1942, Hua [3] improved
this to

(1.3) g(p) < 2mp'*,

and obtained also, for the primitive root of least absolute value, A(p),

(1.4) In(p)| < 2"p'" .

Lastly, Erdos [2] proved that for p sufficiently large

(1.5) 9(p) < p"(log p)" .

This last result, of course, is not directly comparable with the
others, giving Dbetter results for some primes and worse results for
others.

In any event, all of the results are very weak (as is evidenced by
a glance at tables of primitive roots [1]) in relationship to the conjec-
ture that the true order of g(p) is about logp. In this connection,
Pillai [5] has proved

(1.6) 9(p) > log log p

for infinitely many p.

In this note we shall give a very simple way of handling character
sums, which not only yields (1.8) and (1.4) but allows a small improve-
ment of these results; for example

(1.7 9(p)=0(mp"?) , (¢ a constant).
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2. A lemma concerning character sums. We consider first an in-
equality for certain character sums on which our later estimates will
depend. Let S and T be any two sets of integers, such that modulo a
given prime p, no two integers of S are congruent, and no two integers
of T are congruent. Denote by N(S), N(T) the number of integers in
S and T respectively. We have

LEMMA. For y a non-principal character modulo p,

(2.1)

S g+ )| <9V NSNED)

Proof. Set

()= 3 1(h)e=s.
h=1
It is well known that |z(¥)|=p"% for y a non-principal character. Also,
— f —
OrH)= 3 712
From this we get

T(}) Ee"‘s X(u -+ ?))= ﬁ nz—(h)eznih[p-(u«!-u).
u h=1
vET

I3
Nz

€
€

<

Then taking absolute values and using Schwarz’s inequality

ty

pllzl Z X(u+?})|§ Ze2ﬂihu/p Z eZﬂihv/p
nES h=1]|uES vET
vET
» 2 p i 2} 1/2
g{ Z ez‘minu/p Z Egzvz v] 0 } .
h=11u€s h=1} v€T
But
2 o L 2mih] pe (Uq —u,
Z e21t12hulp — Z Z evt pe Uy~ 2)
h=1| u€s h=1 u,ES
uZES
b
= 3 3 v nu) — pN(S)
u1€S k=1
u2€S
Similarly
D 2
> 3 el =pN(T),
h=1]veT
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and the lemma follows immediately.

3. Another proof of Hua’s result. By way of illustrating the
manner in which the above lemma is to be applied we give here another
proof of (1.3). It is well known that if ¢ is not a primitive root modulo
p then

P@)= /i(d) =0,
® dlzvz—‘l ¢(d) o(;éd X(t)

where o(y)=d denotes that the inner summation is taken over all
characters of order d.
Now if z+1=g(p), the smallest positive primitive root mod p, we

see that P(t)=0, 1<{t<«. Thus let S=T denote the set of integers
1,2, ---, [x/2]; we have

- #(d)
O B g@) e Y

—[w/2 + E 1 gg; oy % Hu+v).
Applying the lemma, this gives
(2" —1)p"[x/2] = [=/2T
or
[w/2] < (2"—1)p'".
Since 2[wx/2]+2>ax+1=g(p) this yields
g(p) < 2mp't—2p! 4 2 L 2mript?

which is Hua’s result (1.3).

Similarly, if in the above argument we use for S=T the set of
nonzero integers —[z/2], ---, [#/2] where a+1=|A(p)|, we are led im-
mediately to the result (1.4).

4. A small improvement in the estimate. The facility with which
the lemma of §2 enables us to handle the relevant character sums
makes possible an improvement of the estimates for g(p) and 2(p). We
consider only the case of ¢g(p), since a similar estimate for A(p) then
follows automatically.

Let F(d) denote the number of integers among

ute, 1=u<[22], 1<v<[x/2]
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such that #+v is a dth power residue modulo p. Then, letting S de-
note the set of integers 1, 2, ---, [x/2], we have

F. (d)—— > > Au+v)

ues o(x)\a

—Ller+l S S g,
d d o0ia wes
o(X)>1 veES

Applying the lemma of §2 we obtain

4.1) m(d)~— +O0(xp'™) .

If we let N(x) denote the numbers among the
u+v, ueS, veS
which are primitive roots modulo p, it is easily seen that

(4.2) N@)= 3 HdF) .

Applying Brun’s method to (4.2), in conjunction with (4.1), in order to
make a lower estimate for N(x), one obtains

N> 2 5, HD o omepta)

or

(43) N(x)> (A(p:]‘,)g w_z _|_O(mcp1/2x) .
p—1 4

Thus if we take x+1=g(p), N(x)=0 and (4.3) yields

(4.4) w=0(¢ (1; — 11) m puz)

Finally since

p=1 _ g 1
$(p—1) qyll 1/q<Hl1 1/

=0(log m)=0(m")
(where p, denotes the ith prime), (4.4) gives

z=0(mp'”),
and hence

g9(P)=0(m’p'"?)



ON THE LEAST PRIMITIVE ROOT OF A PRIME 865

which is the desired result.
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