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Introduction. Progress in the study of polynomials has recently
been made in two directions: (i) asymptotic properties of sequences of
polynomials of least norm on a given set (Leja, [7]; Davis and Pollak,
[1]; Fekete, [3]; Walsh and Evans, [10]; Fekete and Walsh, [5]); (ii)
geometry of the zeros of polynomials of prescribed degree minimizing
a given norm on a given set, where one or more coefficients are preas-
signed (Zedek, [12]; Fekete, [4]; Walsh and Zedek, [11]; Fekete and
Walsh, [6]). The object of the present paper is to combine these two
trends, by studying the asymptotic properties of sequences of polynomials
of least norm on a given set, where the polynomials are restricted by
prescription of one or more coeflicients.

If S is a given compact point set and N[A.(?), S] any norm on S
of the polynomial A,(2)=2"+a,2"'++--+a,, we are interested in the
asymptotic relations for (restricted) polynomials 4,(z, N) of least N-norm
(1) lim »/"==(S) , v,=N[A.(z, N), S],

N~»00

(2) lim |A4,(z, N)""=|¢(2)] ,

where «(S) is the transfinite diameter of S, |¢(2)] == ¢“*z(S), G(z) being
Green’s function with pole at infinity for the maximal infinite region K
containing no point of S, and where (2) is considered uniformly on a
more or less arbitrary compact set in K.

Part I is devoted primarily to (1); we show for instance that for
the unit circle, with the first k= k(n) coefficients a,, of the extremal
polynomial A,(z, N) prescribed and uniformly of the order O((j)) in
their totality, a necessary and sufficient condition for (1) for all such
choices of coefficients is k=o(n), where N is any classical norm. We
prove similar results for other sets S. Part II is devoted primarily to
(2); first we use as hypothesis the analogue of (1), namely

{N[An(z), S]} v — T(S) ’

for arbitrary polynomials A,(z); and then we use (1) as hypothesis, for
extremal polynomials A,(z, N) with % prescribed coefficients and N
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monotonie. If A,(2, N) has zeros in K, under suitable conditions the
corresponding factors of A,(z, N) can be omitted in whole or in part,
and the analogue of (2) is valid for the remaining factor, uniformly on
any closed set in K containing no limit point of zeros of that factor;
for instance if % is constant we can omit the factors of A,(z, N) cor-
responding to the zeros of A,(z, N) exterior to the inflated convex hull
H,(S), and (2) is valid uniformly on any compact set exterior to H,(S);
as another instance, if k=1 and if the prescribed center of gravity of
the zeros of A,(z, N) is fixed and different from the conformal center
of gravity of S, then precisely one zero of A,(z, N) becomes infinite
and (2) is valid uniformly on any compact set exterior to the convex
hull H, of S. Finally, we study (1) for extremal polynomials some of
whose zeros are prescribed.

PART 1

ASYMPTOTIC PROPERTIES OF THE LEAST N-NORM OF RESTRICTED
POLYNOMIALS ON A GIVEN POINT SET

1. In pursuing the objective indicated, we start our considerations
with remarks relevant to both (1) and (2). Let 4,=4,(;,, 1<7<k)
denote the aggregate of all polynomials A,(2)=z2"+¢,2" "+ @,2" "+ =+
+a,, satisfying

(3) Gy=7; , 1<j<k 1<k<n—1.

The reader may easily prove the existence for each n(C>n*=n*(N)) and
for each y,=r,n) and k=k(n) of a polynomial A,z N) in 4.,
1<j< k) of least N-norm, provided N belongs to the wide category of
quasi-Tchebycheff (q.T.) norms continuous in 4, on S; such norms are
broad generalizations of the classical norms, including the (ordinary)
Tchebycheff norm

M=M[A,(z), S}=[ max |4,(2)|,z on S].

We recall [5, p. 53] that N[4.(2), S] is a ¢.T. norm on S provided for
all

A4,E@)=2"+a,2" + -

we have

NTA.(2), S] - ...
(4) MAG) S]éU(S, N), n=1, 2, ,
(5) N4, 81 - 1 5 N, &)>0 for m=nulc) ,

M[A.(2), S]
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lim {L.(S, N, &)}'*=f(N, ¢) , lim £(N, )=1 .
n—»00 g0

A norm N[A,(2), S] is continuous in A, on S provided to an arbitrary
AXz)e A, and (> 0) there corresponds a 6=0(e, 4%) (> 0) such that for
an arbitrary polynomial A4;*(z) in A4, the inequality |4f(z)—A4;*(2)|<d on
S implies

|V[45(2), S1-NIAT* (=), SN <e .

Such continuity of N[A4,.(z), S] on a certain subset of 4, is also neces-
sary for the existence of a polynomial A,(z, N) in 4, of least N-norm,
since there exist instances of noncontinuous ¢.T.-norms N for which

N[A,(2), S1>[inf N[A,(2), 51, Au(2) € 4,]

holds for all A,(z)e 4,. For the purposes of (1) if NV is not continuous
one may replace min N in our considerations by inf N. Henceforth we
consider only continuous q.T. norms N[A,(z), S].

2. The writers have already proved [5, Theorem 2] that the relation
(6) lim {N[4,(2), ST}""=2(S)

for an arbitrary compact set S, a given q.T.-norm N, and an arbitrary
sequence of polynomials A,(z)=z"+---, implies the relation

(7) lim {N[A4,(z), ST}""=2(S)
for any other ¢.T.-norm on S. There follows

THEOREM 1. Equation (1) holds for every choice of q.T. norm N if
and only tf (1) holds for o particulor choice of N, where all polynomials
are restricted to A,.

From (6) with A4,(z) the polynomials A4,(z, N;) we deduce (7) involv-
ing these same polynomials, and this (7) as a majorant relation proves
(1); we use here the consequence of (5) that no matter what the poly-
nomials A,(z) may be, the first member of (7) is not less than =(S).
Conversely, if (6) is not valid for a particular N, and the polynomials
Az, N,), then (7) is not valid for either the 4,(z, IV,) or the A,(z, N),
so (1) is not valid.

The importance of Theorem 1 for our investigation of (1) is that in
the sequel we may instead investigate (6) with A,.(z)=A4,.(z, N,) for a
particular N, conveniently chosen with respect to S.

3. As a first such application of Theorem 1 we prove

THEOREM 2. Let A7, 72 *+*, 1) be given, and S the unit disc
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2] < 1. A necessary and sufficient condition for (1) with A,(z, N)e A4, is

( 8) },1_.12 {1+IT1I2+ lnl"+ e+ Irk[2}1/2"=1 R

wndependently of the q.T.-norm N.
In fact, with A4,(z)€ 4, and n>k+1, the choice

(9) (MA), 8= | 4@

le
=1+l 4 lae ol + 00
leads to the unique minimizing polynomial
A2, No)=2"+72" 1+ oo +72"7",
(10) va=Ni[An(z, No), ST={1+ '+ -« + I} .

Since 7(S)=1, (1) with N, for N is equivalent to (8). To complete the
proof we recall Theorem 1.

4. A hoteworthy corollary of Theorem 1 is

THEOREM 3. With the notation and hypothesis of Theorem 2, sup-
pose we have

(11) =0/ ("], 1<j<k,
uniformly in j. Then a necessary and sufficient condition for (1) with
arbitrary q.T.-norm N is

(12) k=o(n) .

With N, of (9) for N, hypothesis (11) in case (12) entails in view
of (10)

(13) 1gu,,=o[n<’?)] as m— oo
J
since(@) increases with ;5 provided 27 <n. It is sufficient to prove

J
(1) for every sequence of values n— o, so it is sufficient to prove (1)
under the alternate assumptions k(rn)=O0(1) and k(rn) — . Relations
(18) prove (1) if k=0(1). If however k=Fk(n) — o still subject to (12),
by Stirling’s formula

o ()~ G- /(=E) Jvims,
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()~ (1)1,

implying (1) with N=XN,, and hence for all q.T.-norms N.
To prove the necessity of (12) for (1) with N=N, (and hence with
an arbitrary q.T.-norm), choose

n=(") 1<j<k.
Then by (10)
v>(’;> 1<j<k=Kkmn).

If (12) is false, for a suitably chosen sequence we have
lim k(n)/n=ce, 0<e<1;
in case 0<e<1, by (14) follows

T A R S
n (k) "‘)(1_6)1—555 ~1

while in case e=1 we have

n 1/n
™ ([ n]) — 2 as n— o .
2

This contradiction of (1) completes the proof of Theorem 2.

5. By modifying slightly the above argument, the reader may easily
prove the following proposition, a generalization for S the dise z|<R
of the previous two theorems.

THEOREM 4. A necessary and sufficient condition for (1) with
S: lzl éR and An(z9 N) € An(rl’ sty Tk) 'iS

(15) hm {Rm‘i— 17’1[2R2n’2+ e h,kPRZn-zzc} 1/2n=R .
With the particular choice (uniformly in j)

(16) r,—0| B ! )] 1<i<k,

a necessary and sufficient condition for (1) is (12).
A word is in order to justify the form of (16). Much of the pre-
sent paper is devoted to the study of polynemials A,(z) in A,(ri, 72y =+ 7%)
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where we have
an r=(=1(")e,
J

and the numbers ¢; are independent of ». For instance the center of
gravity of the zeros of A,(z) is ¢, and (17) may prescribe ¢, independent
of m. Here it is significant (Theorem 11, below) that a necessary con-
dition for (1) with the zeros of the A,(z) bounded is (17) with ¢, —¢,
where of course ¢, is not necessarily independent of n, and where ¢ is
the conformal center of gravity of S, a number depending wholly on S
itself,

We shall call the number ¢; defined by (17) the centroid of order
j of the zeros of A4,(z).

Another comment on (16) is that if the z-plane is transformed by
a simple stretching z’=Rz, the transfinite diameter of every set is multi-
plied by R, and the jth centroid of the zeros of a polynomial is multi-
plied by R’; thus the factor R’ in (16) is appropriate.

6. We shall shortly indicate (§§7, 8) that Theorems 2, 3, and 4
admit at least partial extensions to arbitrary sets whose boundaries are
rectifiable. The usefulness of these extensions in the study of still more
general point sets is now to be shown.

If S is an arbitrary compact set, and if the maximal infinite region
K Dbelonging to the complement of S is regular in the sense that the
classical Green’s function G(z) for K with pole at infinity exists, we
denote by

w=¢(z) = exp [G(z) +1H (z) + log =(S)] ,

where H(z) is conjugate to G(z) in K, a function which maps K onto
lw| > 7(S) with ¢(co)=co.

The locus Cp: |¢(2)|=Rz(S), R>>1, in K consists of a finite number
of rectifiable Jordan curves which are mutually exterior except perhaps
for a finite number of points each of which may belong to several
curves; we denote the sum of the closed interiors of these curves by
Sz. As R—1, the locus C, approaches the boundary of K.

THEOREM 5. Let S be a compact set, and let the infinite region K
belonging to the complement of S be regular. Let A,(ri, 7. *+*,7x) be
given and restrict A,(z, N) to A,. A mnecessary and sufficient condition
that (1) be valid for all q.T.-norms on S is that (1) be valid for all q.T.-
norms on all Sg.

By Theorem 1, we may restrict ourselves to the consideration of
the Tchebycheff norms on S and S;. We denote the respective extremal
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polynomials by 7.(z, S) and T,(z, Sz). To prove the sufficiency of the
condition, we write

M[T\(z, Sz), Sxl = M[T(2, Sp), S1=ZM[T.(2, S), S1=(S)",

Hm {M[T.(z, Sx), Szl}"=7(Sg)
=R-7(S) =1lim sup {M[T,(z, S), S}'""==(S),
and R -—1 establishes (1). With this reasoning as given, it 4s also suf-
ficient if (1) is wvalid on a sequence of sets S,, each containing S, with
K regular or mot, provided (S,,)— o(S); the sets S, may be taken as
the closed interiors of lemniscates.

Conversely, by use of the generalized Bernstein Lemma [9, p. 77]
we have

(#(S}" < MIT,(z, S2), Sel < MIT,(z, S), Sl < MIT(z, S), SIR"

o(Sp) < lim inf {M[T,(z, Sz), Spl}'"" < lim sup {M[T,(2, Sx), Sel}'"
:<: lim {M[Tn(zr S)’ S]}lln'R:T(SR) ’

lim {M[T,(z, Sz), SR]}un:T(S/e) .

7. Theorem 5 emphasizes the importance in considering (1) of sets
with rectifiable boundary, both for their own sake and for the study
of more general sets. For the former we have the great advantage of
orthogonal polynomials as a tool. Thus we prove’

THEOREM 6. Let the point set S consist of a finite number of recti-
fiable Jordan arcs, and let the polynomials P.(z)=z"+--- of respective
degrees n be mutually orthogonal on S, with

[ PPz =, .
Let the norm N, be defined by
WLA@) = 1@

and let us set

Bn(z)‘:‘:zn'l'rlzn_l'*‘ R o 7% A Edﬁpn(z)+dxpn—1(z)+ ctt +an0(z) ’

p,bdn=j B()P@de,  dy—dy(n), 0<h<n,
S

2 An analogous theorem obviously exists if S consists of a finite number of mutually
disjoint Jordan regions, and least-square norm is measured by surface instead of line
integrals.
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where the r,=r(n) and k=Fk(n) are prescribed. For each n>k+1,
min Ny[A4,(2)] with A.(z)€ A,(r,) is NJ[C.(2)] where

Cn(z) = dOPn(z)+ dIPn-I(z) + M +dlan—k(z) y

and is assumed by no other polynomial. A mnecessary and sufficient con-
dition for (1) with N=N, or with N an arbitrary q.T.-norm on S is

Hm {4 D, + A+« + Al Dy} P =2(S)

An arbitrary polynomial A4,(z)=2"+--- may obviously be expressed
as a linear combination A,(z) =0b,P,(2)+b,P,_(z)+ «+++b,Py(z) by con-
sidering successively the coefficients of 2%, z*~%, ---, 1. Then the coeffi-
cients b, can also be computed by use of the orthogonality relations,

[ 4.QP@ |de| = pbr
and we have
{NO[An(z)]}zz b0l D+ b1 Dys + + + = +10, D0 .

The condition A,(z) € 4,(r;) is equivalent to specific prescription of b, b,
<o, b, 50 it is clear that

min NO[An(Z)]:NO[Cn(z)]z {ldolzpn + Idllzpn—l R o ldklzpnrk} e ’

a minimum assumed by no other polynomial than C,(z) in 4,; the re-
mainder of Theorem 6 follows from Theorem 1.

Both Theorem 2 and the first part of Theorem 4 are clearly gener-
alized in Theorem 6. We proceed to a corresponding generalization of
the necessity of condition (16) in the second part of Theorem 4.

8. The number R plays two roles in Theorem 4: it is both z(S)
and a parameter restricting the order of y, in (16) if k=k(n) is not
bounded.

In extending the second part of Theorem 4 to a compact set S of
connected complement K whose boundary B consists of a finite number
of rectifiable Jordan arcs or even to a more general set S with regular
connected complement K, the second of these roles is kept for E. To
be more explicit we shall prove the following.

THEOREM 7. Let S be a compact set of connected regular complement
K and R an arbitrary positive number such that the disc |z| < R contains
S in its interior.

Suppose that (16) holds with k=k(n) — o, k(n)%~o(rn). Then there
exist polynomials Az, NYe A, (11, 74y =<+, 1) of least o.T.-norm N=
N[A,(2), S] on S for which (1) s not valid.
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We chose R,=R(R)>1 so that not only S but also S; of §6 is
covered by [¢{<R (thus o(Sp)< R). We know (Cf. §6) that with
Tn(zf S) € Anv Tn(z! SRI) € Am
(18) mM[Tn(z’ S)r S]gM[Tn(zv S)r SRl]zM[Tn(zy SRl)y SRI] .
On the other hand if C denotes the boundary of Sz,
(19) (ML (e, Se), Sulp |, 1321 = (1T, Sl
Ry Ry
={,, 14ue, NP,
Ry

where A,(z, N,) € 4, is of least square norm N, on Sz,

(MA@, Sel=( 14l

C
Fix 7,=r,n), 1=j<k=k(n), by
4.0 =P +B(} JPs@ (") + B (] P
+ ALy -i(R) + + o o + A Po(2)

where hz[ ]26 ], and the P,(z)=2"+--- are mutually orthogonal on Cj .

All zeros of the P,(2) lie in |2l <R (Fejér, [2]) so (16) is satisfied;

indeed (Z )(";"‘):(“;h)(n _’Zﬁ_) for 1<j<<h TFor A,2)e A,

-++,7:) 80 chosen we have

Ao, Ny=P@+ R JPuns@ (" 1)+ B JPunata)

(N, N, STy =put B Vo () + B () s

where
D=, IPADII , §=0,1,2, - .
Hence
NIz, S, Sa] > max {RY( 7 ol / (") (7 Y} -

By Fekete-Walsh [5]
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p;LIZn —> T(SRI) as n— oo .,

Consider any sequence of n for which lim k =e¢ exists with 0<e<1.
n

In case 0 <le<1, (Cf. §4)

(20) lim inf {N, [A,(z, Sa,), SeJ}"" = Roe(Sa ) ~*(1—e) e
> Br(S)(1—e) et

for we have B> «(Sy)=Rz(S).

In case e=1, by <Z>/(n_h—h)—>1 as n— oo, we have

21) lim inf {N[4.(z, No), Sg 1}'" = RPc(Sg )12 = R7(S)- 2.
Combining (20) or (21) with (18) and (19) we obtain
lim sup {M[T,(z, S), S1}¥"* > (S)-(1—¢)%* or 1) =7(S) .

Thus the proof is complete for the classical Tchebycheff norm M, and
the theorem follows by Theorem 1.

Theorem 7 can be extended to arbitrary compact sets S of positive
transfinite diameter z(S) with connected nonregular complement K, the
role of R being taken by any positive number such that the disc |2| < R
contains a level locus Cr,: G(z)=log R, which consists of finitely many
Jordan contours and separates S from infinity. The proof is similar to
the above one but uses the generalized Bernstein lemma in its extended
form. (Walsh, [9], §4.9). Corresponding extensions to the case of K
nonregular can be made for Theorem 8°* and the second part of Theorem
9 below (concerning the respective necessary conditions for the validity
of (1)).

9. We have studied in some detail the conditions (12) and (16)
singly and in combination, especially if S is a circular disc, and in
particular have shown in Theorem 7 for a more general set S that (12)
is necessary’ for (1) provided (16) is assumed with the choice
R>[maxlz|, zon S]. We are not in a position to prove that conversely

3 Nevertheless k=k(n)=0(n), more precisely k(n)=n-1, is compatible with the validity
of (1) for k-fold restricted mth degree extremal polynomials A.(z, N)=z"+a1,2" "1+ ---
+Qp-1,n2+ 0y, With suitably preassigned coefficients aj,=7j=7jn), 1<<j<k, fulfilling
condition (16) with the new choice E=[max |z|, z on S]. In fact, the coefficients 7;%) of
the classical 7-polynomial t,(z)=27+ y1(R)2"= 14 - - - + 7 —1(N)2+ 70(n) on S, by Fejér’s theorem,
satisfy (16) with this special choice of R, and the nth degree (n—1)-fold restricted T-

polynomials 7% (z, S)€ An(r1(n), - - -, rn-1(n)) minimizing the classical T-norm on S obviously
coincide with t,(2), thus satisfy [max]|Tw(z, S), z on S|’*—>¢(S) as = — «. Hence, by
Theorem 1, the validity of (1) for all Az, S)€ An(y1(n), - -, yn-1(n)) of least q. T. norm

Non S, subject to (16) with R=|max|z|, z on S] as required, although (12) does not hold.
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(12), with the assumption of (16), is sufficient for (1), but now prove
for an arbitrary compact set S that a slightly stronger condition on
k(n) than (12), namely (22), is sufficient for (1) with a weaker assumption
than (16) concerning the centroids ¢; defined by (17).

THEOREM 8. Let S be an arbitrary compact set, and let N be a
continuous q.T.-norm on S. Let A (2)=z"4+ .-+ minimize N over
A11y 7oy =205 7)) With

22 E=of - " ),
22) 0( log n>
(23) [le_—<=aj ’ léjék y

where the «, are independent of n.
Then (1) 1s valid provided the power series

S a2t )
h=1

has positive radius of convergences r.*

Let t,(2) =2"+a™z"*+ .-« +af® be the Ath degree classical Tcheby-
cheff polynomial minimizing the norm M[A,(z), ST on S among all poly-
nomials A,(z) with the leading terms 2*. Then a majorant of the nth
degree generalized Tchebycheff polynomial T,.(z, S)e 4, can be expressed
as the product ¢,-,(2)- (2% + 2,2°~*+ - - - + 1,,) where the coefficients 1,=4,(k, n)
satisfy the linear equations

AFa* D=1, L+ 220" +ait " =r,, .-
Aot 2@ T 2@ e @R =7,

Hence, by Fejér’s Theorem [2] on the zeros of ¢,(z)

a1 (1) ("R (1)

where R >[max]|z|, z¢ S}+1. Similarly,

4 While the research here presented was in progress, Professor G. Szegé communicated
to the first named author the following result. Let L be an analytic Jordan curve. Let
the posilive constants «j satisfy the condition |a;] <abl, §=0,1,2, -+, where a and b
are arbitrary positive constants. Let the integer k=k(n) satisfy the condition k(n)=
o(nflogn). There exist polynomials Ay(z)=z"+ --- satisfying condition (23) such that

lim max | 4, (z)|V"=7(L)

n~>o0 2EL

where (L) is the transfinite diameter of L.
This communication induced us to study the problem dealt with in Theorem 8.
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ng , 2 (n—k) En—k) S( ) , n—k
A S bl 1ol la Pl < (0 )asenk (14+9) (T F)R
n—lc) . 5 < «a «, )
R <2nR*(1+ % 2 ),
+< 9 <2n +R+2’R’

A < A1l + 1| la" [+ 4] la* 2| + |as" |
22 (249} n—Ik
g<3>a3+2nR(1+R+2'R,>( 1 )R

3
R(l a1> n—k\p, , (n—k R < 2 R? (1 Q, Q, a_) ,
et R ( 2 )E+( 3 Jr<2 Y

and so on; finally

k=1p Jk o &, Oy
] < 2 R<1+R+2’Rz+ +i€z§§i)‘

Hence, for R>1/r we have

k=1gk Rk o,y
M[T.(2, S), S1<< M[t.(2), S1-(k+1)2 RO+4&W

.o ak . i 1
+ +k’R'°+ in 1nf.)

and, therefore, by (22) and
lim {M[t,(2), ST}""*==(S) ,
lim sup {M[T.(z, S), ST} < =(S) .
On the other hand
lim inf {M[T,(z, S), S}}'*=>(S) .

Thus the proof is complete for the classical Tchebycheff norm M, and
the theorem follows by Theorem 1.
As a converse of the proposition just demonstrated we prove

THEOREM 8 bis. Let S satisfy the assumptions of Theorem 7. Sup-
pose k=k(n) - c as n— oo but k(n)=%o(n/log n). Then there exist poly-
nomials a2, N)€ Ar1, 72, * =+, 1%) Of least q.T.-norm N=N[a,(z), S] on

S with M| < ( ’; )aj for1 <j < k(n) and Yim sup [a,/h!]" < o for which

(1) 2s not valid.
Since Theorem 7 established the existence in question in the case
=R’ if k(n)z%~0(n), we assume lim sup (k log n/n) >0 with k/n —0. Then
we fix r,=7,(n), 1<j <k=Kk(n), by
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n A
an(z) = Pn(z) +( k )(k!)llﬁRkPn—k(z)'F 'zlpn—k—l(z)-i— sk ln—k 0(2) ’

where P,(?), Cr, and R, have the same meaning as in §8; thus
@I < (7)R for 1<i<k~1 and fru(w)| <(}}) [1+E)MR* and

therefore «,=1+ (A!)"* satisfies our hypothesis. The nth degree poly-
nomial a,(z, N,) of least square norm

1/2

Ne=Nier@), Cel={{ . ln@riaz}

on Cr among all
an(z)zzn+ cec € An(h, *t Tn)

is obviously

P&+ (" ) "B u(2)

and we have
S |au(, No)l2ldzI>R”‘lc!S | P, (2)]*|dz| =R*k!D,_, .
Cry Cr,

In view of k(n)=o(n), p*"—7(Cr)=R(S), lim sup/[klogn/n]=
e(C>0), we have now

lim sup {S lt, (2, No)l‘zldzl}”mg R2(S) lim sup (k1)
Cr,
= Ro(S)e > Riz(S) .
Combination of this inequality with (18) and (19) yields
lim sup {M[T.(z, S), S]}** > =(S)

for the polynomial T,(z, S)€ A1y, 72 *++, 7:) Minimizing the classical
norm M«,(z), S] on S, and the theorem is established.

10. We conclude our investigations concerning the validity of (1)
with A4.(z, N)e A,(ry, 72 ***, 7x) by considering the particular case
k=k(n)=0(1)

nearest to the simplest one: k=const. Using arguments similar to those
just applied in the proof of Theorem 8 we obtain at once, for arbitrary
compact set S
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(S < M[T.(2, S), S]
. LOk~1pk Pk G, & oy G
< Mt,(2), S]-(k+1)-25-n R (1+R oot +k!Rk>
provided [7’1‘:§<7%>a1, a,=a,(n). Hence by the hypothesis £=0(1)
J

7(S) <lim inf {M[T,(z, S), ST} <lim sup {M[T,(z, S), ST}*"
< 7(S)-max (1, lim sup {[ max a,(n), 1 <j < k=k®)]}"") .

Hence the validity of (1) for the classical Tchebycheff norm M and thus
also for each continuous q.T.-norm N provided

(24) lim sup {a,(n)}'"* <1,
1<j<maxkn) .

Conversely, the condition (24) in case |r;,| < (@)a ), 17 < k(n)=0(1),
J

is also necessary for (1) with A,(z, N)e 4,(r,, ---, rx) for N the classical
Tchebycheff norm M and hence for arbitrary q.T.-norms N continuous
in 4, on a compact set S of connected regular complement K.

In fact, fix 7,=7,(n), 1 <j<k=Fk(n), by

4,&)= P&+ aum)( ! ) Pacs@) + hPa i@+ -+ 10s @)

where the P,(2)=2"+--- are mutually orthogonal on Cr and R, R(R),
Cr,, and S, are defined as in § 8. Then with «a,(n) =R’ for 1<j<k—1,
the condition (24) is fulfilled. We shall show that (1) cannot hold under
our hypotheses unless (24) is satisfied also for j=%. In the proof we
may restrict ourselves to the classical Tchebycheff norm M, minimized
by the generalized Tchebycheff polynomial T,(z, S)e A,(y:, +--, 7:). Ap-
plying the results (18) and (19) of §8 we can write

@) RMITG 8), s) |, ) =], 1A orie )

where A,(z, N)e A,(r,, +++,7:) is the nth degree polynomial of least
I2

square norm Ny(A4.(z), SR1)=” Vln(z)['llolzl}1 on Cy. Our above choice

of A(ri, +++,7:) yields o

Cr

e Ny =P,@+at) ) Prstd)

whence



ASYMPTOTIC BEHAVIOR OF RESTRICTED EXTREMAL POLYNOMIALS 1051
2 n\\*
(26) (NLAz, N, Sa 1=t { (7 )} o

Combining (25) with (26) leads in view of lim pj"=1(Sg) to
R lim sup {M[T,(2, S), SI}""" =«(Sg,) lim sup {a;(n)}'"",
which by «(Sz)=Rz(S) is equivalent to
lim sup {M[T,(z, S), SI}'" ==(S) lim sup {a,(n)}"" .

This establishes (24) as a necessary condition for (1) in case of the M-
norm and hence also for all q.T.-norms N on any set S of the type
considered. We summarize the foregoing results in

THEOREM 9. Let S be an arbitrary compact set, and let N be o
continuous q.T.-norm on S. Let A,(2)=2"+-<- minimize N over
An(rly tey Tlr) w@th

27 k=k(n)=0(1),

@28) < ( ;’.‘)axn), 1<i<k.

Then (1) is valid provided (24) holds. Conversely, in case (27) is fulfilled,
(24) is also necessary for (1) provided S is a compact set of regular
complement K.

11. In the previous sections we developed conditions, necessary or
sufficient or both, for the validity of (1). By Theorem 1 such conditions
are the same for all q.T.-norms N which are defined on the set S con-
sidered. If (1) does not hold, there might be two possibilities:

(a) lim {N[A.(z, N), S}¥*=w(S, N, 11, 73, *++, ), with the poly-
nomials A4.(z, N) of least N-norm restricted to some given A,(r1, ***, 7x),
but o is different from (S);

(b) the {N[A,(z, N), S]}¥" have no limit as n— o if A,(z, N)€ 4,,
that is

lim inf {N[4,(z, N), S}'"=a(S, N, 11, * =+, 7.)
is actually smaller than
lim sup {N[A,.(2, N), ST}V"=B(S, N, v, ==+, 7%) -
12. It is easy to show that both possibilities (a) and (b) may even-

tually occur. In the light of this fact the following result has some
intrinsic interest:
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THEOREM 10. Let S be an arbitrary compact set and let N=
N[A.(2), S] be any given q.T.-norm defined and continuous in A,=
Au(ry, o+, 71:) on S. Let the least N-norm v, on S for polynomials
A,(2) e A, satisfy

lim inf V:ana(sy N, Tis *°°% Tk) ’
lim sup »}/»=B(S, N, 71, ***, 1) -

Then o and [ are independent of the particular choice of N and, con-
sequently lim vi* exists or not for all q.T.-norms N, the coexisting limits
having the same value o(S, 11, =+, I'n)-

Applying (5) with A,(z)=A,(z, N) the polynomial of least N-norm
on S for A,(2)e 4,, we obtain
(29) lim inf {N[A,.(z, N), S]}¥" >lim inf {M[A.(z, N), S]}/"

> lim inf {M[A,(z, M), S]}"" ,

lim sup {N[A4,(z, N), S1}*'* > lim sup {M[A.(z, N), S]}*"
> lim sup {M[A,(z, M), ST}»

while (4) applied to A,(2) =A,(z, M)e 4, yields

-

(30) lim inf {N[A4,(z, N), S1}'" < lim inf {M[A,(z, M), S]}'*,
lim sup {N[A,(z, N), S1}'» <lim sup {M[A.(z, M), ST} .
Combining (29) with (30) leads to
alS, N, 11, »+ =, 1)=alS, M, 11y =+, 1)
and we similarly obtain
P, Ny 7y == 1)=B(S, M, 11, +++, 1)

for all q.T.-norms N defined and continuous in 4, on S. Thus the proof
for the independence of « and B of the choice of N is complete and
hence the rest of the theorem follows if a=7.

PART II

ASYMPTOTIC PROPERTIES OF THE MODULI, AND OF THE ZEROS OF
POLYNOMIALS OF LEAST NORM

1. In Part I we have developed primarily sufficient conditions for
the validity of (1); we propose now to consider necessary conditions
for (1), namely consequences of (1) such as (2) which are significant in
the study of restricted extremal polynomials. Our first three theorems
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are entirely general, without special reference to extremal polynomials.

THEOREM 11. Let S be a point set of positive transfinite diameter
whose complement K is a region containing the point at infinity, and let
the zeros of the polynomials D,(2) =2"+au2"*+ -« +a,, be uniformly
bounded. Then

(31) limsup P}"<#(S), P,=[max|p.z), z on ST,
implies
(32) lim (a,,/n)=a, ,

where —a, 1s the conformal center of gravity of S. That is, the center
of gravity of the zeros of p.(2) approaches the conformal center of gravity
of S.

For any sequence of polynomials p,(z)=2"+--- we have
(33) lim inf PY* > «(S) ,
since the corresponding relation holds for the Techebycheff polynomials
of S; thus (31) is equivalent to
(34) lim PYr==(S) .

If G(z) is the generalized Green’s function for K with pole at in-
finity, a suitably chosen level locus Cy: G(z)=1log E(C>0) in K consists
of a single Jordan curve containing in its interior both S and all the

zeros of the p,(z). It then follows from (34) that we have exterior to
Cx, uniformly on any closed bounded set exterior to Cj,

(35) lim |p,(2)""=1¢(2)] ,

where ¢(2) = exp [G(z)+iH(z)+log =(S)] and H(z) is conjugate to G(z) in
K; we need merely apply a previous result [Fekete and Walsh, [5],
Theorem 11], where (31) is used to establish (loe. cit.)

lim sup [ max |p,(2)], 2 on Cx}'* < R-«(S) ;

7—>c0

the closed interior of the present Cj contains all zeros of the p,(z) and
has the transfinite diameter R-z(S).
We write (35) in the form

(36) lim |p,(2)/2"]""=|$(2)/2| ,

N—>o0

which holds uniformly in some neighborhood of the point at infinity.
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We set
(37) $@) =z+a,tagt e

it is of course no loss of generality to choose ¢'(c0)=1, and here —a,
is by definition the conformal center of gravity of S. If the nth root
in (36) is suitably chosen, namely with the value unity at infinity, (36)
implies

tn
(38) lim [1+ Do “ﬂ%+---] =14+ By Byl
n—ro 2 ¥4 2 2

uniformly in some neighborhood of the point at infinity. We use here
the theory of normal families of functions. Any infinite sequence of the
functions in the first member of (38) is bounded and admits a sub-
sequence converging uniformly in the neighborhood of infinity. All limit
functions are analytic in this neighborhood, have the same modulus
there, and are equal at infinity ; hence these limit functions are identical,
and the original sequence converges uniformly in a neighborhood of
infinity to this limit function. Equation (88) implies (32).

2. Of course this same reasoning applies to the higher coefficients
in (38); for instance

2 2
z,am._am_ - a,— a’{

2n

?

but (32) would seem to be the most interesting of these relations.

Equation (32) has been previously established by Schiffer [8] for the
case that K possesses a classical Green’s function, and where the »,(z)
are the Fekete polynomials for S, whose zeros lie on S and maximize
the discriminant.

In the hypothesis of Theorem 11 we may replace (31) by the cor-
responding inequality involving an arbitrary quasi-Tchebycheff norm;
compare [Fekete and Walsh, [5], Theorem 2].

3. The significance of Theorem 11 in the theory of once-restricted
and k-fold restricted extremal polynomials is that ¢f (31) ds satisfied,
then unless (32) is also satisfied the zeros of the p.(z) cannot be bounded ;
thus (36) cannot be valid uniformly in the neighborhood of infinity, and
may not be valid on every compact set in K. Of course (36) is valid
uniformly in the neighborhood of infinity for all classical extremal poly-
nomials [Fekete and Walsh, [5], Theorems 11 and 13].

An illustration here is illuminating; we choose S as [2{<1 and
prescribe merely the (constant) center of gravity ¢, (20) of the zeros
of each p,(2). The extremal polynomials with the least-square norm on
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the boundary of S are
Pa(R) =7"—ne" ' =2""(2—nc,) ,

and the zeros of these polynomials are not bounded. It is striking that
(36) continues to hold, but nonuniformly, in the neighborhood of infinity.
Moreover, if we replace the prescribed ¢; by ¢™, where ¢™ — 0, then
the zeros of p,(2) are bounded if and only if the numbers nci™ are
bounded.

Theorem 11 (like later results) does not require that the p,(z) be
defined for every n; it is sufficient if these polynomials are given for
an infinite sequence of values of n. Thus, if the p,(2) are given and
(82) is not satisfied, the zeros of the sequence p,(2) cannot be bounded ;
of (32) s satisfied for mo subsequence of indices n, the zeros of no sub-
sequence of the p,(z) can be bounded ; in particular if the p,(2) are once-
restricted extremal polynomials p,(2) =z2"+naz" '+ .- with constant a,
different from the conformal center of gravity of S, there exists a unique
sequence for n sufficiently large of zeros 3, of the respective p,(z), where
3 lies exterior to the extended convexr hull H, of S, with 3,—> >, and
all other zeros of p,(2) lie in H,; compare Fekete and Walsh [6;
Theorem VII].

4, Deeper results can be established concerning the zeros of the
2.(2) which become infinite.

THEOREM 12. Let S be a point set of positive transfinite diameter
whose complement K is a region containing the point at infinity. Let
G(2) be the generalized Green’s function for K with pole at infinity, and
let I be a Jordan curve in K which separates S from the point at in-
Jinity. Suppose

pn(z) = zn+anlzn—1+ HEI o

and suppose (81) is valid. Let us write p,(2) = q,-.(2):7.(?), where r,(z) =
7+ -+ is a polynomial whose zeros are precisely the zeros of pu(?) ex-
terior to I'. Then we have

(39) o=a(n)=o0(n) ,
(40) lim Q% P =1(S), Qy--=max [|g,-.(2)], z on ST.

Equation (39) follows at once [Walsh and Evans, [10]], for the
number n—o of zeros of p,(z) on and interior to I" satisfies (n—o)/n—1.

Since S is closed, the distance d from S to I" is positive, so for z
on S we have |r,(z)] >>d°. Consideration of a point z of S at which
|@n-0(2)|=@Q,_, then yields
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(41) |n-o(@) A7 =Qy o+ A7 < Qo 1) < P, .
Equation (89) implies d°/” — 1, whence from (41)
lim sup QY”, < lim sup P/ < «(S) .
But we may write also
lim sup QY”, = lim sup QY ,

so (40) follows by the analogue of (33).
Of course it is a consequence of (40) that the center of gravity of
the zeros of ¢,_,(2) approaches the conformal center of gravity of S.
It follows from Theorem 12 [Walsh and Evans, [10], p. 335] that
on any closed set exterior to I" we have

lim |g, ()" =g (2)] ,
the analogue of (85).

5. Our main interest lies in the zeros of p,(2) which become infi-
nite, but Theorem 12 deals also with also with other zeros. In particular,
if pu(2) is a k-fold restricted (k=-const.) extremal polynomial on S for a
monotonic quasi-Tchebychelf norm, and if either I’ is the boundary of
H(S) (supposed to contain S in its interior) or is a curve containing
H.(S) in its closed interior, then at most k zeros of p.(z) lie exterior to
I'; we have o(n)<_k. Moreover, equation (35) is wvalid wuniformly on
any closed bounded set in K containing no limit point of the zeros of the
P.(2); and (85) with p.(z) replaced by q,_.(z) is valid uniformly on any
closed bounded set in K containing no limit point of the zeros of the
Qn-o(2), i particular is valid on any closed bounded set exterior to I’
[compare Walsh and Evans, [10], p. 335].

6. Theorem 13 is complementary to Theorem 12 :

THEOREM 13. Under the conditions of Theorem 12 we have

(42) lim RY»=1, R,=[ max |r(2)|, zon S].

There exists a number D independent of Z such that for each fixed
point Z on or exterior to /" and as Z, and Z, range over S, we have
for the distances

max ZZ, <
min 27,

for the first member depends continuously on Z and approaches unity



ASYMPTOTIC BEHAVIOR OF RESTRICTED EXTREMAL POLYNOMIALS 1057

as Z—> . The zeros of r,(2) lie exterior to I, so for z on S we have

max l”_'w(z)l o
© min |r.(2)] =

From (41) we may write for z on S
Qn—o"[min lra(z)ugpn ’
(43) Qn—o"Ro':<_~Qn—a"[min ITc(z)l]Ddépn'Da .

In equation (40) we may replace the exponent 1/(n—s) by 1/n, so
from (43), (31), and (39) we have

(44) limsup RI/*<1.

However, (33) for arbitrary polynomials here shows

lim inf R}* > «(S) ,

n—>oo

(45) lim inf [l log R,] >0,
n

n—»>o0

and (42) follows.

7. A result similar to Theorems 12 and 13 is the following.

Under the hypothesis of Theorem 12 let I', be an arbitrary Jordan
curve in K containing on or within it no point of S, and let r(z)=
27+ -+ be the polynomial whose zeros are the zeros of p,(z) on and within
Iy, with p,(2) =q,--(2)7-2). Then we have (39), (40), (42), and the
relation lm |g,_ ()" =|p(z)| uniformly on any closed set interior to
I';. Here (39) follows at once [Walsh and Evans, [10]], (40) follows as
in the proof of Theorem 12, (42) follows from the boundedness of the
zeros of r,(z) and from (45), and the remaining remark is immediate
[Walsh and Evans, [10], p. 335].

8. Theorems 12 and 13, devoted to arbitrary sequences of poly-
nomials p,(z) such as those studied in Walsh and Evans [10], yield a
precise result for restricted extremal polynomials in the case k=1.

THEOREM 14. Let S be a closed bounded set of positive transfinite -
diameter, and let p,(z) =z2"+ +-- be the sequence of once-restricted poly-
nomials on S, with constant center of gravity of the zeros different from
the conformal center of gravity of S, extremal for a monotonic gquasi-
Tchebycheff norm. Let C be a (closed) circular disk containing S, let C’
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be a concentric disk whose radius is three tvmes as great, and let
r2)=2"+---, o=o(n)=1 or 0,

be the polynomial whose zero is the zero of p,(z) &f any exterior to C',
otherwise unity. Set

Qn—u(z) =20y pn(z) = Qn—d(z)'rv(z) .

Then (34), (40), and (42) are valid. Moreover on any closed bounded set
S, exterior to H we have uniformly (notation of (35))

(46) lim [p,(2)]"" = lim |¢,-.(z)["" =19 ()| .

The present writers have previously [6] shown that <¢f a zerc of p,(z)
lies exterior to C', then all other zeros of p,(z) lie in C. Moreover it
is remarked in § 3 that under the present conditions a zero of p,(z) lies
exterior to C’ for n sufficiently large. Thus o(n)=1 for n» sufficiently
large. Equation (34) is known [part I, § 10], (40) follows from Theorem
12, and (42) from Theorem 13.

The zeros of the polynomials p,(z) and g, (z) have no (finite) limit
point exterior to H. Indeed, if #=« is assumed to be such a limit point,
let I" be a circular disc containing H in its interior but to which « is
exterior. For n sufficiently large a zero of p,(z) lies exterior to the disc
concentric with 7" whose radius is three times as great, and consequently
[Fekete and Walsh, [6], Theorem IX] all other zeros of p,(2) lie in I,
which contradicts the assumption of a as a limit point of zeros.

Equation (46) now follows [Walsh and Evans, [10], p. 335]. If S,
is a closed bounded set exterior to H, for n sufficiently large no zeros
of p,(2) lie on S..

9. Under the conditions of Theorem 14 we can obtain some infor-
mation about the asymptotic behavior of the one zero 2z among the
totality of zeros (z, 2, ---, 2,) of p,(2) which becomes infinite. If « is
the prescribed center of gravity and a the conformal center of gravity
of S, we have z,+2,++--+2,=n«a, and by Theorem 11

Ltz -t Btttz 2

- —>a, B —-a, —>a—a .
n—1 n n

10. We are not in a position to extend Theorem 14 to the case
of k-fold restricted extremal polynomials, & >1, for with £ >>1 precise
conditions are as yet unknown concerning the number of zeros of p,(2)
which become infinite or indeed lie exterior to H. For instance, if C is
l2]=1 and we use the least-square norm on C with k=2, the twice-
restricted extremal polynomial
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pn(Z)Ez"+0-z"‘1+<g)czzn'z ) Cz#o ’

has two zeros +[—n(n—1)c,/2]"* which become infinite, whereas the
twice-restricted extremal polynomial

() =2"+ncz"'+0-2""7, a#0,

has but one zero —mne, which becomes infinite.

Nevertheless, for k>1 4f we know that k zeros of p,(z) become
mfinite as n— oo, the remaining n—=k zeros of p,(2) have no limit point
exterior to H. For let ¢, ¢, ---, ¢, denote the angles subtended by S
at the respective zeros of p,(z). Zedek’s relation (Cf. Walsh and Zedek
[11])

¢1+¢:+"'+¢k+12ﬁ

can be written in the form

Grer == (PprF Pyt o+ i),

and if (p;+¢po+ -« +¢,) >0, then ¢, > 7 if ¢, <z. To be more ex-
plicit, if ¢, <e/k for j=1,2, .-+, k, then ¢,>n—e¢ for j=k+1, k+2,

--,n, so the n—k corresponding zeros of p,(z) lie in the locus of
points from which S subtends an angle greater than or equal to n—e.
Under these conditions (that k zeros of p,(2) become infinite), the set
of zeros of the p,(z) has no finite limit point exterior to H, and Theo-
rem 14 admits a precise analogue. Even though the set of zeros of the
p,(2) has no finite limit point exterior to H, not all zeros near S need
lie in H; compare [Fekete and Walsh, [6], §13].

11. If we are willing to forego an analogue of (42), we can obtain
a further result on extremal polynomials.

THEOREM 15. Let S be a closed bounded set of positive transfinite
diameter, and let p,(z)=z"++-+ be the sequence of k-fold restricted (k=
const.) polynomials on S extremal for a monotonic quasi-Tchebycheff norm.
Let H, be the inflated convex hull of S of order k, and let ¢, ()=
204 .+« be the polynomial whose zeros are the zeros of p,(z) on H,.
Then on any closed bounded set S, exterior to H, we have uniformly the
second of equations (46).

Let H{™ be the (closed) point set consisting of all points at a dis-
tance not greater than 1/n from H,, let r,(2) =2+ --- be the polynomial
whose zeros are the zeros of p,(z) exterior to H, and let ¢, ()=
2"+ ... be the polynomial whose zeros are the zeros of p,(z) on H{.
At most k zeros of p,(z) lie exterior to H,, whence 0 <v<Fk. For z
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on S we have |r, (z)| =>1/n*=>1/n*. We proceed further as in the proof
of (41). If z is a point of S at which [¢,_,(2)] takes its maximum value
T, ,, we have

to- o)/ =T, /0" < T\-olro@) < Py .
There follows
lim sup 73", << lim sup Pi*=z(S) ,
and by (33)
lim 7"/7,==(S) .
Thus we have for z on S,
lim [¢,-(2)""=I¢(2)] .

However, t,-,(2) has at most %k zeros in H, but not in H{?, so if
d, C>0) and d, denote the shortest and longest distances between S
and H{ for n sufficiently large, we have for z on S,

ta-of?)

min[1, d,, -+, di] <
Qn-o(2

<max{l,d, -+, d¥],

so the second of equations (46) follows.
Theorem 15 is not a consequence of Theorem 12, for in Theorem 15
the set S may have points in common with the boundary of H,.

12. Under the conditions of Theorem 15, if the set S is real, it is
known [[6], Part 1I, § 15] that at most k& zeros of a real p,(z) lie ex-
terior to the convex hull H of S. Precisely the method of proof of
Theorem 15 (details are left to the reader) yields

THEOREM 16. Let the real set S and the real polynomials p,(2)
satisfy the conditions of Theorem 15. Let ¢, J{(2)=2"""+--- be the
polynomaal whose zeros are the zeros of v.(z) on H. Then the second of
equations (46) is valid uniformly on any closed bounded set S, exterior to H.,

13. Wae return to the consideration of asymptotic relations, with-
out specific reference to restricted polynomials. Equation (42) is derived
in Theorem 13 as a necessary condition on the polynomials 7, (z), but is
sufficient in the following sense. If S satisfies the conditions of Theorem
12, if o=o(n)=0(n), and if for polynomials ¢, .,(2)=z2"""+ .-+ and
r{2)=2"+--- we have (40) and (42), then we also have (31) with
Da(R) = @p-o(2)*7,(2). In fact we may write p, < @,-.-F,, whence (31)
follows by (40), (42), and (33). In this remark there are no geometric
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conditions on the zeros of ¢, .(2) and r.(2), but in connection with re-
stricted extremal polynomials the most interesting situation is that the
zeros of ¢,_,(z) are bounded whereas the zeros of r,(z) are not neces-
sarily bounded.

14. The polynomials 7,(2) of Theorem 13 have various interesting
properties :

THEOREM 17. If S 4s a set of positive transfinite diameter, and if
for the polynomials r(2) =2"+ -+- we have (42) with c=o0(n)=0(n), then
on any closed bounded set S’ of positive transfinite diameter we have
47) lim RV"=1, R;=[max |r,(2)|, z on S'].

We note that (33) for arbitrary polynomials yields
(48) liminf R >1 .

The generalized Bernstein Lemma is valid [Walsh, [9], §4.9] even
if we must use the generalized Green’s function G(z) instead of the
classical Green’s function for the maximal subregion K containing in-
finity of the complement of S. Let p (C>1) be chosen so large that the
level locus I',: G(z)=1logp in K separates S’ from infinity. For z in-
terior to I”, we have (loc. cit.)

[re@)| < Bop”, R, R,-p°.
Equation (42) yields
limsup R <1,

n~>co

which with (48) gives (47). We have made no hypothesis on the location
of the zeros of 7,(z) relative to S and S'.

Such a sequence as r.(z) of Theorem 17 may in some respects be
considered a “negligible sequence” with respect to n, provided s=0a(n)
=o0(n), in the sense that

(i) its presence or absence as a factor of ¢,_.(2) =z"""+--+ does
not alter the value of

lim [ max |g,-.(z), z on S]/*,

or even the value of liminf or lim sup here, and

(ii) this property of r.(z) is not dependent on the particular set S
(of positive transfinite diameter) chosen. Any sequence of polynomials
r(2)=2"4+ ... whose zeros are bounded is in this sense a megligible se-
quence with arbitrary o=o(n)=0o(n), for if these zeros and S lie on a
point set of diameter D we have
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R, < D",
which together with (45) implies (42).

15. As an application of this proof of (42) we state

THEOREM 18. Let S be a closed bounded set not necessarily of posi-
tive transfinite diameter, and let an arbitrary bounded set of points 2™,
2P, cee, 2 be given with o=o(n)=o0(n). Then there exists a sequence
of polynomials p,(2) =2"+ .- vanishing in the points 2§, such that (1)
@8 valid.

Indeed, there exists a sequence of polynomials ¢, ,(2) =2"""+-.--
satisfying (40), the polynomials 7,(2) = (z—2z™)- - - (z—2J) satisfy (44), so
(1) follows from (33).

16. For any of the classical norms and the polynomials »,(z) of
Theorem 18, the analogue of (1) holds; we state: the analogue of (1)
holds for the extremal polynomials for any quasi-Tchebycheff norm, if the
polynomaals are required to vawmish in the points 27 (j=1, 2, --+), pro-
vided s=0(n). The polynomials A4,(z, N) of least q.T. N-norm on S with
A, (", N)=0 by (4) fulfill

while by (5) they satisfy
N[A.(z, N), S]= L,(S, N, &)=(S)"
for m>my(N, ). Hence the validity of (1) by virtue of lim PJ/"=z(S).

Addendum. Using a device, communicated by Prof. Szego to the
first named author after the conclusion of the research above presented
we can prove the following counterpart of our Theorem 7 :

THEOREM 7 bis. Let S be an arbitrary compact set and R an arbi-
trary positive number. Suppose that (16) holds with k=Fk(n) subject to
(12). Then for all polynomials A,(z, N)Ye Ay, +++, 1) of least q.T.
norm N=N(A4,(2), S) on S, (1) is valid.

By Theorem 1 we may restrict the proof of (1) to the particular
case N=M(A,(z),S); thus A,(z, N)=T,(z, S), the k-fold restricted
Tchebycheff polynomial in A4,(ri, 7., +*-, 7:); and by a remark to Theorem
5 we can reduce this proof to the special case S: |p(z)|=p™ with
p()=z"—(p2™ '+ ---+p,), a lemniscate of radius 6=7(S). Then a
majorant for T,(z, S) is the product 2'p(2)*(z*+ 0,2 '+ -- - +0;), where ¢
and s are nonnegative integers satisfying
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n—k—ms=tm—1,
while 2 +02*'+ -+ -+, is the principal part of the Laurent development
AR AR SRR ST S TR o Nl SRR
around z=c of
R 7RI e b )2 0(2) 70
For each 2540 with [p)||2]7"+ -+ +|p,| |27™ <1 we have
@ 72" R ()]
= tzk+rlzk'1+ ety H{l—(pRr7 e D)} 0

=@+ +r,(){1+s(pjz’] +oeee FPa2™)

+<S;1)(plz“+ st D)

+<s;2>(p@‘l+ R 2 A I }

whence

s+2
O =71+8p, 0,=7.+7 8P+ -, 63=rs+rzspl+-~+( 3 >p?,

Similarly, for the aforesaid values of z,
@ +Inl e+ DI = (Pl + - + [, [277)}
=t A" et M Dz
with
A=l +slp| =1dil
dy=lrl+ Inlslpd+ -+« =10, 45=105) 5 -+~
Hence, for every r >0 large enough to satisfy

lpll/r~l+ AR Ipml/r—m < 1 ’

maX, - |28+ 6,251+« + - + 0,
e R R 7 /T 2V MUY ol 7 PR Ll S
= (" + It e+ D= Updr "+ s+ palr ™))
thus in case |z| < r covers the lemniscate |p(z)|=p™ we have a fortiori
MAX |, (1wl + 025 4« oo+ O (L |t oo e F)R

(n-k—1), 1

x {1=(plr=t+ - +plr=m)) » .
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By (16) and (12), for » > R we obtain

lim sup max, ¢,y -mle? + 8,251+ « - - + 8, ['"
< =(plr+ -+« +lpulr=—m)}m

which (r - ) yields lim sup max;,cyj-m2t+825 1+ +0,["" 1. We
therefore have

lim sup [ max,es|Tu(z, S)J'" = p=7(S).

Combining this with lim inf max,¢¢|T,(z, S)|¥* = 7(S) leads to the validity
of (1) for the special norm and special set considered, whence its validity
for arbitrary q.T. norms and arbitrary sets, as stated.

Using the above argument to obtain an upper bound for

[max [¢" 4+ 0,2° 4+« + +8,], z€ S-|p(z)|=p"]"

if k=Fk(n) is subject to (22), and 7,=7,(n), for 1<j <k=Fk(n) subject
to (23) with lim sup {«,(h!)*}¥* < o, we can prove (1) for all q.T. norms
and arbitrary compact sets S provided p is a positive constant. This
generalization of our Theorem 8 is due to Professor Szego.
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