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THE LATTICE OF INVARIANT SUBSPACES OF A
COMPLETELY CONTINUOUS QUASI-
NILPOTENT TRANSFORMATION

W. F. DONOGHUE, JR.

An essential result in the study of a continuous linear transforma-
tion of a Banach space into itself is the specification of the lattice of
proper closed subspaces of the Banach space which are invariant under
the transformation. For certain classes of transformations the results
which have been obtained in this direction may be regarded as complete,
for example, for self-adjoint transformations in Hilbert space. The in-
variant subspaces for certain isometries in Hilbert space have been
found by Beurling [2] whose results have been extended to unitary
transformations by the author [3]. In general, however, little is known;
in fact, it is not yet known that an arbitrary continuous linear transfor-
mation in Hilbert space has nontrivial closed invariant subspaces. A
theorem of von Neumann guarantees that a completely continuous trans-
formation in Hilbert space has such subspaces, while more recent work
of Aronszajn and Smith [1] establishes the same result for any Banach
space. For completely continuous transformations which contain only
the point 0 in the spectrum (the quasi-nilpotent transformations), spectral
theory can provide no information concerning the invariant subspaces,
and the application of the result of Aronszajn and Smith only assures
the existence of a nested sequence of closed invariant subspaces. Such
a lattice of invariant subspaces is considerably simpler in structure than
that usually encountered in spectral theory. It is the purpose of this
note to show that more cannot be obtained, and that this very simple
lattice does in fact occur. The three examples which follow illustrate
this fact; the fourth example shows that not every completely continu-
ous quasi-nilpotent transformation has such a lattice of invariant
subspaces.

ExaMPLE 1. Let 27 be the Hilbert space consisting of all
functions

fz)= nZ:‘O 2"
analytic in |z]<_1 with Taylor coefficients in *:

3 laal=]f<oo.

Received June 25, 1956. Paper written under contract with Office of Naval Research,
Contract Nonr 58304.
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1052 W. F. DONOGHUE, JR.
We may also write
¢ 0= S b= | @i
where
9E)= 3 b,

Let V be the transformation defined by VAz)=2f(2/2); V is completely
continuous and quasi-nilpotent. Let ., be the subspace of 7 com-
posed of functions f(z) which have a zero of order >>n at the origin;
it is evident that these subspaces satisfy the relation _7,,,C .7, and
that they are closed and invariant under V. It will be shown that
these are the only nontrivial closed invariant subspaces.

For the proof, it is enough to consider an element f of 27 for
which f(0)£ 0 and to show that the sequence V*f (n > 0) spans &7 We
may suppose f(0)=1 and write f(z)=1+g(z) with g in .. For n=0
we define h,(z)=1"2 @*=-wV7f; it is sufficient to show that the sequence
h. spans the space. For this purpose, consider the linear transforma-
tion 7 defined by T(2*)=h,(2); it is easy to establish the continuity of
T, and it will now be shown that 7 has a continuous inverse, thereby
establishing the completeness of 4,. Note first that

UT— D2 b= () 2 F=1 Ae/2) - 1P =) iz < 1

On the other hand, if f,(z) is a sequence in &% weakly converging to
0 then

)= }E aPz"
n=0
and
IT-DAN< S 1a] =2 <] 3 a1 (1/2");

(the inequality above following in general from its truth for finite
sums). From the weak convergence of the f, to 0 it is clear that

lim 3% | a$)(1/2)=0 ,
v n=0
hence that (T'—I)f, converges strongly to 0 and therefore that T'—1 is

completely continuous. Accordingly 0 is in the resolvent set of T or
there exists a finite-dimensional null space for 7. Thus T-' exists and
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is continuous, since the nonexistence of a null space for T is shown as
follows: Tf=0 for

fe)=3, anz"
means
goanhn(z)= 0
whence
aghe(2) + i t,hn(2)=0 ;

the second term is in _#, hence the first term is, and since %, is not
in that subspace it follows that @¢,=0; from an inductive argument it
then follows that all @,=0, as desired.

ExaMPLE 2. Let V* be the adjoint of the transformation V
described above. The invariant subspaces for V™ are the orthogonal
complements of the invariant subspaces for V, and form an increasing
sequence of finite-dimensional subspaces. Clearly V* is completely con-
tinuous and quasi-nilpotent.

ExampLE 3. If f(¢) is a function integrable on the interval 0 <¢t <1
let Sf be the indefinite integral

sAt=| ferds

The operator S is the Volterra integral operator and is completely con-
tinuous and quasi-nilpotent when considered as a transformation from
L? into itself for 1 <{p < o, or when considered on the space & of
continuous functions on the interval. If _# denotes the class of all
functions in L? which vanish almost everywhere on the interval 0 <¢
< s it is clear that the _# form closed subspaces of L? which are in-
variant under S. It will be shown that such subspaces are the only
closed invariant subspaces of the operator S.

For the proof, the result is first established for the continuous
function space. Let f(f) be continuous on the interval 0 <¢ <1 and
define f=0 outside that interval to obtain a function defined throughout
the axis. If Y(¢) is the Heaviside function equal to 1 on the positive
half-axis and vanishing on the negative half-axis, then for all z in the
unit interval

Sf(@)= (Y f)x)
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where * denotes convolution. Similarly, the iterates of S applied to f
are given for 0 <2 <{1 by

Sf(@) = (Y, f)()

where Y,,.(t) vanishes on the left half-axis and equals £"/n! on the right.
Let # be a measure on the unit interval orthogonal to all S*f; the
equation

SlS”f(x) dp—0

may be written (Y,*f * 2)(0)=0 where 7, the reflection of g through
the origin, is given by /(¢)=p(—t). From the associativity of convolu-
tion, then, (Y, *(f* ££))(0)=0 whence it follows that the continuous func-
tion f =t is orthogonal to f’n(t):Yn(~t) for all » > 0. Accordingly
f* [t vanishes on the left half-axis. A theorem, the most general ver-
sion of which is due to J. Lions [4] asserts that for any two distribu-
tions on E” with compact support, the convex hull of the support of
the convolution is the vectorial sum of the convex hulls of the supports
of the factors. Thus if the convex hull of the support of ¢ is the
interval (¢, d) and the convex hull of the support of f is (a, b) it follows
that the interval (a—d, b—c) is the convex hull of the support of fx f,
whence d << a. Thus the only measures orthogonal to S*f, n=>0 are
measures orthogonal to the subspace .7, and the closed linear span of
that sequence is .7, unless =0, in which case the closed linear span
will be the whole space if f(0)5%0. Thus any proper invariant subspace
for S in ¢ is a union of spaces of type .7 and is therefore a space
of that type itself.

For the spaces L? the same result follows from the observation that
the range of S is contained in ©°. If the smallest interval containing
the support of Sf is (a, b), then the sequence S*f, n =1 spans the sub-
space ., of & and its closure in L? is the corresponding _#, of that
space. Evidently f(£)=0 almost everywhere in 0 <{¢ < a, whence S"f,
n >0 spans .7, in L*,

It is of interest to note that our assertion is no longer true for the
space L=. As above, the transformation S is completely continuous and
quasi-nilpotent, however, its range is contained in a separable subspace
of the nonseparable L=. It is possible to obtain any closed invariant
subspace of L™ by choosing any closed subspace of a subspace of the
type ., which contains the corresponding continuous function sub-
space _#,. Nevertheless, if the word closed were interpreted to mean
weak-star closed the result obtained above for % and L* would carry
over to L=,
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ExAMPLE 4. Let &7 be the separable Hilbert space consisting of
functions f(z, y) defined in the unit square for which

If IF=S:§:lf(t, s)|2ds dt <o .

On &7 consider the integral operator T defined by

Tf(z, y)=SOS: ft, s)dsdt .

T is completely continuous and quasi-nilpotent. Following the methods
of the previous example it is not difficult to construct a class of subsets
of the square corresponding to a class of invariant subspaces. Obvious-
ly the linear subspaces so obtained are not linearly ordered under in-
clusion; moreover these are not all of the invariant subspaces since the
subspace consisting of functions which depend only on the product zy
is also a closed invariant subspace for 7.
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ASYMPTOTIC BEHAVIOR OF RESTRICTED EXTREMAL
POLYNOMIALS AND OF THEIR ZEROS

M. FEKETE AND J. L. WALSH

Introduction. Progress in the study of polynomials has recently
been made in two directions: (i) asymptotic properties of sequences of
polynomials of least norm on a given set (Leja, [7]; Davis and Pollak,
[1]; Fekete, [3]; Walsh and Evans, [10]; Fekete and Walsh, [5]); (ii)
geometry of the zeros of polynomials of prescribed degree minimizing
a given norm on a given set, where one or more coefficients are preas-
signed (Zedek, [12]; Fekete, [4]; Walsh and Zedek, [11]; Fekete and
Walsh, [6]). The object of the present paper is to combine these two
trends, by studying the asymptotic properties of sequences of polynomials
of least norm on a given set, where the polynomials are restricted by
prescription of one or more coefficients.

If S is a given compact point set and N[4.(z), S] any norm on S
of the polynomial A,(2)=2"+a,2z""*+---+a,, we are interested in the
asymptotic relations for (restricted) polynomials 4,(z, N) of least N-norm
(1) lim »i*=2(S) , v,=N[A,(z, N), S],

n—»ca

(2) lim |4,(z, N)r=|g(z)] ,
where 7(S) is the transfinite diameter of S, l¢(2)| = ¢**z(S), G(2) being
Green’s function with pole at infinity for the maximal infinite region K
containing no point of S, and where (2) is considered uniformly on a
more or less arbitrary compact set in K.

Part I is devoted primarily to (1); we show for instance that for
the unit circle, with the first k= k(n) coefficients a,, of the extremal

polynomial A,(z, N) prescribed and uniformly of the order 0<<n>> in
J

their totality, a necessary and sufficient condition for (1) for all such
choices of coeflicients is k=o(n), where N is any classical norm. We
prove similar results for other sets S. Part II is devoted primarily to
(2); first we use as hypothesis the analogue of (1), namely

{N[4.u(a), ST} — «(S) ,

for arbitrary polynomials A,(z); and then we use (1) as hypothesis, for
extremal polynomials A,(z, N) with % prescribed coeflicients and N

Reéeived July 17, 1956. This work was done at Harvard University under contract
with the Office of Naval Research.
M. Fekete died on May 13, 1957.
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1038 M. FEKETE AND J. L. WALSH

monotonie. If A,(z, N) has zeros in K, under suitable conditions the
corresponding factors of A,(z, N) can be omitted in whole or in part,
and the analogue of (2) is valid for the remaining factor, uniformly on
any closed set in K containing no limit point of zeros of that factor;
for instance if % is constant we can omit the factors of A,(z, N) cor-
responding to the zeros of A,(z, N) exterior to the inflated convex hull
H,(S), and (2) is valid uniformly on any compact set exterior to Hy(S);
as another instance, if =1 and if the prescribed center of gravity of
the zeros of A,(z, N) is fixed and different from the conformal center
of gravity of S, then precisely one zero of A,(z, N) becomes infinite
and (2) is valid uniformly on any compact set exterior to the convex
hull H, of S. Finally, we study (1) for extremal polynomials some of
whose zeros are prescribed.

PART 1

ASYMPTOTIC PROPERTIES OF THE LEAST N-NORM OF RESTRICTED
POLYNOMIALS ON A GIVEN POINT SET

1. In pursuing the objective indicated, we start our considerations
with remarks relevant to both (1) and (2). Let 4,=A4,(,, 1<7<k)
denote the aggregate of all polynomials A,(2)=2"+@,2" '+ U2 >+ -+
+a,, satisfying

(3) W=, 1<j<k 1<k<n—1.

The reader may easily prove the existence for each n(Z=n*=n*(V)) and
for each y,=7,n) and k=k(n) of a polynomial A.(z, N) in 4.,
1<j<k) of least N-norm, provided N belongs to the wide category of
quasi-Tchebycheff (q.T.) norms continuous in 4, on S; such norms are
broad generalizations of the classical norms, including the (ordinary)
Tchebycheff norm

M=M[A,(z), S]=[max |4,()|, z on S].

We recall [5, p. 53] that N[A,(z), S] is a q.T. norm on S provided for
all

AR =2"+a,2" "+

we have

N[A,(2z), S] _ ..
(4) M[An(Z), S] .g__ U(Si N) ’ n 19 27 ’
(5) NIA), S] > 1, (8, N, &) >0 for m—nolc) ,

M[A(2), S]—



ASYMPTOTIC BEHAVIOR OF RESTRICTED EXTREMAL POLYNOMIALS 1039
lim {L.(S, N, e)}**=f(N, ), lim (N, )=1 .
N0 -0

A norm N[A,(2), S] is continuous in A, on S provided to an arbitrary
A¥(z)e A, and e(>>0) there corresponds a 6=4d(¢, A5) (C>0) such that for
an arbitrary polynomial A4;*(z) in A, the inequality [4;(z)—A4;*(2)| < d on
S implies

|V[45(2), S1-N[AT (@), ST e .

Such continuity of N[4.(z), S] on a certain subset of 4, is also neces-
sary for the existence of a polynomial A,(z, N) in 4, of least N-norm,
since there exist instances of noneontinuous ¢.T.-norms N for which

N[A,(2), S1>>[inf N[A.(2), S1, Au(z) € 4,]

holds for all A,(z)e 4,. For the purposes of (1) if N is not continuous
one may replace min N in our considerations by inf N. Henceforth we
consider only continuous q.T. norms N[A4,(z), S].

2. The writers have already proved [5, Theorem 2] that the relation
(6) lim {N[4,(2), ST}""=2(S)

for an arbitrary compact set S, a given q.T.-norm N,, and an arbitrary
sequence of polynomials A,(z)=z"+---, implies the relation

(7) lim {N[A,(z), ST}"*=1(S)
for any other q.T.-norm on S. There follows

THEOREM 1. Equation (1) holds for every choice of q.T. norm N if
and only if (1) holds for a particulor choice of N, where all polynomials
are restricted to A,.

From (6) with A4,(z) the polynomials A,(z, N;) we deduce (7) involv-
ing these same polynomials, and this (7) as a majorant relation proves
(1); we use here the consequence of (5) that no matter what the poly-
nomials A4,(z) may be, the first member of (7) is not less than =(S).
Conversely, if (6) is not valid for a particular N, and the polynomials
Az, N,), then (7) is not valid for either the A,(z, N,) or the A,(z, N),
so (1) is not valid.

The importance of Theorem 1 for our investigation of (1) is that in
the sequel we may instead investigate (6) with A,(z)=A4.(z, N,) for a
particular N, conveniently chosen with respect to S.

3. As a first such application of Theorem 1 we prove

THEOREM 2. Let Auri, 7. *-+, 7:) be given, and S the unit disc
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2] < 1. A necessary and sufficient condition for (1) with A,(z, N)e A, is
(8) Bm {1+ 7 + P + - - - + e =1, |

wndependently of the q.T.-norm N.
In fact, with A,(z)e 4, and n >k+1, the choice

(9) MA@, S=o | 4P

Iz
=1+nP+ -+l +lae o al + oo
leads to the unique minimizing polynomial
A2, Np)=2"+72" 1t o oo +7,2" 70,
(10) va=Ni[Au(z, No), ST={1+ [+ -+ +rel}"™ .

Since 7(S)=1, (1) with N, for N is equivalent to (8). To complete the
proof we recall Theorem 1.

4. A hoteworthy corollary of Theorem 1 is

THEOREM 3. With the notation and hypothesis of Theorem 2, sup-
pose we have

(11) n=0[<?ﬂ : 1<j<k,

uniformly in j. Then a mecessary and sufficient condition for (1) with
arbitrary o.T.-norm N s

(12) k=o(n) .

With N, of (9) for N, hypothesis (11) in case (12) entails in view
of (10)

(13) 1gun=0[n(’?ﬂ as n—oco
J
since ( n> increases with 7 provided 2j5< n. It is sufficient to prove
J

(1) for every sequence of values n — o, so it is sufficient to prove (1)
under the alternate assumptions k(rn)=O(1) and k(n) > <. Relations
(18) prove (1) if k=0O(1). If however k=Fk(n) — oo still subject to (12),
by Stirling’s formula

N O (TN
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()~ (0.

implying (1) with N=2N,, and hence for all q.T.-norms N.
To prove the necessity of (12) for (1) with N=N, (and hence with
an arbitrary q.T.-norm), choose

n=<?), 1<j<k.
Then by (10)
v>(’;> 1< <k=k(xn) .

If (12) is false, for a suitably chosen sequence we have
lim k(n)/n=ce¢, 0<e<1;
in case 0 <e<1, by (14) follows

un~ (nY" ", 1
Yy <k> - (1—6)1—553 ‘—)1 ]

while in case e=1 we have

n iin
yan > ([H:D — 2 as n— oo ,
2

This contradiction of (1) completes the proof of Theorem 2.

5. By modifying slightly the above argument, the reader may easily
prove the following proposition, a generalization for S the disc |2|< R
of the previous two theorems.

THEOREM 4. A necessary and sufficient condition for (1) with
St lzl .S—_R and An(z’ N) € An(Tb ) 716) s

(15) lim {R*™+ PR 24 v oo I [2REn -2k} Um_ R

With the particular choice (uniformly in j)
(16) r=o[#(")], 1<i<k,
J

a necessary and sufficient condition for (1) is (12).
A word is in order to justify the form of (16). Much of the pre-
sent paper is devoted to the study of polynemials A,(z) in A.(r1, 7as ** s 7%)
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where we have
—(—1)( "
an r=0(7 e,

and the numbers ¢; are independent of n. For instance the center of
gravity of the zeros of A,(z) is ¢, and (17) may prescribe ¢, independent
of m. Here it is significant (Theorem 11, below) that a necessary con-
dition for (1) with the zeros of the A,(z) bounded is (17) with ¢, —¢,
where of course ¢, is not necessarily independent of n, and where ¢ is
the conformal center of gravity of S, a number depending wholly on S
itself.

We shall call the number ¢; defined by (17) the centroid of order
j of the zeros of A,(2).

Another comment on (16) is that if the z-plane is transformed by
a simple stretching z’=Rz, the transfinite diameter of every set is multi-
plied by R, and the jth centroid of the zeros of a polynomial is multi-
plied by R’; thus the factor R’ in (16) is appropriate.

6. We shall shortly indicate (§87, 8) that Theorems 2, 3, and 4
admit at least partial extensions to arbitrary sets whose boundaries are
rectifiable. The usefulness of these extensions in the study of still more
general point sets is now to be shown.

If S is an arbitrary compact set, and if the maximal infinite region
K belonging to the complement of S is regular in the sense that the
classical Green’s function G(z) for K with pole at infinity exists, we
denote by

w=¢(z) = exp [G(z) +1H(z)+ log =(S)] ,

where H(z) is conjugate to G(z) in K, a function which maps K onto
jw] > 7(S) with ¢(c)=o0.

The locus Cg: |¢(z)|=R:(S), R>>1, in K consists of a finite number
of rectifiable Jordan curves which are mutually exterior except perhaps
for a finite number of points each of which may belong to several
curves; we denote the sum of the closed interiors of these curves by
Sz. As R—1, the locus C; approaches the boundary of K.

THEOREM 5. Let S be a compact set, and let the infinite region K
belonging to the complement of S be regular. Let A,(ri, 7 +*+,7r) be
given and restrict A,(z, N) to A,. A necessary and sufficient condition
that (1) be valid for all q.T.-norms on S 4s that (1) be valid for all q.T.-
norms on oll Sk.

By Theorem 1, we may restrict ourselves to the consideration of
the Tchebycheff norms on S and S;. We denote the respective extremal
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polynomials by 7,(z, S) and T,(z, Sz). To prove the sufficiency of the
condition, we write

MIT.(2, Sw)y Sul = M[T(z, Sx), S1=MI[T,(z, S), S1=1(S)",

Hm {M[T,.(z, Sr), Sel}"=1(Sg)
=R-7(S) =lim sup {M[T,(2, S), S]}'""=«(S),
and R —1 establishes (1). With this reasoning as given, it s also suf-
ficient if (1) is valid on a sequence of sets S,, each containing S, with
K regqular or mot, provided (S,,)— t(S); the sets S, may be taken as
the closed interiors of lemniscates.

Conversely, by use of the generalized Bernstein Lemma [9, p. 77]
we have

{#(S}" < M[T\(2, Sr), Sl < M[T\(2, S), Sl < M[T,(z, S), SIR" ,

(S) < lim inf {M[T.(z, Sz), Skl}'" < lim sup {M[T(z, Sx), Sal}!'"
< lim {M[T\(z, S), S]}'""- R=7(Sy) ,

lim {M[T,(z, Sz), Sel}''"=2(S.) .

7. Theorem 5 emphasizes the importance in considering (1) of sets
with rectifiable boundary, both for their own sake and for the study
of more general sets. For the former we have the great advantage of
orthogonal polynomials as a tool. Thus we prove®

THEOREM 6. Let the point set S consist of a finite number of recti-
JSiable Jordan arcs, and let the polynomials P,(z)=z"+--- of respective
degrees n be mutually orthogonal on S, with

| P de =,
Let the norm N, be defined by
NLAEY = 14

and let us set

Bn(z)52n+7,lzn-l+ b +Tlczn—k Eddpn(z)+dlpn~l(z)+ b +an0(z) 5

phdh:S B()P.@\dd,  dui—d,(n), 0<h<n,
S

2 An analogous theorem obviously exists if S consists of a finite number of mutually
disjoint Jordan regions, and least-square norm is measured by surface instead of line
integrals.
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where the y,=r,n) and k=Ik(n) are prescribed. For each n>k+1,
min N[A,(2)] with A,(z)€ A,(r;) is N[C,(2)] where

Cn(z) = dOPn(z) + dIPn~1(Z) + *re +dkPn—7c(z) ’

and is assumed by mo other polynomial. A necessary and sufficient con-
dition for (1) with N=N, or with N an arbitrary q.T.-norm on S is

H {1y + P+ I, o} =(S)

An arbitrary polynomial A4,(z)=3z"+--- may obviously be expressed
as a linear combination A,(2) =5b,P,(z)+b.P,_(2)+ -+ +b,Py(2) by con-
sidering successively the coefficients of 2, 2*~%, ---, 1. Then the coeffi-
cients b, can also be computed by use of the orthogonality relations,

[, 4.@P.@ & =pb..
and we have
{NLA()]} = bol*Ds + B1fDas -+ + b0 -

The condition A,(z) € 4,(r;) is equivalent to specific prescription of b, b,
e+, b, so it is clear that

min Nj[A,(2)]=NJ[C.(2)]= {|di]*p, + ;D1 + * = - + &' D0ic}*

a minimum assumed by no other polynomial than C,(2) in 4,; the re-
mainder of Theorem 6 follows from Theorem 1.

Both Theorem 2 and the first part of Theorem 4 are clearly gener-
alized in Theorem 6. We proceed to a corresponding generalization of
the necessity of condition (16) in the second part of Theorem 4.

8. The number R plays two roles in Theorem 4: it is both z(S)
and a parameter restricting the order of ¢, in (16) if k=Fk(n) is not
bounded.

In extending the second part of Theorem 4 to a compact set S of
connected complement K whose boundary B consists of a finite number
of rectifiable Jordan arcs or even to a more general set S with regular
connected complement K, the second of these roles is kept for R. To
be more explicit we shall prove the following.

THEOREM 7. Let S be a compact set of connected regqular complement
K and R an arbitrary positive number such that the disc 2| < R contains
S in its interior.

Suppose that (16) holds with k=Fk(n) - o, k(rn)~=o(n). Then there
exist polynomials A,(z, N)e A, (r1, 72y <<+, 7x) of least q.T.-norm N=
N[A,.(z), S] on S for which (1) is not valid.
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We chose R,=R(R)>1 so that not only S but also S of §6 is
covered by lz[< R (thus o(Sp)< R). We know (Cf. §6) that with
Tn(z’ S) € A'm Tn(zv SRI) € Anv
(18)  RIM[T.(2 S), S1=MI[T(z S), Se]=MIT0(z, Sz), Sx] .
On the other hand if Cj denotes the boundary of Sz,
(19) MLz, Su), Sulp| 121 =, 1762, Sa)pe
Ry Ry
={,, 1Aue N,
Ry

where A,(z, V,) € 4, is of least square norm N, on Sg,

(NLA), SRJ}ZL—j

o, AP

Fix 7,=r,n), 1=j<k=k(n), by
4.0 =P +B(} Ps@ (") + B (] Pt
+ AP i(R) F o oo+ A Pi(?)

where k=[ I.‘; ], and the P,(z)=2"+--- are mutually orthogonal on Cp .

All zeros of the P,(z) lie in |zl <R (Fejér, [2]) so (16) is satisfied;

indeed (Z )(n;—h>=<n;h)(n —7;&——j> for 1<j<h. For A,(z)€ A, (1,

«++,7:) S0 chosen we have

Ao Ny=P@+ R JPans@ [(" 1)+ B JPuna@)

(Ao, N, Sy =put B Joues [(" ) + B () s

where
pi= |, IPADIIG =012, - .
Hence
NI, S5, Su1 > max (R Join [ (), B Yo

By Fekete-Walsh [5]
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™ — (Sg)) as n—co ,

Consider any sequence of n for which lim k =¢ exists with 0<le<1.
n

In case 0<e<(1, (Cf. §4)

(20) lim inf {N, [4.(2, Sg), Sp ]} = Er(Sg) (1 —e) e
> Rir(S)1—e)le™;

for we have B> #(Sy)=Rz(S).

In case e=1, by <Z>/(n_};h>——>1 as n— oo, we have

21) lim inf {N,[A4,.(z, Ny), SRI]}lln—_ZRUZT(SRL)UZ.ZHZgRlT(S).zllz .
Combining (20) or (21) with (18) and (19) we obtain
lim sup {M[T,(z, S), S1}¥"* > (S)-((1—¢)% % or 1) ==(S) .

Thus the proof is complete for the classical Tchebycheff norm M, and
the theorem follows by Theorem 1.

Theorem 7 can be extended to arbitrary compact sets S of positive
transfinite diameter «(S) with connected nonregular complement K, the
role of R being taken by any positive number such that the dise |2| < R
contains a level locus Cp,: G(z)=log R, which consists of finitely many
Jordan contours and separates S from infinity. The proof is similar to
the above one but uses the generalized Bernstein lemma in its extended
form. (Walsh, [9], §4.9). Corresponding extensions to the case of K
nonregular can be made for Theorem 8¢ and the second part of Theorem
9 below (concerning the respective necessary conditions for the validity
of (1)).

9. We have studied in some detail the conditions (12) and (16)
singly and in combination, especially if S is a circular disc, and in
particular have shown in Theorem 7 for a more general set S that (12)
is necessary’ for (1) provided (16) is assumed with the choice
R>[maxz|, zon S]. We are not in a position to prove that conversely

3 Nevertheless k=Fk(n)=0(n), more precisely k(n)=n—1, is compatible with the validity
of (1) for k-fold restricted mth degree extremal polynomials Ax(z, N)=2"+a1n2" 14 .-
+Qp-1,n2+ 0y, Wwith suitably preassigned coefficients aj,=7j=7jn), 1<j<k, fulfilling
condition (16) with the new choice R=[max |z|, z on S]. In fact, the coefficients 7j(n) of
the classical T-polynomial t,(z)=2"+ 71(®)2"~ 1+ - - - + 7 _1(m)2+ yn(n) on S, by Fejér’s theorem,
satisfy (16) with this special choice of R, and the nth degree (n—1)-fold restricted 7-

polynomials T'(z, S)€ An(71(n), - -+, rn-1(7)) minimizing the classical T-norm on S obviously
coincide with #,(z), thus satisfy [max|[Tn(z, S), z on S|t/*—>¢(S) as »n— «. Hence, by
Theorem 1, the validity of (1) for all Ax(z, S)€ An(y1(n), -, run-1(n)) of least q. T. norm

Non S, subject to (16) with B=| max|z|, z on S] as required, although (12) does not hold.
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(12), with the assumption of (16), is sufficient for (1), but now prove
for an arbitrary compact set S that a slightly stronger condition on
k(n) than (12), namely (22), is sufficient for (1) with a weaker assumption
than (16) concerning the centroids ¢; defined by (17).

THEOREM 8. Let S be an arbitrary compact set, and let N be a
continuous q.T.-norm on S. Let A z)=2z"+ --- minimize N over

An(h, Tos *° %y T}c) with

22 E=o " ),
@2) 0( log n>
(23) [c]l—gaj y 1§jék ’

where the «, are independent of n.
Then (1) vs valid provided the power series

S a2 A
h=1

has positive radius of convergences r.*

Let t,(z)=2"+a®™z" "+ .- - +af® be the Ath degree classical Tcheby-
cheff polynomial minimizing the norm M[A,(z), S] on S among all poly-
nomials A,(z) with the leading terms 2*. Then a majorant of the nth
degree generalized Tchebycheff polynomial T,(z, S)e 4, can be expressed
as the product ¢,-,(2)- (z°+ 2,2°~*+ - - - + 1;,) where the coefficients 1,=1,(k, n)
satisfy the linear equations

Al+a§n-—k):71, 12+21a§"‘k)+a§"”'°)272, cec
Aot Qg @S T b D@ e AR =7

Hence, by Fejér’'s Theorem [2] on the zeros of #,(z)

<l a2l < (1) et (T F)R< nB(14+ %)

where R >[max]|z, z¢ S]+1. Similarly,

4 'While the research here presented was in progress, Professor G. Szegé communicated
to the first named author the following result. Let L be an analytic Jordan curve. Let
the positive constants «; satisfy the condition |ej] <abd, j=0,1,2, ---, where a and b
are arbitrary positive comstants. Let the integer k=k(n) satisfy the condition kin)=
o(nflogn). There ewvist polynomials An(z)=z7+ --- satisfying condition (23) such that

lim max | A, (2)|Yn= (L)
n—ee 28L

where (L) 8 the transfinite diameter of L.
This communication induced us to study the problem dealt with in Theorem 8.
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I < bl a2 a2l < (2 ) (14 2) (T F)R

2 2122 al
+( 9 )R < 2m*R? (1+ +2¥R2>’
I < frsl 1] a2+ 4] la§2 |+ agn =]

g( 3 )a3+2n2Rl(1+ ;"el_,_z’R )(%1 ]G)R

enb(Le )y PR ()R 2R (1 e g o).

and so on; finally

k=1, & Pk 29 a, &y
] <2 R(1+R+2'Rz+ +sz'°)'

Hence, for R>1/r we have

k—1p,k Rk 241
MIZ,(z. S), S1< M), S1-(o+ V2w {1+ B

.0 ak . 1 1
+ +k'R’°+ in mf.)

and, therefore, by (22) and
lim {M[t,(2), ST}""*==(S) ,
lim sup {M[T.(z, S), ST} < «(S) .
On the other hand
lim inf {M[T,(z, S), S]}'"=>=(S) .

Thus the proof is complete for the classical Tchebycheff norm M, and
the theorem follows by Theorem 1.
As a converse of the proposition just demonstrated we prove

THEOREM 8 bis. Let S satisfy the assumptions of Theorem 7. Sup-
pose k=k(n) > as n—> o but k(n)=%o(n/logn). Then there exist poly-
nomials (2, N)e€ A ri, 15 *++, 1) 0f least q.T.-norm N=N[a,(z), S] on

S with [y < ( >a For1 < j < J(n) and tim sup [a,[B]" < co for which

(1) is mot valid.
Since Theorem 7 established the existence in question in the case
=R’ if k(n)5%0(n), we assume lim sup (k log n/n) >0 with k/n —0. Then
we fix 7,=7,n), 1<j<k=k(n), by
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n 2
(@) = Pof@) + () ) () "B Posl@)+ 2Po s+ -+ AuekP(D)

where P,(2), Cr, and R, have the same meaning as in §8; thus
I < ()R for 1=<5<k~1 and fruol <(}) [1+R)FIR and

therefore «,=1+ (A!)"* satisfies our hypothesis. The nth degree poly-
nomial a,(z, N,) of least square norm

No=Nolen(2), G )= {S O, nPI }”2

on Cr among all
an(z) =z"+-.--€ An(rly R Tn)

is obviously

@)+ (7 ) RP,u(2)

and we have
[, laate Nopidel > Bkt [, |Pys(@)lidel=R¥Hlp
CR1 CR1

In view of k(n)=o(n), p*"—t(Cr)=R(S), lim sup[klogn/n]=
("> 0), we have now

lim sup {S lat, (2, No)\zldzl}”mg Re(S) lim sup (k1)
Cr,
> Re(S)e > Rix(S) .
Combination of this inequality with (18) and (19) yields
lim sup {M[T.(z, S), ST > ()

for the polynomial T,.(z, S)€ A.(r, 72 *++, 7x) Minimizing the -classical
norm M[a,(z), S] on S, and the theorem is established.

10. We conclude our investigations concerning the validity of (1)
with 4.z, N)€ A7y, 72, =+, 7x) by considering the particular case
k=k(n)=0(1)

nearest to the simplest one: k=const. Using arguments similar to those
just applied in the proof of Theorem 8 we obtain at once, for arbitrary
compact set S
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(S < M[T.(z, S), S]
. .Qk=-1pk Pk &y X oy G
< Mt,(2), S]-(e+1)-2"n* R <1+R +a +sz'“)
provided [Mg(@)db a,=a,n). Hence by the hypothesis £=0(1)
J

o(S) <lim inf {M[T,(z, §), ST}** <lim sup {M[T,(z, S), ST}'™
< 7(S)-max (1, lim sup {{ maxa,n), 1 <j < k=k®n)]}'") .

Hence the validity of (1) for the classical Tchebycheff norm M and thus
also for each continuous q.T.-norm N provided

(24) lim sup {a,(n)}'"" <1,
1 <j<maxkn) .

Conversely, the condition (24) in case |r;| < (n,)a sm), 175 <k(n)=0(),
J

is also necessary for (1) with A4,(z, N)e 4,(r;, +-+, 1) for N the classical
Tchebycheff norm M and hence for arbitrary q.T.-norms N continuous
in 4, on a compact set S of connected regular complement K.

In fact, fix r;=r,n), 1 <j<k=k(n), by

4D = P+ i) ) Pacs(@) 4 AP s+ -+ 1k Pi)

where the P,(z)=z"+--- are mutually orthogonal on Cr, and R, R\(R),
Cr,, and S are defined as in § 8. Then with a,(n) =R’ for 1<j<k~—1,
the condition (24) is fulfilled. We shall show that (1) cannot hold under
our hypotheses unless (24) is satisfied also for j=%. In the proof we
may restrict ourselves to the classical Tchebycheff norm A, minimized
by the generalized Tchebycheff polynomial T,.(z, S)e 4,1, -+, 75). Ap-
plying the results (18) and (19) of § 8 we can write

@) EBMITG ), SY|, a1l ={], 1A N

where A,(z, N))e A,(r,, +++,7:) is the nth degree polynomial of least
1/2

square norm N,(4.(z), SR1)=H {An(z)[“ldzl} on Cr. Our above choice

of Ay(rs, ---,7.) vields o

Cr

Az Ny =P,@+aum) ) Poestd)

whence
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(26) (NLAz, N, S =pat{ sl 2 )} pavs

Combining (25) with (26) leads in view of lim p;"=1(Sg) to
R lim sup {M[T,(2, S), SI}"" = «(Sg) lim sup {a,(n)}'",
which by #(Sp)=R,z(S) is equivalent to
lim sup {M[T,(z, S), ST}!" = 7(S) lim sup {a,(n)}"" .

This establishes (24) as a necessary condition for (1) in case of the M-
norm and hence also for all ¢.T.-norms N on any set S of the type
considered. We summarize the foregoing results in

THEOREM 9. Let S be an arbitrary compact set, and let N be a
continuous q.T.-norm on S. Let A,(2)=z2"+-.-- minimize N over
An(rly ] Tk) WZth

27 k=k(n)=0Q1),

(28) ri=(")am,  1=isk.

Then (1) is valid provided (24) holds. Conversely, in case (27) is fulfilled,
(24) is also mecessary for (1) provided S is a compact set of regular
complement K.

11. In the previous sections we developed conditions, necessary or
sufficient or both, for the validity of (1). By Theorem 1 such conditions
are the same for all q.T.-norms N which are defined on the set S con-
sidered. If (1) does not hold, there might be two possibilities:

(a) lim {N[A.(z, N), S}¥"=w(S, N, 11, 13 *++,7:), with the poly-
nomials A4,(z, N) of least N-norm restricted to some given A,(r5, ***, 7s),
but o is different from «(S);

(b) the {N[A,(z, N), S]}*" have no limit as n — oo if A,(2, N)€ 4,,
that is

lim inf {N[A,(z, N), S]}'""=a(S, N, 11, -+, 71,)
is actually smaller than
lim sup {N[A,(2, N), S}"=p(S, N, 11, =+, 7:) .
12. It is easy to show that both possibilities (a) and (b) may even-

tually occur. In the light of this fact the following result has some
intrinsic interest:
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THEOREM 10. Let S be an arbitrary compact set and let N=
N[A.(2), S] be any given q.T.-norm defined and continuous in A,=
Au(ry, o+, 7:) on S. Let the least N-norm v, on S for polynomials
A, (?) e A, satisfy

1im il’lf Vl"/n::a(s, N; Ty * % Tlr) ’
lim sup v;/"=B(S, N, 11, ***, 7%) -

Then o and [ are independent of the particular choice of N and, con-
sequently lim vi)* exists or not for all q.T.-norms N, the coexisting limits
having the same value (S, 11, ***, 1)

Applying (5) with A,(z)=A.(2, N) the polynomial of least N-norm
on S for A,(2)e 4,, we obtain
(29) lim inf {N[A.(z, N), S]}¥* >1lim inf {M[A.(2, N), S]}"'"

> lim inf {M[A,(z, M), ST}'",

lim sup {N[4,(z, N), S1}'"* > lim sup {M[A,(z, N), ST}
=lim sup {M[A4.(z, M), ST}/

while (4) applied to A,(2) =A,(2, M)e 4, yields
(30) lim inf {N[A,(z, N), ST}V < lim inf {M[A4,(z, M), S]}'",
lim sup {N[A,(z, N), ST} <lim sup {M[A.(z, M), ST} .
Combining (29) with (30) leads to
a(S, N, 7y, =+, 1)=alS, M, 11, «+ <, 1i)
and we similarly obtain
BS, N,y ==+, 1)=F(S, M, 11, * =+, 11)

for all q.T.-norms N defined and continuous in 4, on S. Thus the proof
for the independence of « and S of the choice of N is complete and
hence the rest of the theorem follows if a=4§.

PART II

ASYMPTOTIC PROPERTIES OF THE MODULI, AND OF THE ZEROS OF
POLYNOMIALS OF LEAST NORM

1. In Part I we have developed primarily sufficient conditions for
the wvalidity of (1); we propose now to consider necessary conditions
for (1), namely consequences of (1) such as (2) which are significant in
the study of restricted extremal polynomials. Our first three theorems
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are entirely general, without special reference to extremal polynomials.

THEOREM 11. Let S be a point set of positive tramsfinite diameter
whose complement K is a region containing the point at infinity, and let
the zeros of the polynomials p,(2)=2"+auZ" '+ -+« +a,, be uniformly
bounded. Then

(31) limsup P," <(S), P,=[max|p.(2)], z on S],
implies
(32) lim (@,./n)=a, ,

where —a, 18 the conformal center of gravity of S. That is, the center
of gravity of the zeros of p.(z) approaches the conformal center of gravity
of S.

For any sequence of polynomials p,(z)=2"+--- we have
(33) lim inf PY" > «(S) ,
since the corresponding relation holds for the Tchebycheff polynomials
of S; thus (31) is equivalent to
(34) lim Pi*=1(S) .

If G(z) is the generalized Green’s function for K with pole at in-
finity, a suitably chosen level locus Cj: G(z)=1log E(C>0) in K consists
of a single Jordan curve containing in its interior both S and all the

zeros of the p,(z). It then follows from (34) that we have exterior to
Cz, uniformly on any closed bounded set exterior to C,,

(35) lim |p,(2)""=l$(2)| ,

where ¢(2) = exp [G(z)+iH(z)+log «(S)] and H(z) is conjugate to G(z) in
K; we need merely apply a previous result [Fekete and Walsh, [5],
Theorem 11], where (31) is used to establish (loc. cit.)

lim sup [ max |p,(2), 2 on Cx]"* << R-«(S) ;

7—>»c0

the closed interior of the present Cj contains all zeros of the p,(2) and
has the transfinite diameter R-z(S).
We write (35) in the form

(36) lim |p,(2)/2"[""=|d(2)/2] ,

N~>co

which holds uniformly in some neighborhood of the point at infinity.
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We set
(37) PpR)=z+atag '+ ;

it is of course no loss of generality to choose ¢'(0)=1, and here —a,
is by definition the conformal center of gravity of S. If the nth root
in (36) is suitably chosen, namely with the value unity at infinity, (36)
implies

tn
(38) 1im[1+ Do 1. %+---] =14+ B4 Byl
N> a z 2 z°

2
uniformly in some neighborhood of the point at infinity. We use here
the theory of normal families of functions. Any infinite sequence of the
functions in the first member of (38) is bounded and admits a sub-
sequence converging uniformly in the neighborhood of infinity. All limit
functions are analytic in this neighborhood, have the same modulus
there, and are equal at infinity ; hence these limit functions are identical,
and the original sequence converges uniformly in a neighborhood of
infinity to this limit function. Equation (88) implies (32).

2. Of course this same reasoning applies to the higher coefficients
in (38); for instance

200y~ O
2 50
2n 2

but (32) would seem to be the most interesting of these relations.

Equation (32) has been previously established by Schiffer [8] for the
case that K possesses a classical Green’s function, and where the 2,(2)
are the Fekete polynomials for S, whose zeros lie on S and maximize
the discriminant.

In the hypothesis of Theorem 11 we may replace (31) by the cor-
responding inequality involving an arbitrary quasi-Tchebycheff norm;
compare [Fekete and Walsh, [5], Theorem 2].

3. The significance of Theorem 11 in the theory of once-restricted
and k-fold restricted extremal polynomials is that <f (31) s satisfied,
then unless (32) is also satisfied the zeros of the p.(z) cannot be bounded ;
thus (36) cannot be valid uniformly in the neighborhood of infinity, and
may not be valid on every compact set in K. Of course (36) is valid
uniformly in the neighborhood of infinity for all classical extremal poly-
nomials [Fekete and Walsh, [5], Theorems 11 and 13].

An illustration here is illuminating; we choose S as [/ <1 and
prescribe merely the (constant) center of gravity ¢, (50) of the zeros
of each p,(2). The extremal polynomials with the least-square norm on
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the boundary of S are
Da(2) =2"—meR" ' =2""(2—nc) ,

and the zeros of these polynomials are not bounded. It is striking that
(36) continues to hold, but nonuniformly, in the neighborhood of infinity.
Moreover, if we replace the prescribed ¢; by ¢™, where ¢ — 0, then
the zeros of p,(2) are bounded if and only if the numbers nc{™ are
bounded.

Theorem 11 (like later results) does not require that the p,(z) be
defined for every n; it is sufficient if these polynomials are given for
an infinite sequence of values of n. Thus, ¢f the p.(2) are given and
(82) is not satisfied, the zeros of the sequence p,(2) cannot be bounded ;
of (82) is satisfied for no subsequence of indices n, the zeros of mo sub-
sequence of the p,(z) can be bounded ; in particular if the p,(2) are once-
restricted ewxtremal polynomials p,(2) =z2"+naz"*+ -+ with constant a,
different from the conformal center of gravity of S, there exists & unique
sequence for n sufficiently large of zeros 3, of the respective p,(z), where
3. lies exterior to the extended convexr hull H, of S, with 3,— >, and
all other zeros of py(2) lie in H,; compare Fekete and Walsh [6;
Theorem VII].

4, Deeper results can be established concerning the zeros of the
2.(z) which become infinite.

THEOREM 12. Let S be a point set of positive transfinite diameter
whose complement K is a region containing the point at infinity. Let
G(2) be the generalized Green’s function for K with pole at infinity, and
let I be a Jordan curve in K which separates S from the point at in-
Jinity. Suppose

PR =2"+ 2" oo+ Ay

and suppose (81) is valid. Let us write p,(2) = ¢,-o(2)7(2), where r.(z) =
27+ -+ 48 a polynomial whose zeros are precisely the zeros of pu(z) ex-
terior to I'. Then we have

(39) a=a(n)=0(n) ,
(40) lim Q% P=1(S),  Qu-.=max][|g,_.(2)],zon S].

Equation (39) follows at once [Walsh and Evans, [10]], for the
number n—o of zeros of p,(z) on and interior to I satisfies (n—o)/n—1.

Since S is closed, the distance d from S to I" is positive, so for z
on S we have |r,(z)] > d°. Consideration of a point z of S at which
10n-+(2)| =@, then yields
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(41) ln-o(2)]- A" =Qp -0 d” < Qpo* r. (A Z P, .
Equation (39) implies d°" — 1, whence from (41)
lim sup QY", < lim sup P}/" < «(S) .
But we may write also
lim sup QY*, = lim sup QY% ,

so (40) follows by the analogue of (33).
Of course it is a consequence of (40) that the center of gravity of
the zeros of ¢,_.(z) approaches the conformal center of gravity of S.
It follows from Theorem 12 [Walsh and Evans, [10], p. 335] that
on any closed set exterior to I" we have

lim |g, ()" =g (2)],
the analogue of (85).

5. Qur main interest lies in the zeros of p,(2) which become infi-
nite, but Theorem 12 deals also with also with other zeros. In particular,
if p.(2) is a k-fold restricted (k=-const.) extremal polynomial on S for a
monotonic quasi-Tchebychefl norm, and if either I’ is the boundary of
H(S) (supposed to contain S in its interior) or is a curve containing
H.(S) in its closed interior, then at most k zeros of p,(2) lie exterior to
I'; we have o(n)<k. Moreover, equation (35) is wvalid uniformly on
any closed bounded set in K containing no limit point of the zeros of the
Pu(2); and (35) with p.(z) replaced by q,-.(z) is valid uniformly on any
closed bounded set in K containing no limit point of the zeros of the
Qn-o(2), M particular is valid on any closed bounded set exterior to I’
[compare Walsh and Evans, [10], p. 335].

6. Theorem 13 is complementary to Theorem 12:

THEOREM 13. Under the conditions of Theorem 12 we have

(42) lim RY"=1, R,=[ max lrA2)|, zon S].

There exists a number D independent of Z such that for each fixed
point Z on or exterior to I” and as Z; and Z, range over S, we have
for the distances

maxZZ, — p

min ZZ,

for the first member depends continuously on Z and approaches unity
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as Z—> . The zeros of 7,(2) lie exterior to /', so for 2 on S we have

max [re(2)l o
© min |r.(z)| =D

From (41) we may write for z on S
Qn—a'[min !7'0(2)” :<—._Pn ’
(43) Qn—o"Rngn-v'[min lTa(Z)HD”éPn‘D” .

In equation (40) we may replace the exponent 1/(n—s) by 1/n, so
from (43), (31), and (39) we have

(44) lim sup RY/» <1 .

However, (33) for arbitrary polynomials here shows

lim inf RY* > «(S) ,

n—»o0

(45) lim inf [l log R,] >0,
n

n—>c0

and (42) follows.

7. A result similar to Theorems 12 and 13 is the following.

Under the hypothesis of Theorem 12 let I', be an arbitrary Jordan
curve in K containing on or within it no point of S, and let r.(2)=
27+ <+ be the polynomial whose zeros are the zeros of p,(z) on and within
Iy, with p,(2) =¢q,-.(2)7(2). Then we have (39), (40), (42), and the
relation lim |g,.. (@)Y =|p()| uniformly on any closed set interior to
I'.. Here (39) follows at once [Walsh and Evans, [10]], (40) follows as
in the proof of Theorem 12, (42) follows from the boundedness of the
zeros of r.(z) and from (45), and the remaining remark is immediate
[Walsh and Evans, [10], p. 335].

8. Theorems 12 and 13, devoted to arbitrary sequences of poly-
nomials p,(z) such as those studied in Walsh and Evans [10], yield a
precise result for restricted extremal polynomials in the case k=1.

THEOREM 14. Let S be a closed bounded set of positive transfinite
diameter, and let p,(z) ="+ +-- be the sequence of once-restricted poly-
nomials on S, with constant center of gravity of the zeros different from
the conformal center of gravity of S, extremal for a wmonotonic quasi-
Tchebycheff norm. Let C be a (closed) circular disk containing S, let C’
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be a concentric disk whose radius is three times as great, and let
rz)=2"+---, o=o(n)=1or 0,

be the polynomial whose zero is the zero of p,(z) if any ewterior to C',
otherwise unity. Set

Qn—a(z) =z2""t . pn(z) = QH—U(z).T'U'(z) .

Then (34), (40), and (42) are valid. Moreover on any closed bounded set
S, exterior to H we have uniformly (notation of (35))

(46) lim [p,(2)|""*=lim |g,,-.(2) """ =|$(2)| .

The present writers have previously [6] shown that if a zero of p,(2)
lies exterior to C', then all other zeros of p,(z) lie in C. Moreover it
is remarked in § 3 that under the present conditions a zero of p,(z) lies
exterior to C’ for n sufficiently large. Thus o(n)=1 for n» sufficiently
large. Equation (34) is known [part I, § 10], (40) follows from Theorem
12, and (42) from Theorem 13.

The zeros of the polynomials p,(z) and q,_(z) have no (finite) limit
point exterior to H. Indeed, if 2=« is assumed to be such a limit point,
let I" be a circular disc containing H in its interior but to which « is
exterior. For n sufficiently large a zero of p,(z) lies exterior to the disc
concentric with /" whose radius is three times as great, and consequently
[Fekete and Walsh, [6], Theorem IX] all other zeros of p,(z) lie in I,
which contradicts the assumption of « as a limit point of zeros.

Equation (46) now follows [Walsh and Evans, [10], p. 335]. If S;
is a closed bounded set exterior to H, for n sufficiently large no zeros
of p,(2) lie on S..

9. Under the conditions of Theorem 14 we can obtain some infor-
mation about the asymptotic behavior of the one zero z among the
totality of zeros (z, 2, ---, 2,) of »,(2) which becomes infinite. If « is
the prescribed center of gravity and o the conformal center of gravity
of S, we have z,+2,+ -+ +2,=na, and by Theorem 11

,zl—t,z,g,i{—,:,!_}j,z,” — zli—izg,i :,:.i+,z,n — U 21 - X —a
’ 3 ¢

n—1 7 n

10. We are not in a position to extend Theorem 14 to the case
of k-fold restricted extremal polynomials, £ >>1, for with 2>>1 precise
conditions are as yet unknown concerning the number of zeros of p,(2)
which become infinite or indeed lie exterior to H. For instance, if C is
l2|=1 and we use the least-square norm on C with k=2, the twice-
restricted extremal polynomial
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pn(Z)Ez"+0-z"‘1+<g>czzn’z ’ 02#0 ’

has two zeros +[—n(n—1)c,/2]"* which become infinite, whereas the
twice-restricted extremal polynomial

(2 =2"+ncz"'+0-2""2, a7#0,

has but one zero —mne, which becomes infinite.

Nevertheless, for k>1 4f we know that k zeros of p.(2) become
mfinite as n— oo, the remaining n—=k zeros of v,(2) have no limit point
exterior to H. For let ¢, ¢, -+, ¢, denote the angles subtended by S
at the respective zeros of »,(z). Zedek’s relation (Cf. Walsh and Zedek
[11])

¢1+¢:+"'+¢x+1277

can be written in the form
Grer == (py+pyt -+ + i)

and if (p;+po+ - +¢) —> 0, then ¢ — 7 if ¢, <7z, To be more ex-
plicit, if ¢, <e/k for j=1,2, ---, k, then ¢,>n—e¢ for j=k+1, k+2,

-, n, so the n—k corresponding zeros of p,(z) lie in the locus of
points from which S subtends an angle greater than or equal to 7—e.
Under these conditions (that % zeros of p,(2) become infinite), the set
of zeros of the p,(2) has no finite limit point exterior to H, and Theo-
rem 14 admits a precise analogue. Even though the set of zeros of the
?,(2) has no finite limit point exterior to H, not all zeros near S need
lie in H; compare [Fekete and Walsh, [6], §13].

11. If we are willing to forego an analogue of (42), we can obtain
a further result on extremal polynomials.

THEOREM 15. Let S be a closed bounded set of positive transfinite
diameter, and let p,(z) =2"+«-- be the sequence of k-fold restricted (k=
const.) polynomials on S extremal for a monotonic quasi-Tchebycheff norm.
Let H, be the inflated convex hull of S of order k, and let q,-.(2)=
27+ .+« be the polynomial whose zeros are the zeros of p,(z) on H,.
Then on any closed bounded set S, exterior to H, we have uniformly the
second of equations (46).

Let H{™ be the (closed) point set consisting of all points at a dis-
tance not greater than 1/n from H,, let r,(z)=2"+--- be the polynomial
whose zeros are the zeros of p,(z) exterior to H{?, and let ¢, ,(2)=
Z"*+ ... be the polynomial whose zeros are the zeros of p,(z) on H{®.
At most k zeros of p,(z) lie exterior to H,, whence 0 <v<k. For z
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on S we have |r, (z)| =>1/n">1/n*. We proceed further as in the proof
of (41). If z is a point of S at which |¢,_,(2)] takes its maximum value
T, ., we have

ltn- (@) =T,_ /10" < Thoolro(?) < Py .
There follows
lim sup 7T/, < lim sup PY*=+(S) ,
and by (33)
lim 7}/7,=2(S) .
Thus we have for z on S,
lim [¢,,- ()" =|¢(2)] .

However, t,.,(2) has at most % zeros in H, but not in H®, so if
d, C>0) and d, denote the shortest and longest distances between S,
and H™ for n sufficiently large, we have for z on S,

ta-of?)

min [17 d{)y M) dg] <
In-o(Z

<max|[1,d, -+, d¥],

so the second of equations (46) follows.
Theorem 15 is not a consequence of Theorem 12, for in Theorem 15
the set S may have points in common with the boundary of H,.

12. Under the conditions of Theorem 15, if the set S is real, it is
known [[6], Part II, § 15] that at most % zeros of a real p,(2) lie ex-
terior to the convex hull H of S. Precisely the method of proof of
Theorem 15 (details are left to the reader) yields

THEOREM 16. Let the real set S and the real polynomials p,(z)
satisfy the conditions of Theorem 15. Let ¢, (2)=2"""+4.-- be the
polynomial whose zeros are the zeros of v,(z) on H. Then the second of
equations (46) is valid uniformly on any closed bounded set S, exterior to H.

13. We return to the consideration of asymptotic relations, with-
out specific reference to restricted polynomials. Equation (42) is derived
in Theorem 13 as a necessary condition on the polynomials 7,(z), but is
sufficient in the following sense. If S satisfies the conditions of Theorem
12, if o=oa(n)=0(n), and if for polynomials ¢, ,(2)=2"""+--- and
r{2z)=2"+-:-- we have (40) and (42), then we also have (31) with
Du(2) = ¢-o(?):7,(2). In fact we may write p, < @Q,-,-E,, whence (31)
follows by (40), (42), and (33). In this remark there are no geometric
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conditions on the zeros of ¢,_.(z) and 7.(z), but in connection with re-
stricted extremal polynomials the most interesting situation is that the
zeros of ¢,_,(2) are bounded whereas the zeros of r.(z) are not neces-
sarily bounded.

14. The polynomials 7,(z) of Theorem 13 have various interesting
properties :

THEOREM 17. If S is a set of positive transfinite diameter, and if
for the polynomials r(z) =2"+ ++- we have (42) with c=o(n)=o0(n), then
on any closed bounded set S’ of positive transfinite diameter we have
(47) lim R}V»=1, R;=[max |r, ()|, z on S'].

We note that (83) for arbitrary polynomials yields
(48) liminf RM" >1 .

The generalized Bernstein Lemma is valid [Walsh, [9], §4.9] even
if we must use the generalized Green’s function G(z2) instead of the
classical Green’s function for the maximal subregion KX containing in-
finity of the complement of S. Let p (C>1) be chosen so large that the
level locus I',: G(z)=logp in K separates S’ from infinity. For z in-
terior to I", we have (loc. cit.)

I’I”G(Z)I gRﬂ"PU ’ Ro,- éR‘,'PG .

Equation (42) yields
limsup R <1,

n~>c0

which with (48) gives (47). We have made no hypothesis on the location
of the zeros of r.(2) relative to S and .

Such a sequence as 7.(z) of Theorem 17 may in some respects be
considered a “negligible sequence” with respect to n, provided s=oa(n)
=o0(n), in the sense that

(i) its presence or absence as a factor of ¢, . (2)=2"""+.-- does
not alter the value of

lim [ max |g,-.(2)|, z on ST/,

or even the value of liminf or lim sup here, and

(ii) this property of »,(2) is not dependent on the particular set S
(of positive transfinite diameter) chosen. Any sequence of polynomials
r(2)=2"+.-. whose zeros are bounded is in this sense a negligible se-
quence with arbitrary oc=oa(n)==0(n), for if these zeros and S lie on a
point set of diameter D we have
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R, <D,
which together with (45) implies (42).

15. As an application of this proof of (42) we state

THEOREM 18. Let S be a closed bounded set not mecessarily of posi-
tive transfinite diameter, and let an arbitrary bounded set of points ™,
20, e o0, 23 be given with o=o(n)=o0(n). Then there exists a sequence
of polynomials p,(z) =2"+ ..+ vanishing in the points 2{, such that (1)
28 valid.

Indeed, there exists a sequence of polynomials ¢, ,(2) =2"""+-.--
satisfying (40), the polynomials #,(2) = (z—2™)- - -(z—2J”) satisfy (44), so
(1) follows from (33).

16. For any of the classical norms and the polynomials p,(z) of
Theorem 18, the analogue of (1) holds; we state: the analogue of (1)
holds for the extremal polynomials for any quasi-Tchebycheff norm, if the
polynomials are required to vanish in the points 25 (j=1, 2, «--), pro-
vided s=0(n). The polynomials A4,(z, N) of least q.T. N-norm on S with
A, (P, N)=0 by (4) fulfill

N[A4,(z, N), SI< N[P,(2), S]<U(S, N)P, ,
while by (5) they satisfy
N[A.(z, N), S] = Ly(S, N, e)«(8)"
for m>my(NN, ). Hence the validity of (1) by virtue of lim P}/"=z(S).

Addendum. Using a device, communicated by Prof. Szegt to the
first named author after the conclusion of the research above presented
we can prove the following counterpart of our Theorem 7 :

THEOREM 7 bis. Let S be an arbitrary compact set and R an arbi-
trary positive number. Suppose that (16) holds with k=Fk(n) subject to
(12). Then for all polynomials A.(z, N)e Ay(ri, +++, 1:) of least q.T.
norm N=N(A4,(2), S) on S, (1) is valid.

By Theorem 1 we may restrict the proof of (1) to the particular
case N=M(A.(2), S); thus A,(2, N)=T,(z, S), the k-fold restricted
Tchebycheff polynomial in A,(yi, 7., -+-, 7&); and by a remark to Theorem
5 we can reduce this proof to the special case S: |p(z)|=p™ with
p()=2z"—(p2™*++--+p,), a lemniscate of radius J6=7(S). Then a
majorant for T,(z, S) is the product z'p(z)*(z*+ 25"+ -+ - +0,), Where ¢
and s are nonnegative integers satisfying
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n—k—ms=tm-—1,
while 2 +02*'+ -+, is the principal part of the Laurent development
BE 02 e £ 0 F 0p @ O - e
around z=oc of
R+ I e 2 (2)70
For each 2540 with |p]|2[7'+ -+ +|pa| |21 <1 we have
@72+ ") ()]
= tzk+r,zk*1+ et ) { 1=t e F P ™))

=@+ +n){1 +s(pz+ e DR

+ <3J2rl>(m'1+ R 2

+ <3J3“ 2)(p12‘1+ SRR o 20 I SRR }

whence
01=71+8D, O=7y+78Pi+ -+, 53=73+rzsp1+---+( 3 )pn .

Similarly, for the aforesaid values of z,
@+l 4+ {1 =(Iple 4+ -+ [0, [27™)}
=t 4 e+ A+ Az

with

d=Inl+slp| =104 ,

dy=lrl+ Inlslpd+ -+« =10l, 45 =105), --- .
Hence, for every » >0 large enough to satisfy

il e+ pylrm <1,

max,, ., |2¥ + 6,25+ - - - + 6,
ULt SRR S M S MY A S i s SRR
="+ e+ D=l + e+ Dl ™))}
thus in case |z| < r covers the lemniscate |p(z)|=p™ we have a fortiori
MAX, ) pml2®+ 0,25 4 o+ G (L et e e F)YR

n-k—t) 1

C
X {I=(plr7+ - +lpulr=™)} »
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By (16) and (12), for » > R we obtain

lim sup max, ¢,y -2 + 8,25 1+« - - + 8"
< {I—=(lpdr=" -« +pulr—™)}Hm

which (r > ) yields lim sup max;,cy .met+825 4+ +0,["" 1. We
therefore have

lim sup [ max,es|Tu(z, SHI'™ < p=7(S).

Combining this with lim inf max,cs|T(z, S)|'" = 7(S) leads to the validity
of (1) for the special norm and special set considered, whence its validity
for arbitrary q.T. norms and arbitrary sets, as stated.

Using the above argument to obtain an upper bound for

[max |2% + 0,2 4« <« + 8], = pm]Hn

if k=k(n) is subject to (22), and 7,=r,n), for 1<j <k=Fk(n) subject
to (23) with lim sup {«a,(h!)?}¥* < o, we can prove (1) for all q.T. norms
and arbitrary compact sets S provided p is a positive constant. This
generalization of our Theorem 8 is due to Professor Szegd.
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BIORTHOGONAL SYSTEMS IN BANACH SPACES

S. R. FoGUEL

1. Introduction. We shall be interested, in this paper, in the
following question: Given a biorthogonal system (x,, f,) in a separable
Banach space B, under what conditions can one assert that the sequence
{x,} constitutes a basis? The system (x,, f,) is called a biorthogonal
system if

aneB, fneB* and fn(xm)zanm .

We shall assume throughout the paper that ||z,||=1 and the se-
quence {x,} is fundamental. When the sequence {=,} constitutes a basis
it will be called regular otherwise drregulor.

2. TIrregular systems. Let {x,} be an irregular sequence. (For ex-
ample the trigonometric funections for C(—m, z)). The following defini-
tions will be used.

oul)= 3% F ()2

Nzlll= sup {llg.(x)ll, n=1, 2, 3, ---}
Compare [4]
Ey={z|lim ¢,(@)=a}
E\={z| llz]l|<ew}
Ey={o|lim|| ¢,(@) || = oo}
Ey={z] [[lzlll=c}.

We have E,CE, and E,CE;. For regular systems E,—=E =B
and E,=FE;=¢ where ¢ is the null set. The system is regular if and
only if the sequence {||¢,||} is bounded [2], and if the sequence {||¢,||}
is not bounded the set

Nzl le@I<K)

is nowhere dense [2], hence for irregular systems the set
E=\ N {o| le.@I<K}

is of the first category. Also E;=B-FE, is dense and of the second

Received February 22, 1956. This paper is part of a dissertation presented for the
degree of Doctor of Philosophy Yale University.
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category. In the case of regular systems there exists a number K>1
such that if ||z||=1 then 1<|||z|||<<K. The existence of such a bound,
K, is equivalent to the equiboundedness of {||¢,(x)||}|lz||=1 and there-
fore for irregular systems for any number a, there exists a point z
such that ||z||=1 and |||z |||>>a, moreover such a point might be found
in the linear manifold generated by {z,}. (Equiboundedness of {||¢,(x)||}
on a dense subset of the unit sphere would imply equiboundedness on
the unit sphere.) It is interesting to note that for every number a>1
there exists a point = such that ||z||=1 and |||z|||=a. There exists a
point y, satisfying

v S0, llwall=1, livll>a.

On the other hand ||z,||=1 and |||z;|l|=1. Let 0<t<1, then (1—¢)z,+
ty,7%0. Define

gv(t)z

il e

The functions ¢,(f) are continuous in ¢, and so is g(¢) where
9(&)=sup {g,(t) |1 <r=n} .
9(0)=1
and
9= sup {{ley(v.) 11y <n} =lly, I >a.
There exists a number ¢, such that
0<¢<<1 and g(t)=a.

This following generalization of Baire’s theorem [1] will be used :
Let {u,(x)} be a sequence of real valued continuous functions defined on
a metric space ¢, and limu(x)=u(z), |u,(x)| <M, then the set of points
of discontinuity of w s of the first category.

THEOREM 1. The set E, is of the first category.

Proof. Define the functions u,(x) by

Un(@)= @)l .
1+lga(@) |l

We have 0<u,(x)<1 and if ze E,\J E, then

limu,(2)=u(x)



BIORTHOGONAL SYSTEMS IN BANACH SPACES 1067
where u(z)=1 for ze E, and

_ =l
w(x)= T+l for xc K.

If E, is a set of the second category then there exists at least one point
of continuity of u. Let us denote such a point by «,.

The set £, is dense in B. Let {y,} by a sequence of points in E,
with limy,=x,, then

u(@,)=lim u(yn)zlimML — Mall

1+wll T+l

The set E, is dense in B. If xe E, and ye E, then z+ye E,. Let
{2,} be a sequence of points in E, with limz,=w,, then u(z,)=1 and

Hall — 1 —
”11—”;071 l u(xy)= limu(z,)=1

which is absurd.

THEOREM 2. Let S be a subset of B such that each point e S is
the limit of some sequence {y,}, y,€ B, and the sequence {|||y. |||} is bound-
ed, then S is of the first category.

Proof. Define the functions v,(x) by

1+ llled@ Il

then 0 v (@)Sv(@) X -+ <1, If 2e B let limv,(x)=v(x). v(xr)=1 for
z€ E, and the set E; is dense, hence v(x)=1 at every point of continuity
of v. Let = be a point of continuity of v and {z,} a sequence with
lim z,=2, then

lim v(z,)=v(z)=1

therefore the sequence {|||z,|||} is unbounded. Thus the set S is con-
tained in the set of points of diseontinuity of v which is a set of the
first category by Baire’s theorem.

3. General criteria for regularity. From Theorems 1 and 2 we
derive the following ecriteria.

THEOREM 3. A necessary and sufficient condition for the regularity
of the system (x,, f,) s.
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sup {H()Dn(w)H ’ n=1, 2, LR }=OO
wmplies
lim || ¢ (x)||=c0. (or E,=E).

Proof. If the system is regular, then E,=E;=¢. On the other
hand, if the system is irregular E, is of the first category and E, of
the second category.

Let g0(e) = S ata,

denote the point nearest to a2 on the subspace spanned by

{wlr Xy Lzy =y wn} .

THEOREM 4. The system (x,, f,) 18 regular if and only if the sequence
{ @) ||} is bounded for each x.

Proof. If the system is regular, then there exists a positive number
K, such that |||z|||<K]||z||. Then
N u@ I < K| gu() | < K(l|z]] + [z — ¢ (x) [|) S K2]| ][

hence the condition is necessary. Sufficiency is clear by Theorem 2.

4. Biorthogonal systems in Hilbert spaces. In this section we assume
that B is a Hilbert space. In order to use Theorem 4 let us compute
@)l . ¢gp(x)y=3""arx, and the coefficient af may be computed from
the equation

(x_ia?xil xk)=0 k=1, 27 "'7”’
i=1
or
(=, wk)=Zn ai(w;, ;) see [5].
i=1

We introduce the following notation
(s, Tx)=Cur
C,=(cy) 1Zi<n 1ZkZn
(@, @), (@, @), +++, (@, 2))=(")n
(ar, a3, - -+, @) =(a),

Then
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(1)n=(),C, or (a),=(r),C:"
since C;! exists. Now
| S0t 1= S afe. — (@nE7C, 3 (a):
where E7 is the matrix (e, ,) with

1 1=m<j

C1m .
0 otherwise

Cr=C, and (a),=(7).C;' hence
I 337, |12=().C B C B G5 )i

Orthogonalizing the sequence {z,} by Schmidt’s process we get the
sequence {y,} with

%
=Y Xp= Z{dk.wyw
o

where
(xlc y yo&) a §; k

o a>k

k,@

and d;;=1 see [3].
Let D, denote the triangular matrix

(dio) 1Sa<n 1<k<n.
(@, @)= %dzﬁf,; or C,=D,D5.

The matrix D, can be computed from this relation.
Let (6)n=((m; yl); (x’ yz), ) (.’17, yn))
k -
(z, xk)=w§ (@, Yu)di,a OF (r)n=(0)Dj
and hence
J
Hgll ;@ ||*=(1)Cr EFC, E5C (1)5 = (8), D C*ETC ,E'C; ' D, (9)%

- =)D ELD YDy END7) )(0)x
Let A7=D.'E"D,, then
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1 ¢a(@) |l = max {(8),47(A7)*(0)7 |1 <5 <7}

The triangular matrix A} is an operator defined on the Hilbert space.
If

r= Zx oY
=1
then

ANx)=(0,, =++, 0.)A7 .

By Theorem 4 and the above computation the system is regular if and
only if for each x

sup {[[A/@)||1=j<nn=12-..- } T

or by the uniform boundedness theorem.

THEOREM 5. The system is regular if and only if the double sequence

{1A21l} 4s bounded, or, in other words, if and only if the set of charac-
teristic roots of AP(AR)* is bounded.

We shall use Theorem 3 to derive the following theorems.

THEOREM 6. The system (x;, f;) s regular and >0, |fi(x)|*<oo 4f

and only if for every x e B there exists a real number a=a(x) such that
(1) 2R(S S (o) (e} >a
Proof. If the system is regular and
S f@) <o then

Hsz*ZIfi(w)|2=§3fi(w)fj(x)0u
=2R {%fz(x)fj(x)cw}

Therefore the necessity of condition (1) is verified. Assume that con-
dition (1) is satisfied then

1ewn@) =S £ @) (@

~lle@ i+ S 7@+ 2 S S P @ @)
Zlloua)*+2a
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Therefore sup ||¢,(x)||=o implies lim ||¢,(x)||=c. According to Theo-

rem 3 the system is regular.
Moreover

L@ P=llgn@)P 2R 3] e, (@)f (=)
<ol —a<e .

An immediate consequence is the following. The system is regular if
Stizslci; 1< and the sequence {||f;||} is bounded.

Professor R. C. James called my attention to the fact that this
may be proved directly and without the assumption of boundedness of
the sequence {||f;||} as follows. We may assume without loss of gen-
erality that %[cul =r<1

n —_— J— n
| %aiajculgmax la,a,] - rg;‘;!ai |2
k2 =

S al= 30+ Siaae, <230l

i=

Hence
n+p n+p n+p p—
> a; |P= > o, P+ S a.a,c,
i=1 i=1 iFEj

23 lal=r) =3 la|(1-7)

and by [4] the system is regular.
Using the same method as in Theorem 6 we arrive at the following.

n

Z a;;

i=1

> 1-r

THEOREM 7. The system is regular if and only if for each x
(2) inf 9 {3} 31 Fi(@)f (@)} >— oo
Proof.
IS Fi@a =S F@a P+ 1 3 @l
SR TIONE SEPCEN R

If condition (2) is satisfied then according to Theorem 3 the system is
regular. If the system is regular then
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n n+Dp
@, 3 F o)<zl
As a simple application we note the following.

If ¢,;=0 when |i—j| >N then the system is regular if and only if
the sequence {||f;l|} is bounded.
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A THEOREM ON FLOWS IN NETWORKS

DAvID GALE

1. Introduction. The theorem to be proved in this note is a
generalization of a well-known combinatorial theorem of P. Hall, [4].

HALL’S THEOREM. Let S, S,, ---, S, be subsets of a set X. Then
a necessary and suffictent condition that there exist distinct elements
Ty, v v, Ty, SUCh that x,€ S, is that the union of every k sets from among
the S, contain at least k elements.

The result has a simple interpretation in terms of transportation
networks. A certain article is produced at a set X of origins, and is
demanded at n destinations v, ---, y,. Certain of the origins = are
‘“ connected’’ to certain of the destinations y making it possible to ship
one article from x to y.

PROBLEM. Under what conditions is it possible to ship articles to all
the destinations y?

An obvious reinterpretation of Hall’s theorem shows that this is
possible if and only if every % of the destinations are connected to at
least %k origins.

We shall now give a verbal statement of the generalization to be
proved. A more formal statement will be given in the next section.

Let N be an arbitrary network or graph. To each node z of N
corresponds a real number d(x), where |d(x)| is to be thought of as the
demand for or the supply of some good at = according as d(x) is positive
or negative. To each edge (x, y¥) corresponds a nonnegative real number
c(x, y), the capacity of this edge, which assigns an upper bound to
the possible flow from « to y.

The demands d(x) are called feasible if there exists a flow in the
network such that the flow along each edge is no greater than its capaci-
ty, and the net flow into (out of) each node is at least (at most) equal
to the demand (supply) at that node.

An obviously necessary condition for the demands d(x) to be feasi-
ble is the following.

For every collection S of nodes the sum of the demands at the nodes

Rece{vilrsidSeptember 24, 1956. The results of this paper were discovered while the
author was working as a consultant for the RAND Corporation. A later revision was
partially supported by an O.N.R. contract.

1073



1074 DAVID GALE

of S must not exceed the sum of the capacities of the edges leading
wnto S.

If this condition were not satisfied it would clearly be impossible to
satisfy the aggregate demand of the subset S. The principal theorem
of this paper shows that conversely, if the above condition is satisfied,
then the demands d(x) are feasible.

Hall’s theorem drops out as a special case of this result if one ap-
plies it to the particular network described in the paragraph above and
makes use of the known fact (see [1]) that transportation problems of
this type with integral constraints have integral solutions. However,
the simple inductive argument which works in [4] does not seem to
generalize to yield a proof of our theorem. Our approach is in fact
quite different and is based on the ‘‘ minimum cut’ theorem of Ford
and Fulkerson, [2], [1].

In the next section we give a formal statement of the problem
and prove the principal theorem. The final section is devoted to the
treatment of a special case for which the ¢ feasibility criterion’’ yields
a very simple method for computing solutions.

2. The principal theorem. We proceed to define in a more formal
manner the objects to be discussed.

DEFINITIONS. A network [N,c] consists of a finite set of nodes N
and a capacity function ¢ on Nx N where ¢(x, y) is a nonnegative real
number or plus infinity.

A flow f on [N, c] is a function f on Nx N such that

(1) fl@, ¥)+ly, 2)=0,
(2) [, ez, v) for all z, ye N.

A demand d on [N, c] is simply a real valued function on N.

Note that we do not require the function ¢ to be symmetrie, thus
the maximum allowable flow from z to ¥ need not be the same as that
from y to #. Condition (1) above corresponds to the usual convention
that the net flow from x to y is the negative of the net flow from y
to x.

We shall save writing many summation symbols in what follows by
adopting the following convenient notation.

NoraTioN. If S is a subset of NV and d a function on N, we write

dS)=3, d(@).
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If S and T are subsets of N and f a function on Nx N we write

8, 1= 5 f@, v).

From these definitions it follows at once that if U and V are dis-
joint subsets of N then

(3) AU\ V)=d(U)+d(V)
S, UU V)=f(S, U)+fS, V).

In particular, denoting the complement of S by S’ we have,

SN, T)=AS, T)+f(S, T) for all SCN.
In this notation (1) and (2) are clearly equivalent to
(1) A4, 4)=0;
and
(2) J(4, By< (A, B) for all A, BC N.

The above notation is natural to our problem, for if d is a demand
function then d(S) is simply the aggregate demand of the set S, and if
f is a flow then f(S, T') represents the net flow from S into 7.

DEFINITION. A demand d is called feasible if there exists a flow f
such that

(4) AN, z2)= d(x) for xe N.

This condition states that the flow into each node must be at least
equal to the demand at that node. However (1) and (4) together imply

flw, N)< —d()

so that we are also requiring the flow out of each node to be at most
equal to the supply at that node (recalling that a negative demand re-
presents a supply).

Finally we note that from (8) it follows that (4) is equivalent to

(4) AN, S)=d(S) for all S C N.
We can now give a simple statement of our main result.
FEASIBILITY THEOREM. The demand d is feasible if and only if for

every subset S C N

(5) AS)= (S, S).
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Proof. The necessity of (5) is obvious, for if d is feasible then
there is a flow f such that

A8V SN, §)=AS, §)+fS, §)=f(S, §)< S, §).

The proof of sufficiency depends on the ¢ minimum cut theorem ’’
of Ford and Fulkerson, which we shall now state and prove in our
own formulation. While our proof is little more than a translation of
the above authors’ second proof [3] into our notation, we record it here,
nevertheless, both for the sake of completeness and because it is sub-
stantially shorter than any proof published heretofore.

DEFINITION. Let [N, ¢] be a network and let s and s’ be two dis-
tinguished nodes (s=source, s'=sink). A flow from s to s’ is a flow
such that

(6) SN, 2)=0 for x£s, v£¢9 .

Let F denote the set of all flows from s to s.

A cut (S, §') of N with respect to s and s’ is a partition of N into
sets S and S such that se S, e S

Let @ denote the set of all such cuts.

MimniMuMm CuT THEOREM. For any network [N, c]

max fls, N)=minc(S, §).,

Proof. First note that for any flow feF and cut (S, S)e@Q we
have

(1) fls, N)=fls, N)+ 3. flw, N)=fls, N)+f(S—s, N)

=f(S, N)=f(S, S)+/(S, S)=AS, SH=Z (S, ).
Hence, it remains only to show that equality is attained in (7) for

some flow and cut.

Let fe F be a flow such that f(s, N) is a maximum. Let S con-
sist of s and all nodes x such that there exists a chain o=(xy, @, -, ,)

of distinct nodes with z,=s, z,—=2 and c(@,_;, ©)—f(@;-1, ) >0, i=1,
-++, n. Now s is not in S, for, if it were, there would be a chain o
as above with x=s'. But then letting

p=min [e(@;_,, xi)_ﬁwi—n x,)],

one could superimpose a flow of g along the chain s on top of the flow
f, contradicting the maximality of f.
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The above argument shows that (S, S') is a cut, and we conclude
the proof by observing that f(s, N)=¢(S, §'), for if not, then from (7),
fS, §)Y< ¢S, S), hence for some ze S and ye S we would have c(z, ¥)

—f(z, ¥)>>0, but since xeS there is a chain o=(s, «;, +-+, #) which
could be extended to a chain o'=(s, 2, ---, @, ¥), contrary to the fact
that ye S’. This completes the proof.

Proof of feasibility theorem. Consider a new network [N, ¢] where

N consists of N plus two additional nodes s and §. Let UC N be all
nodes x such that d(x)<0. Then ¢ is defined by the rules

c(x, y)=c=z, y) for z, ye N,
e(s, x)=—d(x) for ze U,
c(x, §)=d(x) for ze U,
c(x, y)=0 otherwise.

We now assert that the cut (N—s, ¢') is a minimal cut of [N, ¢],

for let S, and S’ be any cut of [N, ¢] and let S=S—s, =5 —s'. From
the definition above we have

é(S, S)=e(S, S)+e(s, S)+¢c(S, s)
=¢(S, S)-d SN O)+dSNT),
E(N—¢, Y=d(U)=d(S N UY+dSNT);
and subtracting we get
e(N—s', s)—e(S, SY=d(S' N\ U)+d(S' N\ U)—¢(S, )
=d(S)—¢(S, SH)L0,

the last inequality being the hypothesis (5), and the assertion is proved.
Now, from the Minimum Cut Theorem, there is a flow f from s to
s’ on [N, ¢] such that

FAN—-¢, §)=¢(N—g, §)=d(U),
hence
(8) flz, s)=d(x) for all xe U'.

Let f be f restricted to NxN. Then f is clearly a flow and it re-
mains to show that f satisfies (4). If xe U’ then

0=f(z, N)=f(x, N)+f(z, 8)=FA=x, N)+d(),
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hence
9) AN, x)=d(@) .
If xe U then
0=F(N, @)=F(N, 2)+f(s, ©) <SIN, @)+&(s, 2)=fN, «)—d(z),
)
(10) SN, @)= d(x),
and (9) and (10) together show that f satisfies (4), completing the proof.

REMARK. We wish to call attention to the following important
fact. We have at no point in what has been said thus far made use
of the assumption that the functions d, ¢ and f were real valued. In
fact, all definitions and proofs go through verbatim if the real numbers
are replaced by any ordered Abelian group, in particular, the group of
integers. One useful consequence of this remark is the fact that if a
network with integer valued demand and capacity functions admits a
feasible flow then this flow may also be chosen to be integer valued.
We shall make use of this fact in the next section.

There is a second formulation of the Feasibility Theorem which is
sometimes convenient. In the network [N, ¢] let U be as above the
set of nodes x such that d(x)<<0.

THEOREM. The demand d is feasible if and only if for every set
Y C U there exists a flow fy such that

(11) AN, )= d(x) for xe U
(12) Sr(N, ¥Y)=d(Y).

Proof. The necessity is obvious. To prove sufficiency we show that
(11) and (12) imply (5).

Let (S, S’) be a partition of N and let X=UNS, X=UNS,
Y=UNS, Y=UNS. Then from (11) there exists f,» such that

dX)<[fv (N, X)=fr (X UY, X)+/(Y', X),
and from (12),
AY )=/ v (N, Y)=/(XUY, Y)+/ (X, Y).

Adding these inequalities we get
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d(S)=dX)+d(Y)= (XU Y, X)+/r (XU Y, Y)
=fr(XUY, X'U Y)=f(S, SH=c(S, ),

which is exactly (5).

3. An example. As an illustration of the feasibility theorem, con-
sider the following problem.

(0. Let a,-+-, a, and b, -+, b, be two sets of positive integers.
Under what conditions can one find integers o;;=0 or 1, such that

i A = b

i=1

and

A

n
< a,
=1

Sor all © and 5°?

As a concrete illustration, suppose n families are going on a pienic
in  busses, where the jth family has b, members and the ¢th bus has
a;, seats. When is it possible to seat all passengers in such a way that
no two members of the same family are in the same bus?

In the case a,=>b, the problem becomes that of filling an mxn
matrix M with zeros and ones so that the rows and columns shall have
prescribed sums.

The feasibility theorem gives a simple necessary and sufficient con-
dition for the problem to have a solution. In order to state if we need
the following.

DEFINITION. Let {a;} be a nonincreasing sequence of nonnegative
integers a,, @,, -+-, such that all but a finite number of the a; are zero.
Let

S;={a;la, =7}

where j is a positive integer and let s, be the number of elements in
S,;. The sequence of numbers {s,} clearly satisfies the same conditions
as the sequence {a,}; it is called the dual sequence of the sequence {a}
and is denoted by {a,}*.

It is clear that {a,}* determines {a;} since the integer a, occurs
exactly s, —s, ;. times in {a;}. Actually the correspondence between
{a;} and {a,}* is completely dual in the following sense.

THEOREM. {a;}**={a,} .

This result will not be needed in the sequel and its proof is left as
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an exercise. However, its validity can be made quite obvious by means
of a simple pictorial representation.

Let each number @, be represented by a row of dots, and write
these rows in a vertical array so that a,., lies under q,, thus:

a5'

It is then clear that the dual number s, is simply the number of dots
in the jth column of the array.

We can now give the ecriterion for the feasibility of Problem I.
Henceforth for convenience we shall assume the numbers a, and b; are
indexed in decreasing order, and shall define a,=0 for ¢ >m, b,=0 for

j>n.

THEOREM. Let {s,}={a;}*. Then Problem 1 is feasible if and only
if

N

jél b, zk;sj , Sor all integers k .
- =

Proof. We may interpret (I) as a flow problem. Let N be a net-
work consisting of m+n nodes z,, +--, z,, and y;, - -+, ¥, and let c(x;, ¥.)
=1 for all ¢ and 7, ¢=0 otherwise. Let d(x;,)=—a, and d(y,)=b,. One
easily verifies that the feasibility of (I) is equivalent to the feasibility
of the demand d.

We shall show that d is feasible by applying the second theorem of
the previous section. Let Y be a subset of % nodes y;, say Y={y,,
cen, yjk}. We now compute the maximum possible flow into Y. Because
all capacities are unity this maximal flow f, is achieved by shipping as
much as possible from each node =z, into the set Y. Thus, the flow
from z; to Y is min[a,, k] and the total flow into Y is

Fo(N, Y)= ;"Elmin [a,, ¥] .

We now assert

(13) S minfa,, K= s, ,
=1 7=1
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which is proved by induection on k. It is clear from the definition that
m .
S min [a;, 1]=m=s;.
i=1

Now

min [a;, k] for a, < k
min [a,, k+1]=
min [a,, k]+1 for a,>k+1, or a;€ Sy,

hence,
> min [a;, k+1]=3 min[a;, k]+ 8.1,
i=1 i=1

and (13) follows from the induction hypothesis.
The second feasibility theorem now states that the problem is feasi-
ble if and only if

k k
ijréjglsjy

and since the b, are indexed in decreasing order, the conclusion of the
theorem follows.

It is interesting that for this particular problem there is a simple
‘““n-step”’ method for actually filling out the matrix of «;,’s. Such
procedures are sufficiently rare in programming theory so that it seems
worth while to present it here.

The procedure is the following: If the problem is feasible then
b,<s, and hence a,, -+, @, =1 (recall that the a,’s are indexed in de-
scending order). Let a;=1 for ¢+ <b, ;=0 for ¢ >b,. Now consider
the new problem, (I)’, with the matrix M having m rows and n—1
columns, j=2, .-+, n, with a;=a,—a,; and b;=b,, We assert that (I)
is again feasible so that by repeating the process we will eventually
fill out the whole matrix.

To show that (I) is feasible we must prove, for any %,

Ea

+1
s,

5=

IA

k m
3 =3 min[s;, 4],
52

where {s;} is the dual sequence to {a;}. The expression on the right
can be rewritten

bI m
> min [a;, k]ziz min [a;—1, k]+ z >, min[a,;, k].
i=1 =1

=by+1

We must now consider two cases.

Case 1. s;,,>>b,. Then a;,—1 >k for i <b, and hence min[a;—1, k]
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=k=min [a;, k], so that we get
k m m k k +
Sy 5= 3 min @), K= min[a, k=35> 30, = S,
j=1 =1 i=1 j=1 j=1 j=2
Case 2. s8,,,<b. Then for 4 <s;,, a;=k+1 so a;,—1>F% and
min [a,—1, k]=k=min [a,;, k]. For s;., <1<, a;, <k, so min[a,—~1, k]
=min [a;, k]—1, hence,

k+1

me [ai, k]= Zmln la;, K]— b1+s,m—Zs]—b >ij,

since

by the feasibility condition. The proof is now complete.

In terms of the pienic problem, the n families should be seated in
n stages according to the following simple rule: at each stage distribute
the largest unseated family among those busses having the greatest
number of vacant seats.
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ON SPACES WITH A MULTIPLICATION

I. M. JAMES

Introduction. This paper is divided into three parts, together with
an appendix.

In the first part we discuss the homotopy theory of mappings into
a space with a multiplication, such as a topological group. These spaces
are more general than the group-like spaces considered by G. W. White-
head in [6], and our treatment, as far as it goes, is quite different from
his. In the second and third parts we apply the theory to the reduced
product spaces of [2] and the loop-spaces of [4]. We arrive at useful
new definitions of the Hopf construction and the Whitehead product,
such that the relations between them are plainly exhibited. In many
respects this completes the theory of the suspension triad as developed
in [3].

PArT 1

HoMoTOPY THEORY OF A SPACE WITH A MULTIPLICATION

1. Preliminary notions. Let S” denote a topological r-sphere, with
basepoint! e, where » >1. Let Z be a space with a basepoint, and let
h: S*xS*—>Z be a map, where p, ¢g>1. By the sections of h we
means the maps f: S?— Z, g: S?— Z which are defined by

S@)=mz, e),  g)=Ne, v) xeS”, yes'.

If ': S?x8*— Z is another map with the same sections as %, then the
two maps agree on the set of axes

J=8xe\Jex S,

and since the complement of ¥ in S?xS7 is an open (p+¢q)-cell the
separation element d(h, ') € m,.(Z) is defined, as in §10 below. Of
course

(1.1) d(h, h)=0 .

In particular, let Z be a space with a multiplication ; that is to say,
there is a continuous product z-y e Z, where z, y € Z, such that z-2'=z
and 2’-y=y, where 2° is the basepoint in Z. Let % be as before, and

Received May, 22, 1956.
1 ‘When we consider a map, or homotopy, of one space into another it is always as-
sumed that the image of the basepoint in the one is the basepoint in the other.
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let ' be defined by
k' (x, y)=r()-9(y) zeS*, yes,

where f, g are the sections of 2. Then %' has the same sections as 4,
and we define

(1.2) d(h)y=d(l', h) e 7,3 Z) .

Notice that if k: S*xS*— Z is another map with the same sections
then k’'=4" and so

(1.3) o(k)y=0(n)+d(h, k) ,

by the addition formula for separation elements ((10.4) below).
Let w: Z— Z’ be a map, where Z’ is a space with a multiplication.
We say that w is multiplicative if

w(z-y)=w(w) wy) z,YyeZ .
In that case we have (cf. (10.8))
(1.4) o(wh)=w,o(h) ,

where w, : 7p.o(Z) — 7,:(Z’) denotes the homomorphism which is induced
by w.

2. The pairing of 7,(Z) with 7,(Z) to ,,.(Z). Let Z be a space with
a multiplication, and let p, ¢ =>1. With each pair of elements « € n,(Z),
Bern(Z) we associate an element {a, f>er,..(Z), as follows. Let
f:8*—>Z, g: S*— Z be maps which represent «, 8, respectively. Let 4,
k: S?x8S*— Z be the maps which are defined by

M, y)=r@)-9(), klx, »)=9¥) (),

where xeS? yeS’ Then % and k¥ have the same sections, and we
write

(2.1) {a, H=d(h, k) .
We have at once (cf. (10.8))

THEOREM (2.2). Let aen,(Z), fenf(Z). Let w: Z—Z' be a multi-
plicative map. Then

@U*<CK, ﬁ):(w*(a), w*(ﬂ)> ’

where w, : 7 Z)—>n(Z') denotes the homomorphism induced by w.
The fype of a map A: S*xS?— Z is the pair of elements («, 3),
where a € 7,(7Z), Ben,(Z) are the homotopy classes of the sections of
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h. We prove

THEOREM (2.3). Let Z be a space with a multiplication, and let

h Kk
SPx ST —> Z « S1x S»

be a pair of maps such that Wz, y)=k(y, x), where € S?, ye S?. Let
(«, B) be the type of h, where « € n(Z), Ben(Z). Then

la, Fy=05(h)—(—1)"5(k) .

Proof. Let f: S*—>Z, g: §°— Z be the sections of A, and let

hl kl
SexSt— 7 «— S1x S

be the maps which are defined by
B, v)=r@)9@), k@ 2)=9@) 5 @),
where e S?, ye S% Then
oh)y=d(h', k), ok)=d(%', k) ,

by definition. Let v: S”xS?— S?x.S” be the map which interchanges
the factors. Then d(k'v, kv)=(—1)"d(k’, k), by (10.9), since v has degree
(—=1)*2, Therefore

o(h)— (=1)r0(k)=d(h', h)—d(E'v, kv)=d(?’, k'v) ,
by the addition formula for separation elements, since A=kv. However
Ev(x, y)=Fk'(y, x)=9(y)- f(=) ,

if e S? and ye S%. Hence d(#’/, k'v)=<a, 5>, by (2.1), since «, § are the
homotopy classes of f, g, respectively. Therefore

o) — (—1)"é(ky=La, 5,
which proves (2.3).
If we interchange 2 and % in (2.3), we obtain that
o(k) = (=1)3(h)=<§, o> ,

since k& is of type (B, @). Hence, and since there exist maps of any
given type, we obtain

COROLLARY (2.4). Let aen(Z), Pern(Z). Then
la, Fr=(=1)""*¢B, a3 .
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In the next section we shall prove that {«, 7> determines a bilinear
pairing of 7,(Z) with 7(Z) to 7,..(Z).

3. Products of maps. The proof of the following proposition is
omitted, since it is the same as in the case of topological groups (see
(16.9) of [5]).

THEOREM (38.1). A space with a multiplication has a commutative
JSundomental group.

Let Y be a space and let Z be a space with a multiplication. The
product of two maps u,v: Y—>Z is the map w-v: Y —Z which is
defined by

(u-v)(v)=u(y)-v(y) yeY.

In view of (3.1), we write 7.(Z) additively even when »=1. The proof
of the following proposition also is the same as in the case of topological
groups (see (16.7) of [5]).

THEOREM (8.2). Let v,u: S"— Z be maps, where r =1 and Z is o
space with o multiplication. Then the homotopy class of u-v is equal to
the sum, in 7.{Z), of the homotopy classes of uw and v.

The following lemma is an immediate consequence of (3.2) and the
definition of separation elements.

LEMMA (3.8). Let h, k, b/, k' be four maps of S’xS* into Z such
that b and k have the same sections, and h' and k' have the same sections.
Then h-h and k-k' have the same sections, and their separation element
s given by

dh-n', k-E"Y=d(h, k) +d(R', k') .
We use (3.3) to prove

THEOREM (3.4). Let Z be a space with a multiplication. Let h, k'
be maps of S'x S wnto Z of type (a, p), («’, '), respectively, where
a,a’en(Z) and B, B enZ). Then

5(h- B y=03(h) + 8(h') +{a’, B> .

The relation we have to prove is invariant under homotopies of A
and %’. Hence there is no real loss of generality if we assume that 2
and %2’ are such as to satisfy the following condition. Let (f, 9), (f', ¢’)
be the sections of &, 4/, respectively, so that f and f’ are maps of S?,
and g and ¢’ are maps of S% We assume that f is constant over one
hemisphere of S’ and that f’ is constant over the other; similarly that
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g is constant over one hemisphere of S* and that ¢’ is constant over
the other. Then, if x€S” and y € S% the expressions

f@) f'@)-9w)-9'@),  f@)-9@) @9

do not depend on the order in which the products are taken; it is as
though the multiplication on Z were associative. This is expressed more
concisely as follows. Let

U v
87 87 x St — St

denote the canonical projections, and define four maps F, F, G, G’ of
S?x S into Z by

F=fu, F=f'u, G=gv, G =gv.

Then the product maps F-F'-G-G' and F-G-F'-G’ are well-defined.
After these preliminaries, we proceed to prove (3.4). Let k=F-G,
so that d(h)=d(k, k), and let k'=F"-G’, so that 8(»')=d(k’, »’). Then

(3.5) Ak k', heh)=3(h)+ (')

by (8.8). Let H=(F-F")-(G-G’). Then 6(h-#)=d(H, k-h'), by definition,
and hence

Oh-h')=d(H, k-E")+d(k-k', h-h"),
by the addition formula for separation elements. Hence
(3.6) Oth-h')=0(h)+6(R)+d(H, k-k') ,
by (3.5). However,
la', >=d(F"-G, G-F"), by definition ,
=d(F, F)+dF" -G, G-F)+d(G’, G'), by (1.1),
=d(F-F'-G, F-G-F)+d(G', G'), by (3.3),

=d(F-F'-G-G', F-G-F"-G"), by (3.3),
=d(H, k-k'),
by definition. Hence it follows from (3.6) that
O(h-h")=0(h)+o(R")+<a’, >,
which proves (3.4).

As an application of (3.4) we prove’,

THEOREM (3.7). Let Z be a space with o multiplication, and let
v, a1, Then the transformation (a, ) —<{a, ) determines a bilinear

2 Thié 'carn also be proved directly.
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pairing of 7 (Z) with n(Z) to my.(Z).
We first show that

(3.8) Cat+a!, By=<a, B+, 65,

where «, a’ € 7,(Z), Ben(Z). For let f, f': S”— Z be maps which re-
present «, ', respectively, such that f is constant over one hemi-sphere
of S? and f’ is constant over the other. Let g: S?— Z represent j,
and let A, 2’ be the maps of S?xS? into Z which are defined by

Mz, y=g9@)-f(x), A, »=r'(x),
where x£€S?, y€S% Then
(B-n' Yz, ¥)=(9(v)- f(2)- [ (@)=9()-(f (@) f'(x)) ,

and so 8(h-h')=<y, 5>, by (2.1), where y denotes the homotopy class
of f-f’. But r=a+a’, by (3.2), and so

la+a', B=b6(h-h)
=d(h)+o(h")+<a’, B>, by (3.4),
=<C¥, ﬂ>+<a,’ ﬁ> s

since 8(2')=d(h’, ’)=0, by (1.1). This proves (3.8). Linearity on the
right follows from (3.8) and (2.4). Hence the proof of (3.7) is complete.

Part II

APPLICATION TO REDUCED PRODUCT COMPLEXES

4. The reduced product complex. Throughout this part of the
paper, A will denote a countable CW-complex with precisely one 0-cell,
say a’. Let A. denote the reduced product complex of A, as defined
in {2]. We recall that A. is a countable CW-complex which contains
A as a subcomplex, and that A.. carries an associative multiplication
with @ as unit element. Let I denote the interval 0 <{t<1. Let A
denote the suspension of A, that is the space which is obtained from
the topological product 4 x I by identifying AxI\Ja’x 1 to a point. The
points of A are represented by pairs (@, t), where ae A and te I, with
the identification being tacitly understood. We also identify each point
ae A with (a, 3) € 4, so that 4 is embedded in A. The suspension triad
of A is the triad

4; c., C),

in which C_., C, are the half-cones where t <%, >, respectively, so
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that
A=C,\JUC., A=C.NC-.

The relation between the reduced product complex and the suspension
triad is expressed in the following commutative diagram, where ¢ denotes
the canonical isomorphism which is defined in § 10 of [3].

j k //
oo —> 72',-(A) d n-r(Aw) - ﬁr(Aw; A) - n‘r“l(A) et

(@ o] 4] %] 6|

soo o> 1 (A) = 1 A) o7 A 5 Cy CO) > 7 (A) > -
E 1 4

The top line of the diagram is part of the homotopy sequence of
the pair (4., A4), so that j, &k are injections, and ./ is the boundary
operator. The bottom line is part of the suspension sequence of A4, as
defined in {3], so that E is the suspension operator, ¢ is the injection,
and 4 is the repeated boundary operator. We recall from [3] that ¢
maps 7,(4) identically, so that the commutativity of (4.1) is expressed
by the following relations (cf. (10.2) of [3]).

(@) [ &/=F,
4.2) (b) § ip=9k,
() | dp=.r.

Let B a countable CW-complex with precisely one 0-cell, say &°,
and let f: A— B be a map such that f(a¢")=0". Then the induced
mapping f..: A.— B.., as defined in §1 of [2], is multiplicative in the
sense of §1. Let f : A— B denote the suspension of f, which is de-
fined by

fla, ty=(f(a), t) acA, tel.

Then f maps the suspension triad of A into the suspension triad of B,
and hence induces a homomorphism of the suspension sequence of A
into the suspension sequence of B. We denote this homomorphism by
Ss and we also denote by f, the homomorphism of the homotopy
sequence of (4., 4) into the homotopy sequence of (B., B) which is
induced by f.. By (10.5) of [3] these homomorphisms are related by

5. The Hopf construction. Let 4 mean the same as in §4, and
let p,¢>1. A pairing of =,(A) with 7, (A4) to m,..(A., 4) is defined as
follows. Let  denote the positive generator of the infinite cyclic group
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7p+o(S?x 8% Y), where =87 xe¢\JexS” and the orientations are the same
as in [3]. Let f, ¢ be maps of S?, S? into A which represent « € =, (A4),
Bemn,(A), respectively. Let A: (S*xS8% 2)— (4., A) denote the map
which is defined by

Mz, y)=f(x)-9(y) reS?, yeS.
Then we define ax f=h,(y), where
Byt 7,a(SPx S 3) = 7y, (A, A)
denotes the homomorphism induced by 4. We write
(5.1) {, By =g(axp) e mpuen(d; Cu, C2),

and we refer to {«, 8} as the triad Whitehead product of « and £, in
accordance with (7.1) of [3].

Let us apply the theory of Part I to the space with multiplication
A.. By taking representatives we obtain from (2.1) that

kj(a), JBp=axf—(-1)"3xa,
and hence, by (4.2b) and (5.1), we have
(5.2) wpj(a), J(B)y={a, B} —(=1)"{B, a} .

Now suppose that there exists a map A: S?xS*— A of type («, 5). Let
%’ denote the inclusion of % into A.. By taking representatives we
obtain at once that ko(h')=axpf, and so we conclude from (4.2b) and
(5.1) that

(5.3) ipd(h)={e, B} .

Recall that the Hopf construction, as defined in [3], assigns an

element c(2) e nmqﬂ(ﬁ) to each map ~: S*xS8?— A, and is characterized
uniquely by the following three properties. First, let 2 have type («, f),
where aen,(4), B8¢€n(4). Then

(5.4) ic(h)={«a, 5} .

Secondly, let B mean the same as in §4, and let f: A— B be a map
such that f(a’)=0°. Then

(5.5) c(fh)=f.c(h) .
Thirdly, let A=S?xS% and let % be either of the projections
(@, > e), (r,y)—>(ev),

where € 8?, ye S?%. Then
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(5.6) c(h)=0 .

The uniqueness of this characterization follows from (8.2), (8.8) and (8.4)
of [3]. We use it to prove

THEOREM (5.7). Let h: S*xS*— A be a map, and let h' denote its

inclusion into A.. Let c(h) denote the element of npﬂﬂ(fi) which s
obtained from h by the Hopf construction, and let 6(h') denote the element
of mo.(AL) which is cbtained from k' as in §1. Then c(h)=¢doR’).

Let y(2)=¢d(h'). We check that y(h) satisfies (5.4), (5.5) and (5.6)
as well ag ¢(#). For (5.4) follows from (5.3), in the case of y(k), and
(5.6) follows from (1.1). Consider (5.5), where we have a map f: 4 — B.
Let f.: A. — B.. denote the multiplicative map which f determines.
Then f.~’ is equal to the inclusion of f% into B.., and so

1(fR)=¢d(fh")=¢f0(h"), by (1.4),
=f.po(h'), by (4.3),
=f,r(k), by definition .

Therefore y(h) satisfies all three conditions, whence y(h)=c(h). This
proves (5.7).

6. The Whitehead product. Let X be a space with a basepoint,
and let p, ¢==1. The Whitehead product of a pair of elements (¢, 7),
where £ € 7,,(X), 7€ 7.1(X), is an element of 7,,,..(X), and is denoted
by [£, 7]. In §9 we shall prove a general theorem about this product
which implies the following in case X is the suspension of A4, where A4
is a conplex as in § 4.

THEOREM (6.1). Let 2exn,(A.), pen,(A.). Then
¢, >=(=1)"¢(2), ¢()] .

Since ¢j=F, by (4.2a), we have the following three corollaries in
case 1=7j(a) or p=3(f3), where aer,(4), Ben(A).

COROLLARY (6.2). Let 2emn,(A.), fen(4). Then
{2, J(B))=(—1)"[p(2), E(B)] .

COROLLARY (6.3). Let aen,(4), pen(A.). Then
d<{g(e), pp=(—1)"[E(a), ¢()] .

COROLLARY (6.4). Let ae m,(4), Benrn(A). Then
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¢<i(@), 5(B)) =(=1)’LE(@), E(B)] .

Hence and from (5.2) we obtain the first commutation law for triad
Whitehead products (cf. (2.4) of [3]):

COROLLARY (6.5). Let aen,(A), Ben(A). Then

{a, B} = (=1)"{B, a} =(—1)"[E(a), E(F)] .

As defined in [2], A. is filtered by a sequence of subcomplexes
A CA C - CA,C---, where A)=a’ and A,=A. The reduced product
filtration of m,.,(A) is defined as follows (cf. §13 of [3]). We say that
an element y € 7,(4..) has filtration m (m =>1) if y can be represented by
a map of S” whose image is contained in A4,, but not by one whose
image is contained in A4,.,. We also say that the zero element has

filtration zero. The reduced produect filtration of nrﬂ(/i) is obtained from
this by applying the canonical isomorphism ¢. We supplement the re-
sults of [3] by

COROLLARY (6.6). Let £em,y,.(A), 7€m,,.(A) be elements with filtra-
tions m, n, respectively. Then the filtration of the Whitehead product
[€, 7]e 7rp+q+1(/i) does not exceed m—+n.

This follows from (6.1). For let aen,(A4.), fen,(4.) be elements
such that ¢(a)=¢, ¢(f)=7. By hypothesis, there exist maps f: S*— 4.,
S?— A., representing «, B, respectively, such that fS*C A4,, ¢S*CA4,.
Now A4,,-4,=A4,-A,=A,.,, by the definition of A.. Hence A(S*xSY) C
A,..., Where 2 denotes either of the maps

S (@) 9(y) < (&, y) = 9(v)- f(x) reS", yelS.

Therefore <{a, 8> can be represented by a map of S?*¢ into 4,,.,, SO
that the filtration of {«, f>, and hence of ¢{a, 5>, does not exceed
m+n. Hence, by (6.1), the filtration of [¢(a), ¢(F)] does not exceed
m+n, which proves (6.6).

Part II1

APPLICATION TO LOOP-SPACES

7. The loop-space (in the sense of Moore). Let X be a space with
basepoint z,. By a loop in X we mean a pair (f, s), where s>0 and
f is a map of the interval 0 <t <s into X such that f(0)=f(s)=uw,.
The composition of (f, s) with another loop (f’, ¢’) is the loop (f”/, s+s'),
where
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gy (@) 0=t<s),
)=
7o {f’(t—S) (s=t<s+s').

Let 4 denote the set of loops with the topology defined in §2 of [4];
we call 4 the loop-space of X. The ordinary space of loops, 2, consists
of those loops (f, s) such that s=1. Let z° denote the loop (f, 0), where
f(0)=xz,. The product in 4 which is defined by composition of loops is
associative, and admits «° as a unit element. In §2 of [4] Moore asserts
the following propositions. We omit the proofs, which are straight-
forward but tedious.

THEOREM (7.1). (a) The product in A is continuous; and (b) 2 is a
deformation retract of A.

Let us represent S”*' as the suspension of S”, as in § 1 of [3], so that
(x,t)eS™ ' if xeS” and tel. Let h: S"— 4 be a map, and let A(x)=
(f, s), say, where s >0 and f maps the interval 0 <¢<s into X. Then
a map A': S™*'— X is defined by A'(x, t)=f(st), where 0<¢t<1. The
transformation %~ — A’ is invariant under homotopy, and therefore it de-
fines a function ¢: #.(4) - 7. (X). We prove

THEOREM (7.2). The function ¢ is an isomorphism (onto).

For let 4, denote the injection of =.(2) into =,(4), which is an
isomorphism by (7.1b). By taking representatives we find that ¢7,=0,
the Hurewicz isomorphism of =,(2) onto =,,,(X). Hence ¢ is an isomor-
phism, which proves (7.2). Notice also that ¢ is natural. To be precise,
let X’ be a space with a basepoint and let 2: X —- X' be a map. If
(f, s) is a loop in X, where s>0 and f maps the interval 0 <¢ <s into
X, then (Af, s) isaloop in X’. Let &: A— A’ denote the multiplicative

map which is defined by A(f, s)=(hf, s), where A’ is the loop-space of
X’'. Then by taking representatives it follows at once that

(7.8) ' ho=hy

where ¢’ means the same for X’ as ¢ does for X, and where %, 4,
are the homomorphisms induced by %, 4, as shown in the following
diagram :

P
7 (A) —> 7, (')

ol
(X)) — 7,0 (X7) .

*

8. The canonical isomorphism. Let A be a space, with basepoint
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a’, on which a real-valued continuous function d is defined which is
positive except that d(a®)=0. Let A denote the suspension of 4, and

let 4 denote the loop-space of A. Let 2°e 4 denote the trivial loop at
the suspension of a°. Then a map u: A-> A4 is defined as follows. Let
a€ A and let a=d(a). We define wu(a’)=2a’. Let as%4a’. Then « >0
and we define u(a)=(f, @), where f is the map of the interval 0 <<«

into A which is defined by f(¢)=(a, tja). Of course » depends on d,
but since the set of functions d is convex it follows that any two maps
u are homotopic. The topology of 4 is such that « is a homeomorphism
into 4, so that we regard A as a subspace of A.

We now define a homomorphism, ¢, of the homotopy sequence of
the pair (4, 4) into the suspension sequence of A, as shown in the
following diagram.

J k o
o) n(d) - w4, 4) > (4)->-

(8.1) ¢l ¢ 4| ¢ |
« o 1 (A) > 7pai(A) > a(A; Coy CO) = 7y(A) > o0
E 4

2

We define ¢ as follows. Let® V” denote the convex hull of S,
so that points of V™ are represented by pairs (s, ), where x€.S™"! and
0 <s<1, such that (0, x)=¢, (1, #)=x. Let V"' denote the suspension
of V7, so that points of V"*' are represented by pairs (y, 1), where
yeV7and 0<t<1. Let A: V"> 4 be a map, and let A(y)=(f, s),
say, where s—=>0 and f maps the interval 0 <t <s into A. Let &':
V71 - A be the map defined by ' (y, ty=f(st). Since A'S"=a’ if AS™'=
2°, we define ¢ on =.(4) to be the homomorphism induced by the trans-
formation ~—7%’. It is easy to check that ¢ means the same here as
in (7.2). If AS™ ' A then %A’ maps one hemisphere of S™ into C, and
the other into C_, so that the transformation 2 — 2’ also induces a

homomorphism of =,.(4, A) into m(4; C., C.). Thus we define ¢ on
=,(4, A), and the definition is completed by setting ¢ to be the identity
on m,(A4). 1t is easily verified that these definitions make (8.1) commuta-
tive, that is, that

(@) ( ¢i=E,
(3.2) (b) q =9k,
(¢) (4d¢=.r.

Since ¢ maps 7,(A4) identically, by definition, and maps =,(4) isomor-
phically, by (7.2), we obtain by an application of the five lemma :

s SE;& 7§ 1 of [3] for details of these representations.
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THEOREM (8.3). As shown in (8.1), ¢ is an disomorphism of the
homotopy sequence of pair (A, A) onto the suspension sequence of A.

Now let 4 be a complex as in §4, and consider the reduced product
complex A.. We extend the inclusion map #: A— 4 to a multiplicative
map w: A.— 4, as follows. Let a,¢ 4., so that a,=a,-a, --- -a,,
say, where a, a,, ---,a,€ A. Then we define

w(a)=ul@) w(@): -+ -u@,) .

Notice that w is nonsingular, although 4., is not mapped homeomorphically
unless A=a’. Let w, denote the homomorphism of the homotopy se-
quence of (4., 4) into the homotopy sequence of (4, A) which is induced
by w, and let ¢ denote the canonical isomorphism of the homotopy
sequence of (4., A) onto the suspension sequence of 4, as in (4.1). It
follows from the definition of ¢ in § 10 of [3] that

(3.4) p=dw, .

Hence and from (8.3) we obtain

THEOREM (8.5). The homomorphism w, maps the homotopy sequence
of the pair (A., A) isomorphically onto the homotopy sequence of the pair
4, A).

Thus w is an algebraic homotopy equivalence of the pair, in the
sense of [2]. Let us also denote by w, the homomorphism in singular
homology which w induces. Then from (8.5) of [2] we obtain

COROLLARY (8.6). The homomorphism w, maps the singular homology
sequence of the pair (A., A) isomorphically onto the singular homology
sequence of the pair (4, A).

The next section is devoted to proving:

THEOREM (8.7). Let A denote the loop-space of a space X, and let
tern(d), y€nfd), where p, q=1. Then

#& =11, ¢()] .

We conclude the present section by showing how (6.1) is deduced

from (8.7). Let A be a complex as in §6, and let X=A in (8.7). Then
if 1en(4.), pen,(A.) are the elements given in (6.1) we have that

w*O, p>=<’w*(l), w*(/")> ’
by (2.2), since w is multiplicative. Moreover,

Pwy(2), wi(1)>=(—1)T$w. (), yw. (1],
by (8.7). Hence and from (8.4) we conclude that
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€p<,{, ,u>=¢w*</1, #>=(*1)p[¢w*(2), ¢w*(/j)]
=(=1o(D, $()] .
Thus (6.1) follows from (8.7), and it only remains for us to prove (8.7).

9. Proof of (8.7). Let A be a countable CW-complex with only
one 0-cell, and let w: A— 4 be the inclusion map, where A denotes the

loop-space of A. We prove first of all

THEOREM (9.1). Let h: S*xS*— A be a map, where p, ¢>1, and

let c(h) denole the element of 7r,,+g+1(fi) which is obtained from h by the
Hopf construction. Let d(uh) denote the element of m,.(4) whick is ob-
tained from the imclusion of h into 4 as in §1. Then c(h)=¢5o(uhn).

Proof. We have uh=wh’, by the definition of w, where 4’ denotes
the inclusion of A2 into A.. Hence

o(uh)=o(wh')=w, o('),
by (1.4), since w is multiplicative. Hence

Po(uh)=¢w,d(h")=¢o('), by (8.4),
=c(h), by (5.7) .

This proves (9.1). We deduce

COROLLARY (9.2). Let hy, h,: S°xS*—> A be maps which have the
same sections, and let d(h, h,) denote their separation element in my..(A).
Then

c(hz) =c(h,) + Ed(h,, hz) .

Proof. We have

O(uh,) — o(uh,) =d(uhy, uh,), by (1.3),
=jd(k1, kz) .

by the naturality of the separation element. Therefore
Po(uh,)—o(uh)=gjd(hy, h,)=Ed(hi, k) ,

by (8.2a). Hence (9.2) follows from (9.1).
Now take A=S°%xS? and let aen,(4), f¢€n(A) be the homotopy
classes of the maps of S?, S? into 4 which are given by

z—o>(w,e), @eS?); y—>(e,y, (WeS);
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respectively. We prove that
(9.3) ¢ g(a), J(B))=(—1)*[E(a), E(B)] .

For let A: S?xS*—> A denote the identity map, and let v: S*xS*—> A4
denote the map which interchanges the factors. Since uk has type
(4(a), 5(B)), it follows from (2.3) that

(@), 3(B)y=o(uh) —(—1)"d(uv) .

Therefore

¢<i(@), J(B))=¢o(uh) —(—1)"¢o(uv)
=c(h)—(—1)"¢(v), by (9.1),
=(-—1)p[E((X), E(ﬁ)] y

by (2.19) of [3]. This proves (9.3).
We continue to consider A=S8?x8% and we denote the set of axes

SPxelJexS* by A’. Then A contains fi’, which we identify with

S™txe\Jex S, Let A’ denote the loop-space of A’, regarded as a
subspace of 4, and let 5/, E’ and ¢’ mean the same in the case of A’
as do j, £ and ¢ in the case of A. Thus, if %k, denotes any of the
homomorphisms induced by the inclusion map %.: A’ - 4 we have the
relations

@) [ kyd'=3ky ,
(9.4) () { kE'=Fk, ,
(© \kd'=dk, .

Let o’ en,(A’), B’ em(A’) denote the homotopy classes of the maps
of S?, S¢ into A’ which are defined by

v—>(x,e), (@€8); y—(ey), YeSH;
respectively. Since a=Fk (a’) and f=Fk.(58') it follows that

Pk, G (@), 7 (B )=k g (&), kyd'(B')), by (2.2),
=¢{j(@), 5(B)>, by (9.4a),
=(—1)"[E(a), E(B)], by (9.3),
=(—1)"Tk.E' (o), k,E'(8)], by (9.4b),
=(—1)k.[E" ('), E'(B")] ,

by the naturality of the Whitehead product. Hence

by <g'(@'), ' (B =(=1)"k.[E ("), E'(8))] ,
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by (9.4¢). But since A’ is a retract of A, the injection
Fat Tpeari(A)) = (A

is an isomorphism into. Therefore we conclude that

(9.5) ¢ (@), 3 (B Y=(=11TE (@), E'(F)] .

Continue with the same meaning for A4’, A4’ etc., but now let 4
mean the loop-space of X, as in (8.7). Let fen,(4), nemn,(A4) be the
elements given in (8.7). Let f, g be maps of S?*!, S7*1 into X which

represent ¢(£), ¢(7), respectively, and let %: A — X denote the map
which is defined by

Wz, e)=f(x), (@eS™); ke, y)=9(y), (yeS™).

Let A: A’ — A denote the map defined by composing loops with %, as in
§7. Consider the induced homomorphisms

it m(A) > 7(4), Ryt man(A) > mn(X)
which are related by (7.3). We have
(9.6) HE=h L' ('),  $()=NE"(F),
by the definition of 2. By (8.2a) and (7.3), however
hil' =h 95 =Ph, '
and so it follows from (7.2) and (9.6) that
E=hyg' @),  p=hJ#).
Therefore

& = (@), G (B
=h, 5@, 7' (7))
by (2.2), since £ is multiplicative. Since ¢&,=h.¢’, by (7.8), it follows
that
¢& =h$' g (@), (B

=(=1n.[E(a"), E'(#)], by (9.5) ,

=(=1)[r, E'(a"), h E'(8")], by naturality ,

=(—=1)"[¢(€), ¢(7], by (9.6) .

This proves (8.7), and completes the proof of the various other theorems
which we have deduced from it.
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APPENDIX

10. Separation elements. The notion of a separation element is
not exactly a special case of the notion of a separation cochain (see [1]).
Hence we provide a brief account in this Appendix.

Let S™ (r ==1) denote the unit sphere in euclidean (r+1)-space, and
let S™-!' denote its equator. Let V™ denote the convex hull of the
equator, and let E., E. denote the two hemispheres into which S7-!
divides S”. Let p, ¢: V"— S” denote the orthogonal projections of V"
onto E,, E_, respectively, (orthogonal to the plane of V7).

Let K be a CW-complex with a subcomplex L such that K—L=¢",
an open r-cell. That is to say, ¢ is the topological image of the interior
of V" under a map f: V"— K such that fS™'CL. Let uw,v: K—»X
be maps which agree on L, where X is a space. Then we define a map
g: S"—> X by

(10.1) gp=uf, 99=vf .

We define d(u, v), the separation element of » and v, to be the homotopy
class of g in #(X). The following relations are easily verified.

THEOREM (10.2). Let u, v: K— X be maps which agree on L. Then
u v, relative to L, if, and only if, d(u, v)=0.

COROLLARY (10.3). If u: K— X is a map then d(u, u)=0.

THEOREM (10.4). Let u, v, w: K— X be maps which agreeon L. Then
d(u, w)=d(u, v)+d(v, w).

COROLLARY (10.5). Let u,v: K— X be maps which agree on L.
Then d(u, v)+d(v, u)=0.

THEOREM (10.6). Let an element d€ n (X) and a map u: K— X be
given. Then there exists a map v: K—> X which agrees with v on L
such that d(u, v)=2a.

THEOREM (10.7). Let u,, v,: K— X be homotopies which agree on L,
where 0 <t 1. Then d(u,, v))=d(u,;, v,).

THEOREM (10.8). Let u, v: K— X be maps which agree on L. Let
h: X—Y be a map, where Y is a space. Then d(hu, hv) s equal to the
image of d(u, v) under the homomorphism induced by h.
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THEOREM (10.9). Let k: (K, L)~ (K’, L) be a map of degree p,
where K and K' are CW-complexes with subcomplexes L and L', respec-
tively, which are complements of r-cells in their respective complexes. Let
u, v: K — X be maps which agree on L’. Then d(uk, vk)=pd(u, v).
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THREE TEST PROBLEMS IN OPERATOR THEORY

RicHARD V. KADISON AND I. M. SINGER

1. Introduction. In his tract [3] on infinite abelian groups, I.
Kaplansky proposes three problems witk which to test the adequacy of
a purported structure theory for the subject. The problems are general
with a certain intrinsic interest, and he comments there that they pro-
vide a worthy test in other subjects. In particular, Kaplansky has sug-
gested these problems, suitably rephrased, in conversation as a test of
a unitary equivalence theory for operators on a Hilbert space. In the
order we treat them they are:

1. If A and B are operators acting on Hilbert spaces 57 and % and
the operators [64 X:} and [69 ]g], acting in the obvious way on & &7

and 2@ %, are unitarily equivalent, is it true that 4 and B are
unitarily equivalent?

2. If [64 39] and [‘04 8:1 are unitarily equivalent is it true that B and

C are unitarily equivalent?

3. If A and B are unitarily equivalent to direct summands of each
other (that is, A equivalent to BF and B equivalent to AE, where E
and F' commute with A and B, respectively), are A and B unitarily
equivalent?

A superficial examination provides examples which show that Pro-
blem 2 must, in general, be answered negatively. In fact infinite pro-
jections for B and C, one with an infinite and the other with a finite-
dimensional orthogonal complement, and A an infinite-dimensional pro-
jection with an infinite-dimensional complement illustrates this. On the
other hand, all three problems have an affirmative answer in the finite-
dimensional case—Problem 3, trivially so, since £ and F must be the
identity operator on simple numerical-dimension grounds, and the other
problems not at all trivially so (especially when approached from an
elementary viewpoint).

Problem 3 has an affirmative answer, and a simple adaptation of
the usual Cantor-Bernstein argument proves this. We shall give this
problem no further attention except to note that it can be settled by

: iiecel\;ea July 31, 1956. This work was supported by a contract with The Office of
Naval Research.
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use of ring of operators techniques as well as by the direct argument
mentioned. We shall show that Problem 1 can always be answered
affirmatively, and Problem 2 has an affirmative answer provided the
rings generated by the operators in question are, together with their
commutants, of finite type—a most satisfactory result in view of the
negative example presented and the finite-dimensional situation. The
proofs make use of some of the sophisticated techniques of the theory
of rings of operators (and in some sense these techniques must be
used). It seems to us a pleasant circumstance that this theory is capable
now of solving some of the primitive problems of the subject. Our
primary interest in the questions discussed is in their role of test pro-
blems, for which reason, we have refrained from dealing with such
obvious generalizations as the one obtained from Problem 1 by replacing
the two-fold copies of 4 and B by n-fold copies (even though the proof
would suffice).

2. The test questions. The first of the test questions we shall
discuss is that of the unitary equivalence of the operators 4 and B

given that [64 2} and [(Z)} Bﬂ are unitarily equivalent. A large share

of the solution to this question is contained in the process of phrasing
it properly in the terminology of rings of operators and taking full
advantage of the hypotheses in these terms. Let _# be the ring of

operators generated by [OA 2:‘ and ¢ the =-isomorphism of .2 onto

¥ the ring generated by [5 g] , determined by go([OA AO]):E); }g]

The projections E’=[g 8] and F’=[8 (}] commute with _~ and are

equivalent in _#"’ via the partial isometry [8 (ﬂ (in .#"'); moreover

E’+ F'=1. These same properties hold for the projections M’, N’ given
by the same matrix description relative to - #7'. In these terms, our
result becomes :

THEOREM 1. The mapping ¢ defined on #ZE' by ¢(TE)=¢e(T)M’
is wmplemented by o unitary transformation when ¢ s implemented by
a unitary transformation.

Proof. Let U be a unitary transformation which implements ¢,
and let us denote by ¢ again the unitary equivalence induced on all
bounded operators by U. Clearly then, ¢ so extended carries E’ and
F" into projections ¢(E’) and ¢(F") in .+ such that ¢(E’) and ¢(F")
are equivalent and have sum 7. We shall note that ¢(£’) and M’ are
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equivalent under these conditions; but let us assume this for the moment,
and let W’ be a partial isometry in ./ effecting this equivalence.
We assert that the unitary transformation W/UE’ of the range of E’
onto the range of M’ implements ¢. Indeed,

(x) WUE(TE)E'UWsx=W UTUUE U"'W's=W o(T)e(E YW=
=¢(TYW' e(EYW's=p(T) W' W'sx=o(T)M' = HTE') .

That ¢(E’) and M’ are equivalent may be accepted as a consequence
of the elementary comparison theory of projections in a ring of opera-
tors (all projections equivalent to their orthogonal complements are
equivalent to each other), or may be reduced to more apparent facts of
this theory. In fact if ¢(£’) is not equivalent to M’ then for some
nonzero central projection P in _#; we have, say, Pe(E)< PM'. Re-
stricting consideration to the range of P, we may assume that ¢(£')<
M whence ¢(F')< N’ and I=¢(E’)+¢(F')< M+ N'=1, a contradiction.
Establishing this last relation in all detail, however, would require in
effect an easy but lengthy development of the cardinal-valued dimension
function for projections in a ring of operators. We shall let these
remarks suffice as an indication of the proof that ¢(£’) and M’ are
equivalent.

The argument contained in (x) can be applied more generally to
prove a fact which will be of later use. We state this fact in:

REMARK 2. If ¢ is a unitary equivalence carrying [64 BQ:] onto

g B] and (p([é 8]) is equivalent to [6 8] in the commutant of the
Cc o0

ring generated by [0 D] , then A and C are unitarily equivalent (via

the natural restriction of ¢). A curious consequence of this remark is

the fact that if [64 g] generates a factor of type IIl (on a separable

space) then the existence of the unitary equivalence ¢ implies the uni-
tary equivalence of 4, C, B, and D.

It might be thought that some simple construction with the unitary
transformation which effects the original equivalence alone in Problem
1 might yield the appropriate unitary operator for demonstrating the
equivalence of 4 and B. That this is not the case can be seen by
taking 4 and B to be I, so that an arbitrary unitary transformation
effects the original equivalence.

The next test question we take up is that of the unitary equivalence

of B and C given the unitary equivalence of [64 BQ:I and Lél g] We
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have noted that the unitary equivalence of B and C, under these con-
ditions, does not follow, in general. Our example illustrating this pos-
sibility relies upon an ‘‘ improper mixture of finiteness and infiniteness’’.
The following theorem shows that, when such a mixture is not possible,
B is unitarily equivalent to C. This mixture is not possible when the

ring of operators .7 generated by [64 lg] is finite with finite commu-

tant _’. Our hypothesis tells us that the *-isomorphism ¢ of _# onto

the ring _#; generated by [64 g], determined by ¢([64 g])=[64 g:‘ is

implemented by a unitary transformation, and, with E’ the projection
I:(I) 8] in .#', F’' the projection [é 8:[ in .47, the mapping 7 of

A'E' onto A4"F" defined by 7(TE")=¢(T)F’ is a =-isomorphism which
is implemented by a unitary transformation. We shall denote the
unitary equivalences induced on the rings of all bounded operators on
& and SZ7E’ by unitary transformations which implement ¢ and » re-
spectively, by ¢ and 7 again, so that it will be meaningful to speak,
for example, of ¢(£’). In the notation just described our statement
becomes:

THEOREM 3. If .# and _#' are finite the mapping ¢ of . (I—
E') onto " (I—F") defined by ¢(T(I—E"))y=HT)I—F"), for T in ., s
a *-isomorphism which is implemented by a unitary transformation.

Proof. Note first that the definition of 7 and the fact that it is a
*-isomorphism implies that ¢(Cy)=Cyp, in view of [2; Lemma 38.1.3],
and by this same result, it will suffice to show that ¢(C;_5)=C;_p in
order to establish that ¢ is a x-isomorphism. Now I—C;_j is the union
of all eentral projections contained in E’, whence, from the symmetry
of this situation, it will suffice to show that if P is a central projection
in .7 contained in E’ then ¢(P)<{F’. We make use of the dimension
funetions in the various rings, and we shall denote these functions by
D for %, 7', 4] and 4 and by D, for . #E', E'.7Z'E, #Z (I—
E), I-FE).#'(I-E), VF', FF.V"'F, 4 (I—-F'), and (I—F").1""'(d
—F"). By definition 7(P)=7(PE")=¢(P)F’, and 7 is a unitary equivalence
so that

7[D(E'PE")]=7(P)={(P)F' =Dy(F"'¢(P)F")
_DIH(PNF’ _H(P)F”

D(F") D(F")

(recall that, with G’ in F' A47F', D(G)=FD(G)/DF")). Thus
H(PYD(F")y—DF' =0, so that ¢(P)Cz(D(F’)—1)=0, by [2; Lemma 3.1.1],
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and ¢(P)(D(F")—1)=0, since ¢(P)< ¢(Cp)=Cr. It follows that D(¢(P)
—(P)F")=0 and ¢(P)—¢(P)F'=0; that is, ¢(P)< F’, and ¢ is a
x-isomorphism of .~ (I—E’) onto 4 "(I—F").

To show that ¢ is implemented by a unitary transformation, it will
suffice, of course, to establish this for each projection of an orthogonal
family of central projections in 2 (I—E’) with sum I—E’; whence it
suffices to consider the case in which the center of . and hence ../
itself as wellas .#"', #(I-FE"), I—-E").7Z"(I-E"), 4] A", A4 (1—F"),
(I—F")A"(I—F"), is countably-decomposable. Choose unit vectors z
and y such that M=[_# 'z], M'=[_Zx], N=[-4"y], and N'=[.4"y] are
maximal cyclic projections in ., ', ./, and ../, respectively. (The
existence of such projections follows from [2; Lemma 38.3.7].

Suppose that we can show

(1) JID(E")]=D(F") ,

In this case ¢(E’) and F’ are equivalent, whence, by the finiteness of
A P(I—E’) and I—F" are equivalent and our theorem follows from
Remark 2. Our task then is to prove (1).

Let G and G’ be paired projections (that is, ones having a joint
generating vector) in .« E’' and E'_«'E’, respectively. Then, for each
vector z,

D(G")D(E" 7' E'z])=D(G)Dy([ -7 E'z]) ,

by The Coupling Theorem (see [1], for example, or [2; Theorem 3.3.8]).
From this, we have

(2) D(G")D(L-7"'E'z)) D(E")=DyG)D([-~Z E'z]) .
Now
(3) D([#"E'2)D(M')=D([- E'z))D(M) ,

whence, multiplying (2) by D(M) and combining with (3) we have
D(G"D([-#"'E'2))D(E")D(M)=D\G)D([-#"E'z])D(M")

so that

(4) (DG )YI(E")D(M)— Dy(G)YD(M "))C 415 4=0 -

Since E’ contains a cyclic projection with central carrier Cp, 2z can be
so chosen that Cy 1z, =Cpr, and since Cp.Dy(G')=Dy(G'), Cy.Dy(G)=Dy(G),

(4) becomes
(5) Dy(G")D(E")D(M)=Dy(G)D(M") .

Similarly,
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(6) Dy((GNDE)D(N)=Dy(7(G)D(N') ,

since 7 is a unitary equivalence and #7(G’), %(G) are paired projections
in F".A47F", F'./". Writing (5) as Dy(G')D(E")E'D(M)E'=Dy(G)D(M")E’
and applying 7 to it we have

(7) Dy G ND(E NIDM)) =Dy GNHDM)) .

Since ¢ is a unitary equivalence and N, N’, M, M’ are maximal cyeclic,
we have ¢(D(M))=D(N), J(D(M'))y=D(N"), so that, comparing (6) and
(1),

Dy((G" ND(NYD(E") = $(D(E"))=0 .

This being true for each cyclic projection 7(G') in F’'_/""F', D(N)D(F")
—¢(D(E))=0, whence CAD(F")—¢(D(E'))=0. But Cy=I, so that
D(F"Y=¢(L(E")), and the proof is complete.
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A CONVERGENCE THEOREM FOR A CERTAIN CLASS
OF MARKOFF PROCESSES

MAURICE KENNEDY

1. Introduction. The object of this paper is to generalize, by
means of an approach due to S. Karlin [9], a theorem originally obtain-
ed by Bellman, Harris and Shapiro [1] which may be stated in the fol-
lowing way:

A system is considered whose state may be described by a point ¢
in the interval [0, 1]. A probability measure ¢ is given for the initial
state of the system. At the end of each unit interval of time, one of
the transformations A4,, 4; is applied to the state ¢ with probabilities
bu(t), ¢i(t) respectively, where ¢y(¢)+¢(¢)==1. The transformations are
defined by

(1.1) Ag=2t, Ag=1t+1A—-2), 012, 4 <14
The assumption is made that
(1.2) dt)=1—t, ¢(t)=t.

It is clear that (1.1) and (1.2) ensure that the end-points of the interval
[0, 1] are absorbing, that is, if the state of the system is either 0 or 1,
it remains so. Let Tu be the probability measure at the end of the
first unit interval. It is then proved that as n — o, T"x (that is, the
probability distribution for the state of the system at time n) converges
in distribution to a distribution concentrated at the points 0, 1 and the
form of this limiting distribution which depends on ¢ is obtained.

The motivation for the consideration of such a system arose from
certain learning models introduced by Bush and Mosteller. These are
described in detail in their recent book [2]. (Condition (1.2) means that
the state of the system may be identified with the probability of ap-
plying 4,).

The methods used in [1] to obtain the convergence of 7™u are pro-
babilistic. Karlin [9] considers the space of continuous functions on the
unit interval and obtains a bounded operator U on this space whose ad-
joint is T'. A convergence theorem is obtained for U™ and the result
is translated into the adjoint space (that is, the space of measures) to

Received June 5, 1956. This paper generalizes the main theorem of the author’s thesis
presented at the California Institute of Technology 1954, being partial requirements for
the degree of Doctor of Philosophy. The author wishes to express his sincere thanks to
Professor Samuel Karlin for his help and guidance in the preparation of that thesis,

1 Karlin also considers boundary cases where 4, 4; may be 1.
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obtain the required result.

Karlin [9] also considers cases where (1.2) no longer holds and
obtains for a wide class of non-absorbing models the convergence of
T"u to a distribution which is independent of x. These do not concern
us here as the object is to consider only a class of absorbing pro-
blems, where of course the final distribution depends on the initial dis-
tribution.

We conclude this section by stating a well-known theorem [8].

THEOREM 1.1. Let Q2 be a compact Hausdorff space and let €(2)
denote the Banach space of real-valued continuous functions a(t) defined
on Q with

(1.3) Hw\\=r{1§}x ()] -

Let M(Q2) denote the space of all real-valued completely additive re-
gular set functions p(E) defined for all Borel sets E of 2, with

(1.4) lll|=sup (&)~ inf HE) .

Then M(Q) is isometric (and lattice isomorphic) to the conjugate space
of €(2), the correspondence being given by

(1.5) (@, #)%Snw(t)dﬂ(t)-

2. Description of the process. Let 2 be a compact metric space
with metric p. Since Q satisfies the second axiom of countability, the
concepts of Baire and Borel measures coincide, and thus since the
former are always regular [5], we have that the set M(2) of Theorem
1.1 consists of all the completely-additive (finite) set functions defined
on the Borel sets of Q.

Let {r;} be a countable sets of points in 2 and {4,} a correspond-
ing set of continuous transformations of 2 into itself with the follow-
ing properties

2.1) AS, C S, i—1, 2, ...
where S, is any open sphere with centre r,, and

(2.2) lim Ajt=r, G=1, 2, -+

n~>oc0

for each te Q2;

that is, repeated applications of the transformation A, transforms ¢ in
the limit into r, and moreover every open sphere with centre z; is
mapped by 4, into itself. The points {r;} will be referred to as boundary
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points. It follows from (2.2) and the continuity of A,, that
(2.3) Az=r; . =1, 2, ---

Consider a system whose state may be deseribed by a point ¢ in Q.
Let {¢(t)} be a countable family of continuous functions defined on 2
with the property that

(2'4) 0 ——<—:§bz(t)g~ 1 b 7::"1’ 2! i
and
(2.5) S pilt)=1 .

Let «(E) be a probability measure defined on the Borel sets of 2,
giving the probability distribution of the initial state of the system.
Our process consists in applying at every unit interval of time one of
the transformations {4,}, A4, being applied with probability ¢,(t), where
t e 2 represents the state of the system.

Let

(2.6) THE) =S| _, (iaptt) .

45

It is easily seen that Tw(E) is a Borel measure. It represents the
probability measure for the state of the system after unit time. T is
defined by (2.6) for any Borel measure ¢ and

@.7) 1T | =Tp(2) = @) =l el
More generally, if
pe M), p=p—p,
(2.6) defines T and
(2.8) Tpu=Tpr—Tu" .
T is a linear transformation of JM(Q) into itself and
WTpll =T = Tp- N <NT e f+UT e = e e =]

Thus we obtain

LEMMA 2.1. T is o positive linear transformation of L) into
itself of norm 1.

Now consider z(t) e €(2) (cf. Theorem 1.1). A function Uz(t) is
defined on 2 by
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(2.9) Ua(t)= ij’ Bi(B)a(AL) .2

Each term of this series is continuous on 2 and |x(4,t) <||z||.

Since >¢i(t)=1 the convergence being uniform (by Dini’s theorem),
the series (2.9) is uniformly convergent and hence Ux(¢) e €(2). Clear-
ly Uis a linear transformation of €(2) into itself and ||Ux||<|lx||. Thus,
since the functions which are constant on £, are fixed points of U, we
have the following.

LEMMA 2.2. U s a bounded positive linear transformation of €(Q)
anto itself, for which the constant functions are fixed points. Moreover
HU™|=1 for all positive integers n.

Theorem 1.1 connects €(2) and TY(L). We now prove
LemMA 2.3, T is the adjoint of U, that is,

(2.10) Uz, py=(z, Tr), for each xeC(2) and pe M(Q).

Sinee p=p*—p~, it is clearly sufficient to prove (2.10) for the case #=>0.
Let

W)=\ $)at)

It is easy to see that

oo

Tp=3, v A7,

1

the convergence being in the sense of MM(2). Hence

@, T=5 @, wAr)=E (adar )

- }?Sx(Ait) do(d)

f

S{edoetadiane)

since the series (2.9) converges uniformly®.

2 Operators of the type U have been considered, and both convergence and €—1 con-
vergence theorems for the iterates U» obtained by Ocinescu, Mihoc, Doeblin, Fortet,
Tonescu Tulcea and Marinescu [10, 3, 4, 6, 7].

3 This adjointness lemma expresses the fact that if ¢, ¢, --- represents the process
then E{FE{x(t:)|t1}}=E{x(t)}.
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3. Absorption assumptions.! The first additional assumption to be
made is that each of a finite number of the boundary points is an ab-
sorbing point, that is, we assume

(3'1) (}5,;(1',;)21 7'=1, 2’ cec, M.

This together with (2.3) ensure that r, (¢=1, 2, -.-, m) are absorbing
points. (Since >.¢,(t)=1 and 2 is compact, it is not possible to extend
the assumption (3.1) to an infinite number of the boundary points 7,).
The assumption (8.1) is strengthened as follows :

We assume that about each absorbing point r; (1 <4< m), an open
sphere 3, may be drawn with centre r, on which the infinite product

(3'2) ¢i(t)¢i(Azt)' : ‘¢v:(A;Lt)‘ °t

converges uniformly (the convergence being in the sense of infinite pro-
ducts that is, the limit is nonzero).
Clearly assumption (3.2) together with (2.2) imply (3.1). Finally,

the assumption is made that for each teQ—-O S there is a finite se-
1

quence of transformations
A;I’ Aiz’“" AJ,, (1< g <)

where n, 7., 75 *++, jn depend on ¢, such that AjnAjn_l---Aht is in
one of the spheres >, (1 <7< m) and such that each term of the
sequence

(3-3) ¢Jl(t)’ ¢’jz(AJ,t), Tty ¢jn(Ajn_1' ° 'Ajlt)

is greater than zero.

Assumptions (3.2) and (3.3) imply that no matter what the initial state
of the system there is always positive probability of reaching an absorb-
ing point after an infinite number of steps. We conclude this section
with the following lemma which is a consequence of (3.1).

LEMMA 38.1. U preserves the values at the absorbing points, that is,
(3'4) Um(ri):x(ri) ’ 7;::17 27 e, M
where z(¢) € €(2).

Proof. Since

Sgut)=1 and ¢(t) =0

¢ Cf. discussion Bush and Mosteller, [2, pp. 167-169].
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for each /, we have by assumption (8.1) that
(8.5) ¢,(t,)=0 l£i,1<i<m, 1 <1< oo,
The result follows by (2.3) from the definition (2.9) of U.

4. Examples.

ExaMPLE 4.1. Let {4} be a countable set of transformations of
2 into itself with the property that

(4.1) P(At, As)< Jp(t, 9) i=1, 2, .-

for all pairs of points ¢, se 2, where 1 is a constant such that 0<2
<1.

It follows from (4.1) that the transformations {4;} are continuous
and moreover there exist points {z;} such that (2.1) and (2.2) are
satisfied.

Let {¢;(t)} be a family of continuous functions on £ satisfying
the conditions (2.4), (2.5) and the first absorption assumption (3.1).
Suppose also for each 7 (1 <7 =m) that there exists an open sphere
> with centre r; and radius », on which ¢,(¢() >0 and satisfies a uni-
form Lipschitz condition® that is,

(4.2) l@u(t) — ()| < Ep(t, 5) t,se >,

Finally the assumption is made that one of the probability functions,
say ¢.(t), satisfies

(4.3) é(t)>0 except at the points 7, (2 <7 < m).

LEMMA 4.1. The process just described satisfies the absorption as-
sumptions of § 3.

Proof. We first observe that (3.1) is satisfied by hypothesis. To
establish (3.2), let te 3, (1 <4< m) and ¢,(t)=1—d,(t).

dy(Avt)=1—,(A?)
=¢(Ajr;)—i(47t) Dby (2.3) and (3.1)
< ko(Ajri, Aft) by (4.2)
< kap(z;, t) by (4.1)
< (kr)r".

Since 0 <21 <1, 32" converges and hence, by a theorem on infinite

5 These assumptions link up with those given by other authors [10, 3, 4, 6, 7].
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products go(l-—gbi(A:‘t)) converges uniformly on 3,. Thus E()@(A?t)
converges uniformly on Y, and the assumption (3.2) is verified.

It remains to verify (3.3). Let teQ~\"j S Since AYt—>t;, there
exists n, such that AMte >,. By (4.3), ¢1(t;> 0. Hence we take A4; as
our first transformation. If Aite \?Zi, then (8.3) is already verified.

If not ¢,(Af)> 0 and we take A; as our second transformation. Pro-
ceeding in this manner a finite sequence of A,’s (of length < n,) is
obtained which satisfies the assumption (3.3). Hence the lemma is
proved.

ExamPLE 4.2. The example described in § 1 is a particular case of
the example just given.

ExAMPLE 4.3. We now consider a generalization from 1 to N di-
mensions of the learning model considered by Karlin (cf. Bush and
Mosteller [2]).

Let 2 be a simplex in E, (Euclidean space of N dimensions). Any
point of 2 is given by its barycentric coordinates t=(¢,, t,, ---, ty.;) where

N+1
t,>>0 and >.¢,=1. The vertices ¢ (éi=1, ---, N+1) have coordinates
1

ei=0% (Kronecker delta). Let I denote the (N+1)x(N+1) unit matrix,
and B, 1 <i< N+1) denote the (N+1)x(N+1) projection matrix
where each element of the ith row is unity and all other elements are
zero. Clearly Bit=¢' for each te 2. Consider the family {4,} of trans-
formations on Q into itself defined as follows

(4.4) Ai=4I1+(1—-21)B,, 024, <1, ¢=1, 2,---, N+1,
that is, for te 2
Ait=(xitlr zﬂtzy ct liti'*' 1"'*1: xiti+1' ¢ ZitNd-l)

Clearly A, represents a transformation which carries a point P into a
point P’ on the line PV, where V, is the vertex ¢! and

P'Vi=li(PVZ) .

The transformations {4,} are continuous and satisfy the conditions
(2.1) and (2-2) where r;=¢'. For the probabilities ¢,(t) we take

(4.5) bi(t)=t; t=1, «--, N+1.

The conditions (2.4) and (2.5) are clearly satisfied. It remains to verify
the absorption assumptions of §3. Since ¢,(ef)=¢i=1, the condition (8.1)
is satisfied. To verify (3.2) we first note that since B;=B,
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Ar=2T+(1—27)B,
so that
¢i(t) = ti! ¢%(A7t) = '{?L&ti + (1 - 2?)

If t, >, it is easily seen that the infinite product ﬁ b, (Art) converges
0

uniformly.

Condition (8.3) is seen to be satisfied by noting that for any point
t, one at least of the coordinates is nonzero, say £;, and hence the 7th
coordinate of A (n=1, 2, ---) is also nonzero.

5. Returning to the general absorption process described in §§2
and 3, we establish by means of the assumption (3.2), the equicontinui-
ty of the family of functions {U"x(f)} at each of the absorbing points
7, (1=1, 2, ---, m).

LEMMA 5.1. Let z(t) e €(2) be such that it vanishes at one of the
absorbing points 7, (1 <4< m), then for each e >0, there exists a sphere
S;(e) with centre t,, such that

| U ax(t)] < e n=1, 2, +--
for ¢ e S;(e).

Proof. Without loss of generality we consider the case where ¢=1.
Let

fn(t)=¢1(t)¢1(A1t)' ° '¢1(A;z—1t) .

{f.(t)} form a nonincreasing sequence of functions which by assumption
(38.2) converges uniformly on >} to a function f(¢). It follows that f(¢)
is continuous, and thus since f,(z)=1 (by (2.3) and (3.1)) and therefore
flz)=1, we have that given any positive number ¢ (0 <o <(1), there
exists a neighbourhood V of 7, (contained in >)) on which f(¢)> 4,
which implies f,(t)> 6 for all n.

Choose 0 > 1—¢/||lx]| and let ¢ be a positive integer such that

(5.1) q—;ia > 1—¢/llal] .

Since z(r;)=0 by hypothesis, there exists a neighbourhood V' of 7,
such that for te V’

(5.2) () < %nxn :
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Let Si(¢) be an open sphere with centre r; and such that Si(e)
cvVvnv.

By (2.1) if te Si(e), ATt e Sy(e) for all positive integers n. Hence
for te Si(e)

(5.3) 1x(A¢t)l;%»nxn . n=1,2, -+,
and

(5.4) Sult) >0 n=1, 2, ---
Now

U":U(t)=i iZf ¢i1(t)¢)ig(Ai1t). . '¢z‘n(Azn_1’ : ‘Aixt)x(Ain' . 'Ailt) ,

U (8)] < pulB)pu( Ait)- - - pu( AT D) |w(ATE)|
2l S b ()i (Aut) - by (As -+ Auh)
where >, denotes the summation omitting the term corresponding to
iy=1, 4,=1, -+« i,=1.
Replacing |x(A47%)| by —(llal|—|x(A7¢)])+ llxl] we obtain

| U ()| < —fu(@)([le]| — [(ATE)])

+ @l 2 (D), (A4 0)- - '¢in(Ain_1' <-4 0),
or
(5.5) |Ura(t)] < —F(e)lall— o (AT)) + il
since S¢;(t)=1. Now let te Si(¢). Then
Uz < lol| — o(|l=l] — |2 (A7t)]) by (5.4)
< llell~o( el — _ Il by (5.3)
- _g-1
=liall(1-15)
<e. by (5.1)

Hence the lemma is proved.
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THEOREM 5.1. If x(t) € €(Q), then {U"x(t)} form an equicontinuous
Samily of functions at each of the absorbing points {z;} (i=1, 2, ---, m).

Proof. Without loss of generality, we prove the theorem for the
point z,. It is required to prove that given e >> 0, there exists a sphere
Si(e) with centre r; such that for ¢e Si(e)

lUnm(t)_Unx(Tl)[<€ n=0, 11 2: ctty
or equivalently by Lemma 3.1
(5.5) |0 (t) — ()] < e n=0,1,2,---,

for ¢ e Si(e).
Let z(8)=x(l)—2(r1). 2(t)e€(2) and 2z(r)=0. Hence Lemma 5.1
may be applied to obtain a sphere S,(c) with centre =, on which

|Ur2(t)| < ¢ n=0,1,2,---,
but since U preserves constant functions (by Lemma 2.2)
Urz(t)= U a(t) —2(z) .

Hence (5.5) is established and the theorem is proved.

6. The convergence theorem in ©(2). In this section, the assump-
tion (3.3) is applied in conjunction with Theorem 5.1 to obtain the con-
vergence of U”z(t) in €(Q).

LEMMA 6.1. Let {S;} be spheres with centres {r,} such that S, =3,
(=1, 2, -+, m). Then there exists a positive integer n, and o number
8, (0<C6X1) such that for each te< 8, there ewists a sequence of n,
transformations A4, A;, ---, A% (depending on t) which, when applied

consecutively, transform t into a point in \J S,, and such that the pro-
i=1

bability of the application of each transformation of the sequence is = 0,
that s, each term in the finite sequence

¢i1(t)r ¢i2(Ai1t)! ey ¢'ino(Ain0_1’ R Ailt)

0.

v

18
Proof. By assumption (8.2), it is clear that
(6.1) $(t)>0 on 3, (and hence on S,) i=1,2,---, m.

and thus by the continuity of ¢,(¢), there exists d, such that 0 <6, <1
and
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6.2) d(t) =0, for tes, 3=1,2, -, m

Let te . If te Qv@ S;, we have by the assumption (3.3) together
with (2.1), (2.2) and (6.1)1that there exists a finite chain of transfor-
mations A4, 4, +--, Ajn, which when applied consecutively, transform
t into a point in one of the spheres, say S; (1 <7 <m). Moreover
each term in the sequence ¢, (f), ¢,(4;¢t), ---, qun(A,"_l- -+ A, t) is > 0.
If te \mj S,, the same result holds for then tefS, 1<!{<m) and
thus by1 (2.1) and (6.1), it is sufficient to take a chain consisting of the

single transformation A,.

Consider A4;'S,. This is an open set containing A4,  ---

Since qun(Ajn_lu -4, >0, there exists an open set U, such that

At

A; oA te U C 4GS, .

and on which ¢, (¢)>>0. By the regularity of £, there exists an open
set V, such that

A, - AsteV,C V.U, C 4718, .

V., is compact and therefore there exists a positive number ¢, such that
¢, ()= 46, on V, and hence in particular on V..

Now consider A;;»IV,L. Proceeding as above, we obtain an open
set V,.,, such that

Ay e Aste V., C Vs C A4 Va

and a positive number d,-,, such that ¢; (¢6)=0,- on Vao.. Proceed-
ing in this manner, we arrive at an open set V; which is such that

te ViC ViC A;'V,

2

and such that ¢, (¢)=0J, on Vi, where 4, > 0.
Hence, the open set V, containing ¢ has the property that each
point in it is transformed by the sequence A4,, 4, +--, A,n into a point

of S, (CG&) and the conditional probabilities of each of the successive
1

transformations being applied are >4, 6,, -+ -, 8, respectively.

This process is repeated for every te 2. For each ¢ an open set
corresponding to V, is obtained. By the compactness of £, we have
that 2 is covered by a finite number of open sets 2, ({=1, 2,.--, k),
where each set 2, has the property that there is a finite chain of trans-
formations of length n, (that is, n,=the number of transformations in
the chain) which when applied sucecessively transform each point of £,
into one of the sphere S; (i=1, 2, ---, m) say S;, and which has the



1118 MAURICE KENNEDY

property that the conditional probabilities of applying the transforma-
tions of the chain are respectively =>4,, 9, ---, 3% , Where each of
these numbers is greater than zero. '

Let ny=max n,. The length of the chain n, for each 2, may be

1=k

extended to n, preserving the above properties. For if te S, (1 <1< m),
Aite S, by (2.1) and ¢,(¢) = 0, by (6.2).
Let

6= m.n (3;i, 60) .

With these values of n, and &, the lemma is established.

LEMMA 6.2. Let {x,(t)} be a sequence of functions in C(Q) with the
Jollowing properties

(6.3) ol < H p=0, 1, 2, ---
where H is a constant.

(6.4) Z,(z;)=0 for all p 1=1, 2, .-, m
and

(6.5) the family of functions {U"x,(t)} (n, p=0, 1, 2, -+-) is equicontinu-
ous at each of the absorbing points v, (1=1, 2, -+, m).
Then, under these conditions

lim ||Uz,|| =0

N—>00

where the convergence is uniform with respect to p.

Proof. Given e >0, there exist by (6.5) spheres S;(¢) with centres
7, (t=1, 2, .-+, m) such that for te S;(e)

| U, (t) — Ura, ()] < €/2 all n, p.

Hence by (6.4) and Lemma (3.1)
(6.6) |Unz,(8)| < ¢/2, te \"3 S,(e), all , p.

There is no loss in generality in assuming the spheres S;(¢) so chosen
that 4
(6'7) S';(_E)C Zi ?’=19 2, .00, m.

Thus the spheres S;(e) (i=1, 2, -+, m) satisfy the hypothesis of
Lemma 6.1. The positive integer n, and the positive number & obtained
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in the lemma depend here on . Let

(6.8) a:l—%ano .

Since 0 <6 <1, it follows that 0<«a < 1. We now show that for
all p

(6'9) “Ukn‘)wpllg Hi k=0’ 1, 27 e

where g, =max («*H, ¢).
We prove (6.9) by induction. Clearly by (6.3) it is true for £=0.
Suppose it is true for k.

(6.10)  Udksdmg (f)
= 5 SO A, (A, e AD)
2 7y

!

X U""o:vp(Aino- A t) .
Consider ¢ fixed. By Lemma 6.1, there is associated with ¢ a finite
sequence of n, transformations 4,, 4,, ---, A’"o (depending on t) which
when applied consecutively transform ¢ into \U S;(¢) and such that
i=1

each term of the finite sequence ¢,(?), ¢,(4,t), ---, d)jno(Ajnu_]- <A t) is
=>4, that is,

(6.11) AMOA,%_I- -+Ate \1} Si(e)
and
(6.12) Poultb o Ast) by, (Ayy o Ay)Z 8%

In (6.10) we take inequalities with absolute values and separate
out the term corresponding to the above sequence and proceed as in §5
(between the relations (5.4) and (5.5)) to obtain by the induction
hypothesis

(6.13) [T+ Do, (2)]
L =5, (05 (Ast) b, (Ay, -+ 45)
X (= UMy (A« A 0)) + 1
(6.6), (6.11) and (6.12) give
[U 0, (8)] < — 01— 2f2) + ptr

Since p, =>¢, we have p,—e/2>1/2¢,. Hence
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| U ma, (@< (1—-5-3%) =g by (6.8).

Therefore

Um0, | < e, < max (@5 H, &)=t .

Hence (6.9) is established. Clearly there exists %, sufficiently large such
that g, <e. Then, since |[U"||=1, all » (Lemma 2.2), we have that
for n > nk,

HUnpog_ € all P.
Hence the lemma is proved.

THEOREM 6.1. U" converges strongly on C(2), that s, there ewists
a continuous transformation U, of norm 1 of C(2) into itself (which
preserves constant function) such that

(6.14) lim || U2 — U.x]||=0

for each function xe &(2).
Proof. Given a(t) e €(2), let
(6.15) ,(t)=Urx(t)— x(t) p=0,1, 2,---.

Clearly z,(t)e €(2) and ||z,||< 2||z]]. Moreover by Lemma 3.1, x,(z;)=0
(1=1, 2, ---, m). Hence the hypothesis (6.3) and (6.4) of Lemma (6.2)
are verified for the family {z,(¢)}. It remains to verify (6.5).

Given ¢ >0, we have by Theorem 5.1 that there exists spheres
S;(e) with centres -, (i=1, 2, ---, m) such that for n=0,1,2,--- we
have

[Uma(t) —a(z)| < /2, teSye), i=1,2, -+, m.
Hence for teS)(e) 1 <i<m) and all »n, p
|U*2(t) — Urar(t)| < e
or

(6.16) U, (8)] < e all n, p, te (3 S,(e).

Since z,(r;)=0, U"x,(r;)=0 (Lemma 3.1) and thus it is clear from
(6.16) that the hypothesis (6.5) of Lemma (6.2) is verified.

Hence applying Lemma 6.2 to the family «,(¢) as defined by (6.15)
we have that given e >0, there exists n such that

HUnpo<e p":O’ 1’ 2, M)
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or
|U?+2x—Urx||< e for all positive integers p.

Hence since the space €(2) is complete, there exists an element
U.x e () such that
lim ||Urax— U,.x||=0.

n—>c0

U. is clearly a linear transformation of €(£2) into itself. Since

Ul|= lim [Tz < [lao]],

it follows that U., is continuous and ||U.||<<1. However since U pre-
serves the constant functions on £, it is clear that U. does likewise
and hence ||U.||=1. Hence the theorem is proved.

7. The form of U.x. The following lemma is a direct consequence
of Lemma 3.1 and Theorem 6.1.

LEMMA 7.1. U, preserves the values at the absorbing points, that is,
Umx(ri):x(ri) ?;Zly 27 cee, M
where x(t) € €(2).

LEMMA 7.2. If a(t) is a fized point of U in C(Q) having the value
zero at each of the absorbing points t, (i=1,2, ---, m), then x(t)=0.
Two continuous fixed points of U which are equal at each t; (=1, 2,
<+, m) are identical.

Proof. Let x(t) be a fixed point of U with x(z;)=0 (¢=1, 2, ---, m).
We apply Lemma 6.2 to the family of functions consisting of the single
function «(¢). Since U"x=uz all n, the conditions of the lemma are
trivially satisfied and hence lim ||U”x||=0, that is, |lz||=0. Therefore

N—»oo

the first part of the lemma is proved.

If «(t), y(t) are two fixed points in €(2) such that x(z,)=y(z;)
(i=1, 2, ---, m) then, applying the first part of the lemma to the funec-
tion z(¢)==x(t)—y(t), we obtain 2z(¢)=0. Hence the lemma is proved.

LEMMA 7.8. Let ¢(t)=U.d(t) (L <i<oco). Then &(t) is a fived
point of U in €(Q). If i>m, ¢,(t)=0. If i< m, ¢(t) is the unique
Jized point of U having the value 1 at =, and the value zero at each of
the other absorbing points 7, (j 7% 14, 1 <j < m). Moreover '

(7.1) S ed-1.
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Proof. U =UU.pi=U.p,=¢, (1=1i<Te)

since UU.=U.. by Theorem 6.1. Hence ¢, is a fixed point of U. For
% >m, ¢(t) has the value zero at each of the absorbing points r, (1 <
< m) (by 3.5) and hence by Lemma 7.1 ¢,(f) has the same property
and thus, by Lemma 7.2, is identically zero. If 1 <{i<m, then since
¢,(t) has the value 1 at 7, (by (3.1)) and the value zero at each r,
(G7#1,1<7<m) by (38.5), we have by Lemma 7.1 that ¢, has the same
properties and hence since ¢, is a fixed point of U, by Lemma 7.2 it is
the unique fixed point with these values at the vertices.

By (2.5) f‘, ¢:(t)=1. By Dini’s theorem, the convergence is uniform
1
so that we have in the sense of €(2), f} ¢,=1. Hence since U.. is con-
tinuous i ¢;,=1, and since ¢,(£)=0 (¢ > m), i ¢,(()=1 and the lemma
is established.

THEOREM 7.1. If ze @(Q) then

U= il a(z)d, -

Proof. Let
y(t)= o)

Clearly by Lemma 7.3, y is a fixed point of U such that y(z;)=2(z,)
(¢=1, ---, m). By Theorem 6.1, U,x is a fixed point of U and by
Lemma 7.1 U.a(r)=x(z;) (i=1, ---, m). Hence by Lemma 7.2, y=U.z
and the theorem is proved.

8. The convergence theorem in Q).

THEOREM 8.1. Let
re ML),
then
Ty —T.p
where the half-arrow denotes weak-star convergence, that is,

(8.1) lim (z, T*)=(x, T.t), ze 6(Q)

where T.. is a positive continuous linear tranformation of norm 1 of
TR(Q) into tself. T.. is the adjoint of U, and
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(8.2) 7= 5 ([ o0dn®)s,

where 6, is the probability measure with all its measure concentrated ot
the point ;.

Proof. Theorem 6.1 gives that for x e €(2), we have lim Ure=U_x,

n~»oo0

the convergence being in the sense of €(2). It follows that lim (U"z, )

n~->00

=(U.x, p) for e W(Q). Let T. be the adjoint of U. that is, (U.x, #)
=(z, T.z). Hence by (2.10) lim (z, T"¢)=(x, T..#) and (8.1) is establish-
ed. T. being the adjoint of U. is a continuous linear transformation
of M(N) into itself of norm 1 and it is clearly positive. By Theorem

71 U.a=S" a(z)¢,. Hence for pe WD), (U.z, 1)=3 a(z.)(¢s, #). Let

T’,u——=i(¢i, ©)8,. T'p is an element of (L) and it is clear that
1

(U.z, )=(x, T'p) for all xe€(Q). Hence T"=UZ%=T.. Thus T.p=

i(gﬁi, #)9; and the theorem is proved.

1

9. Probability interpretation of ¢,(t). It is easy to see from the
definition (2.9) of U, that U”¢,(t) represents the probability, that given
the initial state of the system is ¢, that at the end of the (n+1)st unit
time interval the transformation A, is applied. ¢,(t)=lim U"¢,(¢t) thus
represents the limiting probability of applying A,, given that initially
the state of the system is ¢.

Another point of view is obtained from (8.2). If 4, is the pro-
bability measure concentrated at the single point ¢, then T,,ato=i &1(80)0;,
1

so that ¢,(t,) gives the probability that if the initial state is ¢, the
limiting state is <.
To sum up, we have two probability interpretations for ¢,(¢):
(1) Limiting probability as n — o that at the nth step in the process,
the transformation A, is applied, given that the initial state is ¢.

(2) Probability that the limiting state is r,, given that the initial state
is ¢.

I wish to express my thanks to the referee for some useful
comments.
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ON A NEW RECIPROCITY, DISTRIBUTION
AND DUALITY LAW

G. KUREPA

Introduction. One knows various operations on sets, e.g. join, in-
tersection, limit, A-operation (Suslin), etc. In the present article we
define, as an extension of operations we introduced in another paper
(Kurepa [6], [7]) several operations of considerable generality and im-
portance. It turns out that the well-known distribution law (cf. § 11) as
well as the De Morgan duality principle (cf. § 5) are very special cases
of our theorems. Moreover, a new reciprocity phenomenon occurs (cf.
§12). All depend on the interconnection between maximal chains and
maximal antichains of ordered sets. By considering ordered sets one
achieves considerable generality. By their use we get a synthetic view
on (1) the analytic operation; (2) c-analytic operation (definition of com-
plements of analytic sets); (3) the distribution law; (4) the duality law;
and moreover, one arrives at (b) a new reciprocity law. In particular,
in connection with the distributive law, the maximal chains and maximal
antichains indicate respectively two distinet ways to reach the same
result (ef. Theorems 4.2, 8.1). On the other hand, the parallel con-
siderations of maximal chains and maximal antichains of S give rise to
a new kind of interconnection of elements of P1 (1 being any set; ef.
the k-condition in §8). This in turn opens a broad way to new in-
vestigations by consideration of the elements of P*1 instead of those of
P?1. Our results may be interpreted in mathematical logic too.

The results of this paper are connected to an idea we expressed in
our Thesis [4], 135 n°40 (cf. A. Tarski [11]).

GLOSSARY AND NOTATIONS

Antichain; an ordered set having no couple of distinct comparable
points.

Chain; an ordered set having no two distinet incomparable points.

1 or U means universal set.

7T (ef. 10.1)

Disjunctive family; a family composed of pairwise disjoint sets.

¢ denotes ¢ not e.”’

Received September 8, 1953 and in Revised form July 24, 1954. The main results of
this paper were presented August 28, 1953, in Bruxelles at a Colloquium of Mathematical
Logic (Bruxelles, August 18-19, 28-29, 1953).

The author wishes to express his sincere thanks to the referee for his very attentive

examination of this paper and for permission to include here Theorems 4.4 and 10.1.
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j-connected (cf. 2.1)

k-condition (cf. 3.1., 8.,)

PS denotes the system of all subsets of S; in particular, the void
set v is an element of PS; P:S=P(PS), P**'S=P(P*S), etc.

Re {0, 0}, Q¢ {0, 0}

N'=\Y, U=N.

II denotes the combinatorial multiplication.

Ramified set; an ordered set the predecessors of each of whose
points form a chain.

Ramified table or tree; an ordered set S with the property that if
xz€ S then the set (.,x)s is well-ordered.

p being a relation, p,, p, p; designates its first part, second part,
third part, e.g., in the equality (2) we use (2), to designate the first
(left) part of (2); (2), designates the second part of (2). If (2) is a
binary relation for sets, then (2), is the set on the left side of (2).

(x,.)s denotes the set of all the points y €S such that x <.

(.,x)s denotes the set of all the points ye S such that y <w.

1 denotes N or \J.

v=empty set.

1. The operator (¢, L, f). LeteeP*1 and Le {N\, U}. Let f be
any mapping of 1. This means that, for each zel, f(x) is a well-
determined set; of course it may happen that f(z)=v (void); by f' we
denote the mapping = — f’(x) which to each xe1l associates the com-
plement f'(x) of the set f(x); the complement is taken in respect to
any set 2 f(x) (xel). In the case that f(x) consists of one point, say
Sfl@)={a}, we write f(x)=a as well as flz)={a}. Let L denote \J or
N;let U'=N, N'=VU.

We put

(1.1) (e, L, f)=L’ ;L Sleo) (€ e ce).

In particular, we put, by convention,
1.2y @, N, f=v, (v, \J, f)=universal set = f(e) for each eel.
More explicitly (1.1) reads

(1.3) (e N =V N fle), (e U, =N Ufe)

where ¢,€e,€e. Thus, ¢,€1, ¢ € Pl.

The meaning of (£, L, f), (F, L, ') is obvious. Thus, f'(x)
denotes the complement of f(x). In particular, one has the De Morgan
Theorem.
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THEOREM 1.1. (e, L, fY=(e, L', f).
In what follows, we shall denote by
(1.4) (e, €%)

any ordered pair of elements of P*1. Given such a pair (e, ¢*) we
might consider various sets, as e.g.,

(1‘5) (ey f\, f)? (3, m; f/)y (e’ U; f)y (69 Uy f,) b
and similarly for ¢*. In particular, we shall consider the sets
(1.6) (e, L, [), (¢", L, f).

Obviously, given e, L, f, the previous sets are well determined. The
problem is to know their interconnections.

2. j-connection of (e, ¢%).

THEOREM 2.1. In order that for each f

(2.1) e, N, A =2 N, 1) or (e, NV, 265 N, ),
it s mecessary and sufficient thai

2.2) e;N\ef#%=v (e.ee, ef ee™).

Proof of mecessity (2.1)=(2.2). Suppose, on the contrary, that (2.2)
does not hold; i.e., that there exist

(2.3) e,€e, e?; ee*, so that e, N er="1.

Let f be the characteristic function of e, such that fle)=1e € ¢,
Since e, € e and since 1€ f(e) (¢, € e,) one has obviously 1e€(2.1),. On
the other hand, since eff)/’\el():v, fleH)=v (e e e;‘;), thus f/(e*)=1 (ef € e;‘;);
in other words, 1€ (2.1),, Thus (2.3) implies 1€ (2.1),\(2.1); which con-
tradicts the hypothesis (2.1).

Proof of sufficiency. (2.2)=(2.1), thatis, (2.2)= (¢ € (2.1),)= &€ (2.1)).
Now the relation £e(e*, N, f/) means that there is a ¢ such that
cef'(ef) (ef € ef).

Again, let ¢,€e; since e\ e~ v by hypothesis (2.2), let ze e N ef;
thus, £ef(z); consequently, for each ¢,ce there is an ¢,€e¢, such that
£e'f(e). That means &€’(e, N, f), that is, Ee(e, N, f)-

Since the condition (2.2) is symmetrical with respect to e, ¢*, we
get the following.
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THEOREM 2.2. The f-identity (e, N\, fY 2(e*, N, f') is equivalent
to the f-zdent'&ty (6*, f\, f)/;(e’ ﬂr f/)
The last two theorems give rise to the following.

DEFINITION 2.1. An ordered pair (e, ¢*) of elements of P*1 is said
to be j-commected, symbolically (e, ¢*)e (j) if

eeNer%v, (e.€e, efce®).

THEOREM 2.3. In order that (2.1) holds for each f, it is nmecessary
and sufficient that the ordered pair (e, ¢*) be j-connected.

3. The k-condition. We will prove the following.

THEOREM 3.1. In order that for each f one has

3.1) e, N, fYS(e™ N, ),

it is necessary and sufficient that for each X < 1 satisfying

(3.2) XNez#v (e1€¢)
one has
(3.3) PXNe*#wv,

that s, that there is an ef € ¢* such that ef < X.

Proof of necessity. Let X satisfy (3.2). Let f be the characteris-
tic function of X. Then (3.2) implies v e 'N\fle), (€ ¢), for each ¢ € e.
Thus »e(3.1),. As (3.1) holds, one has »e(3.1),, Therefore there
exists a ef € ¢* satisfying ve Q f(ed) (e*eef). Consequently, flef)=1

1)
for each ¢ ce¢f, and that means exactly that ¢f < X.

Proof of sufficiency. If (3.2)=(3.3), then £¢ (3.1), implies &€ (3.1)..
Let

(3.4) X =£1 (Eef(x),

that is, X denotes the set of all the xze 1 for which £e’/f(z). We say
that (3.2) holds. In the opposite case, there would be an e, ee such
that e, \ X=v, thus &€ f(e) (e, € e,)) and therefore £e'(3, 1),, contrary
to the hypothesis that £e(3.1),, The set (3.4) satisfying (3.2), there
exists by supposition an element el’;e e* such that efg < X. That means
that £ef'(er) (e € eff), that is, £e(3.1).
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DEFINITION 3.1. The ordered pair (e, ¢*) of elements of Pl is said
to satisfy the k-condition, symbolically

(3.5) (e, e*)e (k),

provided the system

(3.6) X1, XNe#v (e;€e)
implies

(3.7 PXNe*#v.

Thus Theorem 3.1 may be expressed in the following form.

THEOREM 3.2, The relation (e, ¢*)e (k) is equivalent to the f-
identity
(e, N, fY<s(e’, N, f.

4. First fundamental theorem. Theorems 2.1 and 3.1 enable us to
characterize the equality

(41) (6, N, f),=(6*7 N, f,) .
THEOREM 4.1. The equality (4.1) is equivalent to the relation
(4.2) (e, €*)e (5)/\(k).

(The last relation means that (e, ¢*) satisfies both (5) and (k)).

We transform the previous conditions using De Morgan’s theorem
(c.f. Theorem 1.1). We have (¢, N, fY=(¢, U, f') so that (4.1) reads

(e, U, f=(e*, N, [);

and considering s’ instead of f we obtain

(e, U, H)=(e* N, ).

Consequently we have the following,

THEOREM 4.2. (FIRST FUNDAMENTAL THEOREM). Let (e, ) be a
given ordered pair of elements of P*1; then the following properties dare
pairwise equivalent:

L (e ¢ e (AR

II. For each mapping f of the set 1 the following duality law
holds:

(U N Al =\ S, that is, (e, N, FY=(* N, [).
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III. For each moapping f of the set 1, one has the distributive law

U N fe)= 0\, U fled), that is, (e, N, f)=(e* U, ).

6166 e e

IV. (e, e e (DNK).

Proof. In fact, I & II (Theorem 4.1) and II&III as was shown
by the application of the De Morgan theorem to (\J, N, f)Y. It re-
mains to prove that IV is equivalent to I, II and III. First, the im-
plication I = III yields IV =(e*, N, f)=(e, \U, f); from here, passing
to complement III' of III: (e*, N, )Y =(¢, U, f), that is, (e*, U, f")
=(e, N, f’). Writting f’ instead of f, one gets III. Thus IV =IIIL.
Conversely, III= III7 (by implication III=1)=1V.

The equivalence I & IV gives the following.

THEOREM 4.3. Symmetry character of (5)/\k): If (e, ¢*)e ()N (k),
then also (e*, e) e (5)/\(k). In other words, if (e, €*)€(j), then (e, ¥)
e (k) & (e*, e) e (k).

THEOREM 4.4. Symmetry of the k-property'. If (e, e*)e (k), then
(e*, e)e (k).

Proof. To begin with, if e is the null set, then for every e¥,
(e, €*) e ’(k) and (e*, e) e’(k). And if the null set is a member of e, then for
every e*, (e, ¢*)e (k) and (e*, ¢)e (k). It remains to consider cases
where no sets involved are null. Suppose that (¢, ¢*)e’(k). Then there
exists an « such that for every e ce, ¢ /\ x5~ v, and for every e € e*,
er \x7#£v. Let y=\. (ef \2) (¢f € ¢¥). Then for every ef e e*, yNe #v;
and if it can be proved that, for every e, ce, e \y7#v, it will follow
that (e*, ¢) e’(k). But for every e, ce, m=eNx7#v and x \y=".
Since x; 7~ v, it follows that «,\y 7% v and therefore that ¢, \y % v.

In what follows, the generality of Theorem 4.2 will be revealed.
We will restrict ourselves to ordered sets. There we are naturally led
to consider various operators which were the origin of the present in-
vestigations (cf. Kurepa [4], [6].)

5. Ordered sets, operators O, O, O, O'. Let S be any set order-

ed by <. The operators O, O, 0/, O are defined in the following
manner:

DErINITION 5.1. OS designates the system of all maximal chains
= S.

1 Theorem 4.4 and its proof are due to the referee.
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DEFINITION 5.1. OS designates the system of all maximal antichains
S.

In

DEFINITION 5.2. O’S designates the system of all Xe OS such that
XNMz#£w (MeO0S).

DEFINITION 5.2. O'S designates the system of all Xe OS such that
XNA#w (Ae08).
We shall be aware of a certain reciprocity between the notions

chain and antichain, and in particular by passing from the system O, O’

to the system O, O'.
To each ordered set S is associated the set consisting of

(5.1) 08, 0S, 0'S, U'S

which are at most four elements of P2S. The set (5.1) is of a great
importance. Its elements form in a certain sense the spatial forms
along which certain operations are to be taken. Each element e of (5.1)
is as it were a system of paths for operations (e, .L, f), (e, L', f), ete.

CONVENTION 5.1. The reciprocal of a statement s will be denoted
5. So the reciprocal of the Lemma 5.1 is denoted by Lemma 5.1. If
X is a chain, then X is an antichain, ete, Here is an example.

LEMMA 5.1. In order that Xe€ O'S, it s sufficient that X be an
antichain of S such that X \N\M#~v (MeOS). In other words, if an
antichain intersects each maximal chain of S it is necessarily a mawimal
antichain.

The reciprocal result is as follows.

LEMMA 5.1. In order that Xe O'S, it is sufficient that X be a chain

of S such that X N\ A~ v (AeO0S). In other words, if a chain X of S
wntersects each antichain of S, then X is necessarily a maximal one.

Proof. Let X be an antichain satisfying X N\ M#v (Me0S). To
prove that X e O’S, it is sufficient to prove that X is a maximal an-
tichain, i.e., that each b€ S is comparable to some point of X. Now,
let be Be 0S. Then the point B N X exists and is the required point
of X which is comparable to b.

Reciprocally, let X be a chain such that X N\ A% v (4€08). To
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prove that X is a maximal chain, suppose, on the contrary, that there

is a chain C D> X. Let deC \ X and let de De0S. Then necessarily
D N X=wv, because if xeD N\ X, one would have two distinct com-
parable points d, xz in the antichain D.

LEMMA 5.2. O'S< 0S8, O'S < 0S. (Each of the signs < here may
be = or C.) In particular there exists a non-void S such that’

(56.2) O'S=v, O'S=wv

ExXAMPLE 5.1. Let o, denote the system of all non-void bounded
well ordered sets of rational numbers ordered by means of the relation
<, where® (5.3) ® &y or y © x means that z is an initial portion of y.

In that case, O's,=v, because, e,g., there is no chain in o, intersecting
each row of o, (cf. [4, p. 95]). It is probable that O'c,=v.
As an example of reciprocity considerations let us prove the follow-

ing lemmas (5.3 and 5.3) which are mutually reciprocal and which will
occur in distributive laws (cf. Theorem 9.1, Cases 2,2).

LEMMA 5.3. If the maximal chains of S are pwirwise disjoint, then
the comparability relation in S is transitive, and conversely. Also

(5.49) 0'S=0S=II M,
M

where 11 denotes the combinatorial product of sets M, M running over
0S; and 0S=0’S.

Peciprocally we have the following.

LEMMA 5.3. If the maximal antichains of S are pairwise disjoint,
then the incomparability relation in S ts transitive, and conversely. Also

0S=0'S=]T 4
A

where 11 denotes the combinatorial product of all the sets A, A running
over OS; and O'S=08.

Proof of Lemma 5.3. If OS is disjoint, then as it is easy to show,
the comparability relation in S is a congruence relation, and vice versa.

Each A e OS intersects each MeOS (thus OS=0'S) in a single point,
B According to W. Gustin, there exists a denumerable ramified set S satisfying (5.2)

[c.f. Gustin, Math. Rev. 14, 255 (1953) in connection with the review of Kurepa [8]].
3 The relation & is the very basis of the theory of ramified sets (cf. [4]).
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since on the one hand OS is disjonint and on the other hand A is an-
tichain; thus A e (5.4),=]] (M e OS). Conversely, each Xe(5.4), is an

M
antichain because of the incomparability of each point of each MeOS

to each point of each M,eO0S8, M,z= M. But X is also a maximal
antichain. Analogously one proves the reciprocal of Lemma 5.3., that

is Lemma 5.3.

REMARK 5.1. On Lemma 5.1 and Lemma 5.1 is based a very general
distribution law (c.f. Theorem 9.1, Cases 2,2).

6. Operations (v, N, [f), (v, U, f) and (2, L, f) for each £¢€(5.1)
and each L e {N, U}.

Let £ be any element of the set
(6.1) {08, 0'S, 0S8, 0'S};
then 2eP2S; so that for each £ and each 1 e {N, U}, the operator

(6.2) K, 1, 1)
is well defined. In the particular case that Q=v, we put
(6.3) (v, U, f)=universal set, (v, N, [)=void set.

We shall consider ordered pairs (e, ¢*) of elements of the set (6.1)
and the corresponding sets (6.2) for 2=¢ and 2=¢*, respectively.

ExXAMPLE 6.1. Let
(6.4) (T; wy)

denote the system of all < w,complexes (finite complexes) of ordinals
< w, ordered by means of the relation < in (5.3). If f is a mapping
of (T'; w,) into the family of closed sets, then we can prove that (O, N,
f) and (O, N, f'), respectively, are the most general analytic set (4-
set of Suslin) and the most general CA-set respectively (c.f. [10], [1],
[2]; also [9]).*

Example 6.1 shows the importance of the operations (1.1) even in
the particular cases (6.2) and S=(T; «,). (Cf. [6]).

7. Some simple lemmas.

LeMMA 7.1. Either O'S=v or each element of O'S intersects each element
of OS; and reciprocally, either O'S=v or (OS, O'S) is a j-connected ordered

¢ In our book [5] we defined A-sets just as sets (OS, N, f) for the choice of S and
f as in Example 6.1.
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pair.

Lemma 7.1 and Theorem 2.1 yield the following.

THEOREM 7.1. ©S, N, HEO'S, N, 1)
and reciprocally,
O, N, HSOS; N ).
In general, we have here the sign C instead of <. The duals of that

relation hold also.

THEOREM 7.2. The two sets,

08, N, £, (08, 1\, f)

may be non-comparable of S is ramafied.

To see this, let D denote the set of all integers ordered as in this
diagram:

e 4> —-250>2>54>56—> .-
e Ny BN LN BN DN TN e

Obviously, the set D is ramified; for the sets 2D—1 and 2D of all odd

and, respectively, even integers one has 2D—1e0OD, 2DeOD,
2D N (2D—1)=w.

Let f be the characteristic function of 2D—1; one proves then
easily that

(OD, N, f/)={1}, (aDv N, f= {0} ’

and that proves Theorem 7.2.

8. Ordered sets and k-condition. If we consider the pair (OS, O'S)

or its reciprocal (OS, O’S), then the j-condition is satisfied; therefore
one obtains Theorem 7.1. On the other hand, in general one has
neither

(0S, O'S) e (k) nor reciprocally (OS, O'S)e (k) -

For the sake of simplicity, we present the following.

DEFINITION 8.1. The condition (OS, O’'S) e (k) will be denoted S € (k)
and reciprocally. Thus
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(8.1) (0S8, 0'S)e (k)& Se (k)
(8.1) (08, 0'S)e (k)&= Se (k)

and we shall say that S satisfies the (k)-condition and the (k)-condition
respectively.

In particular, Se (k) means the statement that each set < S which
intersects each maximal chain of S contains a maximal antichain of S.
Then Theorem 4.2. (implication I = III) yields the following.

THEOREM 8.1. For each ordered set S satisfying the (k)-condition,
one has the following distribution law’:

8.2) L' L fle)=1L L'fla), (ecec 08, ae AcO'S)

and reciprocally for (8.2). (L designates N\ or ).

Usual distribution laws are special cases of (8.2). Thus if one takes
the ordered set S={1, 2, 83} with diagram T3one has OS={{1, 2}, {3}},
O'S={{1, 3}, {2, 8}} and the formula (8 2) yieds f(3) L' (f(1)L A2)
=(f(3) L'/(1)) L(F(3) L'S(2)).

Analogously, considering the set ? iy one has the binomial form

of the distribution law. For other cases of distribution, cf. § 11.

9. Some classes of ordered sets satisfying (k) and (k). We are go-

ing to prove that the conditions (k), (k) are satisfied by ordered sets of
some general classes—a fact which will give us a general distribution
and duality law.

THEOREM 9.1. The conditions (k) and (k) are satisfied, provided S
satisfies at least one of the following conditions:
1) S is a chain;
1) S is an antichwin;
2) OS is disjoint, i.e., the elements of OS are pairwise disjoint (this
18 equivalent to the statement that the comparability relation is
transitive in S);

2) The elements of OS are pairwise disjoint (this is equivalent to
the lransitivity of the incomparability relation in S).

The cases 1), 1), 2), 2) are ranged according to relative importance.
One sees that 1) and 1) as well as 2) and 2) are mutually reciprocal.
Let us prove, e.g., the case 2). At first, the elements of OS being

5 The converse holds also.
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pairwise disjoint, by Lemma 5.3, we have OS=[[A (4€0S) and OS
— —_— A4

=0'S. Now we prove Se(k). If no AeOS were contained in an X

£ S, where X intersects each Me OS, there would be a point x(4)e

ANX for each Ae0S. The set \Uz(4) (A€ O0S) would be a maximal
chain of S which does not intersect X, contrary to the hypothesis on X.

REMARK 9.1. Later we shall see that the fact that each chain (an-

tichain) satisfies (k) and (k) is reflected in the fact that our duality
theorem has as a special case the De Morgan duality theorem (cf.
Theorem 13.1).

10. The case of ramified tables. At many opportunities we con-
sidered ramified tables, i.e., ordered sets satisfying the condition that
for each we T, the set (.,x), of all its predecessors in T is well-ordered.
Let us recall that for a table T,

(10.1) T

denqtes the first ordinal number « such that there is no point €T
such that the order type of (.,x)r is «; yT is ecalled rank or degree
(order) of T.

THEOREM 10.1. Fach ramified table T satisfies (k); or explicitly and
more precisely, let T be a set such that for each x€T, the set (.,x)p s
well-ordered. Let X =T and M N\ X£=v (MeOT). Then the set

(10.2) RX

of all initial points of X is a mawimal antichain of T; moreover, R,X
intersects each maximal chain of T. Thus, B, XeOT.

THEOREM 10.2. If 7T <, then Te(k) and OT=OT, OT=0'T.
In particular, this holds for each finite table.

Proof of Theorem 10.1. At first, RXeOT. As R,X has no pair
of distinet comparable points, it is sufficient to show that each te T is
comparable to a point () € R,X. Now, by hypothesis, there exists at
least one point z(¢) € X comparable to ¢. Let xy(¢) be the point in R X
which is < a(t). In fact, it x(t)=w(t), or if x(¢)<¢t, the comparability
of ¢ and x,(t) is obvious. On the other hand, if neither a,(t)=a(f) nor
2(t)<t, then xy(t)<a(t), t<a(t). Thus, x(¢t), ¢ belong to the set
(.,z(t)), which by the supposition on 7 is a chain.

It remains to prove that R, X intersects each MeOT. Again, by
hypothesis, there exists a point me X N\ M; then the point m’e RX
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such that m" << m is a point of M. The set (.,m],\J M is a chain. By
virtue of presupposed maximality of M, one has (.,m],< M, thus
m’ e M.

Proof of Theorem 10.2. At first we have the following.

LEMMA 10.1. If T < w,, then AN\ M=%~v (AeOT, MeOT), thus
OT=0'T, O'T=O0T (cf. [8]).

Proof. Suppose, on the contrary, that 7' contains a maximal chain
M and a maximal antichain A so that

(10.3) AN M=v.

A being a maximal antichain of 7, there exists for each ¢e€7 a point
a(t)e A such that {¢, «a(t)} is a chain; in particular, for each m e M the
points m, a(m) are comparable. Now

(10.4) m < a(m),

which is proved as follows. Since MeOT, M is an initial portion of
T. Consequently, if (10.4) did not hold, M would then contain also the
point «(m) for at least a point m,e M. Thus, a(m,)e A N\ M contrary
to (10.3). Therefore (10.3)=>(10.4). Now, since 7' < o, the chain M
is finite.

Let [ be the last point of M; [ would be a last point of T also,
contrary to the relation (10.4) for m={. Thus the relation (10.3) is
not possible, and Lemma 10.1 is proved.

To complete the proof of Theorem 10.2, we need to see that each
X E T satisfying

(10.5) XNA#v (Ae OT)

contains a maximal chain of 7. This holds for every 7 and we have
the following statement which is reciprocal to Theorem 10.1.

THEOREM 10.1°. Every ramified table T satisfies the k-condition:
T e (k).
Proof. Suppose X satisfies (10.5). Since R, T e OT, we have
(10.6) Xo=XNRTH#v.
The set (10.6) is an initial portion of X, that is,
x€(10.6)=(.,z]; = (10.6) .

6 Theorem 10.1 for y7'=w is due to the referee.
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If X, contains a maximal chain of 7, then Theorem 10.1 is proved. If
O0X, N\ OT=w, then

(10.7) R(T\X,)

is a maximal antichain of 7. As a matter of fact we have the following.

Lemma 10.2. If I is an initial portion of a ramified table T such
that

(10.8) oI N OT=v,
then
(10.9) R(T\1)e OT.

To prove (10.9), € OT, it suffices to show that each ¢ T is compar-
able to some point i’ € (10.9),. Obviously this holds for i€ T\ I. Suppose
1€ l. Consider an M such that e M e OT. By (10.8), M\ Iz%v. Let
PeM\1I, and let 7 be the point such that +' €(10.9), and ¢ < P. Since
T is ramified and ¢ < P, it follows that ¢ <¢.

To prove Theorem 10.1, let us consider the sets
(10.10) X Xy o0, Xy o0
defined as follows
X;=XNRT, X;=X,\UXNR(T\X,))
(10.11) Xo=Xo UX N BT\ X))
szy X., (ay < @)

depending upon whether « is isolated or a limit ordinal number.
Obviously, the sequence (10.10) is increasing and its terms & X.
Let 6 be the first ordinal such that

(10.12) Xs=Xs4, -
Of course, ¢ < ¢T.

We say that
(10.13) OX; N\ OT #£ v
and hence
(10.14) OX NOT# v

because X; & X.
First, each term of (10.10) is an initial portion of T-provable by an
induction argument. Secondly, if the relation (10.13) were false, the
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set

(10.15) R(T\X)

by virtue of Lemma 10.2 would be a maximal antichain of 7. By hy-
pothesis on X (see (10.5)) there would be a point ze X N (10.15).
Therefore

2€ X5, v€'X;5.

Hence, ze X;. \X; and X; C X;.,, contrary to (10.12). Hence (10.14)
holds and Theorem 10.1 is proved.

11. General distribution laws. To see how the previous investiga-
tions are linked with distribution questions, let us prove the following
distribution theorem which is the most general distribution law expres-
sible in usual terms.

THEOREM 11.1. Let & be any non-void family of non-void sets
<1, 1 being o standard set. Then for each mapping f of the set 1 we
have

(1L.1) L Y@=y s (de T X);
and dually.

Theorem 11.1 is a corollary to Theorem 4.2 (implication I=>1II). As
a matter of fact, first the pair (F JI X) is j-connected; second it
Xeg;‘

satisfies the k-conditions, as is easily probable.

A direct proof of Theorem 11.1 is as follows.

First, (11.1), £(11.2),, that is, if £e(11.1), then £e(11.1),. In fact
£e(11.1), means €€ nckejxf(a:) (Xe &), that is, there exists an X, eX

such that ¢fef(X,), (Xe.&#). Putting 4A,=UX.,(Xe &), one has
e N fla) (ae A,) and A4, € IXI X, thus £e(11.1),.

Second, (11.1),<(11.1),: if £e(11.1),, then £e(11.1),. The relation
£e(11.1), is equivalent to &€ f(a) (a € A) for some Ae ]| X; since A N X

= v, this implies £¢€ UXf(a;) for each X e . & hence £e(11.1),.
zE
From the proof of Theorem 11.1 we obtain the following interest-

ing result.

THEOREM 11.2. (Cf. Theorem 2.1) Let (% % ) be any ordered pair
of systems of sets < 1 such that
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(11.2) XNXy#v Xe 7 X,e %);

then for each mapping f:
(11.3) U AN fl)s, A U f(%)

reF = X € Ho %€

and dually,
UNfl@s N U ).

z
X eg* a,*exg

In general, one reads here < instead of <. The case & =.% is
not excluded. Therefore the relation (11.3) holds even if one or both
sets .7, % are vacuous. In particular, (11.3) holds if .~ € {OS, O'S,

08, 0'S} and % =.7" (obviously (OS)" means O'S; (0'Sy =08, (O'S)
=08, even if O'S=v=0’S. Consequently, we have the following.

THEOREM 11.3. If € {0, O, O, O}, then
UNADSNY @) (zeXeQSaeX e0S)
and dually.

Passing to complements in the relation and using the De Morgan
formula, we have the following.

THEOREM 11.4. For any 2¢ {O, 0, O, (7’}:

UNf@y2y N @) (weXels, ze X eds).

The question of whether sets forming &% in Theorem 11.1 are
pairwise disjoint or not disjoint is of no importance. However, without
loss of generality, the system & may be supposed disjoint. In fact,
let to each Xe & be associated the set X, of all ordered pairs (X, x)
(xe X); to each xe X we associate the pair (z, x). Instead of F we
can consider the system . of all the X, (Xe . ). Now, the family
% 1is disjunctive and the system .9, can be interpreted either as OS

or as OS. If one orders totally each X, and if one orders the set
S=U X, (Xe ) so that each element of X, is incomparable to each
b.q

element of each other element of & and if one leaves intact the
ordering in each element of &, then obviously

0S=.7, O'S=Ily (e FA);

moreover
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08=0'S, 0'S=0S,

the set satisfies the conditions (k) and (k) and accordingly for the set
S the distribution law (8.1) holds.

Combining Theorem 8.1 with Theorem 9.1, one has the following
statements:

THEOREM 11.5. If S is an ordered set of one of the cases 1, 1, 2, 2,

tn Theorem 9.1, then for each mapping f of S the following distribution
law holds:

(11.4) 1L film)=1L 1" fla) (meMeOS, acAcO'S);
M m 4 a

and reciprocally. In (11.4) L denotes either [\ or \J.
Theorems 9.1 and 10.1, 10.2 yield the following.

THEOREM 11.6. For each ramified table T' and each mapping f of
T one has

(11.5) L lm)=1 1" fla) (meMeOT, ac AcO0'T);
M m 4 a
and reciprocally.

12. A new duality law. We saw (Theorem 8.1) how the distribu-
tion law (11.4) is connected with the condition (¢). Now we will see

the interconnection of the distribution law and of (k) or (k) with some
duality laws. Let us suppose that for each f one has

08, L, =0, L' 1)

(this happens if and only if Se (k) ef. Theorems 3.2, 4.1). In particular,
since f is arbitrary, the same equality holds for the mapping 1/, f’
being the complement of f; thus

(08, L, =08, L' f).
From here, passing to complements, one has
OS, L, Y=, L' fY=('S, 1", f)=(0'S, L, f),

(by De Morgan’s formula). Thus we have the following.

THEOREM 12.1. GENERAL DUALITY LAW. For each ordered set
Se(k), one has

(12.1) (2, L, fY=, L, f'); where, 2=08 or O'S,
I=Nor \J.
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Reciprocally, if Se (k), then for each mapping f of S:

(12.1) (@, L, fy=(2, L, f).
Where, 2 denotes OS or O'S, L=\ or \J.

It is interesting to observe that the converse of Theorem 12.1
holds also.

THEOREM 12.2, V(f) (12.1)& Se (k)
V() 12)& Se k),

Let us express, e.g., the last equivalence directly.

THEOREM 12.3. Given an ordered set S: in order that for each
mapping f of S, one has

(12.2) (y aQA MAa)) = JL”} mQM J(m) (Ae 0S8, MecOS),

it is mnecessary and sufficient that S satisfies the (k)-condition (cf.
Theorem 3.1).

13. Some special cases of the duality theorem.

THEOREM 13.1. If S 4s a chain or an antichain, then the duality
Theorem 12.1 yields the theorem of De Morgan.

Let us consider an antichain S; thus OS={S}; O'S is the system
of all one-point sets x€S. Then for each MeO'S, one has M= {x}
with ®€S; thus N\ f'(m)=f'(x) where {#}=M and one has
meEM

(18.1) U N Fm=y F@= Fe@
On the other hand, as OS={S},
0, f@= \ f@)

and

(13.2) U N Aa)=U N fls)= f\ S(s) .

4€08 a€4 4€e (s} s€8

By virtue of (13.1) and (13.2) the equality (12.2) yields

(D =Y f(s)
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and this is just the equality of De Morgan. Since each family, or set,
may be considered as an antichain, we see that Theorem 12.3 (its suf-
ficient condition) for S an antichain gives the equality of De Morgan in
its most general form.

THEOREM 13.2. For each ramified table T and each mapping f of
T one has

(13.3) (L" L fim)y=1"L f(a)

(meMeOT, acAcOT, Le{N, U})
In particular (L=N):

(13.4) (\A{ ﬂf(m))’z—y N f(@) (me MecOT, ac AcOT),

and reciprocally.

If one bears in mind the generality and importance of ramified
tables (a tool for complete subdivisions or atomizations of sets), one is
conscious of the importance and generality of Theorem 13.2.

REMARK 13.1. From a logical point of view it is very important
that (13.4) as well as its reciprocal hold, especially for each table whose
chains are finite.

Actually, we observe that such tables occur even in psychological
processes, in subdivisions, evolution, etc. Thus is seems that the evolu-
tion processes follow a ramification scheme, as will be shown elsewhere.
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LIE ALGEBRAS OF LOCALLY COMPACT GROUPS

RicHARD K. LASHOF

1. Introduction. We call an LP-group, a group which is the pro-
jective limit of Lie groups. Yamabe [8] has proved that every con-
nected locally ecompact group is an LP-group. This permits the exten-
sion to locally compact groups of the notion of a Lie algebra. In §§2
and 3 we prove the existence and uniqueness of the Lie algebra of an
LP-group and show the connection of the Lie algebra with the group
by means of the exponential mapping.

In §4, we extend the notion of a wuniversal covering group for
connected groups with the same Lie algebra. A covering group of a
connected group ¢, in the extended sense used here, means a pair
(g, w), where g is a connected LP-group and w is a continuous repre-
sentation of § into ¢ which induces an isomorphism of the Lie algebra
of § onto the Lie algebra of g (see Definition 4.5). The universal co-
vering group of a connected locally compact group is not necessarily
locally compact and may not map onto the group. It turns out that
the arec component of the identity in g is a covering space in the sense
of Novosad [5] of the arc component of the identity of ¢ (these com-
ponents are dense subgroups, Lemma 3.7).

Finally, in §5, we establish a one-to-one correspondence between
‘¢ canonical LP-subgroups ’’ of a group and subalgebras of its Lie algebra.

2. Projective limit of Lie algebras.

DEerINITION 2.1. By a topological Lie algebra (over the real num-
bers) we shall mean a (not necessarily finite dimensional) Lie algebra
with an underlying topology such that the operations of addition, mul-
tiplication and scalar multiplication are continuous.

DeFINITION 2.2. Let J be an inductive set. Suppose given for
each a€J, a topological Lie algebra G, such that if @« <'b there exists
a continuous representation f,,:G, — G,. Let G=[{X,} € II G, such that

aeJ

funX,=X,, all a, beJ with a <'b]. Then G is a closed topological sub-
algebra of the direct product.

In analogy to A. Weil [7, p. 23], G will be called the projective
limit of the G, (G=lim G,) if the following hold:

Received September 27, 1955, and in revised form May 18, 1956. This paper is a por-
tion of the author’s doctoral dissertation, which was written at Columbia University.
The author wishes to thank Professors Kadison and Taylor for their kind assistance.
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LP I: If a <b < ¢, facXczfab(fchc);

LP II: f,, is a continuous open homomorphism of G, onto G,;

LP III: f,, the natural projection of G into G,, is continuous and
onto.

(Remark: f, open is implied by f,, open, (see [7, p. 24])

In particular, if the G, are finite dimensional Lie algebras with the
usual topology as a Euclidean space, we get the following.

THEOREM 2.3. Let G,, a€J, be a system of finite dimensional Lie
algebras satisfying LP 1 and

LP Il': f,, s a representation onto.

Then G as defined in Definition 2.2 will necessarily satisfy LP II and
LP III and hence G=Ilim G,.

Proof. LP II' implies LP II, since for finite dimensional vector
spaces a representation onto is both continuous and open in the usual
topology. That LP III is satisfied follows directly from the theory of
linearly compact vector spaces [3 Ch. III, §27]. In fact, this result
holds for an inverse system of finite dimensional vector spaces.

DEFINITION 2.4. If G=limG,, G, finite dimensional Lie algebras,
then G will be called an LP algebra.

LEMMA 2.5. Let G=lim G,, where the G,s are complete topological
Lie algebras, with homomorphisms f, and f,, satisfying LP 1, II, and
III. Let N, be the kernel of f,, then

A. Every neighborhood of zero im G contains an N,
B. For each N,, N, there exists an N, C N, N\ N,.
C. G is complete.

Proof. It is easy to show (see [7]) that a fundamental system
of neighborhoods of zero in G is given by f,%(V,), a€J, and V, running
through a fundamental system of neighborhoods of zero in G,. Condi-
tion A then follows directly.

If ¢>a, b then N, obviously satisfies B. Condition C is immediate
from the definition of G.

LEMMA 2.6. Given o topological Lie algebra G containing closed
ideals N, satisfying A, B, C; then lim G/N, exists and 1is tsomorphic to
G (where we define a b iof N, DO N, and let f,:G/N,—> G|N, be the
natural homomorphism).
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Proof. Since the Conditions A, B, C are identical to those for
topological groups [7, p. 25] it follows that G is isomorphic to lim G|N,
as an additive topological group. The lemma now follows since the N,
are ideals.

THEOREM 2.7. Suppose G=lim G,, G, fiinite dimensional. If K is
a closed subalgebra of G, then K=lim K,, where K, is the image of K in
G,. If K is a closed ideal in G, then G/K=lim G,/K,. In particular,
G|K is complete.

Proof. If f,:G,— G, (a <b), then f,,:K, — K, satisfies LP I, II'.
Hence lim K, exists. Since K maps onto K,, K is dense in lim K, [7].
Since K is closed, K=Ilim K.

Likewise G,/K,, aeJ, satisfy LP I, II where fab:Gb/K,,——»Ga/Ka is
induced by f,,. Hence limG,/K, exists. The natural maps p,:G,—
G,/K, evidently induce a map p:G — lim G,/K, defined by: p{X,} = {p.X.},
{X,} e G. This definition is legitimate since:

fab(prb)zpa(fabXb)=pa(Xa) s a<b.

This in turn induces a map :G/K — lim G,/K,. We have to show that
4% is an isomophism.

By its definition ¢ is evidently continuous and one-to-one into. We
show that it is an isomorphism into. Since the natural map of G onto
G/K is open, it is sufficient to show that if W is a neighborhood in G
then p(W)=p(W +K) is open. Now if W is a neighborhood in G, take
V+V CW. Then V contains an N,, kernel of f,:G — G, (Lemma 2.5).
Then p(W) contains p(V)+p(N,). Now (p(V)).=p.f.(V), is an open
neighborhood in G,/K,; and the preimage in lim G,/K, of a neighbor-
hood in G,/K, is a neighborhood in "~ G,/K,. But if (p(X)), € puf(V),
XeG then X, ef,(V)+K, and hence Xe V+N,+K C W+ K. But this
implies that ¢ is open in 4(G/K) and hence is an isomorphism into.

It remains to show that ¢ is onto. But this follows since as an
abstract vector space G is linearly compact [3]. Hence

NS (Ya) # ¢, (Yo} elimG/K,
since the intersection is nonempty for any finite subset of J.
LEMMA 2.8. Let 0 be a continuous representation of an LP-algebra
G into an LP-algebra H. Then the imoage of G in H 4s a closed sub-
algebra of H.

Proof. Suppose G=lim G,, aeJ; H=lim H,, be K; G, and H, finite
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dimensional. Consider the map p,:G — H,, composed of 6 and the pro-
jection of H onto H,. This takes G onto a subalgebra H’, of H,.
Obviously, the H’,, be K, define a closed subalgebra H’=lim H', of H
under the induced system of representations. Also 0(G) C H'.

Let Y={Y,} be in H’. The preimage p,;(Y,) is a closed linear
variety in G. Since G is linearly compact, N p;(Y,) is nonempty, as
the intersection of a finite number is clearly nonempty. Hence there
exists X e G such that p,(X)=Y,, all be K. Hence G maps onto H'.
As H' is closed, this proves the Lemma.

LEMMA 2.9. Let 0 be a continuous representation of an LP-algebra
G onto an LP-algebra H. Then 0 is open.

Proof. Let K be the kernel of 4. By Theorem 2.7, G/K is an LP-
algebra. Hence it is clearly sufficient to prove the Lemma in the case
that the map is also one-to-one.

Hence let 8 be a continuous one-to-one representation of G onto H.
Suppose G=1lim G/K,; K,, a<J, closed ideals in G and G/K, finite di-
mensional. By Lemma 2.8, 6(K,) is a closed ideal in H. Further
H/0(K,) is finite dimensional and hence is (topologically) isomorphic to
G/K,. Since 0 is continuous every neighborhood of H contains some
0(K,). It follows from Lemma 2.6 that

H=lim H/0(K,)=lim G/K,=G .

Clearly, the isomorphism so induced is the same map as 6.

THEOREM 2.10. If G, and G, are two LP-algebras with the same
underlying abstract algebra G, then G, and G, have the same topology.

Proof. By Lemma 2.9 it is sufficient to construct an LP-algebra
G, whose underlying abstract algebra is G and such that the identity
maps of G, into G, and G, are both continuous. Let K,, a<J, be the
set of all abstract ideals in G which have finite codimension. As is
well known, if K, and K, have finite codimension, so does K, N K,. It
follows that G/K,, a€.J, satisfy the conditions of Theorem 2.3, where
we define b >a if K, C K, and f,,:G/K, — G/K, is the natural projec-
tion. Let Gy,=lim G/K,” We claim the underlying abstract algebra of
G, is G.

Now G is linearly compact since it is the underlying algebra of G,
and G,. Let p,:G — G/K, be the natural map. If Y={Y,} €G, then
N pz(Y,) is nonempty, since the intersection of a finite number is non-
empty. Hence there exists Xe G such that p,(X)=Y,, all aeJ. Hence
the map p: X — p,(X) take G onto G,. p is one-to-one, since for every
XeG there is a K, such that p,(X) is not zero, because the identity
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map of say G onto G, is one-to-one.

Now G,=lim G|/K,, beJ’, J' a subset of J. »':G,— G, is an iso-
morphism of this underlying abstract algebras and is continuous since
J’ is a subset of J. Hence the theorem follows by Lemma 2.9.

COROLLARY 2.11. Let G be an abelian LP-algebra. Then G is the
direct product of l-dimensional algebras. In particular, the underlying
topological vector space of an LP-algebra is algebraically and topological-
ly the direct product of 1l-dimensional vector spaces.

3. Lie algebra of an LP.group.

DEFINITION 3.1. Let ¢,, aeJ be Lie groups. Suppose g=limg,,
the limit satisfying LP I, II, III of A. Weil [7]. Then we call g an
LP-group. (Note that g is complete since the g, are complete.)

DEFINITION 3.2. Suppose g=lim g,, g, connected Lie groups. Let
G, be the Lie algebra of g,. Then the homomorphisms f,,:9, — 9, (@ <b)
induce homomorphisms df,,:G, — G, satisfying LP I, II of Definition 2.1.
Hence the G,, aeJ, have a limit G. G is called the Lie algebra of g.

We show in Lemma 3.4 below that G is independent (in a natural
sense) of the representation of ¢ as a limit of Lie groups.

DEFINITION 3.3. Suppose g=lim g,, g, connected Lie groups. Let
G, G=lim G,, be the Lie algebra of g. Then we define a continuous
map

exp:G—g, exp{X,}={expX,}, {X.}eG.
This mapping is legitimate, since if f,,:9, — g, then
Sar(exp X,)=expdf,,X,=exp X,
and hence {exp X,} eg.
LEMMA 3.4. Suppose g=lim g,, g, connected Lie groups, a€J; h=
Yim 4,, h, connected Lie groups, be K. Let G=lim G,, H=lim H, be the

corresponding Lie algebras. If 0:g — h is an isomorphism then we can
define an isomorphism d0:G — H such that

O(exp X)=expdf(X), XeG

Proof. Let f,:g— g, and f,:h — h, be the natural maps. Let n,

and 7, be the kernels of f, and j—',, respectively., Let be K. Since 4,
is a Lie group there is a neighborhood V, of %, which contains no non-
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trivial subgroups (that is, 4, doesn’t have arbitrarily small subgroups).

Since f,0:g — h, is continuous, there is a neighborhood W in ¢ which
maps into V,. But W contains some 7, and this », must go into the
unit element of k,. This defines a homomorphism 6,,:9, — A, such that

()bafa, :.)Fba ’

this condition characterizing 0,,.

If a>a', a and @' in J, then f,=fu.fo and 0,,f..f..=f0. Hence
OpuS v =0 Similarly, if & < b, fru0pa=0,,. The induced homomor-
phisms of the corresponding Lie algebras therefore satisfy

daba dfaa’:daba” d}-b’bdaba:dﬁb’a .

It follows that the maps df,, define a continuous representation d¢ of
G into H, where d0(X), X={X,} €G, is defined by

(d0(X))y=d0,,(X,) .

This map is well defined because of the conditions satisfied above, and
is continuous because db,, is continuous.
Similarly for each a€J, we can find a be K and a homomorphism

$onihy, — ¢, such that £,0-'=¢,,f,. This defines a continuous representa-
tion d¢ of H into G. Because of the conditions satisfied by the maps
one sees easily that: dfd¢:H — H and d¢df:G — G are the identities,
and hence that d¢ is an isomorphism.

Since db,,df,=df,d0 by definition, we have
S20(exp X)=0,.f (exp X)=exp df,, df (X)=exp df d(X) .
By Definition 3.3, this implies that f(exp X)=exp d0(X).

THEOREM 3.5. Suppose g=lim g,, g, connected Lie groups. Let G
=lim G, be the corresponding Lie algebra. Then g is the closed subgroup
generated by the elements of the form exp X, Xe(G.

Proof. Since G maps onto G,, exp X, for X e G generates g, and
exp G generates a dense subgroup of g, proving the theorem.

LEMMA 3.6. Suppose G=lim G,, G, finite dimensional Lie algebras.
Then the underlying space of G s arcwise connected.

Proof. Since G is a topological vector space it is arcwise connected
by straight lines.

LEmMA 3.7. Suppose g=limg,, gy, connected Lie groups. Then g s
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connected and the arcwise connected component of ¢ s dense in g.

Proof. The map exp:G — g is continuous. Hence if A is the image
of G, A is arcwise connected. Hence A" is arcwise connected. Hence

O A" is arcwise connected. By Theorem 3.5 this is dense in g. Hence g
1

is connected.

THEOREM 3.8. Let (g,), ae€d be a system of connected Lie groups
satisfying LP 1, 11 of A. Weil [1]; then g=({z,} € [l Go; fuXr=2,, all
aEed

a, bed with a <b) satisfies LP 11, and hence:

g::hm 9a

Proof. Let G, be the Lie algebra of g,. Then the (G,), acd
satisfy LP I, II of Definition 1.1. Hence they have a limit G. Let X
€@, then if X={X,} we have exp X,eg, and {exp X,} €g, since:

S exp X,= exp df,,X,=—exp X,, a <b

But elements of the form exp X, generate g, since G maps onto G,.
Hence g maps onto g,. Hence g=limg, .

LEMMA 3.9. Let g=limg,, g, arbitrary Lie groups. Let ¢ be the
connected component of the identity of g,. Then the (¢5), aed form a
system of groups satisfying LP 1, Il of A. Weil. Let ¢°=lim ¢, then ¢°
28 the connected component of g.

Proof. Sinece f,,:9, — ¢, is continuous, open and g} is open in g,
it takes ¢% onto ¢5. Hence the (¢%), aeJ satisfy LP I, II. By Theorem
3.8 they have a limit ¢°. ¢° may obviously be considered as a subgroup
of g, closed since complete.

By Lemma 3.7, ¢° is connected and hence contained in the connect-
ed component of g. On the other hand, if g, is the connected compo-
nent of ¢, f.(9;) is connected and hence contained in gJ. Hence g, is
contained in the limit of the ¢%. Hence g,=¢’.

DEerFINiTION 3.10. Let g be a topological group. If the connected
component of the identity of ¢ is an LP-group, we define the Lie alge-
bra of g as the Lie algebra of its connected component.

REMARK. According to the result of Yamabe [8], every locally
compact group is a generalized Lie group. This implies in particular
that its connected component is an LP-group. Hence every locally com-
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pact group has a Lie algebra.

THEOREM 3.11. Let g and h be topological groups for which Lie
Algebras G and H are defined (Definition 3.10). Let f be a continuous
representation of g into h, then f induces a unique continuous representa-
tion of G into H such that flexp X)=expdfiX), XeG.

Proof. Obviously f defines a continuous representation of the con-
nected component of g into the connected component of 4. Assume
therefore that g and % are connected.

Suppose g=lim g,, A=lim A, (g,, h, connected Lie groups). The map
g — h — h, induces a map of g, — 4, for some a, since %, doesn’t have
arbitrarily small subgroups. This in turn induces a map of G,— H,
and hence of G into H,. As in the proof of Lemma 3.4, it is easy to
see that the maps G — H, induce a continuous representation of G into
H, df:G — H; such that flexp X)=-exp df(X).

Suppose there are two such representations, say df and df. Then
(dfX), 7 (drX), some b and X. Since any neighborhood of zero genera-
tes G, and since df, df are linear; we can chose X such that dfX and

dfX are in any desired neighborhood of 0 in H,. TFor a sufficiently
small neighborhood exp is one-to-one on H,. Hence (expdfX),

= (exp dfX),, a contradiction.

COROLLARY. If g s conmected and f, f, are two representations of
g wnto h such that df=df,, then f=f..

Proof. Since f(exp X)=expdfX=expdf,X=/1(expX) and since
exp G generates a dense subgroup of g, we have f=f.

LEMMA 3.12. Let g and h be locally compact topological group and
g connected, G and H their Lie algebras. Let f be a continuous open
homomorphism of g onto h, then df s & continuous open homomorphism
of G onto H.

Proof. According to A. Weil [7], if k& is the kernel of f, we may
take g=limg,, k=limk,, k, the image of % in g,, and A=limg,/k,, 9.
and %k, Lie groups.

Then G=lim G,, G, the Lie algebra of g,. Let K be the Lie algebra
of k; then K=lim K,, K, the Lie algera of k,. Then the Lie algebra
of 9./k, is G,/K, [1]. Hence H=lim G ,/K,. By Theorem 2.5, H=G/K.
It is easy to check that for df:G — G/K that flexp X)= expdfX.
So that the natural map of G onto G/K is df. (Note: By a generaliza-
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tion of Pontrjagin’s theorem on groups satisfying the second axiom of
countability; if f is continuous and onto it is automatically open.)

4, VUniversal covering group.

DEFINITION 4.1. Suppose g=lim g,, (9,), @ € J connected Lie groups.
Let g, be the simply connected covering group of ¢,. The map f,,
taking g, onto ¢, (a </b) induces an open homomorphism f,, of g, onto
d.. Hence the (g,), a€dJ satisfy LP I, II and therefore have a limit
7 (Theorem 3.8). 7 is a complete, connected group. ¢ is called the
universal covering group of g.

PROPOSITION 4.2. Let G be the Lie algebra of g. Then § has the
Lie algebra G, and there exists a continuous representation w taking g
onto o dense subgroup of g such that dw:G — G is the identity.

Proof. The covering homomorphisms w,:7 — g, induce a continuous
representation of g into g. Since dw,:G, — G, is the identity, it follows
that dw is the identity. Since w, maps g, onto g, it follows that w(g)
is dense in g.

PROPOSITION 4.8. The kernel of w s totally disconnected and is in
the center.

Proof. If k is the kernel of w, it follows from the definition of
w that the image f.(k) of k in g, belongs to the kernel of w,. But
this kernel is discrete and hence f,(k) is discrete, and therefore closed
in g,. It follows that the f, (k) satisfy LP I, II and since %k is closed,
k=lim f,(k). Hence k is the projective limit of discret groups. It
follows from Lemma 3.9 that % is totally disconnected. Further, a
totally diseconnected normal subgroup of a connected group belongs to
the center.

LEMMA 4.4. Let g be a connected LP-growp with Lie algebra G.
Let b be any other connected LP-group with Lie algebra H isomorphic to
G. Then there exists an isomorphism of their universal covering groups

£1G > & such that df is the given isomorphim of G onto H.

Proof. Suppose g=lim g,, ~A=I1lim #,; then h=lim %,, g=limg, and
G=lim G,, H=lim H,. The homomorphism G - H — H, induces a homo-
morphism G, — H, for some a, since H, has no small subgroups when
considered as an additive group. This in turn induces a homomorphism

of g, onto E,,. Similary there exist homomorphisms of };b onto 7, €,
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some b, As in the proof of Lemma 3.4, it is easy to see that this

implies that there exists an isomorphism f :5— k. The induced homo-
morphism df:G — H such that f(exp X)=expdf(X), is obviously the
original isomorphism of G onto H.

DEFINITION 4.5. Let g and %2 be connected LP-groups, G and H
their Lie algebras. A continuous representation w of ¢ into % such
that dw is an isomorphism of G onto H is called a covering map and ¢
is called a covering group of h, (g, w) is called the covering.

PROPOSITION 3.6. w(g) is dense in h.

Proof. In fact w(exp X)=expdw(X), XeG. But expdw(X), XeG
generates a dense subgroup of % since dw is onto.

We now give a purely topological definition of covering space for
arcwise connected spaces due to Novosad [5] and show that the arc
component of the identity ¢¢ of g in Definition 4.5 is actually a cover-
ing space in this sense of the arc component of the identity A° of 4.
(Note that ¢° is dense in g, Lemma 3.7) Similarly, we show the arc
component of the identity of the universal ecovering group is a universal

covering space.

DerINITION 4.7. (Novosad) Let A be an arcwise connected space,
acA. Let f:(B, b) > (4, a) be a continuous map of an arcwise con-
nected space B into A taking b into a. Then (f, B, b) is called a
covering space of (A, a), if given any contractible space C, and point
ce C which is a deformation retract of C, and a map «:(C, ¢) — (4, o),
then there exists a map @:(C, ¢) — (B, b) which is unique with respect
to the property fa =«.

Let (P4, at) be the pair consisting of the space of paths starting
from a e A, with the compact open topology, of an arbitrary topological
space A, and the constant path a# at a€ A. A continuous map fi(B, b)
— (4, @) induces a continuous map f#:(P;, bf) > (P4, aff) defined by:

FE(0)®)=f(p(t)), pe Py, te I (the unit interval)
It is then easy to see that Definition 4.7 is equivalent to the following.
DEFINITION 4.7'. Let f:(B, b)— (4, a) be a continuous map of an
arcwise connected space B into an arcwise connected space A taking

be B into ae A. Then (f, B, b) is called a covering space of (4, a) if
SE:(Ps, bE) — (P, a#) is a homeomorphism onto.
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PROPOSITION 4.8, Definitions 4.7 and 4.7 are equivalent.

Proof.

(4.7) implies (4.7’) by Lemma 2.3 of [5].

(4.7") implies (4.7); since, let 1,:P,— A, 2,(p)=p(1), pe P,. Then
4, defines a fiber space (in the sense of Serre) which obviously satisfies
the covering homotopy theorem for arbitrary spaces. Hence if «a:(C, ¢)
— (4, @) is homotopic to tne constant map the homotopy may be lifted
to (P,, af) and hence to (P,, b%) by the homeomorphism of (4.7"). 1,
maps the image into (B, b). The endpoint of the homotopy gives the
desired covering of (4.7). The uniquenes follows since any point of
C describes a path under the retraction and the image of this path in
B is unique since covering paths are unique by (4.7').

DEFINITION 4.9. An arcwise connected space A is called simply
connected if every covering space (4.7) of (4, a) is trivial. This pro-
perty is independent of the base point ae A (see [5]).

Let 2, be the (closed) subspace of P, consisting of closed paths
(that is, the loop space). Let 2% be the arec component of af in £2,.

THEOREM 4.10. Let A be an arcwise and locally arcwise connected
space, ae€ A; then if 2, is connected (not necessarily arcwise connected)
and 2% 1s dense i 24, A is simply connected (Definition 4.9).

Proof. Let (f, B, b) be a covering space of (A, a). Then f3:P;
— P, is a homeomorphism, and hence f£ maps 2, homeomorphically
into 2,. But every loop in A contractible to ¢ may be lifted to a uni-
que loop in B (see proof of 4.8), hence f#(2,;) D> 25 But f#(2;) is
closed in P,. Hence f£ maps 2, onto 2,.

Now this means that f:B — A is one-to-one. For if f#(p)(1)=7%(v")
-(1), p, p’ € Py, then p(1)=p'(1); since fip and f#p’ having the some
endpoint form a loop in A, and hence must come from a loop in B by
the above. Also p(1)=p’(1) implies (F&p)(1)=(f#p’)(1). Hence since 1,:
P;— B, and 1,:P, — A (the endpoint maps) are onto, f is one-to-one.

Further 1, is both continuous and open [4, Lemma 4] since A4 is
locally arcwise connected, hence the continuous map A,/':P,— B in-
duces a continuous map f~':4 — B. This proves the theorem.

We now apply the above to LP-groups. We remark that if ¢ is a
topological group; then P,, the space of paths of g beginning at the
identity, may be made into a topological group by pointwise multiplica-
tion of paths. Then £, is a closed normal subgroup.

Lemma 4,11, Let g=limg,, g, Lie groups; then P,=lim P,_.



1156 RICHARD K. LASHOF

Proof. First f,:g —> g, has a local cross-section. In fact, it is
obvious that df,:G — G, has a cross-section since these spaces are linear,
further g, has a neighborhood which is homeomorphic to a neighborhood
of G, and exp:G — ¢ is continuous.

Now P, is arcwise connected, hence f%:P, — P, will be onto if the
image covers a neighborhood of the identity. But this follows from the
local cross-section of g, in g. In fact, a fundamental system of neighbor-
hoods of the identity in P, is obtained from a fundamental system of
neighborhoods of the identity in g by taking all those paths that are
contained in a given neighborhood of the identity in g. Also it follows
that f% is open.

If V is a neighborhood of the identity in ¢ that contains the kernel
k, of f,, then the corresponding neighborhood in P, contains P; , and
this last is clearly the kernel of f%. Finally, P, is complete since g is
complete. Hence all the conditions for a projective limit are satisfied
and the lemma follows.

LEMma 4.12. If g=limg,, g, stmply connected Lie groups, then £,
=lim &, .

Pooof. The proof is the same as above, using the fact that since
g, is simply connected, 2, is arcwise connected.

LemMmA 4.13. If g=limg,, g, simply connected, then Q% is dense in
2, and 2, is connected.

Proof. Since f,:g — g, has local cross-sections (see 4.11), it defines
a principal fiber bundle and hence satisfies the covering homotopy
theorem of [6]. Hence since every loop in g, is contractible each loop
may be lifted to a contractible loop in g. Hence £ maps onto 2, , all a.
Hence £¢ is dense in £,. The last statement then follows. ‘

LEevMmaA 4,14, If g=limg,, g, simply connected, then P,/Q ~ ¢°.

Proof. For Lie groups, P, /Q{,Lz g,, Since g, is locally arcwise
connected and hence the map of MP,,(: onto ¢, is open (see [7]). Since
P, maps continuously onto P, , P; maps continuously onto Pg“/an =~ g,.
The induced map of P, into g=Ilim ¢, is obviously 4,, and this induces a
continuous one-to-one map of P,/2, onto ¢° Cg. Hence it is sufficient
to show that P,/©2, has the proper topology as a subgroup of g.

The neighborhoods of the identity in P,/Q, are of the form V@,
where V is the preimage in P, of a neighborhood V, in P,,. But this
is the preimage in P,/2, of the neighborhood V.2, in Pga/anzga.
Hence the Lemma follows.
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THEOREM 4.15. If g=limg,, g, simply connected Lie groups, them
9° (the arc-component of the identity) is arcwise connected, locally arec-
wise connected, and simply connected (Definition 4.9).

Proof. g¢° is locally arcwise connected since P, is obviously so.
Hence by Lemmas 4.12 and 4.13 and Theorem 4.10, ¢° is simply con-
nected.

COROLLARY 4.16. If g s the universal covering group (4.1) of a
metrisable LP-group or o connected locally compact group, then g is arc-
wise connected, locally arcwise connected and simply connected.

Proof. For metrisable groups, P, is metrisable and complete.
Hence P,/Q, ~ ¢° is complete and thus ¢°=¢g. The result for locally
compact groups will follow from Theorem 4.25.

We write again w for the map of Definition 4.5 cut down to ¢°.

LeMMA 4.17. (w, ¢° e) is a covering space (Definition 4.7) of
(2, e).

Proof. First assume g—# the universal covering group of 4. Then
if A=lim A, h=lim %, and since P; ~ P, (this is obvious for Lie groups),
P; ~ lim Py ~ lim P, =~ P,. Furtlaler, tflis isomorphism is clearly in-
duced by the covering map w.

Now let (g, w) be any covering group of 2. Then A=~g by (4.4)

and hence P, ~ P;~ P; ~ P,. Since j — g — h is the same as § — & — A.
The isomorphism P, ~ P, is induced by w. Hence (w, ¢° ¢) satisfies
4.7).

THEOREM 4.18. If g and h are LP-groups, G and H their Lie

algebras, g and b their universal covering groups, P, and P, their group
of paths, 25 and $% the arc component of the identity in their group of
loops, respectively; then the following are equivalent:

(2) G wsomorphic to H (b) g tsomorphic to h
(e} P, isomorphic to P, such that the isomorphism takes 25 onto £.

Proof.

(a) implies (b) follows from (4.4).
(b) implies (a) follows from (4.2).

(b) implies (c): P, ~P; by (4.17). Also %~ 0; under the same
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map since every contractible loop in ¢ may be lifted to § (see proof of
4.8).

(c) implies (b): writing 2¢ for the closure of 2 in P,, we have
G° ~ P, |2, ~ P,|Q¢ ~ P,|%, ~ P;/Q2; ~ h°, since 2 is dense in 2;. Hence
~h.

Q1

LEMMA 4.19. Every LP-algebra is the Lie algebra of an LP-group.

Proof. By assumption, if G is an LP-algebra then G=lmG,, G,
finite dimensional. Let g, be the simply connected groups correspond-
ing to G,. The homomorphisms of G, onto G, (a <b), induce homo-
morphisms of ¢, onto g, which satisfy LP I, II. Hence they have a
limit ¢ (Theorem 3.8). But g obviously has Lie algebra G.

DEFINITION 4.20. The group ¢ defined in the proof of (4.19) is
called the universal group corresponding to G.

LEMMA 4.21. Let g be a wuniversal LP-group then every covering
group (h, w) (Definition 4.5) is trivial, that is, w is an isomorphism of
h onto g.

Proof. h&° is a trivial covering of ¢°. Since % and g are complete
and ~° and ¢° are dense, the lemma follows.

THEOREM 4.22. Let h be an LP-group and let H be its Lie algebra.
Let G be an LP-algebra and g the universal group corresponding to G.
Let 0 be a continuous representation of G into H. Then 0 induces a
continuous representation f of g into h such that df=0.

Proof. If h=limh,, h, Lie groups; then H=Ilim H, H, finite di-
mensional Lie algebras. Suppose G=lim G,, G, finite dimensional. Let
g, be the simply connected group corresponding to G,, g=limg,. The
map G —~ H-> H, induces a map G,— H,, some «. But this in turn
induces a map g, — A, and hence a map of g > A, for every b. It is
easy to see that this defines a map f:g — A such that df=40.

THEOREM 4.23. The universal covering group g of a connected local-
ly compact group g is the direct product of simply connected Lie groups.
More explicitly g ~hxaxs, where h is o simply connected Lie group,
a 1is the (possibly infinite) direct product of the reals and s s the (pos-
sibly infinite) direct product of simple simply comnected compact Lie
groups,
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Proof. According to Yamabe [8] and Iwasawa (Theorem 11 of [2]),
¢ is loeally the direct product of a local Lie group 2 and a compact
normal subgroyp k. Now k=limk, where k,=k/n,, n, normal in £k
and hence in g (Theorem 4 of [2]). Hence g=limg, where g,=g/n,.
Evidently g, is locally isomorphic to A’ xk,; and hence to 2’ x kS, k% con-
nected component of %, (since k, a Lie group).

Since f,,:9, —> g, takes k, onto k,, it takes k) onto A% Hence f,,
induces a homomorphism of ~xk! onto hxk’, where & is the simply
connected group associated with 4’ and %) is the simply connected co-
vering group of k. If K'=limk% then kxi'=limAxkl; hxkd is the
simply connected covering group of g, and hence %~ x % is the universal
covering group of g.

Since &° is the universal covering group of %°, %&° connected com-
ponent of %; the problem is reduced to considering the universal cover-
ing group of a compact connected group.

According to A. Weil (p. 91 of [7]), k° is isomorphic to (a’xs)/d,
where a’ is a compact abelian connected group, s is the (possibly in-
finite) direct product of simple simply connected compact Lie groups,

and d is totally disconnected. It is evident that lZ"=a><s, where a is
the universal covering group of a’. Since a’ in the projective limit of
toroidal groups, @ is the projective limit of vector groups, and hence is
the direct product of the reals (2.11). This proves the theorem.

COROLLARY 4.24. If g 1s a locally compact group, then its Lie algebra
G has the form G=HxAXxS, where H is a finite dimensional Lie alge-
bra, A is the product (possibly infinite) of 1-dimensional Lie algebras,
and S is the (possibly infinite) direct product of simple compact Lie
algebras.

ExampLE 1. Let ¢g=1T,, acJ, T, isomorphic to the torus group,
all . Then g is compact. But g=ITR,, R, isomorphic to the additive
group of reals, aeJ. Hence for J infinite, § is not locally compact.

ExamMpPLE 2. Let P be the p-adic solenoid (See for example: Eilen-
berg and Steenrod, Foundations of algebraic topology, p. 230). P is a
compact connected group and is the projective limit of torus groups.
If T is the multiplicative group of all complex numbers z with |z]=1,
the projections ¢:T — T' are given by ¢(z)==z”, p an integer. ¢ induces
the map ¢:R — R, ¢(x)=px, which is an isomorphism of the additive
group of the reals onto itself. Hence the universal covering group of
P, which is the projective limit of the reals under these isomorphisms,
ig itself the additive group of reals. Hence the Lie algebra of P is 1-
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dimensional. As is well known (see above reference) B maps continu-
ously, one-to-one onto a dense subgroup of P, not the whole group.
The map is not open and not onto P. More generally we have the
following.

ExaMPLE 3. Let g be a connected, but not locally connected, local-
ly compact group. Let (g, w) be its universal covering group. Then
w:§ — g is not both open onto. Consequently, if § is locally compact,
w is neither open (on the image) nor onto.

In fact § is locally connected. Hence if w is open and onto, g would
be locally connected. If § is locally compact then if w is open on w(g),
w(g) would be locally compact, hence closed, hence w(g)=g. On the
other hand, if w is onto and g connected locally compact, w is open.

Hence, in particular we have the following. Let ¢ be a connect-
ed, but not locally connected finite dimensional locally compact group.
Then § is locally compact (a Lie group) and hence w 1is neither open
nor onto.

ExAMPLE 4. Not every complete topological Lie algebra is an LP-
algebra. In fact an infinite dimensional Banach space cannot contain
arbitrarily small subspaces and cannot be an abelian LP-algebra.

5. Subgroups and subalgebras.

DEeFINITION 5.1. Let g be an LP-group. An LP-group 2 is called
an LP-subgroup of g if % is an abstract subgroup and the inclusion map
f:h — g is a continuous representation such that df: H — G is an isomor-
phism into.

THEOREM 5.2. Let g=lim g, be a LP-group; G=lim G, its Lie alge-
bra. Let H be a closed subalgebra of G, then H=lim H, where H, is the
wmage of H in G,. Let h, be the analytic subgroup of ¢, corresponding
to H,. Then h=lim h, exists and is a connected LP-subgroup of g with
Lie algebra H.

Proof. H=Ilim H, follows from Theorem 2.5. Now f,,:9,— ¢,

induces f,,:h, — h,, onto since the image of %, in g, is the analytic
subgroup of g, whose Lie algebra is H, [1]. Therefore the 4, satisfy
LP I, IT and hence have a limit # (Theorem 3.8).

Obviously % is an abstract subgroup of ¢ and the maps A, — ¢,
induce a continuous one-to-one representation of % into g, namely the
inclusion map. Obviously df is the inclusion map of H into G and hence
an isomorphism into.
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LeEMMA 5.3. Let h be the LP-subgroup of ¢ defined in Theorem 5.2.
Let 1/ be any other connected LP-subgroup with Lie algebra H' and such
that the inclusion map f':h' — g induces an isomorphism df’ of H' onto
H. Then b’ is a covering group of h and the covering map is abstract-
ly an inclusion.

Proof. Suppose A'=lim #,, h, Lie groups. The map »' —>g—g,
induces a map %; — g,, for some b. But the image of %, in g, is the
analytic subgroup whose Lie algebra is H,, the image of H, in G,.
Hence, A, — h, is continuous and open, and induces 2’ — &, continuous,
open. This induces a continuous representation 0:4" — h such that dé
is the isomorphism dg’. Since %’ is contained abstractly in ¢, its ele-
ments are determined by their coordinates in ¢g,. Hence ¢ is an abstract
inclusion of A’ in A.

COROLLARY. The subgroup h defined in Theorem 5.2 is uniquely
characterized by Lemma 5.3.

Proof. Suppose %2 and &’ are two connected LP-subgroups such
that % is a covering group of %’ and A’ is a covering group of %, and
such that the covering maps are abstract inclusions. Then the maps
h—h'—h and 2’ > h — &' are both the identity. Hence 2=nh'.

DEFINITION 5.4, The LP-subgroup % of ¢ defined in Theorem 5.2
is called the canonical LP-subgroup corresponding to the subalgebra H
of G.

We have proved the following.

THEOREM 5.5. Let g be an LP-group, G its Lie algebra. There
exists a one to one correspondence between canonical PL-subgroups of g
and closed subalgebras of G.

THEOREM 5.6. Let g be the universal group corresponding to an LP-
algebra G. Let k be a closed normal connected subgroup of ¢. Then k
@8 the canonical LP-subgroup corresponding to an ideal in G. Converse-
ly, the canonical LP-subgroup corresponding to an ideal in G is a closed
normal connected topological subgroup of g¢.

Proof. Let k be a closed, normal, connected subgroup of g. Sup-
pose g=Ilim¢,, g, simply connected Lie groups. Let the image of % in

g, be k,. The closure %k, of k, in g, is a closed connected normal sub-
group of g,. Let K, be the ideal of G, corresponding to %,.

The image by f,, of k, in g, (¢ <b), is the analytic subgroup of g,
corresponding to the image of K, in G,. But the image is an ideal in
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G,, hence the corresponding analytic subgroup is a closed normal con-
nected subgroup of g,. Hence k, C fu(k,). On the other hand since
Fup is continuous, f,(k,) C k,. Hence Fonlle)=F..

Hence k’=lim %, exists and is a closed normal subgroup of g, and
is the canonical LP-subgroup corresponding to K=lim K,. On the other

hand, k¥ < K’; but k& maps onto k,, a dense subgroup of l;a. Hence &
is dense in k' and k=Fk’ since k is closed.

The converse is obvious since the analytic subgroups of g, corres-
ponding to ideals are closed topological subgroups.

ExaMPLE. Consider the p-adic solenoid of Example 2, §4. The
additive group of reals R may be considered as an LP-subgroup of the
p-adic solenoid P. Then P itself is the canonical LP-subgroup ecorres-
ponding to the Lie algebra of R.
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NOTE ON NORMAL NUMBERS

CaLviN T. LoNG

Introduction. Let « be a real number with fractional part .a,a.a; - -+
when written to base . Let Y, denote the block of the first n digits
in this representation and let N(d, Y,) denote the number of occurrences
of the digit d in Y,. The number « is said to be simply normal to
base r if

lim M@ Yu) 1

for each of the ¢ distinct choices of d. « is said to be normal to base
r if each of the numbers «, ra, r’a, --- are simply normal to each of
the bases r, 7, v%, ---. These definitions, due to Emile Borel [1], were
introduced in 1909. In 1940 S. S. Pillai [3] showed that a necessary
and sufficient condition that « be normal to base » is that it be simply
normal to each of the bases #, 7 7% --., thus considerably reducing
the number of conditions needed to imply normality. The purpose of
the present note is to show that « is normal to base r if and only if
there exists a set of positive integers m, < m, < m;<_--- such that «
is simply normal to base »™ for each ¢+>>1, and also to show that no
finite set of m’s will suffice.

Notation. We make use of the following additional conventions.

If B, is any block of % digits to base », N(B,, Y,) will denote the
number of occurrences of B, in Y, and N,(B,, Y,) will denote the num-
ber of occurrences of B, starting in positions congruent to ¢ modulo &
inY,.

The term ‘‘relative frequency ’’ will denote the asymptotic frequen-
¢y with which an event occurs. For example, B, occurs in («), the
fractional part of «, with relative frequency »~* if lim N(B;, Y,)/n=r"".

Proof of the theorems. The following lemmas are easily proved.

LeMMa 1. If lim S film=1 and if lim inf fi(n)=1/m for
n-v00 $=1 N—>00
=1, 2, «-+, m; then lim fy(n)=1/m for each 4.

LEMMA 2. The real number « is simply normal to base r* if and

Rece_i;é({ July 5, 1956. Results in this paper were included in a doctoral dissertation
written under the direction of Professor Ivan Niven at the University of Oregon. 1955,

1163



1164 CALVIN T. LONG

only of Uim N(B,, Y,)/n=1/kr* for every block B, of k digits to base r.

THEOREM 1. The real number « is normal to base r if and only if
there exist positive integers m, < m, < ms<_--- such that o is simply
normal to each of the bases r™, r™:, r™s, .-

Progf. The necessity of the condition follows immediately from the
definition of normality.

Now suppose the condition of the theorem prevails. Let » be an
arbitrary positive integer and let B, be an arbitrary block of » digits to
base . Choose k so large that m, >v. It follows from Lemma 2
that

N4, , Y,
fim YV Ame Yo) 1
=0 n mk’l‘mk
for each block A, of m, digits to base r. If B, occurs exactly t=t(4, )

times in each A,,, then it follows that

limint VB Yo) > T

nvoo n T My TE

where T=3]t(A,,) with the sum running over all blocks of m, digits
to base . Now there are ™~ distinet blocks Amk which contain B.
starting in position ¢ for i=1, 2, - -+, m,—v+1 so that T'=(m,—v+1)r"=,
Thus it follows that

lim inf VB Yo) & (me—v+1r™e 1 v—1
n->oe n - mkrmk ?‘V mk,rv

But, since this argument can be made for arbitrarily large values of £
and m, =k, this implies that

lim inf VB Yo) > 1

N—o0 n /r‘

With Lemma 1 this implies that

lim NB, Y,)_1

N—>00 n rY

so that a is normal to base » by a result of Niven and Zuckerman [2].
The next theorem implies that no finite set of m’s will suffice in
Theorem 1. ‘

THEOREM 2. If my, m,, «-+, m, is an arbitrary collection of distinct
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positive integers, then there exists at least one real number o simply
normal to each of the bases r™, 1™z, ---, +™s but not normal to base r.

Proof. Writing to base »™ form the periodic decimal
a=.012...;"—1)

where m is the least common multiple of m;, m,, ---, m;. It is clear
that a is simply normal to base »™ and that it is not normal to base 7.
To show that it is simply normal to base ™ for 72=1,2,.--, 58 we
prove that if d divides m then « is simply normal to base #¢.
Let m=qd and let B, be an arbitrary but fixed block of d digits to
base . In view of Lemma 2 it suffices to show that
Ni(By Yu) _ 1

lim =2 = .
nroo n dr

A simple counting process shows that there are precisely (g)(rd——l)q“i

distinct blocks A4, of m digits to base r which contain B, exactly ¢
times starting in a position congruent to one modulo d. Therefore,
since

Ni(Aw, Ya)_ 1

lim =
n—>oo 7 mr™

for each A,, it follows that

lim VB Yi) 1 i @(3)(7»1_ 1)q-i=d%d_

700 n mr™ i=1

as required.
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ON CERTAIN SUMS GENERATING THE DEDEKIND
SUMS AND THEIR RECIPROCITY LAWS

M. MIKOLAS

1. Introduction. Let {u}=wu—[u] denote the fractional part of u
and let ((w))={u} —%. Dedekind sums are defined for example, by

05 ()

where % and %k are relatively prime positive integers. These sums which
were studied by Dedekind [7], and more recently by Rademacher and
Whiteman [9], [12] in connection with the theory of the modular function
7(r), occur also in the theory of partitions and in a great number of
special papers. (Cf. for example [1]-[13].) The most important property
of s,(h, k) is the reciprocity law

(1.2) 8y(h, k) +8,(k, h)=(h* +3hk+ &+ 1)/(12hk) .

A few years ago, Apostol [1] (for r=y) and Carlitz [3] introduced
and investigated the so-called generalized Dedekind sums

(1.3) (b, k)zI:Z;‘:Pm_T( 2 )P('ZZ) 0<r<v+l,

P, denoting the well-known Bernoulli function defined by the expansion
2¢**|(¢'—1)="3. P,(w)e"/n! 2] < 2r

for 0<u< 1 and by P.(u)=P,({u}) for w arbitrary real. They found
the corresponding extensions of (1.2) too.

Now, we shall continue to develop these results in two directions.
Next we give a systematic treatment of certain exponential sums (2.1),
(2.3) generating

A

with (a, ¢)=(b, ¢)=1, ¢>0. We obtain (among others) a three-term
relation of new type (Theorem 1) which implies (in extended form) all
the above reciprocity theorems (see (5.1)-(5.10)). Let us remark that
the sum function (2.5) with other notations is also used in [6]. On the
other hand, we get a functional equation for

Recelved July 31, 1956.
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W 2) e S @}) 4
(1.5) 2w, =3¢ (w0, {2} (= 2})
where (s, #) is the Hurwitz zeta function (Theorem 2). By

{1 —n, u)y=—P(u)n 0<u<l; n=1,2,---,
(1.5) can be regarded substantially as a (transcendental) generalization
of (1.4).

2. Preliminaries on &(z, ¥), 8un (a b). In what follows, =z, v,
c

w, z denote complex variables, a, b and ¢ are integers and ¢>0; for
brevity we write, as usual, e(z)=e"".
Let us put

@.1) Seiz, )= 3 e({@}wr{@}y)

A{mod ¢) C Cc

with (a, ¢)=(, ¢)=1, the summation extending over a complete residue
system modulo ¢. It is obvious that (2.1) is independent of the choice
of this residue system’ and for a=b or ¢=1, 2 it is independent of a, b.
The funetion S*(x, ¥) remains unaltered if we change a, b or x, y by
multiplies of ¢. By this periodicity, it is no restriction to suppose for
example, that 0 < R(x) <e, —e<R(y) <L0.

We have S*(x, y)=S¥*(y, ) and

(2.2) Sy %z, y)=e(@)Se(—x, y)+1—e(2),

since {—u}=0 or 1— {u} according as u is an integer or not.
The funection

(2.3) Sz, y)=le(x)—1]"'[e(y)—1]"'St"(z, y) @, y7#0, +1, ---
has corresponding trivial properties; in particular, (2.2) implies
(2.4) S: @, y)=—S¢(~z, y)—le(y)— 11" .

By the definition of Bernoulli functions and (1.4) we obtain

(2:5) @ (a2, yf2mi)— 3 CL 5, (1 7)) el i <2x

mm=0 m!n!

Here

! Hence we see that S@3(z, y)=SL¥(z, ) for a suitable integer b’; however, the above
symmetric notation seems the most convenient.
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(2.6) 8 ( ")- c}_.P( =B, n=0,1, -+~ ,

=0

B,=P,(0) denoting the Bernoullian numbers.
Note that §m,n(a b) =8 (b a) and @m,n<a a) does not depend on a;
C C C

especially we have ,@m,n(l b>=§,?"+"‘“(b, ¢), furthermore
c

(2.7) gm,n<alb> —B,B, gm,n(“2b> — B, B,[1+ (1—21-")(1—21-")]

m, n=0,1, ---

3. Representation by cotangents and Eulerian numbers respectively.

Let ¢>>1. The identity

(3.1) Ze(’f)( ) o) - 1][ (w—!—) 1]-1

yields after multiplication by e( ——fi> (»=0,1, ---, ¢—1) and summa-
c

tion

o0 A ST )

/u=07 1’ ) V—]-;

Q

(3.1) and (3.2) hold clearly provided that (z+v)/c is not an integer
(v=0,1, ---, c—1). Hence by putting pg=c{al/c}, a and ¢ being coprime
we get

69 ool Hen ST ().

Furthermore, by using the corresponding expression for e(y{bi/c}),
(b’ C)=1,

St(a, )= [e@—1ew)-1] S e (ﬁ?&)-—lj”[e( vE) g

»,9(mod ¢) (4

c—-1
x e(-ﬁ(@ibq)) ,
A=0 ¢
If we consider the complete residue systems (mod¢): p= —br, g=ap
¢=1 —
(r, p=0,1, ---,c—1) and take into account that Ze(—— l—qb—(f—t)—)
¢

A=0
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vanishes except for p=1» when it has the value ¢, it follows simply that

o0 =on-1 5 [T T

holds for all z, y5%40, +1, --- and, because of the definition (2.3), in
the case ¢=1 too. By [1—e(2)]'=24(1+1% ctg n2) and

c=1
> ctg n(z +—Fi) =c-ctg cnz
u=0 C

we have the equivalent formula:

(3.5) S02(z, )= 17[1 +i(ctg 7o+ ctg 7y)]
_1 s ctgnx br ctg y+ar ;
4¢ r@mode Cc c

(3.4) or (3.5) expresses the sum (2.3) by means of periodic elementary
functions, without using the arithmetical function {u}.

(3.4) leads immediately to corresponding representations of @m,,(a b)
c

by means of the so-called Eulerian numbers H,(7*), defined for a root
of unity 77’°=e<i0-), c>1, ctk by
C

(3.6) A= =)=S HPen! el <2x{kle} .
In fact, after expanding the right-hand members of
Y& (x|2xi, y/2n1) = (xy/c)(e”*—1)'(e?/*—1)!
+(@ylo) S (g =) ey =1)

we find

8.7 xyS¥o(x/2mi, y[2ni)=c+ Z = (2" +y)

'nl

oo

Y g B, $ Hypo(7"") Hpp -1 (77 )] 27
mm=1 m!,nzcm+n-—1|: +mn (7/ar 1)(77_177 ) [.’E], ‘yl< p

so that comparison with (2.5) gives in addition to (2.6)

3.8) ?’m,n<acb) ém}n 1[B B, +mnTZ; (r“lr(_y/_l))%“”l’(—v— —;;):I

m, rn=1’ 2’ cee,
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a formula implying a result of Carlitz [3, (6.5)]. In particular, for
m=n=1 (3.8) becomes

(3.9) s(" M= L+ LS - -1

1 + 1 ”Zl ctg n@g ctg 71'b7“
4 4o

which contains two equivalent representations due to Rademacher and
Rédei (for a=1; cf. for example, [4], (2.2) and [2], (5) respectively).

4. The main property of ©'(z, y). Our next purpose is to deduce
a peculiar symmetry relation relating to the sums in question, by ap-
plying the calculus of residues.

THEOREM 1. We have for a, b, ¢ positive, mutually coprime, and
for 0 <R(x) <1, —1<<Ry) <0 the relation

(4.1) Siax+by, —cx)+ S¥¥cx, cy)+SL(—cy, ax+by)
=[1—elax+by)] ",

provided that axr+by, cx and cy are not integers.

Proof. We consider the integral

(4.2) g —-mwS le(z)—1]" [ (x~—2~z>—-1]_1[e(y+ Zz)——l]—ldz

the path of integration being a rectangle whose vertices are the points
—e+ i, c—e+ti with

> max { £13(2), i3l |
and
0<e<min{ ¢ (1-R@), A+RW}
{b a

taken in positive direction. A straight-forward calculation shows that
only singularities of the integrand inside Q are at the points:

2= 1=0,1, .-+, ¢—-1;

=Z(y+x) ,UZO, 1’ Tty b——l;

= (v—y) v=0,1, -+, a—1;
a
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by our assumptions, these are all distinct and poles of order 1 only of
the first, second, and third factor respectively. Since

res [e(z)—1]"'=1/2x3

z=X\

res [e(wx—bz/c)—1]"= —c/2mib ,
z2=(c/D)(p+x)

res [e(y+azfc)—1]"=¢[2ria ,

z=(cla)(v—9)

the residue theorem yields
2 =S o(o=2) 1T To(w+ ) -1]
A=0 C c
_e i, (a _/41>__1]‘1[ (c +H9>_1T
b%[e<bx+y+b VA
+-- J [e(er b y+Vb>—1]—1[e<- c—erw\)—l:l—1
a v=o a a a a

and therefore, by (3.4), we obtain

o
S

4.3) G2 ez, cy)—Syax+by, cx)+ S ax+by, —cy)=(2rmi[c)F¥ .
Now, if we write
c—e+iti —E+11 —g—~1d c—e—ti
R S S N
Q c—e—ti c—€+ti —e+td —g—t1
with the integrand of (4.2) and straight-line paths, the sum of the first

and third member on the right vanishes because of the periodicity (with
period ¢) of

[e(z) —1][e(x—bz/c)— 1] {e(y +azjc)—1]" .

On the other hand, using the estimate le(u+iv)—1|=>le"™—1| (u, v
arbitrary real), we find at once that the integrals along the horizontal
segments tend to zero as ¢ — oo. Hence (4.8) implies for ¢-— o

(4.4) St ax+by, —cy)—Sy~Yax+ by, cx)+ S (cx, cy)=0
which is, by (2.4), equivalent to (4.1).

5. Applications; extension of the well-known reciprocity theorems.
(1) If we write

(5.1) Tz, ) =L S ctg a0 g YT
¢ r(modc) C C

and use (3.5), then (4.1) becomes
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(5.2) Ty (ax+by, —cx)+ T (ex, cy)+ T (—ey, ax+by)=1 .

By (3.9), this may be regarded as a generalization of the reciprocity
theorem of Dedekind sums. ior, by putting y=—=z in (56.2) and making
x — 0, we obtain on the basis of the Laurent expansion ctg z=2"'—31z—---

- . (b e ca\, . /ab 1 1/a , b c
3 ( +( )+a ): + ( LA
(5-3) o a ) b J”< ¢ 2 12\bc ca ab>

a remarkably symmetric three-term relation which for a=1 reduces to
(1.2) with A=b, k=c. (Cf. also a result of Rademacher in [11].)

(2) Let us replace in (4.1) @, ¥y by «/2ri and y/2ri respectively,
multiply both sides by ¢xy(ax+by) and expand every member by ap-
plying (2.5), (2.6) and the power series of z/(e?—1). We obtain

& (ax+by)y(—cx), (¢ a,> & (ex)™(ey)”, (a b>
s oy 5m n Tt b Y gm n
Y m,%;l mln! "N b (aa+ y)m%;‘l mln! "N e

+ex ‘f’ (—cy)mr(axr—kby)‘”g (b C) = c"xy l:l + % B"(ax +b?/)v—l
. mln! "N a 53yl _

—a S g:; [(a@+byy + (—ca)]+ clas-+by) 3, Br; @+ )
v=1 | v=L Y,

L p——

—cx >,

v=1yl
this holding identically for ||, |y| < 27. If one uses still the binomial
theorem and arranges our absolutely convergent series in terms of o,
y (v=1, 2, ---), then comparison of the corresponding coefficients leads
without difficulty to the following system of relations:

(5.4) a«/.(y+1)bvc gl,v<b C)_{_byi (_1)u+l<'/+1>Cuav+1—p«§v+1“””“<c a;)
o =1 yZ b

+ e o+ Dab? b<“ b) =B, (@ b (—0) ) — (v + 1) B, (ab)e
C

y=1,2, -+-,
furthermore, by (a>( T ):( T ><7—13> ’
B/\a B/\r—a
5.5 Ye D+1> Yp‘ — /*+1<p+1>7v+1-,u. w@ . <b C>
(5.5) a <p+1 S (i s
(Y Cap (P ()
P n=1 2 vl p b
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v 1 - abd +1 b
N (v-f— peipy-pg ( ) (p > Phvelop (a )
[ o1 a i + » a’b Sy t1-p.p .

Bm[(”‘;l) ait( ”+1)b”“} - (»+1)By( , )abye

1<p<v-—-1.

The results can be written briefly in symbolic form as follows

(5.6) v+ 1)[0a”§1,v (bac) + c'as,, (ac b)i' — (a3 —e3)'*! (c ba)

=yB,,,b—(v+1)B,a’c y=1,2 ---,

)(bz o)p+1(b§)v—p .<6ab>

(o
( )(a@ c@)v“-p(a@)p(cb“)
L

—e (;S a§+(”;1>b§](ag)p(b§)w<“cb>

(6.7) a’e

=G0 T)Babe =12, el paa, e

where for example
‘  pR\P+1 v-pfC b
(b8 — c3)71(b3) ( . )

means that, after formal application of the binomial theorem to the

first factor and formal multiplication by bv““-@"“l’-<cab >, every product

ngn<c b) is replaced by gm,n(c b) .
a a

(8) We remark at once that (5.4), (5.6) go over for r=1 to the
reciprocity relation (5.8) and for »>>1 odd, =1 to the formula (cf.
(1.3), (2.7)

(5.8) v+ Dea¥-s5(e, a)+cva, s$(a, ¢)]=(Bec¢—Ba)'**+vB, .,
with 2

(Be—Bay*'='S, (—w(”‘; D)o@ BB,

2 The factor (—1)* may plainly be suppressed in the last summand, that is,
(Be~Ba)»*1=(Bc+ Ba)**1 .
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therefore (5.4), (5.6) generalize (5.3) and Apostol’s reciprocity theorem
{1, Theorem 1].
On the other hand, putting »=3,5,7, --- in (56.7), we get for ¢=1

+1

v+1 <u+1
(pﬂ) 4B, By (" YeB,insB,

(5.9) (;“)av-p(swub)pﬂ(b, a)—(”;1)61"(3‘”——&)””“"((1, b)

while the case b=1 yields

(5.10) c{(ﬁ’;i i)as?_’p(a, c)+ (’) '; 1)3‘”1 o(a, c)]

v+1 V) YD+ y (VY= v+1 v+l-p D
( +1>(s ) as™»)-*(e, a)+( )(aB —cB)**'"*RB

the symbolic notations being understood in similar sense as above. (5.9)
and (5.10) express the first and second reciprocity law of Carlitz respec-
tively [3, Theorems 1, 2%, so that we have in (5.5), (5.7) a common ex-
tension of them.

6. The sum 9w, z). We now use the generalized zeta funection,
defined by

Cle, w)= 3 (wtm)™

for R(z) >1 and by analytic continuation for other values %1 of 2z, u
denoting a fixed number with 0 < # <{1. There holds the well-known
formula of Hurwitz :

(6.1) C(z, w)=22x)*I'(1—2)
<sm 5 2 1! cos 2nmu + eos 5 Z %"~ sin 2mm> R(z) <0 .

n=1 n=1

Next we establish a functional equation for the sum

(6.2) D w, 2)= z c( {‘g })g (z {ib})

c

with (a, ¢)=(, ¢)=1, ¢_>1, in observing that fcf. (1.4)]
6.3)  D(1-m, 1-n)=-1 [@(“ b)—BmBn] m,n=1,2, +--
mn) ¢

31In f(;fﬁ;ula (3.2) of [3], the lack of the corresponding binomial coefficients before the
Bernoullian numbers appears to be a typographical error.
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and, by {(z, $)=(2"—1)¢(z) where £(z)=¢(z, 1) is Riemann’s zeta function,

(6.4) De(w, 2)=(2"-1)(2*—1)-L(w)((2) .

THEOREM 2. For (a, ¢)=(b, ¢)=1, ¢>2 and for any w, z distinct
Srom 0 and 1 we have the relation

(6.5) DN w, z)=(c***—1)¢(w):(z) + 7~ (Ler)*** ' (A—w) (1 —2)

x{cos 72T (w—2)D0(1—w, 1—2z)—cos %(w+z)@2"”(1—w, 1—z);» .

Proof. 1° First let R(w) <0, R(z)< 0. We transform

(6.6) D, 9= 3 (v, {Z'Z DC (z {@‘})

c

by means of (6.1).
Since the series involved in Hurwitz’s formula are absolutely con-
vergent, one obtains after substitution into (6.6)

(6.7) Dew, 2)=4(2r) "1 —w)I"(1—2z)
S mo=tne=Y ¢, .sin T sin % . cos ¥ cos
Xm,n2=1m n (qb,m,,, sin 9 sin 3 + ¢ COS 3 cos 9 >,

where
e, if ¢|am+tbn,
(6.8) Prmn=>, COS 2mal® cos 2mri‘g= 0 for ctam+bn,
=1 I
’ ¢/2 otherwise ,
¢/2, if ¢ | am—bn but
clam+bn ,
(6.9) gbm,n:Zc, sin 2ma % sin 2%7r—&= —c¢/2, if ¢ | am+bn and
=1 s [+
ctam—bn ,

0 otherwise .

Hence it follows easily that

(6.10) Ded(w, 2)=2¢(27) (1 —w)['(1—7) - {2 sin %‘L sin™ 3 et

cim, ¢n

T
+cos T (w—2) m¥~n*~1—cos ~ (w+2) meIpe ! }
2 am=bn(mod ¢) 2 am=- ljrn(mod 5)

ckm,exn ckmbin

Now, by the functional equation of £(s) we have
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(6.11) do(2rye+ (L —w) (1 —2) sin’%’i sin ™% S mu-ips-t

2 cim,cin
=cv*I(w)(2)

Furthermore, ar (r=0,1, -+, ¢—1) and br (#r=0,1, ---, ¢c—1) being
complete systems of residues mod ¢, we can write

c—1
(6.12) Z mw—lnz—l — Z( Z m’w—l)( Z nz-—l)
grﬁbgo"gx:od c) r=1 \m=rb(mod ¢) n=ra(mod ¢)

e S () T (o)
v Sl P2 (1- {1

and similarly

c—
6.13 M Int = ( m""l)( n“)
( ) am= —g:(lmod ) 7% mErIJ(zu‘md e) n= —r%mod )

cim,ckn
=cw+2-27§ C(l—w, {%b})f(l—z’ {7‘5}) ’

(6.10)—(6.13) yield together
(6.14) Det(w, 2)=c**"L(w)C(2) + 7~ (2er) = ['(1 —w)[(1—2)

X {cos -g(w-z)SDZ'“(l—w, 1—2) — cos 12T (w+2)Dr~*(1—w, l—z)} .

2° Finally, (6.5) follows immediately from (6.14), in view of
DeNw, 2)=JM(w, 2)—L(w)(2) R(w) <0, R(z) <O

and by analytic continuation.

7. Some remarks. In [2], Apostol finds certain finite sum repre-

sentations for s{’(%, k), involving cotangents, ¢(z, ), I"'(z)/I'() and he
uses these expressions to give a short analytic proof of (5.8) [Theorems
1, 2]. It may be noted that the above Theorem 2 implies the results
in question, arising as limiting cases for w—0, and 2—0, z=-1,
—2 ...,
The form of &*(x, y), D" (w, ) suggests applications in connection
with certain Lambert series, generalizing those investigated by Rade-
macher, Apostol and Carlitz. I hope to return on this problem in an-
other paper.
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INDUCED HOMOLOGY HOMOMORPHISMS FOR
SET-VALUED MAPS

BARRETT O’NEILL

§1. If X and Y are topological spaces, a set-valued function F':
X—Y assigns to each point x of X a closed nonempty subset F(x) of

Y. Let H denote Cech homology theory with coefficients in a field. If
X and Y are compact metric spaces, we shall define for each such function
F a vector space of homomorphisms from H(X) to H(Y) which deserve
to be called the induced homomorphisms of F. Using this notion we
prove two fixed point theorems of the Lefschetz type.

All spaces we deal with are assumed to be compact metric. Thus
the group H(X) can be based on a group C(X) of projective chains [4].
Define the support of a coordinate ¢, of ¢e C(X) to be the union of the
closures of the kernels of the simplexes appearing in ¢,. Then the
intersection of the supports of the coordinates of ¢ is defined to be the
support |c| of c.

If F: XY is a set-valued funection, let F-': Y—X be the function
such that x e F-*(y) if and only if ye F(z). Then F'is upper (lower) semi-
continuous provided F-' is closed (open). If both conditions hold, F' is
continuous. If ¢>0 is a real number, we shall also denote by ¢ : X—»X
the set-valued function such that e(x)={a'|d(x, 2')<e} for each xze X.

Let A and B be chain groups with supports in X and Y respective-
ly, and let ¢>>0 be a number. A chain map ¢: A—B is accurate with
respect to a set-valued function F': X—Y provided {¢(a)| T F(lal) for
each ae A. Further, ¢ is e-accurate with respect to F' provided ¢ is
accurate with respect to the composite function eFe.

(1) DEFINITION. A homomorphism % : H(X)— H(Y) is an snduced
homomorphism of a set-valued function F': X— Y provided that given
e >0 there is a chain map ¢ : C(X)-> C(Y) such that ¢ is e-accurate with
respect to F' and ¢, =h.

We shall say that a homology homomorphism 7% is nonérivial provid-
ed the 0-dimensional component %, : Hy(X)—> H(Y) is not the zero homo-
morphism. It will appear that a continuous set-valued function need not
have a nontrivial induced homomorphism.

The set of all induced homomorphisms of an arbitrary set-valued
function is, under the usual operations, a vector space. If A, and &,
are induced homomorphisms of upper semi-continuous functions F: X—»Y
and G: Y—Z, then hshy is an induced homomorphism of GF. If F':

" Received July 9, 1956.
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XY is a point-valued map of a connected (compact metric) space into
a compact polyhedron, then the induced homology homomorphisms of F

are exactly the scalar multiples of the Cech homology homomorphism
F,. Corresponding to each function F': X—Y, let /: X—>XxY be
such that F'(z)= {o} x F(z), for e X. If 2: H(X)>H(XxY) is a non-
trivial induced homomorphism of F”, then q.% is a nontrivial induced homo-
morphism of F, where ¢ is the projection of the productspace on Y.

If T is a triangulation of a compact polyhedron X, let C(X, T') be
the group of oriented simplicial chains based on 7', with the given field
of coefficients. We may assume that the sequence of coverings used to
define C(X) consists of the star-coverings associated with the successive
barycentric subdivisions of a fixed triangulation of X.

(2) LEMMA. Let X be a compact polyhedron, F': X—Y a set-valued
Junction. Then h: H(X)— H(Y) is an tnduced homomorphism of F if
and only if given ¢ >0 there is an arbitrarily fine triangulation T of X
and an e-accurate chain map ¢ : C(X, Ty->C(Y) such that ¢,.=h.

Proof. Given € >0, let T be one of the selected triangulations of
X with mesh at most ¢/2. Denote by p the projection of C(X) onto the
chains of the nerve of the star-covering associated with T, followed by
the natural isomorphism onto C(X, T'). Denote by s the chain map which
assigns to ce C(X, T') the element of C(X) whose coordinates corre-
spond to the successive subdivisions Sd(¢) of ¢. If 4 is an induced homo-
morphism, let ¢ : C(X)—C(Y) be e-accurate and such that ¢, =h.

Now s reduces supports, hence ¢s is the required chain map. Con-
versely, if ¢: C(X, T)—>C(Y) is ¢/2-accurate and such that ¢, =%, then
¢p is the required chain map, since p is e¢/2-accurate with respect to
the identity map of X.

(3) LEMMA. Let X and Y be compact polyhedra. If, given ¢ >0,
there is an arbitrarily fine triangulation T of X and an e-accurate ¢ :
CX, TY—>C(Y) such that ¢, is nontrivial, then F has a nontrivial in-
duced homomorphism.

Proof. We may assume that X and Y are connected. Let L be
the finite-dimensional vector space of homomorphisms from H(X) to
H(Y). If e>0, let A(e) be the set of homomorphisms % in L such that
h preserves Kronecker index and is induced by an e-accurate chain map
of C(X, T'), where T has mesh less than e. By hypothesis A(¢) is not
empty. Furthermore one easily shows that A(¢) is a coset modulo a
subspace of L, and that if 6<(e, then A(5) CTA(e). Thus Nesod(e) is
not empty, but an element of this intersection is, by the preceding
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lemma, a nontrivial induced homomorphism of F.

§ 2. In order to establish the existence of nontrivial induced homo-
morphisms in certain cases, we need some general properties of set-
valued functions. Note first that if F': X—Y is continuous and K is
a component of the graph I'={(z, y)lye F(x)} of F, then K projects
onto a component of X. In fact, the continuity of F' implies that the
projection p: I'— X is open and closed.

(4) LEMMA. Let X be an arcwise connected, simply connected space,
F: X>Y a set-valued map. If, for each x € X, F(x) has exactly n compo-
nents, then the graph I' of F' has exactly n components.

Proof. Let A={(x, )lxe X and « is a component of F(x)}. Topo-
logize A as follows. If (z, a)e A, select mutually disjoint neighbor-
hoods V,, ---, V, in Y for the components a=a«ay, -+, a, of F(x).
Since F is continuous, there is a neighborhood of = such that if 2’ e U,
then F(zYZV,\J --- UV, and F(2') meets each V;. SinceF(z’) has n
components, there is one in each V,. Let U,={(, «')lz’e U and
a'=F(x)\JV;}. The collection of all such subsets of A generates a
topology on A for which the projection =: A— X is a covering map,
where #(z, a)=z if (x, ®)e A. Consequently = is a homomorphism on
each component of A—of which there are thus exactly n. If K is a
component of A, then K= {(#, y)|(x, ®)e K’ and y € «} is a component of
I'. In fact, since K is open and closed in I, it suffices to show that
K is connected, but this follows from the fact that p|K is strongly con-
tinuous and that p~'(x) "\ K=« is connected for each ze X.

Replacing the last step above by an application of the Vietoris map-
ping theorem [1] we obtain :

(5) LEMMA. Let F be a set-valued map of a simplex o into an
arbitrary (compact metric) space. If, for each x € o, F(x) consists of ex-
actly n homologically trivial components, then the graph I' of F' consists
of exactly n homologically trivial components.

(6) THEOREM. Let n be an integer, F: X—Y a set-valued map of
compact polyhedra such that if xe X then F(x) is either homologically
trivial or consists of m homologically trivial components. Then F has
nontrivial induced homomorphism.

Proof. Let I be the (closed) set of points for which F(z) is homo-
logically trivial. Replace F' by the associated map F': X—XxY. Since
XxY is a compact polyhedron and H is (weakly) continuous [3], if
ze X and >0 there is a 4, such that the inclusion map &(F'(x))C
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e(F"(x)) induces the zero homology homomorphism in positive dimensions.
Using the compactness of I and the continuity of F one can show that
a 6 may be selected which is independent of . Thus, if the dimension
of X is d>1, there exist numbers 0< < e; < ++- ¢,=¢ such that if xe X
and 1<<i<{d then:

(1) et+e<lesss,

(2) each positive-dimensional cycle of (e;+¢)(F'(x)) bounds in
en(F'(2)), and

(3) F'(6(x)) Cey(F'(x)). Let T be a triangulation of X with mesh
at most &, and for each simplex s of T which meets I select a point
z.€0\I. By Lemma 3 it suffices to find an e-accurate chain map ¢:
C(X, T)->C(XxY) such that ¢, is nontrivial. We may associate with
each point »p of XxY a 0O-chain, pe C(XxY) with support {p} and
such that P~ 0 and p~7 if and only if » and o’ are in the same com-
ponent of XxY. Define a homomorphism ¢,: C(X, T)-»C(XxY) as
follows. If the vertex v is in I, let ¢(v)=nP, where pe F'(v). Other-
wise, let ¢, (v)=D,+ -+ +D,, where there is one point p, in each com-
ponent of F'(v). Now ¢, is extendable to a chain map ¢, accurate with
respect to F” provided that if vw is a 1-simplex of 7 then ¢(v)~¢(w)
in F'(vw). Using Lemma 4 and the preceding remark, one checks this
homology in case vw does, or does not, meet I. Clearly ¢, may be ac-
curately extended to those chains in C(X, T) whose supports avoid I.
We complete the definition of ¢ by an induction on dimension, defining
the chain map ¢, on chains of dimension at most ¢ so that |¢,c)|C
Ce(F'(le]). The homomorphism ¢, is correctly defined. If ¢,., has
been defined (¢=1), it suffices to define ¢,(s), where o is an oriented
g-simplex of T which meets I. If r is an oriented (¢—1)-face of o,
then

Pa-1(7) Ceqs(F(2)) C e i(F(0(32))) C (eq-1+ €1 )(F' () -

Thus ¢,-,(05) bounds in ¢,(F'(s)) and ¢,(s) may be correctly defined.

(7) THEOREM. Let X be a compact 1-dimensional polyhedron with
Jirst Betti number R, <1. Then any set-valued map F of X into a com-
pact polyhedron has a nontrivial induced homomorphism.

Proof. Given ¢>>0 and a triangulation T of X we must find a chain
map e-accurate with respect to F” and such that ¢, is nontrivial. If
vw is a 1-simplex of 7' and ¢ is defined accurately on v, then ¢ can be
accurately, defined on w and vw so that 8(¢(vw)=¢(w)—¢(v), because
each component of F(v) is contained in a component of F(vw) which
meets F(w). Thus if R;=0, the required chain map exists. If R,=1,
then X may be expressed as the union of a circle C and a finite num-
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ber of trees, each meeting C in at most one point. If ° o', «--, 0"
are the vertices of C, we may suppose that the 1-simplexes of C are
v, v'?, - .o, 0™ Pick ye F(v") and let ¢'(»°)=%. There is a point
ze€ F(v') such that if ¢°(v')=%, then ¢"(»*v') can be correctly defined.
Repeating this step we reach ¢°(v"), then ¢*(v'), and so on. Since Y is a
compact polyhedron there exist integers j <k such that ¢*(v°)—¢/(2")=3de,
with e|Ce(F(+°)). Then on C let ¢=3%¢" except that

P(v"") =2 fp'(v"") +c.

So far ¢ is e-accurate and accurate on vertices. But then as in the
case R =0 this homomorphism may be extended correctly to C(X, T).

We shall see in the next section that this theorem does not hold if
the condition on either the dimension or the first Betti number is omit-
ted.

§ 3. The Lefschetz theorem holds for set-valued functions in this
form :

(8) LEMMA. Let X be a compact polyhedron, F: X—X an upper
semi-continuous set-valued function. If h is an induced homology homo-
morphism of F' and the Lefschetz number A(h)= 3. (—1)* trace h, is not
zero, then F' has a fixed point.

The usefulness of this fact, of course, depends on our knowledge
of the induced homomorphisms of a given set-valued map. From § 2 we
get :

(9) THEOREM. Let F be a set-valued self-map of a compact poly-
hedren X such that if x€ X, F(x) ts homologically trivial or consists of
n homologically trivial components. Then F has a nontrivial homomor-
phism h such that if A(h)=£0, then F has a fived point. If, further, X
is homologically trivial, then F' has a fized point.

The case n=1 is the polyhedral form of the Eilenberg-Montgomery
theorem [2], except that the requirement that ¥ be lower semi-continuous
is then superfluous. However, if n>>1 upper semi-continuity alone is
not sufficient. For example, consider the self-map F of the Euclidean
interval [—1, 1] for which F(0)={—1, 1} and F(zx) is 1 for >0, —1
for #<C0. Also, if n>>1 the space of induced homomorphisms need
not be 1-dimensional as in the case n=1.

It does not appear that this result can be generalized by altering
the number of components F(x) is permitted to have. Mr. Richard Dunn
has shown by a series of examples (unpublished) that if S is any finite
set of positive integers—except certain sets of the form {2, n} and, neces-
sarily, {1, n}—there is a self-map F' of the 2-cell without fixed points
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and such that for each point x the number of points in F(x) occurs in
S.

(10) THEOREM. Let X be a compact 1-dimensional polyhedron with
JSirst Betti number RB,<<1. Every set-valued self-map F of X has a non-
trivial induced homomorphism such that iof A(h)==0 then F has a fiwed
point.

In particular, as is known, every set-valued self-map of a tree has
a fixed point.

The last remark of § 2 may be justified by exhibiting suitable fixed-
point-free maps. As for the restriction on the Betti number for ex-
ample, let X be a compact connected 1-dimensional polyhedron without
end points and such that R,>>1. If ¢>0 is sufficiently small, the func-
tion F': X—X for which F(x)= {«’|d(z, 2')=¢} will be continuous if d
is a suitable metric and any induced homomorphism of F' will be a scalar
multiple of the identity homomorphism of H(X). Thus a nontrivial induced
homomorphism of such a function would have nonzero Lefschetz number,
contradicting (8).

REFERENCES

1. E.G. Begle, The Vietoris mapping theorem for bi-compact spaces, Ann. of Math. 51
(1950), 534-543.

2. S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transforma-
tions, Amer. J. Math. 68 (1946), 214-222.

3. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, 1952,

4. S. Lefschetz, Algebraic topology, New York, 1942.

UNIVERSITY OF CALIFORNIA, LOS ANGELES



A TOPOLOGICAL CHARACTERIZATION OF
SETS OF REAL NUMBERS

MARrY ELLEN RUDIN

We will say that a space E is of class L if E is a separable metric
space which satisfies the following conditions :

(1) FEach component of E is a point or an arc (closed, open, or half-
open), and no interior point of an arc-component A is a limit point of
E—A.

(2) FEach point of E has arbitrarily small neighborhoods whose
boundaries are finite sets.

The purpose of this note is to show that a necessary and sufficient
condition that a space be homeomorphic to a set of real numbers is
that it be of class L.

This gives an affirmative answer to a question raised by de Groot
in [1].

In [2] L. W. Cohen proved that a separable metric space is homeo-
morphic to a set of real numbers if and only if it satisfies (1) above and
(3) and (4) below :

(3) E s zero-dimensional at each of its point-components.

(4) If p is an end point of an arc-component A, then the space
(E—A)\J {p} s zero-dimensional at p.

Any set of real numbers is clearly of class L. To prove the con-
verse it is sufficient to show that every space of class L satisfies con-
ditions (3) and (4). To this end it is clearly enough to show the fol-
lowing :

If X is a component of the spoce E of class L and ¢ is a positive
number. there is a set U(X, e) which is both open and closed, contains
X, and is contained in the union of X with the e-neighborhoods of its
endpoints (if any).

Suppose X is a component of a space E of class L and ¢ is a posi-
tive number. There exists an open set V which contains X but contains
no point whose distance from X exceeds ¢, such that the boundary B
of V is finite; if X is a point, we can apply (2) directly to obtain V;
if X is an arc, let V consist of X plus type (2) neighborhoods of the
end points of X (if any).

Let G denote the sets of all points p of E such that E is the union

of two mutually separated sets S, and T,, where S, contains X and 7,
contains p.

Received May 22, 1956. Research supported by the National Science Foundation.
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Case I. E—G=X. Then G contains B. Let R be the union of all
sets T, for p in B. Since B is finite, R is both open and closed and
V—R is suitable for U(X, ).

Case II. E~G+#X. Since X is a component, E—G is the union
of two mutually separated sets Y and Z, where Y contains X and Z is
not empty. It will be shown that there is a set K which is both open
and closed and contains Z but does not intersect X, thus contradicting
the fact that Z is not in G.

The definition of G, together with the fact that E has a countable

base, implies that G= U G,, where each G, is both open and closed.

Let p be a pomt of Z. If ¢ is a point of G, then T, contains ¢
and not p. The reasoning used in Case I shows that there is a neigh-
borhood N, of p which has no boundary point in G and whose diameter
is less than half the distance from p to Y.

Let {H,} (n=1,2,3, --.) be a countable base for E. If H, is not
a subset of N, for any p in Z, put K,=0. If, for some p in Z, H, is
a subset of N,, let N be one such N, and put K,=N-G,. Let

K= O K,. By the choice of N,, K has no limit point in Y. No K,

n=1

has a boundary point in G and only finitely many sets K, intersect any
G;. Consequently K has no boundary points in G and K is both open
and closed. Since Z is a subset of K and X does not intersect K, the
proof is complete.
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THE FREDHOLM EIGEN VALUES OF PLANE DOMAINS

M. SCHIFFER

Introduction. The method of linear integral equations is an impor-
tant tool in the theory of conformal mapping of plane simply-connected
domains and in the boundary value problems of two-dimensional poten-
tial theory, in general. It yields a simple existence proof for solutions
of such boundary value problems and leads to an effective construction
of the required solution in terms of geometrically convergent Neumann-
Liouville series. The convergence quality of these series is of consider-
able practical importance and has been discussed by various authors
[4, 5, 6, 7]. It depends on the numerical value of the lowest nontrivi-
al eigen value of the corresponding homogeneous integral equation
which is an important functional of the boundary curve of the domain
in question. Ahlfors [1, 10] gave an interesting estimate for this eigen
value in terms of the extreme quasi-conformal mapping of the interior
of this curve onto its exterior. Warschawski [15] gave a very useful
estimate for it in terms of the corresponding eigen value of a mnearby
curve which allows often a good estimate of the desired eigen value in
terms of a well-known one. This method is particularly valuable for
special domains, for example, nearly-circular or convex ones.

It is the aim of the present paper to study the eigen functions and
eigen values of the homogeneous Fredholm equation which is connected
with the boundary value problem of two-dimensional potential theory.
In particular, we want to obtain a sharp estimate for the lowest non-
trivial eigen value in terms of function theoretic quantities connected
with the curve considered. The steps of our investigation might be-
come easier to understand by the following brief outline of our paper.

In §1 we define the eigen values and eigen functions considered
and transform the basic integral equation into a form which exhibits
more clearly the interrelation with analytic function theory and extend
the eigen functions as harmonic functions into the interior and the ex-
terior of the curve. The boundary relations between these harmonic
extensions are discussed and utilized to provide an example of a set of
eigen functions and eigen values for the case of ellipses.

In § 2 we show the significance of the eigen value problem for the
theory of the dielectric Green’s function which depends on a positive
parameter ¢ and is defined in the interior as well as the exterior of
the curve. This Green’s function hag an immediate electrostatic inter-
pretatlon and its theoretical value consists in the fact that it permits a

Recewed June 29, 1956. Prepared under contract Nonr-225 (11), (NR-041-086) for
Office of Naval Research.
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continuous transition from the Green’s function of a domain to its Neu-
mann’s function. All dielectric Green’s functions permit simple series
developments in terms of the eigen functions and eigen values studied
and the possible applications of these series developments to inequalities
in potential theory are briefly indicated. Finally, it is shown that analy-
tic completion of the dielectric Green’s functions leads ultimately to
univalent analytic functions in the interior as well as the exterior
domain. This will lead, on the one hand, to interesting information on
potential theoretical questions by use of the numerous distortion theorems
of conformal mapping. On the other hand, we obtain in this way a
one-parameter family of conformal maps of the domains which start
with the identity and end up with the normalized mapping onto a
circle. This parametrization is of importance in the theory of univalent
functions; it is entirely different from the Lowner parametrization of
univalent functions [8].

In §§8 and 4 we derive formulas for the variation of the various
eigen values and dielectric Green’s functions. We use at first interior
variations and are thus able to derive precise variational formulas with
uniform estimates for the error terms. By superposition of interior
variations and simple transformations we can easily derive variational
formulas of the Hadamard type. It is seen that the variational formula
for the dielectric Green’s function is surprisingly similar to that for the
ordinary Green’s function. It is seen that the circle is a curve for
which all nontrivial eigen values are infinite. Thus, the circle leads to
a homogeneous integral equation with an eigen value of infinite de-
generacy and the usual perturbation theory cannot be applied. We
show, therefore, by a special argument how eigen values for nearly-
circular domains can be obtained.

Finally, we apply in §5 the variational formula for the eigen
values to a simple extremum problem for the lowest one which leads
ultimately to the desired inequality. A characteristic difficulty, however,
has to be overcome in this problem. It appears that the eigen values
are only continuous functionals of the curve if the curve is deformed
in such a way that normals in corresponding points are turned very
little. Such a side condition is hard to preserve under general varia-
tions. We introduce, therefore, the concept of uniformly analytic
curves which is closely related to the theory of univalent functions.
Extremum problems within the class of uniformly analytic curves are
easy to handle and the problem of the existence of extremum curves is
likewise of very elementary nature. As the end result of our study an
inequality then appears which estimates the lowest nontrivial Fredholm
eigen value from below in terms of the modulus of uniform analyticity.
This quantity is, however, easy to determine if a specific analytic curve
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is prescribed. It seems that the concept of uniform analyticity may
play a useful role in many further extremum problems and variational
investigations. As a side result of our study we obtain a new class of
plane curves for which the Fredholm eigen functions and eigen values
can be computed explicitly.

1. The Fredholm eigen values. Let C be a closed curve in the
complex z-plane which is three times continuously differentiable; we

denote the interior of C by D and its exterior by D. The kernel

(1) k(z, c)=£§— log ;2

is a continuous function of both argument points as these vary on the

curve C only. We understand by % the differentiation in direction of
g

the normal at ¢ on C pointing into D.
The first boundary value problem of potential theory with respect
to the domain D can be reduced to the inhomogeneous integral equation

(2) A =9+ ke 0p(0)as;, zeC,

while the second boundary value problem ecan be solved by reduction to
an integral equation with transposed kernel

(2) &= —1| ke, ap@rds. zeC.

In view of the Fredholm alternative in the theory of integral equations
one is then led naturally to discuss the eigen values and eigen functions
of the corresponding homogeneous integral equation

(3) )= | ke, 0.0

These functionals of C play an important role in the potential
theory of the domains D and D as shall be seen in the following con-
siderations. In this section we shall give a brief survey of their theory
and various transformations of the integral equation (3) which will be
used later.

We introduce the harmonic funetion

(4) @ =2 ke, 00,

A
T
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which is defined in D and D; for the sake of clarity, we shall denote

it by ;L(Z) if its argument point lies in D. By the well-known discon-
tinuity behavior of the kernel (1), we have the limit relations, valid for
an arbitrary point z,€ C:

(5) lim (@)=1+1)¢,(@), lim h)=1—2)by(z) -

On the other hand, the normal derivative of a double-léyer potential
goes continuously through the curve C which carries the charge and,
hence,

(6) ?sz(z):— ajbv(z), for ze C,
on on

where 56: denotes normal differentiation into D.
n

By Green’s identity, we have

L[l ? log, bo—tog 1 D0 Ps=h o)

27 lc—2l lc —z| on
and
1( 3 0 1 1 9= ~ o~
7 < *1 —————-—-1 1 o _
) g MO oo L 2o s )

where 8(z) and 5(z) are the characteristic functions of D and D, that is,

1if zeD

(8) 3(z)={0 N 3@)=1—5(2) .
I z

Combining (7) with (7)) and observing the boundary relations (5)
and (6) between %,(z) and i;y(z), we obtain

A 1
%) _ms lo g|c__ |F h(Q)ds;=h(z) , zeD
A 1 -
(1 _n(xv+1)g lo g_—lé’ Iéﬁ h(C)ds;=h,(z) , zeD.

Define two analytic functions in D and D, respectively, by the
formulas

(11) ,(2)— %kv(z) . B2 = %%(z) :

Differentiating (9) and (10) with respect to 2z, one obtains easily
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12 S DA 5 (= S @(6)d0)
42 ole)= {—z He)= 2mido -z
These are elegant integral equations for the analytic functions v,(2) and

7,(z) which are valid for ze D and ze D, respectively.
We can also bring (12) into the form

(13) ,Uv( ) SSD(CT(ZS) for ze D
and
(13) ICERA| IR T fC)) dr for ze D

which expresses v,(z) and ¥,(z) as solutions of integral equations with
improper kernels. The integrals involved have to be understood in the
Cauchy principal value sense.

In the transition from the integral equations (3) defined on C to

the integral equations (13), (13') defined in D and 15, we have lost one
particular eigen function. Indeed, if A(z)=const. were one of our eigen
functions A,(z) it would have been cancelled out in the differentiation
(11). But by (5), A,(z)=const. implies ¢,(z)=const. on C and from (3)
and the identity

(14) _1_5 Kz, O)ds;=1, 2e C,
T JO

follows, in fact, that each constant is an eigen function of (3) with the
eigen value 1= +1. The eigen value 1= +1 plays an exceptional role
in the entire Poincaré-Fredholm theory of the boundary value problem;
the fact that the equations (13), (18’) lead to all other eigen values and
their corresponding eigen functions and eliminate A= +1 represents,
therefore, a strong argument in favor of this transition.

Let z(s) be the parametric representation of C in terms of its length
parameter s. Then

dz

(15) 7=

will be the unit vector in tangential direction to C. The boundary
relations (5) and (6) for A, and %, go over into the equations on C:

(16) R} =11 R (5002}
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(17) SH{ou2)2'} =F {0(2)2'}

which can be combined into the one complex equation

(18) 0@ = S+ 5 = Cs

This relation combined with (12) throws an interesting light on the
connection between v,(z) and ¥,(2). In fact, if we insert (18) into the
first equation (12) and apply Cauchy’s theorem, we find

_ 1 4 | (@L0dD) D.
(19) vy(2) 2m;1—z.jo ol z€

Observe that the second formula (12) yields #,(z) for ze D; now we see
that the same expression yields »,(2) for ze D, except for the factor
1—24,. Similarly, one shows easily

(20) 7.(2) =_1_J__.S (@,(O)dL) zeD.
24 1+ AJe £—=z

If f(z) is an arbitrary complex-valued function in the entire z-plane
of the eclass &%, the equation

(21) F@=1{| 7 ar,

defines a new function in &, its Hilbert transform. It is well-known
[2] that the Hilbert transformation is norm-preserving, that is,

22) SS;F(%: ngzdr .
Our formulas (13), (13") and (19), (20) imply that the functions
’U,,(Z) in D - 0 in D
(28) Ma={ " and F={
0 in 7(2) in D
have the Hilbert transforms
J%vv(z) in D ) <;21V-—1)%(z) in D
(24) F ()= and F(2)=
l(%ﬂ)@(@ in D zzlﬁa,(z) in D.

Hence (22) yields
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(25) (= D[ ot o=+ [ 190 s
From (25) we conclude easily that

(26) |41> 1.

For if, for example, 4,=1, we would have ¥,=0 in D, h.(z)=const.
and hence by (6) also %, (z)=const. But this would imply, in turn,
v(z) =0 and no eigen functions would exist.

With each eigen value 2, of (4) the eigen value —1, also occurs,
except for i=1. In fact, if we denote the conjugate functions of %,(z)

and %,(2) by 9,(2) and §,2), we have by the Cauchy-Riemann formulas
the relations

@7 é%—gxz)— 1+j g" .2) ‘gv(z) gv(z)

Hence, putting
(28) K @=1-2)02), FR)=014+1)j(2)

and adding an appropriate constant we find for ze C:
0

29 = y —ON(@)=——0"

(29) FEO=1TEHE), r@=— 7).

These are the boundary relations between %, and %, but with —21, in-
stead of A,. This proves our assertion.

If we start conversely from the complex integral equations (13) and
(18’) and consider any eigen function v,(2) with the eigen value 2,, it
will be observed that e*v.(z) is also an eigen function to the eigen
value e %*. Hence, if we focus our attention on the integral equations
(12) or (13) we may assume without loss of generality that A, is a real
positive eigen value. Calculating backward, we can easily see that
each such eigen value is also an eigen value of the Fredholm integral
equation (4) and so is —4,.

It is readily verified that eigen functions v,(2) and v,(z) which be-
long to different eigen values 1, and 2, satisfy the orthogonality relation

(30) SSva(z)mdr=O

This condition can be extended to the case of any two linearly inde-
pendent eigen functions. Similarly

31) S Szﬁ,@dmo
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for any two different eigen functions 7,, 9,. In view of (25), we
define

(32) w (R)=V,—1 v(2), W,(R)=1V1,+1 D,(2).
Then we can assume the orthonormality relations
(33) SS w, B, de=3,, , S S~7I)v@#dr=6v#.
D D
We have in view of (18) the boundary relations on C':
%

(34) WARW = e ()~ AR ;

vai—1

from (19) and (20) follows

35 A (w(£)dC) , D
3% w?) znvqi—-lir E—z “c
and

36 ()= (w,(9de) D.
(36) B =g 180 c—z ‘€

If we were able to guess two functions w(z) and w(z) which are

analytic in D and D, respectively, and which satisfy on C the relation
(84) for a properly chosen i, we would have obtained a particular solu-
tion for the eigen value problems (13) and (13’). It is sometimes pos-
sible to construet such pairs of functions and to obtain thus eigen
values and eigen functions for the Fredholm integral equation. One
possibility of construction is the following: We refer the curve C by
conformal mapping to the unit circumference. Let

(35) z=f(C)

be analytic on and near [{|=1 and map it onto C. The condition (34)
can now be referred to |£|=1 and reads:

y v 1 -~ y . 2 ST AN (A"
(38)  wLAOL(C)iC= V—F—Tw[f(C)]f (94 V#—mw[f(é’)]f ).
Since the conjugation ¢ means just % on |{|=1 it is easier to guess

solutions in this form.
Let, for example,

(39) z=f(C)=C+—’§ , 0<p<1.
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This means that C is an ellipse. Let us put

(40) wAO (O =al"+bl™"
and
(41) wlLADI () =™ .

Condition (38) will be fulfilled if we put

__ 4 p—_ —1
VE=1 UTvE-1

(42)

Define W(f)=Sw df and W(f)=§zbdf. Then (40) and (41) yield

L (2,

(43) WLAC)] = 71@ (" =) = A

(44) WLAC)= —; I

Now the function (39) is univalent outside of |{|=p and, hence, we
may consider ¢ as a regular analytic function of zeD. Thus, W(z)

and (z) are regular analytic in D. In order that W(z), w(z) be analy-
tic in D we must require that

(45) a=pmn

In fact, C"+?: can be expressed as a Chebysheff polynomial of z. Thus

we have guessed an infinity of eigen values and eigen functions for the
case of the ellipse. It can be shown that i"=+p>" gives all eigen
values of the ellipse for n=1, 2, ---. Since p=0 describes a circle, we
recognize, in particular, that all eigen values 2, for a circle have the
the value infinity [3].

If we know the eigen values and eigen functions of a given do-
main D we can find immediately the eigen values and eigen functions
of every domain D* which is obtained from D by a linear transfor-
mation

46 * az+b_l
(46) ? cz+d @

In fact, let
47) wy (@) =wyz), WHEN(@R)=WS2), &=2.
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It follows from (33) that the w} and w} form an orthonormal set of

analytic functions in D* and D*, respectively. Since we have on C*
(48) 2" (2)=1l'(2)

it is also obvious that (34) is fulfilled which shows that w} and @, are,

in fact, the normalized eigen functions of the domains D* and D*. In
particular, we note that the eigen values A, of a domain are unchang-
ed under linear transformation. Similar domains, for example, have the
same set of eigen values.

2. Thc dielectric problem. The consideration of the electrostatic
field of a point source at ¢ in the presence of a dielectric medium in
D with the dielectric constant ¢ leads to the following heuristic defini-
tion of a Green’s function G.(z, ¢):

(a) Gz, ¢) is harmonic in D and D, except for z=¢.

(b) Gz, ¢)—log i'1é| is harmonic at ¢ if ceD.
() Gz, £)— elog l—»-l is harmonic at ¢ if e D.
(¢) Gz, &) is continuous through C.

(d) 96z, O)+e2-Guz, ©)=0 on C for ceD or D.
on on
(e) loglel+Gu(z, ¢)— 0 if z— o, for £eD or ¢eD.

It is easily seen that G.(z, ¢) is uniquely determined by these con-
ditions and that it satisfies the symmetry condition

( 1 ) GE(C’ 77)=Ge(77) C) .
We may construct G.z, £) by means of a line potential as follows. Let
¢eD and put

1
lz—¢|

(2) Gz, {)=log +§0#(77, ¢) log |p—=z|ds,.

This set-up satisfies automatically conditions (a), (b) and (¢); we can
fulfill condition (e) by the requirement

(3) [, 47, 0ys,~0

and finally (d) by solving the integral equation

(4) =175 P nog Lo—pte, 001 S#(% 0.0

o
14 e non, % p—t] 1+ o %

-
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As long as ¢ > 0 this equation can be solved in a unique way since
1—¢
'1+T-:
tegral equation are larger or equal to one in absolute value. One veri-
fies also from (4) that condition (3) is automatically fulfilled. In a
similar way we proceed for e D.

The integral equation (4) indicates already the close relation between
the Green’s function G.(z, ¢) and the Fredholm eigen functions. We
obtain a further insight from the Dirichlet identities:

<71 and all eigen values of the corresponding homogeneous in-

- o
(5) SSDVGE(z’ O hyf2)dr = SC G2, C)ank»(z)dsz

—2neh.(0)3(E) — Schv(Z) 5% Gz, {)ds,

and

(6) ([ 6t o rh@d=={ Gie ) J o,

—2ah (O3 - | @ LG s,

Here we use 6(¢) and 5(¢) as defined in (1.8). Identity (6) is valid in

spite of the logarithmic pole of G. at infinity since 7ay(z) vanishes there.
Adding (5) and (6) and using (1.6), we obtain

) S SzV Gl O hofe)de= _SSDVG*(Z’ OV h2)dr .
Putting

A+
(8) ‘OV_JV 1

and using the boundary relations (1.5) and (d), we find:
(9)  —en], 76 Fhdr+ || rGe omas
D

=27e[ A (0)() — P C)S(O)] -
Thus, finally,

aw e orned—

3

2”; A0 — p Ik D)B(EN)

_ _SSBVGg(z, EWhdr .
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The eigen functions %,(z) connected with the Fredholm equation ap-
pear thus as the eigen functions of the integral equation in D:

(10 1—+—”H PGz, C)-Thi(2)dr=hyC), CeD .
2me D

Let G(z, ¢) be the ordinary Green’s function of D; obviously

(1) SS PGz, £)-Ph2)de—0
D
Hence we obtain for %,(z) the integral equation
(12) bti“ VK2, €)-Vh(2)dr=hy(C)
2me D

with the regular harmonic kernel
(13) Kz, )=G(z, £)—eGlz, Q).
Let

(14) Gz, co)=log 2| +7 +o(l 1>

represent the Green’s function of D with the source point at infinity.
By (1.5) we have obviously

6G(z o), 142 9G(z, ©)_o 1+ A% (o)
) | ne ds=j T | ) 28 =) _pnt 2 h(2)=0.

We now define the linear space 3 consisting of all functions #(z)
which are harmonic in D, have a finite Dirichlet integral there and
satisfy the linear homogeneous condition

(16) Sah(z) GG(Z,%E’stzo _

Observe that the only constant element in 3 is the function A =0.
All 2,(2) lie in 2; in view of (12) and the symmetry of K.(z, {) we may
assume that they are orthonormalized by the conditions

(1) Sgbm-mdr:aw

and it is easily seen that they form a complete orthonormal set in %
[3].

If we use the conditions (c) and (e) in the definition of G.(z, {),
we can show that the function
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lies in Y. Hence we have for it the following series development
(19) Gz, ©)—eGlz, €)= +2 v(z)hv(@ re teD.
+ep,

The Fourier coefficients in this development have been ecalculated from
(12); the series converges uniformly in each closed subdomain of D.

Suppose next ¢ e D and consider the harmonic function

(20) M2)=Gz, £)+G(C, =)—F.

It is easily seen that A(z)e 2. Hence we may develop A(z) into a series
in the complete orthonormal system #4,(z). Using (10), we find

(21) Gz, O)=F—~G(C, o)—2re z f’v xz)hv(o
This series converges for e D and z in a closed subdomain of D.

Observe that by definition of G.(z, ) we have for e=1

1

(22) Gz, O)=log 1

Hence (19) contains the following series representation for the ordinary
Green’s function of D:

RS BPREY Y051.Y(o)
(23) G(Z, ¢)=log lz—CI 7—2 é 1+p, .

On the other hand, (21) reduces for e=1 to

oo

(24) G(¢, o)=log |z~

2A(C) .

,..

In a similar way we can derive series developments for G.(z, ¢) in

the exterior D of C. Observe that in view of the boundary conditions
(1.5) and (1.6) the normalization (17) of the 4,(z) implies

(25) SS~V7LV-77&,‘dr=p;16M .
D

Let 3 be the linear function space consisting of all functions 7(z) which
are harmonic in 13, have a finite Dirichlet integral there and which

vanish at infinity. Clearly the {p¥%,(z)} form a complete orthonormal
set in 5.
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On the other hand, let G‘(z, ) be the Green’s function of D. Then
it is easily verified that by condition (e) and (14)

(26) h2)=Gdz, 0)=G(z, O+G(C, ©)+G(z, «)-F, =2 CeD,
lies in 3. Again using the Dirichlet formula (10), we find
(27) Gz, 0)—G(z, O)+G(C, ©)+G(z, )—7

= h(2) h(2)P}
=2 ARSIy
ns; 1+ep,

Putting, in particular, e=1, we obtain by virtue of (22):

@) Ge, —C(C, w)—Giz, w)—log— L —F—2z 5 D@ |
[Z—C[ v=1 1+pv

We have thus shown that all dielectric Green’s functions can be con-

structed simultaneously and in D as well as in D, once the system of

eigen functions %,(z) and the corresponding eigen values 2, are known.
Numerous inequalities can be drawn from these representations.

We shall restrict ourselves to one single example. Denote, for e D,

29) Gie, O)—clog — 1 _—gz, £), Gz O)—log 1 —g(z, ¢).
e—C| e—C|

The functions g.(z, ¢) and g(z, £) represent the potentials induced by a
unit pole at ¢ in the presence of the dielectric in D, and in the pre-
sence of the grounded conductor C, respectively. We find from (19)

(30) g€, O—eg(C, OH=7 .

Since ¢~ represents the electrostatic capacity of the conductor C, we
obtain an interesting estimate for the dielectric reaction potential in
terms of capacity constants connected with the conductor surface C.
For ¢e=1, we have g(&, ¢)=0 and hence

(31) T=—9& 0.

This is an inequality connecting the inner and the outer Green’s func-
tion of C; in the case that C is a circumference and ¢ is its center,
this inequality becomes an equality.

Up to this point we stressed the connection between the Green’s
function G(z, ¢) and the eigen functions %,(2). Since the Fredholm eigen
functions appear also in the theory of the second boundary value pro-
blem, we should also expect some relations between the #%,(2) and the
Neumann’s function of the domain D.
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The Neumann’s function is usually defined by its constant normal
derivative on C

(32) QZY(;O?LC):?LF, ze C, ¢eD, L=length of C,
N,

and by the linear homogeneous side condition
(39) [, Ve, os—o, ceD.
C

In order to operate within the class X, characterized by (16), we in-
troduce the functions

(34) afz)= 217% SCN(t, 2) [@g—(?ﬁ‘w) X gLE:'dSz

and
(35) hMz)=N(z, {)—G(z, O)+alz)+a(l)

+ LA] e, 20 =) 2)ge, g5
47* JJcc on on

It is easily verified that Z(z)e 2. Since obviously

28 e

the funetion a(z) is harmonic in D and has the normal derivative

’ o 8G(z o) 2z
34 T s ) e .
(347) on on L’ el

Hence, finally, we have for ze C

(85) oh_ _0G(z §)_8G(, )
on on on

and consequently in view of (16) valid for each 4,(2):

(36) S S PhePhde= — ng %dg:%h,(c) :

Since 4(z)e X and the A,(z) are a complete orthonormal system in
2, we have the Fourier development
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(@) Ne, &)= Gl 0+ | N, PG 2)gg =| e, c)aG@ ©)ds
2r e on 2

{1, e, 20 )G 2)gs,as,— 5 ayh(e) 21
4r* JJoc on on v=1

This formula is useful to establish the exact asymptotics of the func-
tion G.(z, ¢) as ¢ > 0 as can be seen from formula (19).

The dielectric Green’s functions G(z, ) are closely related to a set
of interesting univalent analytic functions. In order to show this con-
nection we complete the harmonic functions G.(z, £) to analytic funec-
tions in z. We will obtain, of course, two entirely different functions

when z lies in D or D. Let us denote the analytic completion of Gz, €)

by PJz, ¢) if ze D and by 155(2, &) if zeD. We want to show that for
fixed £e D

(38) FlR)=e MFeD | f(o)— g-Fesd)

represent univalent analytic functions in D and D, respectively.

For the sake of simplicity, we shall assume in the following con-
sideration that C is an analytic curve. There exists, therefore, an
analytic function 2z=f(¢) which maps a neighborhood of a segment of
the real axis in the ¢-plane onto a neighborhood of a given arc of C.
The function Gz, ¢) becomes a harmonic function g(¢) to both sides of
the segment. It goes continuously through the segment, but its normal
derivatives satisfy the discontinuity law

o9 , 09 _
(39) %-l— P 0 for real ¢.
Let
(40) p(t)=PLf(t), &), D(t)=Pf(¥), C).

We find easily for ¢ in the segment and in view of the described dis-
continuity behavior of ¢(¢):

(41) R{p' @)} =R{D'@®)}, I (@)} =IF{DQ)} .
We can combine the two relations (41) into the one equation:

6-\.,

P+ 1)

(42) OB

This formula allows an analytic continuation of '(¢) into the upper
halfplane and of 9'(¢) into the lower. This proves that »'(¢) and 7'(f)
are still analytic on the segment of the real axis in the ¢-plane. Re-
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turning to the z-plane we can infer that the functions
4 d ~’ — d -y
(43) PE(zy C):_Ps(zr C)r Pe(zy C)_*'PE(zy C)
dz dz

are analytic beyond the curve C. Thus we proved that the two deter-
minations of the Green’s functions G.(z, ¢) are still regular harmonic on
C if C is an analytic curve.

We derive from (40) and (42) that

(44) P;(Z, C) =1:J‘f +6-2m]§f—ﬁf , a=arg —i)/(t) .

Pz, 0) 2 2

Since we assume throughout ¢ >0, we see that the ratio (44) always
lies in the right half of the complex plane. This implies

(45) darg Pz, {)=4arg Pz, )

if z runs through the curve C in the positive sense with respect to D.
But by the argument principle we have

(46) darg Pz, {)=Z—P, darg Pz, {)=P—Z

where P, Z are the numbers of zeros and poles of P, in D and 15, Z

have the same meaning with respect to 15; and D. In case some zero
of P, should lie on C, we can deform the curve in such a way that it
does not contain any zero and draw the same conclusion in view of the

analyticity of P, and P, on C.
We know by definition that if £e D we have

(47) P=1, Z>0; P=0, Z>1.
Hence, from (45), (46) and (47), we conclude
(48) Z-1<-1.

This is only possible if

(49) Z=1, Z=0.

Hence we can state that Pi(z, ¢) and PJz, ¢) do not vanish at any
finite point of the z-plane.
Consider now the system of differential equations (z=2z+1y)
0

dx
50 =Gz, ©),
(50) dt axG(z o

dy _

0
--%¢ .
gt o (2, {)

Along each solution curve z(t), y(¢) of this system we have
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d dx\* | (dy\*
51 G2, =-[<> +(, ) 0.
(51) 260, o——| () +(%) <
We have just shown that no critical point exists where FG.,=0. Hence
the net of solution curves covers the entire z-plane in a regular manner.
All curves start out from the point z=¢ and run towards infinity. Each
curve possesses the integral

(52) Y{P(z, £)} =const. or I{P.z, £)} =const. ,

according as it is considered in D or in D. From these facts it is
evident that the functions (38) have the asserted univalency properties

in D and D, respectively.

The importance of our result lies in the fact that the numerous
distortion theorems of univalent funection theory are now at our disposal
in order to derive estimates of the various potential theoretical quanti-
ties connected with G.(z, ¢) in terms of the geometry of the curve C.

Let us observe, further, that for e=1 the function fl(z) represents
the identity mapping while for ¢=0 we conclude from (21) that

(53) f'o(z)z 6";~e;(z‘m)=z+cl+ El,_}_ ces
¥4

is the univalent function which maps D onto the exterior of a circle

of radius ¢¥ and which has at infinity the derivative one. Thus we
can interpolate a continuous sequence of univalent mappings between

the identity map of D and its normalized mapping onto the exterior of
a circle.

The preceding considerations show clearly the significance of the
Fredholm eigen values and eigen functions for the dielectric problem
and the general potential theory of the curve C. A generalization of
most concepts to the physically more interesting case of three dimen-
sions is easily done.

3. The variation of the eigen values. The variation of the eigen
values 4, under a variation of the curve C can be determined by using
the variational theory of the Green’s funection and of the various kernel
functions connected with it [3]. In this paper we wish to give a
straightforward and elementary derivation of the variational formulas.

Let z, be an arbitrary fixed point in D and consider the mapping

(1) =zt
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For small enough « this will be a univalent mapping of C into a new
smooth curve C*. Let us denote its eigen values by 1¥ and its eigen
functions by wy(z). We have used various eigen function definitions in
the domain D; the w(z) shall play the same role with respect to D*
(the domain bounded by C*) as the w,(z) defined in Section 1 played
with respect to D.

We have the integral equation

(2) wiE) =2 gm(wgi:*)df*) e D"

Let us define

(3) m,(z)=w;“<z+ « >(1—-£‘-) .

Z—%, (z—2)
This is a regular analytic function in D since (1) maps D univalently
onto D* where wi(z*) is analytic. Using (3), we can rewrite (2) into
the simpler form

(4) mV(z):(l*(z-azo)> ;ﬂzg [1-(z_z;;%}_zc)]%g‘f)fg-

We have thus referred all variables back to our original domain D, but
¥ and m,(z) appear now as the eigen values and eigen functions of an
integral equation with slightly changed kernel.

We may transform the new integral equation (4) by easy calcula-
tions into

(5) Wz)‘f‘ S ng%dr -~k S SD[(z z?)z(véoij) o

Observe that by the definition (3) we have

(6) ], m@rae=(] wrerar=1.

We have thus to determine the normalized eigen functions m.(z) to the
integral equation (5) which differs from our original equation (1.13) by

an a-term which can be estimated uniformly in z for z(,eb fixed.
Let us define the analytic function [3]

(7) L == 2 2 Gt c)zg(é{@ ~lz, 0).

It is well-known that for every function f(z) which is analytic in D and
for which SS \fPde < oo holds
JJD
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(8) SSDL(z, OVFE)de—0

Hence we have the identity, valid for each such f(2),
1 A0 o AR

(9) —SSD = HDZ(z, OfQ)dr .

Under our assumptions about the boundary curve C of D, it can be
shown that i(z, ) is continuous in both variables in the closed region
D+ C. Thus (5) can be put into the form:

. _a m(C)
0 me-zlf e Gmd—alf] O g,

while w,(z) satisfies the unperturbed integral equation

() w@=2\| 1 O

Now we can apply the general perturbation theory for regular
kernels [9] and state that the eigen functions m,(2) and the eigen
values 1F are analytic functions of the perturbation parameters « and
a and can be developed in power series in them. For a=0, 1) will
coincide with 2, while m,(z) will then lie in the linear space spanned by
the eigen functions of (11) which belong to the unperturbed eigen value
A,

Let wi?(z) (=1, ---, n) denote the eigen functions belonging to 2,.
We have the developments

(12) 2 =d,+ladls, + O(la)
and
(13) m(D)= 3, AP + |aloyz) +O(lal) .

Inserting (12) and (13) into (10) and making use of (11), we find

(14) gAJwSJ)(z)—T Sy A (@) + lad, Sgnl(z, O)o(E)de

y J=t

azv & T wv (C)
et~ %3 T | de+0
laloute) = “2ie S A )| 27 de+Olal)

We multiply this identity with w{(z) and integrate over D. We
use the orthonormality of the w{®(z), the symmetry of I(z, {) and the
integral equation (11). We also make use of the fact that by (1.36)
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1 wl(l) . _VE=14

Hence we arrive at

A

(16) 4,=2

A, + 20l {Hnwﬁ’”(z)m dr}

v

+a™ B0 5 L a0Gynd @) +0llat) , k=12, n.

v j
Using the development (12) and comparing equal powers of || on both
sides, we obtain

(17) S{Ak}__"o 9’ Ak=1‘ea1, k=1, 2, sen, n.

Taking real parts in (16) and putting

(18) sgna— & —gb
||
we find
(19) t, A+ n(25—1) )y AR{ePpD (2)0$(20)} =0, k=1,2, -+, n.
Jj=1

Thus the possible values of k, in the development (12) of the perturbed
eigen value A} are the eigen values of the secular equation

(20) det [1k,0 + 7(2— 1) R {ePwiP (2)i05 (20) | =0 .

In particular, if 2, is a simple (nondegenerate) eigen value, we
have the simple variational formula

(1) o4, = |t - by = — 7(22 — 1) R {aib, (20"} -

Let us suppose next that we perform a variation (1) of the curve
C but now with z,€ D. Since the mapping (1) is regular and univalent

in D, we can repeat the entire argument by interchanging the roles of
D and D. We thus find

(22) det ||£,0 5% + (2 — 1)R{ePwi? (20 )ws™(2,) }| =0

as the secular equation for the ,-terms and

(23) 02, =lalk,= — (2 —1)R {aw,(2)'}

in the nondegenerate case. Formulas (21) and (23) exhibit the complete
symmetry of our theory with respect to D and D.
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We used the method of interior variations (1) in order to reduce
the variational problem for the 2, explicitly to the theory of perturba-
tion in classical integral equation theory. The formulas obtained are
also very convenient in various extremum problems regarding the 2, as
we shall show later. It seems, however, desirable to give also a varia-
tional formula for deformations of C which are described by the normal
shift dn of each point on C. For this purpose we put

(24) R (A — Dawy” (2w (z) }

X w§P(Q)us® (L)
.%{2%,(@ 1)560‘“*-#5—% d:}, seD.

Applying Cauchy’s integral theorem with respect to D, we also find

(25) 0= %{#(12 e, wg’)(g)w:)(@d}

Finally, we derive from (1.34) that
(26) (4= 1) {wP(Owi () — b (™ (0)} ¢
=2R{2,057(Q)wSP(0) — BwP(E)wF (L)}
Hence, if we subtract (25) from (24), we obtain
(27) RA{n(2—D)aws? (z)ws™(z,)}
— RO T~ BTN on ds

where

(28) m:éﬁ{fg ; i‘za }

represents the normal shift of C under the deformation (1). Thus the
coefficients of the secular equation for 61 have been expressed in terms
of én.

In particular, we have in the nondegenerate case in view of (23)

(29) o= LR @BACTC ) =M (o ds .
It can easily be verified from (1.34) that on C
(30) AT} — R (D)

— — AR{wSPwE} + 2R {wPwiPL?)

Thus we may replace @ by w in formulas (27) and (29); since transition
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from D to D implies also a change of sign of the interior normal, the
end result is unchanged. Thus the variational formula of the Hadamard
type (29) is entirely symmetric with respect to the two complementary

domains considered. If we had chosen zoef), we would have obtained
the same end result (29).

We derived (29) in the case of a particular variation of the type
(1). But since a variational formula depends linearly and additively on
the variation, and since we can approximate general dJn-variations by
superposition of special variations of the type (1), we can extend (29)
to the most general case of a dn-variation.

The value of the variational formula (29) is of heuristic nature; it
shows the dependence of 2, on the geemetry of C. For a precise study
of extremum problems it is preferable ta apply the variational formulas
based on interior variations of the type (1).

We can derive, however, interesting monotonicity results by means
of (29). Let, for example, z=f(u) give the conformal mapping of the
unit cirele |u|<1 onto the domain D. Let C,. be the image under this
map of the circumference |u|=+»<1; and let A(r), w(z, r) denote, say,
the »th eigen value and eigen function of C.. We assume, for the
sake of simplicity, that A(r) is nondegenerate and then easily derive
from (29):

(29 L= wte, @ ds,

+A(ry sn{% j} e, ¥ dul .

The function
F(w)=w[f(w), v} n)

is regular analytic for |u|<r; hence the second integral in (29') vanishes
by Cauchy’s integral theorem and we obtain :

29") Lrogun—-| Imwras.<o.

The eigen values A(r) of the level curves C, are monotonically decreasing
if » increases.

For every function F(x) which is regulax analytic for |u|<_+ holds
the obvious inequality

297) S Fo)f ds, > 2 ”W IFo dr .

i=r )
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Observe now that because of the normalization of w(z, ) inside of C,
the function F(u) is normalized in the circle [z| < ». Hence, combining
(29”) with (29"’), we finally obtain

(29") %(M“) <0.

Since we have the trivial estimate A(1) >>1 for every curve C, we then
derive from (29%) the useful estimate

(297) =1t forr<i.
r

In order to apply the usual perturbation method of integral equation
theory we had to replace the integral equation (1.13) with singular
kernel by the integral equation (11) which has the regular symmetric
kernel I(z, ¢). The necessity for this transition becomes clear when we
consider the exceptional case that C is a circumference. In this case
(and only then), we have I(z, £)=0. The original integral equation
(1.13) has only the eigen value 1= and each function f(z) which is
analytic in D is an eigen function.

In faet, suppose for the sake of simplicity that C is the unit circum-
ference z-z=1. We have

¢y 1 S S Q) 4.1 O _ - LAQdC

I§l<1(C—z)2 2m, =1 £ —z Zm =1 £z—1

By means of the residue theorem we conclude therefore

(32) 1 SS f(C)

0 if jz]<<1
i< (g — z) {

;{f(%) i o> 1.

This equation proves our statement that 1= is the only eigen value
of (1.13) in this case and that it is of infinite degeneracy.

Our variational theory does not work in this exceptional case.
However, let |2, >1 and C* be the image of |72{=1 under the variation
(1). We define its eigen function wi¥(z) and by (3) a function m,(2)
which is regular analytic in D. It satisfies the integral equation (5)
which, in view of (32), can be brought into the simple form

(33) my(2)= — aly 1 77@(—17) , =2+

(z—z) 7 \7 z—2

Let



THE FREDHOLM EIGEN VALUES OF PLANE DOMAINS 1211
d .
(34) mife) = M2) ;

if we choose the right constant of integration in the definition of M,(2),
we can integrate (33) to the identity

(35) M(2)=— M (L)),
where

=1 2%
(36) L@=7"= 2(z—2)) +a

is a linear function of z. Thus we obtain a simple functional equation
for the eigen functions w}(z) and the eigen values A of the varied
curve C*. «a must be sufficiently small in order that the mapping (1)
be univalent in D; but we have not made any neglection of higher
powers of « and (85) will give the precise value of 7.

If we iterate (35), we obtain

(37) M,(2)=2"M(A(z)) , A=L(L(z)) -

If 2, 2z, are the fixed points of the linear transformation Z=A4(z), we
can write

Z—z W2—2
38 LT8R
(38) Z—z, ‘ 2—2

where |z, <1, |2,/>>1. The eigen functions M,(z) are of the form

%

(39) M) =422, y=1,2:-

and belong to the eigen values
(40) A= ¥,

Thus all eigen functions and eigen values of the curve C* can be calcu-
lated explicitly. An easy computation shows that for small values of e

(41) == L oy
la}

An analogous calculation can be performed if the unit circle is
transformed by a variation (1) with [z]<1. If we consider a super-
position of variations (1), we can still derive an asymptotic formula for
the eigen values A obtained. Thus we have shown that the eigen
values for nearly circular domains can be obtained asymptotically in
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spite of the fact that the circle has an infinitely degenerate eigen value.

We showed at the end of §1 that the eigen values of an ellipse
can be calculated explicitly. This result is a particular case of our pre-
ceding investigation since the exterior of the ellipse is obtained from
the exterior of the unit circle by a transformation (1) with z,=0 and
loe] < 1.

There are relatively few domains for which the eigen values and
eigen functions of the Fredholm integral equation are known. It is,
therefore, important to possess at least an asymptotic formula for the
eigen values of nearly circular domains which admits many arbitrary
parameters. Such formulas are particularly useful when one wishes to
test hypotheses with respect to the eigen values of general domains.

4. The variation of the dielectric Green’s function. In this section
we want to derive the formula for the variation of the dielectric Green’s
function Gz, ¢) defined in §2. It will appear that it possesses a very
simple variational formula which is quite similar to that for the ordinary
Green’s function of a plane domain. We shall again consider the in-
terior variation

(1) ¥=z+ -

whieh transforms the curve C into a curve C* defining the two com-

plementary domains D* and D*. Let G¥(z, &) be the corresponding
dielectric Green’s function to the parameter e.

If z,e D, the mapping (1) will be univalent and regular in D for
small enough «; hence the function

(2) Iie, O=Gi(z+ %, o .2 )

will be harmonic in D. It will also be harmonic in D, except for the
interior of a circle of radius |«|'? around the point z,. The function I"(z, &)
will have logarithmic poles at infinity and for z=¢ as follows from the
definition of G.(z, ¢).

We consider now Green’s identity :

(3) zlﬂs [F(t Z)aGe(t 9] — Gt C)a[ e(i z):l s

= 5[18(C; z)b‘(C) - EGS(Z’ C)a(z) .

Observe that in view of the conformality of (1) on € the function
'z, £) has the same continuity (and discontinuity) property on C as



THE FREDHOLM EIGEN VALUES OF PLANE DOMAINS 1213

the original function G.(z, £). Hence we may transform (3) into
(4) TG DOl 0@1=— | [ 1, 9?09
wle on
Gut, 92b 2 Jas.

Now we can apply Green’s identity with respect to the domain D after
removing from it the interior of the circle lz—z|=|al’* which we denote
by ¢. Let us assume that neither z nor ¢ lie inside ¢; then (4) yields

(5) I, )=Gle, O=—o- | [ 1t 9798 O —g e, ofIdb 2 s,

T

We have now fully utilized the boundary behavior of G.(z, £). The
evaluation of the c¢-integral follows exactly the lines of the calculation
for the ordinary Green’s function. We put for tec

(6) t=2,+ |a|'Pe

and evaluate the right-hand integral in (5) by power series development.
We define again two analytic functions of z, namely p.(z, ¢) and pi(z, &),
by

(7) R{Pz, O} =Gz, ), R{Pi(, 0)}=Gi(z ).
Further, let

(7) Pz, O)=L Pz ), PXe 0)=2 P, ©).
dz dz
Then the usual calculations yield

(8) G =", () —Glz, O=R{aP (2, 2¥")Pz, O} +0(al).

Further series development leads to the simple result

(9) Gi(z, =Gz, O)+ m{a[p;(zﬂ, Pz )
_ Pz, ©) _PLc, 2 ,
& O LD 4 0

This is exactly the same variational formula as for the ordinary Green’s
function [12, 13]. It has been derived for z e D.

If we had chosen z,¢ D instead of D analogous calculations would
have been applicable. We could start with
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10 [, 8G(t, ) ar, (t 27y
(10) o) L1t 22680 _ge, )Pl D g

=I'(g, 2)5(0)— Gz, £)5() .

¢ 0G.

on C, we find
on

Using the discontinuity o

A1) eI(C, 93 —Gulz, 03] =— L S [ ', z)aGe(t £)

e 0Tt 2
Gut, 242 g

and by means of Green’s identity

(12) e[I(2, £)—Gyz, C)]=—§17;Sc< EaaG -G >

where ¢ denotes again the circle |[z—z|=|a['?. In this case the same
procedure as before yields the result for z,e D:

(13) G, O—G c>=sn{a[%P;(zo, Pz ©)
Py, O)_PiUC, ) :
2—2 -2 ]}+O(Ial).

Observe the factor - which is now introduced into (13) and causes
[

a slight change in the variational formula.

We have thus derived a very elegant variational formula for the
dielectric Green’s function; its significance is seen from the numerous
applications of its analogue in the case of the ordinary Green’s function
{12, 13, 14].

As mentioned in § 2, the function P.(z, ) consists in reality of two
analytic functions, say, P.(z, ¢) if ze D and Ps(z, Q)if ze D. The bounda-
ry behavior of G.(z, {) as described in § 2 implies for ze C

(14)  R{Piz, OF}=R{Piz, O}, S{Piz, O} =cI{Pyz, )} .

We can combine the variational formulas (9) and (13) into the integral
form :

(15) G;k(z; C) - Ge(zy C)

Lrie, oPat, 0 -Put, 2Pt O
AT at} +0(ap) .




THE FREDHOLM EIGEN VALUES OF PLANE DOMAINS 1215

By use of (14) this can be simplified to

(16) 0G(z, €)

_1/1 0G(t, 2) 0G:(t, £) _ 0G.(t, 2) 8G(t, &)
(-0l )

27\ e 0s 0s on on
with
1 «
17 5 SR{MM }
(an "= it (t—z)

This is the Hadamard type variational formula for the dielectric Green’s
function which has been proved in a precise manner through use of our
interior variational method.

Since we can also write (16) in the form

(18) 4Gz, Q)

-1 (_L _ 1) S [QQE_(M)_ 0G(t, O) | 108Gt 2) 3G, £) 5, 4s
2 ¢ 0s 0s € on on

it is evident that if ¢ e D the expression (G(z, )+ ¢ log [2—{|),.; depends

monotonically upon the domain D while for ¢ e D the same is true for
(Ge(z, O)+ log |z—C]),-c. In a similar way many other expressions can
be constructed which have a definite factor of dnds under the integral
sign and which depend, therefore, monotonically upon D. The appli-
cation of Hadamard’s formula in order to obtain inequalities and com-
parison theorems for functionals connected with Gz, ) is obvious.

For e=1, we have G.(z, )= — log |z—¢| independently of the domain.

For this reason the factor (71—-—1) must occur in the variational for-
15

mulas (16) and (18).

We showed at the end of §2 that the mapping of a domain onto a
circle can be connected with the identical mapping by a one-parameter
family of univalent functions which are closely related to the dielectric
Green’s functions. For this reason it is of interest to compute the
derivative of G.(z, {) with respect to e.

We start with Green’s identity and with ¢ >0, ¢ >0:

(19) ed(0)G(C, 1) —ed(n)G.(L, 1)
oG (z, %) 080Gz, 7)
271'S }:G e e on ——:'ds

Using the boundary relations of G, and G, on C and Green’s identity
with respect to ﬁ, we find
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@0) G D=GE D LG e+ _1_S Gz, 7203 Ogg |
e—e € 2me Jo on

Passing to the limit e=e, we then obtain

ey 26 p=t6 90+t | 6 0 Das.

The symmetry of this expression is more clearly exhibited in the form

(22) GG =, jSVG (2 ©)-FGilz, 7)dr .

This result could also have been obtained by straightforward calcu-
lation from (2.19) and its analogues.

It is obvious how numerous monotonicity results can be derived from
expression (22) by considering combinations with positive derivative.
This formula can also be used in order to develop G, in powers of e.
The formula is particularly useful in a more detailed discussion of the
mapping functions f.(z), defined in § 2; however, we do not enter into
this subject in the present paper.

5. An extremum problem for the Fredholm eigen values. We
shall now proceed to apply the variational formulas of § 3 to an impor-
tant extremum problem for the lowest Fredholm eigen value of a given
curve C. In order to explain the formulation of the problem considered
we start with the following observation. Let C be a three times con-
tinuously differentiable curve as was supposed throughout; if 2, is its
lowest eigen value we have shown that 4, >>1. Now let C* be a con-
tinuum which consists of all points of C plus a segment which has one
endpoint on C and the other in D; let 2} be its lowest eigen value.
It can be shown that =1 however small the additional segment of C*
is; thus two curves in an arbitrary Fréchet neighborhood can have very
different lowest Fredholm eigen values.

The fact that 2, depends in this discontinuous way on its defining
curve C makes it difficult to frame significant extremum problems for
it. The side condition on C of three continuous derivatives is, on the
one hand, somewhat unnatural and, on the other hand, hard to preserve
under variation. We shall restrict ourselves, therefore, in this section
to the consideration of analytic curves, but even in this case 4, can
come as near as we wish to 1. In fact, formula (1.45) shows that we
can find ellipses with 2, arbitrarily near 1. We have, therefore, to
sharpen the concept of an analytic curve by introducing the concept of
untform analyticity of a curve. A curve C is called analytic if it is
mapped by a regular univalent function z=f(£) from the unit circum-
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ference |¢|=1. f(¢) must be regular and univalent in some circular ring
r<_{¢| <R with » <{1<R. The class of all curves C which are analy-
tic and belong to functions f(¢) which are regular and univalent in a
fixed ring (r, R) shall be called the class of uniformly analytic curves
with the modulus of analyticity (r, R).

Because of the normality of the family of univalent functions in a
fixed region the concept of uniform analyticity lends itself easily to the
construction of significant extremum problems. In particular, let us ask
for the minimum value of A, within the family of all uniformly analytic
curves with modulus (r, R).

We may consider our problem as an extremum problem on univalent
functions. Given the class of all funetions f(¢) which are regular and
univalent in ¢ <|¢|< R, to find one in the class which maps the unit
circumference onto a curve C with minimum 4,. The existence of such
a function follows easily from the usual normality arguments and we
proceed at once to characterize the extremum function by varying it
and comparing it with nearby competing functions.

Since the curve C mapped by the extremum function is analytic
and sinee its 4, is obviously finite, the lowest eigen value can have only
a degeneracy of finite order. Let w{®(z), ---, w{™(2) be a complete and
linearly independent set of eigen functions belonging to 4, in D, while
WP(z), « -+, W,™(z) are the corresponding eigen functions in D. Suppose
that the image of |¢|=r forms a continuum [ in D while the image of

lcl=R forms the continuum 7" in D. Let 2 € f; there exists an infinity

of analytic functions which are univalent outside of the continuum I°
and which have a series development [11]

(1) r=z+ i P

=1 (2= 2,)”
which converges for |z—z| > p. The coefficients a, of this development
are uniformly bounded

(2) la,| << 4%

and p is a positive parameter which can be chosen arbitrarily small.

Let us insert the extremum function z=f({) into (1); we will thus
obtain an infinity of competing functions regular and wunivalent in
r<|¢] <R of the form

3 ()= LT
(3) FO=AQ) B o)

They define curves C*, the images of [¢|=1 by f*(). If i¥ denotes
the lowest eigen value of C*, it defines a root of the secular equation
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derived in (3.20):
(4) det ||62,+ 6, + (22— DR{a, 0P (2,)0 (2,)} || =0

with 64,=2¥—2,+0(p*). 64 is the lowest root of (4); on the other hand,
we conclude from the minimum property of C that

(5) 0k = o(p?)

and this holds, a fortiori, for all other roots of (4). Hence we can
assert that the quadratic form

(6) Q= 3 RiapaP @O} b

satisfies the inequality

(7) Qu(t) = o(p*)

for every choice of the unit vector ¢, ---, ¢,. Dividing by p* and pas-
sing to the limit p=0, we obtain

(8) Ha, 5 BO@I bt 0.

Jr k=1
In particular, we obtain
(8) Raab(z)} <0, w(2)=w"(2,) -

This inequality holds for every choice of the univalent variation function
(1). We now apply the following theorem [11, 14]:

If for every point z,€ I' and every univalent function (1) holds
(9) m{afxs(zu)} <0

where s(z,) ts regular analytic on I~’, then [ dtself is an analytic curve
2(t) which satisfies the differential equation

(10) (Zz)zs[z(t)]:1 .

Hence we can deduce from (8) that I' satisfies the differential
equation

(11) (g%)zzb[z(t)]2=1 .

In exactly the same way we prove that the extremum function f(¢)
maps the circumference |¢|=7r onto an analytic arc- /7 which satisfies the
differential equation
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(12) (3i>2w[z(t)]2: 1.
Let us put
(13) 2(p)=[f(re?);

if ¢ runs from 0 to 27 the image point 2z(¢) will vary over I'. We
deduce from (12) the inequality

(14) CF @Y wlAOr <0 for [C|=r.

Similarly, we derive from (11) the inequality

(15) S ECywlAF <0 for |C|=E.
We introduce the analytic functions

(16) AQ)=L (A Q)] BE)=L A1,

Clearly, A(¢) is regular analytic in the ring domain r <|¢| <1 while
B(¢) is regular analytic for 1 <|¢|<R. (14) and (15) can be expressed
as L

(14) A(¢)=imaginary for |l|=r
(15") B(¢)=imaginary for |(|=R
while equation (1.34) leads to

1

17 — A== B+ AB(2)] for [{]=1.

We have by the Schwarz’ reflection principle in view of (14') and
(15'):

(18) A@)=— A(z_) , BO)=— B(I?) .

Now we can rewrite (17) into the form
(19) —1AQ)=(A—1)""[B({)— LB(R)] for [£|=1,

since £=¢-! for |¢|=1. By (18) we see that A(¢) is analytic in the ring
< ¢} <1 while B(¢) is analytic for 1< |{¢|<R’. From (19) we can
continue B(¢) into the ring &k <|¢] <1 where k=max (+*, R™*). By (18)

again B(¢) is, therefore, analytic in the ring k& <7|¢| < % and by (19)
we may continue A(¢) beyond the unit circumference. Thus A({) and

B(¢) are certainly analytic for |{|=1. The interrelation between A()
and B(¢) is, however, best understood by the use of Laurent series
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development.
We put

(20) AQ=i 3 al”, BO)=i 3 5L

= —oco =—o00

and are sure that both series have a ring of common convergence
which contains the unit circumference. The functional equations (18)
are reflected in the coefficient relations

(21) A=, b_,=b, R .
On the other hand, a comparison of coefficients in (19) yields
(22) — i, =(—1)""*(1— 1, B*™)b, .
If we replace » by —n and apply (21), we also find
(23) 1, = (23 —1)"V(R™ — 2 )r—*"b,, .
But (22) and (23) lead obviously to the alternative

,'4276 + RZn

(24) a,=b,=0 or A=
1+ (rR)y™

Thus A(¢) and B(¢) are necessarily rational functions and the possible
values of 2, are restricted to the various values in (24) for integer n.
Observe that n=0 is excluded since 2, is surely greater than one. It
is sufficient to consider only positive values of n since —n yields the
same A,-value as +n. We may put equation (24) into the form

A—1 R™—1 1—¢»

(25) et i B it
A+l Bl T4

This form makes it evident that the minimum value of 2, for fixed r
and R is attained for n=1. Hence, for the lowest eigen value 2, which
belongs to a uniformly analytic curve C with the modulus (r, E), we
have established the inequality :

r+R

(26) 12.-11—(&5); .

In order to conclude the investigation we have to show that there
exists, in fact, a curve C within the class considered for which equality
is attained in (26). This curve can be found by a careful analysis of
the variational conditions (11) and (12). At first we shall state the
nature of an extremum curve C and compute its 1-value from its defi-
nition. Later we shall show that C is uniquely determined up to linear
transformations,
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Let us consider the z-plane slit along the linear segment —ip, +ip
of the imaginary axis and along the segments |z| >>1 of the real axis.
Every circular ring r» <|¢| <R can be mapped on such a canonical do-

main ; the real parameter g depends on the ratio R . For reasons of
r

symmetry we can obtain that the points ¢=R and ¢=—R are mapped
into z=1 and 2= —1, respectively, while the points ¢=ir and = —ir
go into ¢# and —ig. The mapping function f(¢) has the symmetry
properties :

(27) fO=A), —AO=A-0,

and is uniquely defined. Let C be the image of the unit circumference
Z]=1 under the mapping z=/(¢). We want to prove that C is the re-
quired extremum curve,

We denote again the interior and exterior of C by D and D, re-
spectively. Observe that the functions

(28) Wa@=a e+, {—F1(2)

¢
are regular analytic in the entire domain D while the functions
(29) W.@=B. (" + 7). =1
are regular analytic in D. Let us define the eigen funections of D and
D by

(30) wn(z>=§§ W), @) =§lz W) .

Differentiating (28) and (29) with respect to ¢, we find

v . n (___,),.2)7&
(31 wLAOW O =nd (e~ 20)
and
% ()= oI
(32) BLAOW (O =nBi(¢ ).

The boundary conditions (1.84) for the eigen functions of D and D will
lead to the requirement

@) —id(e =G )= - B (e - )2 B (L - )
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for |¢|=1. This can indeed be fulfilled by satisfying the conditions
(34) —id (2 —=1)"=B,—1,R"B,
_iAn(_’rZ)n('l?z— 1)”2=Ban ""'ln-—B—n

which is always possible if and only if

(35) jo=Er (=)
T—(= Ry

Conversely, it is evident that the values A, determined by (35) for

n=1, 2, --. lead to actual eigen functions for the domains D and D.
Observe, in particular, that

R+
%9 MR
which verifies that C is indeed an extremum curve and that our esti-
mate (26) is the best possible one.

There remains finally the uniqueness question relative to the ex-
tremum curve C. In order to answer it we return to the functions
A(%) and B(¢) connected with the extremum function f(£). Since we
know now that in their Laurent development all coefficients vanish ex-
cept for a,, a_, and b,, b_,, we have by (16), (21) and (22)

U v . ,’-2
(36)) CF LA =ia(¢ + f)
and

PV (. R
(37) CFOBLACI=ib(¢ )
with
(38) i (R —1)P=(R—1)b, .

We made the unessential assumption that a, is real which leads to the
consequence that b, is pure imaginary.
We integrate (36’) and (37) and find

(39) W[f(C)]zial(C - 2 ) , WA I=ib: (C + %)

where W(z) and W(z) are properly chosen integrals of w(z) and w(z).
The function W(z) is single-valued in D; f(¢) is regular analytic on
|¢l=r and can be continued somewhat beyond this circumference. It
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will take values near the continuum I” after this continuation; but these
values in the z-plane were already attained for some values ¢ in || > 7.
Hence W[ f(¢)] must take the same values for |¢| somewhat larger than
r and for some |¢| less than ». From (39) we recognize that these
corresponding ¢-values must be connected by the equation

(40) Cl—£=C‘z_r— .

Hence we proved the functional equation for f(¢):
—r(-

4 FO=1(~%).

In exactly the same manner we derive from the second formula
(89) the functional equation

(42 fo=i(%) -

We know already that the extremum function f(¢) will remain an
extremum function after a linear transformation since we showed at
the end of §1 that 1, does not change under linear transformations.
Hence we may assume without loss of generality that

(43) fr)=0, flR)=1, fGR)=ce.
From (41) and (42) conclude then that
(44) f(=r)=0, f(—iR)=o

and in view of the univalent character of f(¢) in »<|¢|< R we con-
clude that f(¢) has simple zeros and simple poles at these points. It is
now easy to obtain for f(¢) a product representation in terms of its
known zeros and poles in the entire ¢-plane and to identify it with the
function which maps the ring » < |¢| <R on the above described slit
domain. This completes the uniqueness argument.

Let us return to the inequality (26). An important special case
deals with all uniformly analytic curves with the modulus (r, «). This
is the class of curves which are images of [¢|=1 mapped by functions
which are regular and univalent for |[£|>#. We find the estimate

(45) h=r?
and the extremum curve in this case is the ellipse C which is obtained
from |¢|=1 by the mapping

46 —e+ T,
(46) ZCC
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This follows directly from (1.45) as well as from our preceding character-
ization of the extremum domain. The inequality (45) can also be easily
derived from the estimate (3.29%); thus this particular result could have
been proved by means of a Hadamard type variational formula.

As for the class of uniformly analytic functions with the modulus
(0, R), we have analogously the estimate

(47) I

The extremal curve C is obtained from the unit circumference by the
mapping

2R¢

(48) o

This mapping is best understood if we consider the intermediate step

(49) p=R~C+ é

which maps the unit circumference onto an ellipse with 2,=R? and the

circumference |f|=R onto the linear segment <—}23, §> The ad-

ditional linear transformation z=1§~ does not affect the eigen values
7
and leads to a regular univalent function in [|<R. We could have

obtained the mapping (48) also as a special case of the preceding
characterization of the extremum curve C.

6. Concluding remarks. We have restricted ourselves in the pre-
sent paper to the case of simply connected domains. It is possible to
extend a considerable amount of the results to the case of multiply-
connected domains [3, 10, 14]. The investigation becomes, however,
more complicated for two reasons. First, we will have a larger number
of complementary domains and, second, we will have additional eigen
functions belonging to the eigen value one. In fact, let C, C, ---, C,
denote the n components of the boundary C of the domain D; let w,(2)
be that harmonic function in D which takes on C, the boundary value
0,.. Then it is easily seen that

(1) w,(@)=i° w,(z)
o0z
will satisfy the integral equation

(2) w,(2)= %Sg —u;_(ﬁﬁ)—,dr
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All other eigen functions of the integral eguation (1.13) belong, how-
ever, to eigen values which are larger than one.

The concept of the dielectric Green's function carries over to the
case of higher multiplicity and analogous series developments in terms
of the eigen functions of the Fredholm integral equation are possible.
Likewise, the different variational formulas can be extended to multiple
connectivity. But, clearly, it will be wwach more difficult to draw simple
conclusions from these formulas. One has only to consider the great
use made in the preceding section of Laurent series developments in
order to appreciate the great simplification introduced by the assumption
of a simply connected domain.
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A THREE POINT CONVEXITY PROPERTY

F. A. VALENTINE

There exist an interesting variety of set properties determined by
placing restrictions on each triple of points of the set. It is the purpose
here to study those closed sets in the n-dimensional Euclidean space
E, (in particular the plane E,) which satisfy the following condition.

DEFINITION 1. A set S in E, is said to possess the three-point
convexity property P, if for each triple of points «, y, z in S at least
one of the closed segments xy, yz, xz is in S.

The principal result obtained in this paper appears in Theorem 2.
In order to achieve this result a series of lemmas and theorems is first
established. Most of these are also of independent interest.

1. Closed connected sets in E,, n>1, In this section we assume
that S is a closed connected set in E,, n_>1. The concept of local
convexity is a useful one for our purpose, so we restate the well-known
definition.

DEFINITION 2. A set S is said to be locally convexr at a point
qe S if there exists an open sphere N with center at ¢ such that S-N
is convex. If a set is locally convex at each of its points, it is said to
be locally convex.

NotatioN 1. The open segment determined by points 2 and y is
denoted by (ay), whereas zy denotes the closed segment. The line de-
termined by z and y is denoted by L («, y). The boundary of a set S
is B(S), and H(S) denotes the closed convex hull of S. The symbol +
stands for set union, and the symbol - stands for set product.

THEOREM 1. Let S be a closed connected set in E, (n=>=1) which
has property P;. Then either S is convex or S is starlike with respect
to each of its points of local nonconvexity (It may be starlike elsewhere).

Proof. If S is locally convex, then by a theorem of Tietze [4, pp.
697-707], [2, pp. 448-449], the set S is convex, in which case it is
starlike with respect to each of its points. Hence, suppose S is not
locally convex, and let ¢geS be a point of local nonconvexity. This
implies that in each spherical neighborhood N, of ¢, there exist points

" Received June 26, 1956.
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x; and y; of S such that (x;,)-S=0 (see Notation 1). Choose any point
xeS. Property P, implies that either xy, or ax; is in S. If the radius
of N, is 1/i, then as ¢—o the set wxx,+ay, converges to gz, which then
must belong to S. This completes the proof.

REMARK 1. The set of all starlike points of a set S 4s called the
convex kernel of S. The convex kernel of a set S C K, is convex. See
Brunn [1].

COROLLARY 1. FEach point of local nonconvewity of the set S im
Theorem 1 is contained in the boundary of the convex kernel of S.

COROLLARY 2. For the set S above, let H be any r-dimensional plane
section of S, where 1< r<n—1). Then either H-S is starlike or H-S
consists of two convex components.

Proof of Corollary 2. If H-S is connected, then since H-S has
property P;, Theorem 1 implies H.S is starlike. If H-S is not con-
nected, property P, implies trivially that H-S consists of two and only
two components, each of which must be convex.

COROLLARY 3. Fach component of the complement of S is unbounded.
This is an immediate consequence of the starlikeness of S.

2. Closed connected sets in FE,. We restrict ourselves to closed
connected sets in K, in this section, and the following definitions are
useful.

DEFINITION 3. A component of the complement of a closed con-
nected set S is called a residual domain of S. A cross-cut xy of a re-
stdual domain K of S is a closed segment such that xe S, yeS and
(zy) C K (See Notation 1).

DEFINITION 4. An isolated point of local nonconvexity of S is called
a p-point. A point of S which is a p-point or a limit point of p-points
is called a gq-point.

LEMMA 1. FEach open segment (uv) of the convex kermel of S con-
tains no g-points of S. (see Corollary 1).

Proof. Suppose w is a g-point contained in (uv). Clearly S L(u, v)
(see Notation 1). Choose 2 S—L(u, v). Since uv belongs to the convex
kernel of S, we have triangle wzvC S. But this implies that each
sufficiently small neighborhood of w contains no cross-cuts of the com-
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plement of S, since such a cross cut xy would have to have its interior
(xzy) in one of the open half-planes bounded by IL(u, v).

LEMMA 2. Let S be a closed connected set in E, having property
P,. Then if S ts not convex, it contains at least one isclated point of
local nonconvexity.

Proof. Let xy be a cross-cut of a residual domain K of S. Since
S is closed and connected, the set K—(xy) is the union of two mutually
exclusive open sets, denoted by K, and K, [3, p. 118]. Since S is star-
like, Corollary 3 implies that one and only one of these two sets is
bounded. Let it be K, and denote the boundary B(K))— (zy)= C(K,).
The set B(K,) is a continuum [3, p. 124]. Since K, is a bounded domain,
and since C(K))-(xy)=0, it follows that C(K)) is a continuum. Define
B, to be the set of points 2, € C(K,) such that xz, S, and define B, to
be the points z,€ C(K,) such that %z, < S. Since xzy S, property P,
implies C(K,)=B,+B,. Moreover, z€ B, ye B,, and moreover B, and
B, are each closed since S and C(K,) are closed. Hence, since C(K)) is
a continuum, it is well-known that B,-B,5£0. Hence, let pe B,-B,, and
we must have ap S, yp S, so that K, is interior to triangle apy.
Since p € B(K,), it is clear that each neighborhood of p contains a cross-
cut of K,, so that p is a point of local nonconvexity of S.

To prove that p is an ¢solated point of local nonconvexity, observe
that the lines L(w, p) and L{y, p) determine four V-shaped domains,

each bounded by two rays. Order these V,, V,, V,, V. so that ayp C V,,
and so that the sets V, are arranged consecutively in a clockwise direc-

tion about the point p. Suppose a p-point p, e V;—p exists. Then since
px+py S, we would have K, Cayp, which would violate the fact
pe B(K;). Suppose a p-point, say p, exists in V,. But this implies that
xpp, C S, ypp, < S. But this again would violate the fact pe B(K)). In
exactly the same way V, contains no p-point of S. Now consider V..
If p, is a p-point of S in V,, then ypp,+xpp, S, which implies that p
is an isolated p-point since V, contains no p-point ‘of S. Finally, Lemma
1 implies that no sequence of p-points of S can exist on L(w, p)- V; or

on L(y, p)- V, having p as a limit point. Thus we have shown that p
is an isolated p-point of S.

REMARK 2. Let zy be the cross-cut in the above proof, and let p
be the associated isolated p-point. Then the closed triangle xyp is such
that the set zyp-S is the union of two convex sets having only the
point p in common. One of these convex sets contains zp and is de-
noted by C(xp), and the other denoted by C(yp) contains py.



1230 F. A. VALENTINE

Proof. Let L, and L be lines parallel to xy, such that L, separates
p and @y, and such that pe L. Let H; be the closed half-plane bounded
by L, and containing zy. Suppose L, — L as ¢ —> o so that H,,, D H,.
Since S-H,-ayp is locally convex, by Tietze’s Theorem [4, loc. cit.] each
of its components is convex. Property P, implies that there are at most
two such components. The fact that ay & S, implies there are exactly two
such components. Denote them by C, and D,. Clearly C;,, D C,, D,,; D> D,
and hence C; and D, converge to convex sets having p in common. They
have only p in ecommon, otherwise p would not be a boundary point of
K, as defined in the proof of Lemma 2. One of the convex sets con-
tains xp and the other yp so that the notation in the remark is justified.

DEFINITION 5. Let @ be the set of g-points of S.

REMARK 3. Corollary 1 implies that @ is contained in the boundary
of its own convex hull H(Q), designated by B(H).

LeMMmA 8. The boundary of H(Q) s connected, and it can contarn
at most one ray.

Proof. Since H= H(Q) is convex, if B(H) were not connected, it
would have to consist of two parallel lines (this is known). However,
Lemma 1 would then imply that each of these parallel lines would
contain at most two ¢-points. But this would imply that @ is bounded
in which case B(H) would be connected. If B(H) contained two rays,
then Lemma 1 would again imply that @ is bounded, which would again
be contradictory.

DEFINITION 6. An edge of the boundary B(H) is a closed segment
xy or a closed ray woo whose endpoints are g-points. An open half-plane
whose boundary contains zy(or x«), and which does not intersect H(Q)
is called an open half-plane of supporé, and it is denoted by W.

LEMMA 4. Let W be an open half-plane of support to H(Q), which
abuts on an edge xylor x). Then H(Q)+ W-S is a convex subsel of S.

Proof. If we H(Q) and if ve S-W, then uv C S, since S is starlike
with respect to . This, together with the facts x e B(S), ye B(S), and
property P, imply that uv-azy=£0 (or uv-x o £0), so that uv C H(Q)+
W.S. Suppose ueS-W, veS-W. Let ze(ay) or (xze). If Xuv)Z S,
since uz C S, vz S, then triangle wwvz would contain a p-point of S
(See the first paragraph of the proof of Lemma 2). But this is impos-
sible, since W contains no p-points of S, and since by Lemma 1 the
open segment (xy) or (xew) contains no p-points of S. Hence H(Q)+
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W-S is convex. It should be observed that if H(Q)==2xy, then H(Q)+
W-.S may or may not be closed.

LEMMA 5. Let x;y; be a countable number of poirwise disjoint edges
wn B(H)=B(H(Q)). Assume that B(H) contains at least three edges,
and let W, be the open half-plane of support to H(Q) whose boundary
contains (x;y;) (xy; may be x;00).

Then the set HQ)+S-2, W, is a closed convex set.

Proof. Without loss of generality establish an order on the bound-
ary B(H), and assume that in terms of this order, z; is the beginning
of the edge x4, and that y, is the endpoint of z;4;. Select any two
disjoint edges x,, and @,y;, and without loss of generality assume that
x;, Y, @, Y, fall in an order so that an arc of B(H) has x; and y, as
its endpoints, and so that all four points lie on this arc in the order
given above (B(H) may be unbounded). Let the convex set which is
bounded by the two lines L(z;, y;) and L(z;, ¥;), and which contains the
quadrilateral 4.z, be denoted by V. The segments xy, and z,
divide V into three parts; one is the closed quadrilateral zy.x,y,; the
second is a three sided closed polygonal set adjacent to a4, and denoted
by 4(x;, y;); the third is a three sided closed polygonal set adjacent to
z;y, and denoted by 4(z;, ;). The last two sets may or may not be
bounded. If the edge xy, is a ray x,o instead, then the same type
of division occurs, in which L(x,;, ) is a line parallel to the ray x;c
so that 4(z;, ) has two bounding sides instead of three. We must
have S-W,C dx;, y;), for if this were not so, it is easily seen that
either 2, or y, would be an interior point of a triangle which would
belong to S. But this would contradict the fact that «, e B(S), y, € B(S).
Similarly S- W, C 4(z,, y;). This is true whether x,y, is a finite segment
or a ray wco.

Now, choose two points # and » in U=H(Q)+S-2,W,. If u and
v are in H(Q)+S-W,, then Lemma 4 implies wo CU. If ueS-W, and
ve S-W,, then by the preceding paragraph u e d(x;, ¥,), ve€ 4(x,, y;) (or
v € d(x;, ). Since V=4d(x;, y,)+axy.xy,;+ 4d(z;, y,;) is convex, and since
My, ¥s) 2y =wy;, we have uv-xy,5% 0, whence uv C U.

To prove that U is closed, observe first that if there are a finite
number of disjoint sets w,y; (there are at least three edges) then U is closed,
since W, S C 4(x,, y,) implies W,-SC W,-S+B(H). If there are an
infinite number of sets W,, then let s be a limit point of an infinite
sequence of sets W,,-S. Since W, C 4(x,,, v;,) by fixing (z,, y;) of the
preceding paragraph, it follows that (w,,, ¥;,) > ¢, a fixed point of B(H),
as 7, <. However, since in this situation, we must have 4(x; , ¥, )—¢
as i,— o, it follows that s=¢ge H(Q). Hence, it is clear that U is
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closed, since H(Q) is closed.

THEOREM 2. Suppose S is a closed connected set in E, such that for
each triple of points z, y, z in S at least one of the segments xy, Yz, 2
2s in S.

Then S 1is expressible as the union of three or fewer closed convex
sets having a nonempty intersection. The number three is best.

DEFINITION 7. Let N denote the cardinality of the set of p-points
of S in Theorem 2.

THEOREM 3. If N is not an odd integer greater than 1, then S can
be expressed as the union of two or fewer closed convex sets having o
nonempty intersection.

Proofs of Thecrems 2 and 3. We recall that @ is the closure of the
set of p-points of S. The proof is divided into 5 cases, depending upon
the value of N. The five cases are: N=1; N=2; N=2m >1; N=2m
+1>1; N=o.

Case 1. N=1. Let Q=p, and let C be a circle with center at p
and having radius . The set S-C is a closed connected set having
property P, and having p as its only p-point. If S-C satisfies the con-
clusions of either Theorem 2 or Theorem 3, it is quite clear that S=
limS-C as r — o will satisfy the same conclusions. Let the boundary
of the convex hull H(S-C) be D(H), since B(H) stands for the boundary
of H(Q). The rest of the proof will show incidentally that D(H)-S has
one, two or four components.

Suppose D(H)-S has exactly three components and designate these
by B; (t=1, 2, 8). It is easy to show that B,z {p} (¢=1, 2, 3). Choose
points a, € B; with x,5%4p (¢=1, 2, 3). Property P, implies that at least
one of the intervals xw,, z@;, =z, is in S. Suppose =z, CS. Since
x,€ D(H) (i=1, 2), and since B,-B,=0, we must have L(x;, x,)-S=x.2,.
If p¢ (z2,), then let H,, be the closed half-plane bounded by IL(z, z.)
and not containing p. Since w, e B,, x,€ B, with B,-B,=0, there must
exist a cross cut of the complement of S in H,,. However, by the proof
of Lemma 2, there would exist a p-point in H,,-S which contradicts the
fact that @=p. Hence pe (vw,). Since pe (vw,), if xw, CS, the proof
of Lemma 2 would again imply the existence of a p-point in that closed
half-space bounded by L(z;, x;) which does not contain p. However
this contradicts @=p. Hence, xx; < S. Similarly zx, & S. Property
P, and the closure of S implies that for points x e B, sufficiently near
x, we have xx,CS, ax, S, zx,ZS. Applying the same reasoning
to x, x., x; that we applied to z,, x,, x;, we get pe (zz,) for all & near
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x;. This can only be true if B,=x,. Similarly, B,=x,. However, since
B, is contained in only one of the open half planes bounded by L(x,, x.),
the facts B,=zx; (=1, 2) simply that xz, C D(H)-S, which contradicts
the fact B;-B,=0. Hence D(H)-S cannot have exactly three components.
Suppose D(H)-S has at least four components, and designate four of
these by B, (=1, 2, 8,4). The above argument implies that B,=uz;,
€ D(H)-S, and these can be renumbered so that pe (vw,), pe (xx.).
Clearly any fifth component B; could not exist, since the above argu-
ment applied to z,, 2., x; and x;€ B; would yield pe (zx,), »e€ (ax;), so
that @;=wx,, a contradiction. Thus if D(H)-S has more than two com-
ponents, then S-C is the union of two line segments having an interior
point in common.

Now, suppose D(H)-S has exactly two components denoted by B,
and B,. Let the end points of B, be x; and y, ordered so that y.x, and
Y.z, are cross-cuts of the complement of S. The points x; and ¥y, need
not be distinct. We will prove that each of the sets P, = H(B;+p)+
Clz,0)+ Cly,p), (i=1, 2) is convex. (See Remark 2 following Lemma 2
for the definitions of C(xz;p) and C(y,p)). Property P, and the fact that
D(H)-S=B,+ B, implies that B;+x,p+y,» is the boundary of H(B,+p).
We will prove that P, is convex. Since each of the sets H(B,+p),
C(x,p), C(yp) is convex, to show that P, is convex, it suffices to select
points ze H(B,+p), ue C(xp), ve Clyp), and to show that uv+uz+vz
C P,. We must have uwv-2,p=%40, uv-yp%0, for if this were not so,
the fact D(H)-S=B,+B, would imply that wv-P,%0. However, this
would contradict property P;. Hence, we have uwv C zy,p+ C(a,p)+ C(y,p).
Thus wv C P,. In the same manner uz C P,, vz P, so that P, is con-
vex. The same argument applies to P..

Finally if D(H)-S has exactly one component, and @=p, it can be
shown readily that there exists a line through p which divides S-C into
two closed convex sets having p in common., This completes the proof
for N=1, and oddly enough it appears to be the most difficult to prove.

Case 2. N=2. Let Q=p,+p, The line L(p,, p,) divides the plane
into two open half-planes W, (¢=1, 2). Lemma 4 implies that W,-S is
convex. If W,-S=0, then S=W,-S+S-L(p, p,) yields the desired con-
clusions of Theorem 2 and 3. Hence suppose W,-S=£0 (i=1, 2). Let
U=W,-S+W,S. If U is convex, then S=U+S-L(p,, p.) yields the
desired decomposition. Suppose U is not convex, then we can show
that S-L(p, p.)=U-L(p, p,), for suppose a point wueS-L(p, p,)—
U-L(p, p,) exists. Since U is not convex, there exist points x,€ W,-S
such that xx, & S. Moreover ux, S, since u¢ W,-S. However, this
violates property P,. Thus if U is not convex, S=W,-S+ W,-S, and
this is a desired decomposition of S into two convex sets.
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Case 3. N=2m >2. In this case the hull H(Q) is a convex polygon,
each segment of which is an edge having p-points as endpoints (See
definition 6). Order the edges x,x;., of the boundary B(H) counterclock-
wise so that (¢=1, 2, ---, 2m; &y=®uy+1). The open half-plane of sup-
port to H(Q) adjacent to x,%,,, is denoted by W,. By Lemma 5 each
of the sets

S1 EH(Q) +S- g W‘Zi—l
(1)
S,EH(Q)-!—S-zZl W,

2m
is a closed convex set. Moreover, since S H(Q)+ >, W, we have
=1
S+ 8,=S.

Case 4. N=2m+1>1. As in Case 3, let ¢,=uzx,,, (¢t=1, +--,
2m+1; #,=2a,,.,) denote the ordered edges of B(H), and define S; and
S, as in (1).

Let

Ss EH(Q)+S' W'2m+1 .

By Lemma 5, the sets S;, S, and S; satisfy the conclusions of Theorem 2.

Case 5. N=oo. In order to prove this case, the following defini-
tion is helpful.

DEFINITION 8. A connected closed subset [ of the boundary B(H) is
called a polygonal element if the following conditions hold :

(a) It is the closure of the union of edges of B(H) (see Definition 6).

(b) Its endpoints (one, two or none) are limit points of p-points
of S.

(¢} If I=B(H), then I contains at most one limit point of p-points.
If 14 B(H), then only its endpoints (one or two) are limit points of
p-points.

Observe that these conditions imply that a polygonal element is
maximal in the sense that it is not a proper subset of a larger polygonal
element.

The number of polygonal elements of B(H) is countable, hence we
can well-order them easily. Let I, 1, ---, I, --- designate such a well-
ordering.

For each polygonal element I, divide the edges it contains (see
Definition 6) into two classes M) and M: such that no two edges of
M} (i=1, 2) are adjacent, that is, have an endpoint in common. It may
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happen that one of the M! may be empty. For each edge eec M! we
let W/ denote the open half-plane of support to B(H) whose boundary
contains e. Define

F;:: 2 Wei'S (7‘:1! 2) ’
eent
and let
Si=H@Q)+ > F; (=1, 2) .

Since each edge in M, is separated from each edge in M} (n£m),
Lemma 5 implies that S; and S, are closed convex subsets of S. More-
over, since for each point xe S, either x€ H(Q), or x is contained in
some Wi-S, we have S=S,+S, and S,-S,40.

To prove that the number “three” in Theorem 2 is best consider
the familiar two cell formed by a five-pointed star. It is a simple mat-
ter to verify that this set has property P,, and that it cannot be ex-
pressed as the union of two convex sets. The analogous 2m 41 pointed
star behaves the same way.

3. Concluding remarks.

(a) It should be noted that the converse of Theorem 2 is not true.
For instance, the set consisting of three segments xz; (¢=1, 2, 3), where
each angle ~wax;=120° (¢544), is the union of three convex sets; yet
it does not have property P..

(b) It would be of interest to characterize those sets in FE, which
are the union of two closed convex sets. It appears that such a charac-
terization will follow from an investigation of the cardinality of the set
B(K)-B(S), where K is the convex kernel of S.

(¢) The theory in E; needs to be settled. In view of §1, it is
natural to ask the question. What are the closed connected sets in E;
such that each of its plane sections is either starlike or the union of
two disjoint convex sets?
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THE CENTER OF A COMPACT LATTICE
IS TOTALLY DISCONNECTED

ALEXANDER DONIPHAN WALLACE

The purpose of this note is to prove the theorem of the title. A
topological lattice is a Hausdorff space together with a pair of continu-
ous functions N:LxL— L, \/: LxL — L satisfying the usual conditions
for lattice operations. As is customary we may write =~ y in place of
A, v). All references are to Chapter II of [1]. We assume the reader
to be familiar with the elementary facts concerning topological algebras
(groups, lattices, semigroups) and set-theoretic topology.

THEOREM. The center of a compact lattice is totally disconnected.

Proof. Let L be a compact lattice. As is wellknown L has a zero
and a unit, 0 and 1. If A is the set of pairs (z, y)e Lx L such that
z~y=0 and 2~/ y=1 then A=A""(0)N\V/*(1) so that A is closed.
The projection (x, y) —> x takes A onto the closed set B and B is the
set of all xe L, which admit a complement.

Now N, the set of neutral elements of L, is the intersection of the
maximal distributive sublattices by Theorem 11. But if D is a dis-
tributive sublattice of L its closure is also a distributive sublattice. It
follows that N is closed. By the corollary to Theorem 10 the center C
of L is N\ B so that C is closed.

By the lemma on page 27 each element x € C has a unique comple-
ment k(z)e C. We will show that k:C — C is continuous. If G is the
subset of C'x C consisting of all (z, k(x)) with e C it is enough to show
that G is closed since C is compact. But by the remarks above we
have G=(Cx C)N\ A7HOYN V-1(1).

Now C is a distributive lattice (Theorem 9 and Corollary p. 29)
with unique complements. Thus C is a commutative topological group
under the operations

z+y=(@ k) k@)~ y), —x=z

all of whose elements are of order 2, that is, z+2=0 for all . If @
is the component of C containing 0 and if ¢€Q, ¢=40, then there isa
continuous homomorphism f taking @ into Z, the reals mod 1, such that
fl@)s~£/(0). Since f(®) is connected it contains an interval of Z and
therefore contains an element not of finite order. Since the order of
each element of @ is two this is a contradiction. Hence @ contains

Received August’6, 1956.
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only 0 and therefore is totally disconnected. The proof of the Theorem
is complete.
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TWO THEOREMS ON TOPOLOGICAL LATTICES

ALEXANDER DONIPHAN WALLACE

A topological lattice is a pair of continuous functions
A: LxL—->L, N:LxL-—>L

(L a Hausdorff space) satisfying the usual conditions for lattice opera-
tions. A set A is conver if x, ye A and < a <y implies a € 4. This
is equivalent to A=(A4 N L)YN(AN L).

After proving a separation theorem involving a convex set we show
that a compact connected topological lattice is a cyclic chain in the sense
of G. T. Whyburn and that each cyclic element is a convex sublattice.
In doing so we rely on some results recently obtained by L. W.
Anderson.

THEOREM 1. Let L be a connected topological lattice and let A be @
convex set such that L\A is not connected. Then LN\A is the union of
the comnected separated sets (A N\ L)NA and (A\/ L)\NA which are open
(closed) if A is closed (open). If L is also compact then A is connected
of 4t is either open or closed.

Proof. Let INA=U\J V with U*N\ V=¢=U N V* and let pe U,
ge V. The connected set (p A\ L)U (g /\ L) meets both U and V; hence
it meets A. Adjust the notation so that (¢ A\ L)\ A7 ¢ and thus
qe AN/ L. If (¢g\/L)N A% ¢ then ge A /\ L and hence ge(4 A\ L)
N(AN L)=A. This being impossible we infer that (¢\/ L)N\ 4A=¢
and ge(4A\/ LNA=(A\/ LN(4A A\ L). The connected set (p\/ L)U
(¢\/ L) intersects U and V and so intersects A. But (¢\/ L)N\ 4A=¢
so that (p\/ L)\ A% ¢ and hence pe AN L. Were (p NL)NA%¢
we would also have pe A\/ L and so pe A, a contradiction. Thus
ANL)NA=¢ and pe (4 LN\A=(A\ L)\N(A A L). Now take ye V
and suppose that y is notin A \/ L so that (y /\ L)\ A=¢; then (p A L)
N A= ¢ since (p A\ L)YU(y /\ L) is a connected set meeting U and V.
But this is contrary to the proven fact that (p A\ L)\ A=¢. We con-
clude that V C(4 \/ L)\A and, dually, that U (4 N\ L)\A. It follows
that L=(4A ANL)UAN L). Now ze(A\V L4 and xzeIL\V gives
xeUC(A N L)NA and this contradicts the convexity of A. Hence
U=(A N L)NA and V=(4\/ L)\A. To see that U A\ L=U we need only
note that xe U gives (¢ A\ L)\ A=¢ and thus (x A L)\ V=¢ (since z A\ L
is connected and contains @) and hence x AL C(A ALNAV L)=U.

Received- August 6, 1956. This work was supported by the National Science
Foundation.
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Dually, V A\ L=V and these equalities imply that U and V are con-
nected. If A is closed (open) then U and V are open (closed). This
completes the proof of the first sentence of the conclusion. If L is
also compact then H'(L)=0 [3] so that (as is well known) L is un-
icoherent. But L is locally connected, L=(A4 N\ L)\J(A4\/ L), and the
sets A A\ L and A\/ L are connected, and open (closed) [1] if A4 is
open (closed). Hence by a known result [2] we see that A=(4 A\ L)N
(A\/ L) is connected.

We assume that the reader is familiar with the cyclic element
theory of locally connected continua as given in [4]. We recall that a
locally compact connected topological lattice is locally connected [1].

THEOREM 2. Let L be a compact connected metrizable topological
lattice. Then L is a cyclic chain, each cyclic element of which is a con-
vex sublattice. If L is topologically contained in the plane then each true
cyclic element of L is 2-cell and L has the fixed-point property.

Proof. Let C be a true cyclic element of L, let z, ye C with <y
and let pe L such that 2 <p<y. If T is a maximal chain containing
z, p, and y then T is an arc from 0 to 1, as is well known [1].
Hence the set [z, y]={¢t|teT and o <t <y} is an arc from = to y [1].
Since C is an A-set [4] we know that [z, y]< C and thus peC.
Hence C is convex. Let D be the cyclic chain from 0 to 1, that is, D
is the smallest A-set containing 0 and 1 [4]. Then, by definition, 7'C
D and if we LN\D then the maximal chain 7" containing 0, , 1 is an
arc from 0 to 1 and thus 7C D, a contradiction. Hence D=L and L
is the cyclic chain from 0 to 1. Let 7, be 0, 1 and all points which
separate 0 and 1. Then L is the union of 7, and all true cyclic ele-
ments meeting 7, in two points [4]. Suppose that the true cyclic
element C meets T, in the cutpoints p and ¢. Note that neither 0 nor
1 is a cutpoint [3]. If z is a cutpoint then, since {z} is convex, L=
A\ L)U(@\/ L) and thus z is comparable with each ze€ L, by Theorem
1. We may assume that p<q. We will show that C={z|lp <z <q}.
The convexity of C proves the containment ‘“ > ?’. If xeC and if,
say, ¢ < q is false then we have ¢ < . By Theorem 1, L \g=((¢ /\ L)\q)
U (¢ L)\g) is a separation and C meets both members, contrary to
the fact that C is a true cyclic element [4] . Dually, « < p cannot be
false, proving the containment ‘‘ C > of the desired equality. It fol-
lows that C is a convex sublattice. The cases p=0 or g=1 are treated
similarly. The remaining results follow from the fact that H'(L)=0
[3] so that L is a locally connected continuum [1] which does not cut
the plane [4].
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DIMENSION AND NON-DENSITY PRESERVATION OF
MAPPINGS

G. T. WHYBURN

1. Introduction. In this paper consideration is given to conditions
under which the property of being non-dense in a space in the sense
of containing no open set in that space is invariant under certain types
of mappings. In some spaces and for some mapping types the issue
involved is essentially equivalent to the question of dimensionality preser-
vation. These questions are of interest and importance in numerous
mathematical fields. They are especially so in the study of topological
aspects of the theory of functions and it is toward this connection that
the results and methods in this note will be largely directed.

A single valued continuous transformation f(X)=Y will be called
a mapping. Such a mapping is open if open sets in X have open images
in Y and is light provided f-'(y) is totally disconnected for each yeY.
Also f has scattered point inverses provided that for each yeY, f'(y)
is a scattered set in the sense that no point of f-(y) is a limit point
of f(y).

As indicated above, a set K in a space X is non-dense in X provided
K contains no open set in X. On the other hand that K is dense in X
means that every point of X is either a point or a limit point of K. A
mapping f(X)=Y is said to preserve non-density for compact sets pro-
vided that f(K) is non-dense in Y whenever K is compact and non-dense
in X. For a mapping f(X)=Y, a subset X, of X is said to be semi-
dense in X provided X, is dense in some open subset of every open set
U in X whose image f(U) is also open in Y. Thus the property of
semi-density is a property of a subset of X relative to a mapping f on
X and not an intrinsic property of X, alone. ‘

For a mapping f(X)=Y, the set of all xe X such that x is a com-
ponent of f~'f(x) will be designated by the symbol D,. Also the symbol
L, will be used for the set of all #e€ X such that f-'f(z) is totally dis-
connected. Thus L, is the maximum inverse set in X on which the
mapping f is light, where by an inverse set I we mean a set which is
the inverse of its transform under f, that is, one satisfying the relation

I=r=f{) .

Accordingly L, may be thought of as the lightness kernel or 0-dimensional
kernel of the mapping f. Obviously we have L, CD,.

Received May 31, 1956.
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2. General setting. We begin with a theorem which was suggested
by the theorem of Alexandroff’s [1] on invariance of dimension under
countable-fold open mappings. Our proof closely parallels that of Alex-
androff for his theorem.

(2.1) THEOREM. Let f(A)=B be open and have scattered point
wnverses, where A and B are locally compact separable and metric. Then
A is the union A=Y A, of a sequence of compact sets such that f|A, s
topological for each n.

Proof. Let (U,) be a countable basis of open sets in A, so chosen

that U, is compact for each n. For each n, let F, be the set of all
xz e U, such that g,'¢,(x)=a where g, denotes the mapping f|U,. Then
F, is closed in U, by openness of f. Accordingly each F', is the union
of a countable sequence of compact sets and thus we can write > F,=
VA, where each A, is compact and lies in some F,,. Thus f|A4, is
topological for each n. Finally, 3, A4,=A, because if xe A, there exists
an m such that xe U,, and U, f'f(x)=2 and hence so that xzeF,, C

(2.11) COROLLARY. For any closed set K in A we have
dim f(K)=dim K .

(2.12) COROLLARY. If K s any closed set in A and V is any open
subset of f(K), then V contains an open subset U which is homeomorphic
with a subset of K.

For let K, denote the set K-A4, for each n. Then since V C 3 f(K,)
and each f(K,) is compact, some f(K,) contains an open subset U of
V. Then K,- f~Y(U) maps topologically onto U under f.

(2.13) CoOROLLARY. If A and B are 2-manifolds, (or n-manifolds),
then iof K is non-dense in A, f(K) is non-dense in B.

(2.2) THEOREM. Let A and B be locally compact separable metric
spaces and let f(A)=B be a mapping preserving compact non-dense sets.
Then for some ye B, f~(y) is totally disconnected.

Proof. For each integer n >0 and each ze 4, let U? be an open
set of diameter < 1/n containing x and having a compact boundary F=.
Let Uz, U;,, --- be a countable collection of these sets U; whose union
covers A and set

Fr=3F% , F=3F"=3% > F2 .
i ' i v

% n
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Now f(F)=#B. For if f(F)=B, then for some n and ¢ the set f(F'})
must contain an open set in B, as B is locally compact; and this is
impossible by hypothesis because F’;i is compact and non-dense for each
n and 4. Accordingly there exists a ye B— f(F'). Clearly f'(y) is
totally disconnected, because if it had a non-degenerate component C,,
then for 1/n < the diameter of C,, we would have C,-F; 70 where
C,-U;, #0.

(2.21) COROLLARY. Under the same hypothesis, the set Y of all
yeB with f~'(y) totally disconnected ts dense in B and L,=f"'(Y) s
semi-dense in A.

For if B, is any open set in B, we have only to set 4,= f-'(B,) and
apply the theorem to the mapping f|A4, to obtain the first conclusion
that Y is dense in B. To prove the second conclusion suppose on the
contrary that for an open set U which has an open image and which
we first suppose conditionally compact, L,-U is dense in no open subset

of U. Then L,-U is compact and non-dense, whereas f(L,-U) must
contain f(U) since Y is dense in f(U) by openness of f(U). This is
a contradiction.

Finally, to see that U need not be conditionally compact, we need
only show that any open set V in A with an open vmage contains a
condationally compact open subset U with an open image. To do this,
set V=3V, where each V, is open and conditionally compact and

V,CU. Then since f(V)=S f(V,), some f(V,) contains an open set
G. Since f[Fr(V,)] is non-dense, Q=G— f[Fr(V,)] is open and non-
empty. Then U=7V,-f"(Q) meets our condition.

(2.3) THEOREM. Let A and B be locally compact separable metric
spaces with dim A=k < and let f(A)=B be a mapping such that the
image of every compact non-dense set K with dim K<k is non-dense.
Then the set Y of all ye B with f~(y) tolally disconnected is dense in B.

For, in the preceding proofs the sets F™ could now be taken of
dimension < k—1.

3. Quasi-open mappings. Region on a sphere. A mapping f(X)=
Y is quasi-open provided that if ye Y and K is a compact component
of f~'(y), then for any open set U in X containing K, y is interior to
F(U) rel. Y, and is strongly quasi-open provided y is interior to f(U)
relative to a larger space Y, DO Y. A mapping f(X)=Y is monotone
provided f-'(y) is a continuum (compact and connected set) for each
y€Y; and f is compact provided f~(K) is compact for every compact
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set K Y or, equivalently, provided f is closed and has compact point
inverses. For compact mappings, quasi-openness is equivalent to quasi-
monotoneity as defined originally by Wallace [3].

(3.1) THEOREM. Let f(X)=Y be a compact and quasi-open mapping
where X is a region on a sphere S, Y is a metric space and where no com-
ponent of a point inverse separates X. In order that the vmage of every
compact 1-dimensional set in X be of dimension <1 it s mecessory and
sufficient that the set D, be semi-dense in X.

Proof. Let f=lm, m(X)=X’, I(X')=Y be the monotone-light factori-
zation of f. Let the mapping m be extended to the whole sphere S
by decomposing S into the sets m~'(z’), 2’ € X’ together with the com-
ponents of S—X so that we obtain a monotone mapping ¢(S)=S" of S
onto a sphere S’ containing X’ (¢ is the natural mapping of the de-
composition) which is identical with m on X. That S’ is a topological
sphere follows from the readily verified facts that the described decom-
position of S is upper semi-continuous and no element of this decompo-
sition separates S, together with the classical theorem of R. L. Moore
[2] that the hyperspace of any such decomposition of a sphere into
continua is itself a topological sphere. Then [(X')=Y is a light open
mapping which is compact; and since X’ is a region on S’, Y is a 2-
manifold by the invariance of the 2-manifold property under such map-
pings [4]. ,

Now to prove the sufficiency of the condition let K be a compact
1-dimensional set in X. Then dimm(K)<1. For, if not, then m(K)
contains an open set U in X’. Then {(U) is open in Y and thus m~(U)
is an open set in X whose image under f is open in Y. Accordingly
D, is dense in an open subset @ of m~(I/). Since @ cannot lie wholly
in K, @—Q-K contains a point z of D,. But then since z=m"'m(x),
m(zx) cannot lie in m(K), contrary to the supposition that m(x)e U C m(K).
Thus dim »(K) <1.

It remains to show that dim im(K)=<{1. Since [ is compact, open
and light and X’ is a 2-manifold, [ is finite to one [4]. Hence by (2.11)
we have dim Im(K)=dim m(K)<1.

To prove the necessity of the condition we note first that it follows
from our hypothesis that f preserves non-density for compact sets. For
if K is a compact, non-dense set in X we have dim K<1. Whence
dim f(K)<1; and since as shown above Y also is a 2-manifold, it
follows from this that f(X) is non-dense. Accordingly, by (2.21) not
only D, but also L, must be semi-dense in X,

Clearly we have the following alternative form of (3.1) which we
state as
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(3.2) THEOREM. Let f, X and Y be as described in the first sen-
tence of (3.1). In order that f preserve mon-density for compact sets it
is mecessary and sufficient that L, be semi-dense in X.

4. Quasi-open mappings on the general 2-manifold. We now show
that the case of a mapping of this same type operating on an arbitrary
2-manifold can be reduced essentially to the case of a region on a sphere
so that similar conclusions hold.

(4.1) LEMMA. Let f(X)=Y be quasi-open where X is a 2-manifold
without edges and Y 4s a locally connected generalized continuum and
suppose that f(L,) is dense in Y. If there exists in X a compact set K
of dimension <1 whose image contains an open set in Y, then there
ewists a region R in X contained in a 2-cell of X such that Q=f(R) is
open in Y, the mapping f(R)=Q is compact and quasi-open and for some
compact subset K, of K-R, f(K,) contains an open set.

Proof. Let V be an open set in f(K). Then there is a pointye V
such that f-(y) is totally disconnected. Now for each xze K-f-'(y)
there exists a 2-cell E, on X with edge C, and interior I, such that
FE)ZV, Cpof(y)=0. Thus if @, is the component of Y— f(C,)
containing ¥ and R, is the component of f-%(Q,) containing  we have
R, C I, because R,-C,=0. Accordingly, R, being conditionally compact
[5], f(R)=Q.,CV and the mapping f(R,)=Q, is compact and quasi-
open.

Now since K-f~'(y) is covered by a finite union U of the sets R,
and f(K-U) contains an open set V—f(K—K-U) in V about y, some
one of the sets R,, say R, is such that f(K-R) contains an open set.
Since K-R is closed in R, for some compact set K, C K-R, f(K;) must
likewise contain an open set in Q= f(R). Thus the lemma is proven.

Since a region on a 2-cell may be considered as a region on a sphere
(by mapping the 2-cell topologically onto a 2-cell on a sphere), this
lemma together with the theorems in § 3 yield at once

(4.2) THEOREM. Given a quasi-open moapping f(X)=Y where X is
a 2-manifold without edges and Y is a locally comnected generalized con-
tinuum such that no component of a point inverse lying inside a closed
2-cell on X separates X, in order that f preserve non-demsity for com-
pact sets it is necessory and sufficient that L, be semi-dense in X.

Note. Most of the results in this paper were stated without proof,
or with only brief indications of proof in some cases, by the author in
his Presidential Address before the American Mathematical Society [6].
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For further discussion of these results, in particular for cases in which
alternative dimension preserving forms of (4.2) above are possible, see [6].

5. Differentiable functions. We now show that a mapping from a
region of the z-plane Z into the w-plane W generated by a function
w=f(z) satisfying certain differentiability conditions will satisfy the
requirements needed in the preceding sections to insure the preservation
of non-density for compact sets.

(6.1) THEOREM. Let w=f(2) be continuous in a region X of Z and
differentiable at all points of a dense set f~'(Y,) in X which is the inverse
of an open subset Y, of Y=f(X). Then f 1is strongly quasi-open, no
component of a point inverse lying inside a closed 2-cell on X separates
X and the set f(L,) is dense in Y. Further, L, is semi-dense in X.

Proof. (Note. In the proof of all but the final statement use is
made of only easily established topologieal properties of functions meet-
ing minimum differentiability requirements. In proving the last one,
however, we use the property, rather more difficult to establish topolo-
gically, that a non-constant function everywhere differentiable in a region
R cannot be constant on any open set in R.)

To prove f strongly quasi-open it suffices (see §7 of [6]) to show
that for any elementary region R in X with boundary C in X,

*) Ff(R+C)=S(C)+the union of bounded components of W— f(C),

where “elementary” means that R is bounded and C consists of a finite
number of disjoint simple closed curves. To accomplish this, let S be
a component of W-— f(C) such that the set S,=8- f(R) is not empty.
Since R-f~YS,) is open and nonempty, it therefore intersects f~(Y,).
Thus S, Y, is not empty. Let @ be a component of S;-Y,. Since
R. £-Y(Q) is open and thus has only a countable number of components,
there exists a component 7' of R-f~'(Q) on which f is not constant.
As f is differentiable on 7T by hypothesis [because 7' f~(Y,)] there
exists a point z,e T where f’(2)z%0. Now using properties of the
circulation index, it readily follows that € contains the interior of a
square and thus contains a point ¢ such that f/(z)%=0 for all ze f-'(9).
Sinece this makes the circulation index equal 277 times a positive integer
when taken around any sufficiently small circle enclosing a point of
fYq), it results at once that the circulation index taken over all of C
of f about ¢ must be £0. Further, since this latter index is constant
throughout S, that is, it has the same value when any peS is sub-
stituted for ¢, it follows that every point p of S must belong to f(R).
For details of the argument needed here using the circulation index the
reader is referred to the last paragraph of § 5 of [7].
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Hence we have S C f(R). This gives (*), however, because f(R+C)
obviously cannot contain the whole unbounded component of W— f(C).
Thus any component of W— f(C) intersecting f(R) must be bounded
and must lie wholly in f(R). Accordingly f is strongly quasi-open.

Suppose, contrary to the second assertion, that some component K
of f~Yw,), for some w,e Y, lies inside a closed 2-cell A on X and sepa-
rates X. Then one component @ of X—K must lie wholly inside A
since only one component of X—K intersects the edge of A. Let y be
a point of f(Q+K) such that |y—w,|=max|f(z)—w,| for ze@+K.
Then € contains a component H of f~'(y) and H is compact. Accord-
ingly, by the strong quasi-openness of f, y must be interior to f(Q)
contrary to |f(2)—w,| < |y—w,| for all ze Q.

That f(L,) is dense in Y is an immediate consequence of the fact
that Y, is dense in Y and the quasi-openness of f already established.
For any open set in Y thus contains the interior I of a square such
that f is differentiable everywhere on f~'(I). Thus for some ¢el,
Sf'(®)5£0 for all ze f~*(¢). This makes f~'(¢) a scattered set which
therefore surely lies in L,.

Finally, to prove L, semi-dense in X we note first that if 7" is any
region in X on which f is non-constant and everywhere differentiable,
then as shown above in the second paragraph of this proof, T contains
a point z, where f'(2,)s%40 and indeed f(T') contains points ¢ such that
f'(z) does not vanish on f-'(q), so that f-'(¢) CL,;. Accordingly any
such region T intersects L,. Now if U is any open set in X with an
open image, f(U)-Y, contains a region @ and if 7 is any component
of f~(Q)-U on which f is not constant (and there are such components
T because the collection of all components of f-(Q)-U is countable),
then T' intersects L; as shown above. However, the same holds for an
arbitrary subregion 7T, of 7T, because f is likewise non-constant and
everywhere differentiable on 7,. Thus L, is dense in 7.
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ON THE FUNCTIONAL REPRESENTATION
OF CERTAIN ALGEBRAIC SYSTEMS

J. H. WILLIAMSON

1. Introduction, Definitions and Examples. In this paper an at-
tempt is made to generalize the well-known representation theory of
commutative Banach algebras by functions on the maximal ideals of the
algebra [4]. The present paper is devoted almost exclusively to alge-
braic questions; topological aspects of the theory will be treated
elsewhere.

In considering commutative algebras A over the complex field C,
there are relatively few cases in which one can assert that the quotient
A/M of the algebra by a maximal ideal is isomorphic to C. Apart
from Banach algebras, there are the locally m-convex algebras of E.A.
Michael [6] and R. Arens [1], and the ‘algébres a inverse continu’ of
L. Waelbroeck [8], [9] (=Q-algebras, in the terminology of Kaplansky
[5], with continuous inversion). There are many interesting algebras
which do not belong to either of these classes, and it would be desirable
to have a theory to cover them as far as possible.

The basic idea is derived from the classical work of Carleman, von
Neumann, and Stone on unbounded self-adjoint linear operators 7 in
Hilbert space (see, for example, [7]). Here the analysis is carried out
with the aid of the bounded transformations (7'—AI)-*; the spectrum of
T is the set of complex numbers A such that (7—al)~* does not exist
as a bounded transformation. This suggests that if we start with a
commutative algebra A, and a suitable sub-algebra B (corresponding to
the ‘bounded’ elements of A) we may be able to effect a useful analy-
sis of A, and somehow represent an element ae A by a function whose
values are those complex numbers 1 such that (a—7ie)~* does not exists
in B (e being the unit of 4). It turns out that this is basically cor-
rect, although there are certain complications of detail. For instance,
the representing functions may take infinite values; this is unavoidable.
The space on which the functions are defined is that of the ‘maximal
B-ideals’ or ‘ maximal ordinary B-ideals’ of the algebra, not the space
of maximal ideals in the ordinary sense.

Much of the theory of this paper applies to algebras over fields of
fairly general type; for instance, many results are true for any algebrai-
cally closed field. It is no more difficult to develop the theory for the
general case than for the case of the complex field. Let K be any

Received December 24, 1955. This paper was written while the author was a Com-
monwealth Fund Fellow.
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(commutative) field, A a commutative linear algebra over K, with a unit
e, and B a sub-algebra of A, containing e. A restriction will presently
be put on B (immediately following Lemma 4), and after Theorem 1,
K will be taken to be algebraically closed. Further special assumptions
on A and K will be made in the later sections of the paper.

DEFINITION 1. A subset J of A is a B-ideal of A if

(i) xz—yeJ whenever zeJ, yeJ, and

(ii) xbe.J whenever zeJ, be B.

The B-ideal J is admissible if e&J; it is ordinary if xy € J whenever
xed, yeJ; otherwise it is exceptional. (B-ideal=B-submodule; ordinary
B-ideal=B-submodule which is a sub-algebra).

It may be useful to remark that a B-ideal which is a proper subset
of A is not necessarily an admissible B-ideal, by the above definition.
For instance, B itself is clearly a B-ideal of A; it may be a proper sub-
set of A but it is never an admissible B-ideal.

We give now one or two examples of the type of system under
consideration.

(i) Let A be any algebra of the type specified above, and take
B=A. The B-ideals of A are the ideals (in the usual sense) of A; all
are ordinary.

(ii) Let A be as in (i), and take B=Ke (which we shall sometimes
write as K, if no danger of confusion exists). The B-ideals of A are
the linear subspaces of A.

In particular, let A be the algebra of pairs of complex numbers
(a,, a,), with pointwise addition and multiplication. The admissible B-
ideals of A are the proper linear subspaces not containing (1, 1). They
are thus (a) the element (0, 0), and (b) for each complex «a =1, the
subspace generated by (1, «), and the subspace generated by (0, 1).
There are precisely three ordinary admissible B-ideals, namely (0, 0)
and those generated by (0, 1) and (1, 0).

(iii) Let A be the algebra of polynomials, with complex coefficients,
in the indeterminate ¢, and let B be the sub-algebra of constants. The
sets {a: a(t,))=0} (¢, a complex number) are clearly ordinary B-ideals of
A. An elementary argument shows that they are maximal admissible
ordinary B-ideals; it will appear later (after Theorem 2) that these are
the only such B-ideals.

(iv) As for (iii), but with ‘ polynomial’ replaced by °rational func-
tion’. Here the maximal ordinary B-ideals are the sets {a: a(t,)=0}
for each complex ¢, and the set {a: a(o)=0}.

(v) Let A be the algebra of (equivalence-classes of) complex almost
everywhere finite Lebesgue measurable functions on (0, 1), B the sub-
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algebra of essentially bounded functions. Among the B-ideals of A are
(a) the set of all functions of A which are zero (almost everywhere) on
E, for any fixed subset E of (0, 1) of positive measure (this is an or-
dinary B-ideal, and in fact an ideal); and (b) the set of functions f{(¢)
such that |f(&)| < kn~' almost everywhere in E,, for each n, where E,
is a decreasing sequence of measurable sets such that the measure of
E, tends to zero as » tends to infinity (¢ depends on f only). This is
an ordinary B-ideal, but not an ideal.

(vi) Let A be an algebra of (possibly unbounded) self-adjoint or
normal linear transformations of a Hilbert space into itself, and let B
be the sub-algebra of bounded operators. This type of algebra will be
considered in §7.

In what follows it will be important to distinguish clearly between
ordinary maxzimal B-ideals, that is, admissible B-ideals which are ordina-
ry and which are not properly contained in any admissible B-ideal, and
maximal ordinary B-ideals, that is, admissible B-ideals which are or-
dinary and which are not properly contained in any admissible ordinary
B-ideal (maximal=maximal admissible). In example (ii) above, all the
B-ideals (b) are clearly maximal. Of these only the ideals generated
by (0, 1) and (1, 0) are ordinary; and these two are clearly also the
only maximal ordinary B-ideals of A.

LemMaA 1. (i) If J is a maximal B-ideal of A, then BN\ J is a
maximal ideal of B; of I is a maximal ideal of B, there is a maximal
B-ideal of A containing I.

(i) If J is @ maximal ordinary B-ideal of A, then BN\ J is «
mawximal ideal of B; if I is a maximal ideal of B, there is a maximal
ordinary B-ideal of A containing I.

Proof. (i) It is clear that B N\ J is a proper ideal of B. Suppose
that /' is a proper ideal of B which properly contains B\ J; then J
+J’ is a B-ideal of A which properly contains J and does not contain
e. Since J was assumed to be maximal, this is a contradiction, and so
B N J is a maximal ideal of B.

The second assertion follows, by a simple application of Zorn’s
lemma, from the fact that any proper ideal of B is an admissible B-
ideal of A, and the fact that the union of an ascending chain of admis-
sible B-ideals is clearly an admissible B-ideal.

(ii) As for (i), with ‘ B-ideal’ replaced by °‘ordinary B-ideal’.

In general, a maximal ideal of B is contained in many maximal (or
maximal ordinary) B-ideals of A; but in some cases it is possible to
assert that the extension is unique; see §4, Proposition 5 and §7,
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Lemma 13,

2. A representation theorem. Let o be a symbol such that o +1
=oo for all le K, co-co=0c0 and Jlco=o0 for all nonzero 1¢ K. Denote
the field K augmented by < by the symbol K. Now let J be any linear
subspace of A4, not containing e. Define a function with values in K’
as follows:

DEFINITION 2.

=2 if a—leedJ,

Sia@) )
=oo if a—2e&J for all 1e K.

It is clear that the function is uniquely defined for all ¢ e A. There
are one or two immediate consequences of the definition:

LEMMA 2. (1) filaa)=af{a) for all ac K, ac A (0- o0 =0 here).
(i) Sola,+a)=FAa)+Fa,), (when the right-hand side is defined).

Proof. (i) If fi(a)=2¢e K then a—leeJ, whence aa—alecJ and
frlad)y=ai=af,(a). If fila)=o, then a—2le&J for all 1e K; clearly if
a0 then ag—pegJ for all pe K, and so fi(aa)=oo. If a=0 then
fraa)=F(0)=0 for all ae A.

() If fAa)=21¢€K, fila,)=41¢€ K, then a,+a,—(A,+ 1,)ee K and the
result follows. If fi(a)=21¢ K, and f(a,))=co, then if fa,+a,)=pekK,
we would have fi(a,)=f(a,+a,—a,)=p—2€ K, a contradiction.

Next we turn to the multiplicative properties of the funection [ (a).
It is clear that if we are to obtain any general results we must take
J to be a B-ideal of 4, and moreover an ordinary B-ideal; if J is not
ordinary we could find a,edJ, a,eJ, with a,a, &/, that is,

fJ(afla'.’) # fJ(al)fJ(al)z 0 .

The first result, however, is valid for any sub-algebra J:

LemMMmA 3. Let J be any sub-algebra of A not containing e. Then
vf neither of fi(a.), fi(a,) s oo, we have fi(a.a,)=Ffr(a)f(a.).

Proof. Let a,=f,(a)e+7,, a,=f;(a)e+7,, where j, €, j,eJ. Then
a,a,=F () Fas)e+ f(a,)j, +Fr(a)j, +7.5.; the required result follows at
once.

Difficulties arise when one or both of f,(a.), fi(a,) is .
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LEMMA 4. If J is a sub-algebra of A and f(a)% o then aJ C J.

Proof. If a=le+j (jeJ) then for any j'eJ we have aj/'=21j
+7i'ed.

For the next lemma, and for all future developments, we require
to make the following assumption.

Assumption. If M is any maximal ideal of B then B/M ~ K.
This assumption is satisfied in the cases in which we are interested.

LEMMA 5. If J is a maximal B-ideal of A and aJ CJ then fi(a)
# co.

Proof. The result is trivial if aeJ; we then have fy(a)=0. If
a&J then J+aB is a B-ideal properly containing J; since J was maxi-
mal, e=j+ab for some jeJ, be B. We have b=2¢+j" for some ie K,
7 eJ, by assumption; hence e—la=j+aj’ eJ. We clearly cannot have
A=0; hence a—i'eeJ and fa)=21""3% co.

COROLLARY. If J is maximal and fAa)=co, then e=aj+yj’, where
i, 7 ed.

Proof. aJ+J is a B-ideal of A properly containing J and hence
containing e.

LEMMA 6. If J is an ordinary maximal B-ideal of A, then fi(a.a,)
=fi(a) fr(a,), whenever the right-hand side is defined.

Proof. The case in which f,(a,) and f,(a,) are both finite has already
been covered (Lemma 3). Suppose then that f;(¢,)=o. By Lemma 5,
Corollary, we have e¢=a,j+3’, where j, j'edJ. If a,—le=j"ed (As£0)
we have aa,j=4Ae+7"—25 —57" &J, whence fi(a.q,)=c, by Lemma 4.
If e=ayi+3: (4, j.€J) then awjj=e—j —j.+55.&J, whence f,(a.a,)
=oco as before.

We can now collect the results obtained.

THEOREM 1. Let /s be the set of ordinary maximal B-ideals of A.
Then there is a mapping of A into the set of K'-valued functions on
Aot a—> fi(a), so that the structure of A is preserved as far as it can be,
that is fi(aa)=af (@), fi(a,+a)=Ff(a)+F, (), and fi(a.a)=F(a.)f(a,),

whenever the right-hand sides of these equalities are defined.
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The above theorem has one serious flaw; given A and B, the set
_/% may be empty. For example, let A be a field properly containing K,
and take B=Ke. Then any maximal B-ideal is a maximal linear sub-
space of A not containing e¢; any ae A can be expressed uniquely as a
=Jje+j, where jeJ. If J were ordinary we would have aJ C J+JJ
=, that is, J would be an ideal of A in the usual sense, which is
impossible.

It is uncertain whether, given A, it is possible to choose B so that
there is at least one ordinary maximal B-ideal. In any case, B will
often be preseribed in advance, so that no choice is possible.

We are thus obliged to look at maximal ordinary B-ideals rather
than ordinary maximal B-ideals. We have, by Lemma 1 (ii), the as-
surance that there always exist at least as many maximal ordinary B-
ideals of A as there are maximal ideals of B, that is, always at least
one.

3. A better representation theorem. We now consider maximal
ordinary B-ideals instead of maximal B-ideals. This introduces some
technical difficulties (which can, however, be overcome), and also makes
it necessary to confine attention to fields K which are algebraically
closed. We shall make this assumption from now on. The sort of
difficulty which arises if the field is not algebraically closed is adequate-
ly illustrated by considering the complex field C, as an algebra over
the real field R. Here there is a unique maximal ordinary R-ideal J
= {0}; if ¢ is any complex number with a nonzero imaginary part, then
fi@)=o. Clearly the multiplicative properties of [ are quite un-
satisfactory.

LemMA 7. If J is a maximal ordinary B-ideal and aJ CJ then
S J(a) # oo,

Proof. If aeJ then f,(a)=0; suppose then that a&J. The set
J+aB+a’B4 -+ is an ordinary B-ideal of A, properly containing J;
hence e=j+ab,+a’b,+ - -+ +a"b, for some je, b, --+,b, € B. We shall
show that we can take n=1 here. First, it is to be noted that there
is no loss of generality in supposing that b, ---, b, are all scalar multi-
ples of ¢; if in the above representation we had b,=1¢e+75, 1< r<n)
then we could also write

e=7 + 1 a+ 0>+ -+ +,0", where j'=j+j,a+ - +j,a"€J.

Second, it is clearly permissible to assume that the representation
of e in this way is of minimum degree. We do this. Let u(a) be a
polynomial in a, with coefficients in K, which is in J, and of minimum
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degree. Assume that the degree of g is n > 1. Let (a—ae) be a fac-
tor of p(a), and write p(a)=(a—«ae)x. By assumption z&J, and so the
set J+xB+a’B-+ --- is an ordinary B-ideal of A, properly containing J.
We thus have

e=7"+ab;+ -+ +2a™b,, where 77edJ, b, ---,b,eB.

This gives
a—ae=(a—ae)j’ + pla), +zm(a);+ -« - +a™ (@), € J ,
which contradicts the assumption that w#(a) was of minimum degree.
Thus p(a)=a—ae, and f(@)=a % = .
COROLLARY. If J 4s a maximal ordinary B-ideal and f,(a)=oo

then

e=Jy+aj+a%,+ - - +a%, for some j, 5y, <++, j.€d.

Proof. The set J+aJ4+a*J+--- is an ordinary B-ideal of A4, pro-
perly containing J. Hence it contains e.

It will appear later (Lemma 9, Corollary) that we can always take
n=1 in this representation. In the meantime it is convenient to
formulate this as follows.

Property P. Let J be a maximal ordinary B-ideal of A, and « an
element of A such that f,(a)=co. We shall say that property P holds
(for a and J) if e=aj+j for some 7, j €.

LemmA 8. If fi(a)=o0, and property P does not hold, then we can
Jind §* e J such that f,(aj*)=co

Proof. Clearly, by Lemma 7 we can find 7* such that aj*&J. If
firag*)=a, we would have aj*—aeeJ, whence e=a~'aj*+j’, that is,
property P would hold. Since we assume the contrary, f (aj*)=oo.

LEemuMA 9. If J is @ maximal ordinary B-ideal of A, then f,(a.a,)
=fa)fa,), whenever the right-hand side is defined.

Proof. (a) The case in which both factors on the right are finite
has already been covered (Lemma 3).

(b) Suppose that f,(a,)=c, with property P, and f,(a,)=« (# 0).
Then e¢=a,j+5, a,=ae+7", so that

amj=ae—aj +j"' =i &J .
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Hence f,(aa,)=c, by Lemma 4.
(¢) Suppose [ (a)=f;(a,)=co, property P holding for both. Then
e=a,j,+J1, e=a,j,+7; and so
alazjljzze—ji"j;'{‘j;jé@J,

whence f,(aa,)=, as before.
(d) Now suppose that f,(a,)=co, property P not being true, and
fia)=a%~0. We shall show that f,(a,a,)=/5¢ K is impossible. Let

e=Jo i+ -+ 107,
and a,a,=pPe+j. Then
as =703 +J(Be+7)ar + « - +7,(Be+35)",
that is,
(ae+7')"=jlae+5)"+j(Be+i)ae+5)" "+ + - +5a(Be+7)" .

This gives at once a”¢eJ, which is impossible. Hence f,(a,a,)=cc.

(e) Finally suppose that f,(a,)=c, property P not holding, and
fia,)=c0 (property P possibly holding, possibly not). We note first
that it will be enough to prove that under these hypotheses f,(a,a,)=0
is impossible. For, if f(aa,)=a 540, we could choose j* as in Lemma
8, and replace a, by a,7*. Then property P fails to hold for a,5*, and
we would have f,(a,5%)=f,(a,)=c, f(aj*a,)=0. So, assume that f,(a,a,)
=0. Let

e=Jo+ i+ oo F5 00 =50+t -+ 5008,

where m and n are minimal. It is clearly no restriction to assume
that m >n. If a,a,=j€dJ, then

aile—Jo)=Jijar™" + -+« +7.3" .
Multiply this by j,.a™ ", and we have
Im0(€—J0)=JmJ1J@I" "+« « + ], Jug @l " .
But also
In0(e—jJo)=(e—~Jo—fras—* + » —fu-101"""Ye—10) ,

so that, equating the right-hand sides of the last two equations, we
have an expression for e as a polynomial in @,, with coefficients in J,
and of degree < m—1, which contradicts the assumed minimality of
m. Thus f,(a,a,)=c in this case also.

The above five cases exhaust all the possibilities, and so the lemma
is proved.
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COROLLARY. Property P always holds; that is, ¢f J is a maximal
ordinary B-ideal and f,(@)=oco, then e=aj-+j for some j, j € J.

Prosf. By Lemma 7, Corollary, we have e=ah+j, where h=j,
+eee+j,0a"'. By Lemma 9, we must have f(h)=0, that is, e J.

As in the case of maximal B-ideals, we collect our results:

THEOREM 2. Let _%' be the set of mawimal ordinary B-ideals of
A. Then there is a mapping of A into the set of K-valued functions
on %/: a— fia), so that f(aa)=af(a), fJ(a1+a2)=fJ(a’1)+fJ(a2) and
Slaa)=f(a,)f (a,), whenever the right-hand sides of these equalities are
defined.

Since, as has been remarked, there always exists a maximal ordina-
ry B-ideal of A, Theorem 2 always has content.

We can now show, as promised, that the B-ideals specified in Ex-
ample (iii) of § 1 are the only maximal ordinary B-ideals. Suppose that
there is a maximal ordinary B-ideal J such that f,({)=c. Then, by
Lemma 9, f,(a)=o for every non-constant polynomial a€ A; that is,
J=1{0}, which is clearly not maximal. Thus f,(¢) is always finite, from
which it follows at once that J is one of the specified B-ideals.

It may be noted that if J is a maximal ordinary (or ordinary maxi-
mal) B-ideal of A, then the function f,(a) has the properties

1) fiAe)=1; fi(b)e K for all be B, and

(2) SAam)=affa), flaa)=fAa)f{a), fla+a)=Fla)+fAa’) when-
ever the right-hand sides are defined. Conversely, if we have a func-
tion f with these properties, the set {a: f(¢)=0} is clearly an ordinary
B-ideal of A but not in general a maximal one (consider Example (iii)
of §1 and write fla)=a if a=a (constant), f(a)=oco otherwise). This
is in contrast to the situation in which J is an ideal and f a genuine
homomorphism.

4. Further general results. The spectrum, etc. We shall for the
most part be concerned with maximal ordinary B-ideals; in one or two
cases we consider maximal B-ideals (which may or may not be ordinary).

DEFINITION 3. Denote by B, the set of elements of A such that
fAa) is finite for all maximal ordinary B-ideals J, and by B; the set
such that fia) is finite for all maximal B-ideals J. If B=B,, we say
that B is strongly saturated; if B=DB,;, then B is said to be weakly
saturated.

It is evident that B, =2 B; 2 B.
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PRrROPOSITION 1. (i) B, is a sub-algebra of A.

(i) The maximal ordinary B,-ideals of A are the same as the
maxitmal ordinary B-ideals of A.

(iii) If M s any mawximal ideal of B,, then B,/M = K.

(iv) (B.),=B,, for any B.

Proof. (i) This is an immediate consequence of Lemma 3. (Note
that in general B; is not a sub-algebra of A).

(ii) Clearly every B,-ideal of A is also a B-ideal, since B, 2 B.
On the other hand, by Lemma 3 every ordinary B-ideal is also an or-
dinary B,-ideal. Hence the result follows.

(iii) By Lemma 1 (ii) the maximal ideals of B, are the traces on
B, of the maximal ordinary B,-ideals of A, that is, of the maximal
ordinary B-ideals. Hence, for any M and any ae€ B, we have a—ae
€ M for some « € K, that is, B,/M~=K.

(iv) This follows at once from (ii).

The last part of the above proposition shows that for any A4 it is
always possible to choose a strongly saturated sub-algebra B; (Ke), is
of the required type.

THEOREM 3. (i) The clement ac A has an inverse a~'e€ B if and
only if it s in no maximal B-ideal of A.

(ii) The element ac A has an inverse a~*€ B, if and only if it s
in no marimal ordinary B-ideal of A. If such an inverse exists, it is
expressible as a polynomial in a with coefficients in B.

Proof. (i) If aa~'=e, where a~*e B, then clearly a cannot be in
any admissible B-ideal of A. If abs4e for all be B, then aB is an
admissible B-ideal of A, and hence is contained in some maximal B-ideal
J. Then a=aece .

(i) If J is a maximal ordinary B-ideal, it is also a maximal ordinary
B,-ideal, by Proposition 1 (ii). Thus if a€J, the relation e=aa™', with
a~'e B,, is impossible.

If @ is such that ¢ is not expressible as a polynomial in a, with
coefficients in B and without constant term, then the set of all such
polynomials clearly forms an admissible ordinary B-ideal of A. There
is thus a maximal ordinary B-ideal containing @. So, if a&J for all
maximal ordinary .J, it follows that e—aa~!, where o' is expressed as
a polynomial in ¢ with coefficients in B. By Lemma 9, since f,(a) is
never zero it follows that f;(a~') is never infinite, that is, a™'€ B,.

COROLLARY. If B is strongly saturated, the element a€ A has an
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wnverse in B if and only if it is in no maximal ordinary B-ideal.

In general the expression for a~! as a polynomial in @ will neces-
sarily be of degree >>1. Consider, for example, the algebra of §1,
Example (ii). If a4 f, and neither « nor S8 is zero, the element «
=(«, P) satisfies the equation

e=(ap){(a+pla—a},

so that a'=(af)*{(a+Be—a}. It is clear that ¢~* cannot be expressed
as a polynomial of lower degree (a constant multiple of ¢ in this case).

DEFINITION 4. The range of values of f;(a) as J varies over all
maximal B-ideals of A is the B-spectrum of a, denoted o3(a). The range
of values of f;(a) as J varies over all maximal ordinary B-ideals of A
is the B-spectroid of a, denoted rx(a). We write oy(a)=0c%(a) N\ K, and
ri(@)=1(a) N K; these may be referred to as the finite parts of the
respective sets.

The set oy(a) consists of those scalars « such that a—ae has no
inverse in B; the set ry(a) consists of those scalars « such that o
—ae has no inverse in B,. In general if D is any subset of 4, we
shall denote by o,(a) the set of scalars 1€ K such that (a—41e)~! fails
to exist in D. It is clear that neither o3(a) nor 3(a) can be empty,
although each set may consist of the element « only; an example of
this is easily found in the algebra A of formal power-series in an in-
determinate, with B the sub-algebra of series with nonnegative powers
only. Here there is a unique maximal B-ideal, which is ordinary, con-
sisting of series with positive powers only; if J is this B-ideal, and a
& B, then clearly f;(a)=co.

Since every maximal ordinary B-ideal of A is contained in a maxi-
mal B-ideal, it follows that o3(a)=2 w3(a) for all ae A. The following
lemma describes a case in which the two sets are equal:

PropPOSITION 2. If B is strongly saturated then ox(a)=tx(a) for all
a€A.

Proof. It is clear, in view of the remarks following Definition 4,
that if B=B, then oz(a)=15(a). If B=B, and o« &x(a) then by defini-
tion ¢ € B,=B, and so o« &oy(a), in view of the assumption on B made
after Lemma 4. In view of the relation oj(a)= r5(a), this completes
the proof.

1t is of course, not true that if B=DB, then the maximal ordinary
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B-ideals coincide with the maximal B-ideals - consider the algebra of
§ 1, Example (iii).
Suppose that

(Cb—dle)'l, Y (a,—a,e)‘l
exist in 4. Then if

Ha)y=(a—ae)- -« -(a—a,e)'r,

where ¢, .-+, t, are positive integers, and p(a¢) is any polynomial, the
rational function »(a)=p(a)/g(a) certainly exists as an element of A.
If this is so we have the ¢ spectral mapping theorem ’:

THEOREM 4. If the rational function r(a) of a exists in A then the
B-spectroid of r(a) is the image under rv(.) of the B-spectroid of a; that
28, € tx(a) if and only if r(a)e vx(r(a)), (¢ K).

Proof. This follows at once from Theorem 2.

Notice that the spectroid, not the spectrum, is involved; the result
is false in general if ‘speetrum’ is substituted for ¢ speetroid.’

COROLLARY. A necessary and sufficient condition that the rational
Sunction r(a) should exist as an element of B, is that r(cx(a))= K.

Proof. If
r(a)=H(a—a,e):,
then
H(f5(a)—aeyie K

for all maximal ordinary J. Thus if p, <0 we cannot have f;(a)=a;,
and so (a—a,e) exists (in B, and, a fortiori, in A) for all ¢ with p, <{0.
Thus r(a) exists in A and the result follows at once from the theorem.

THEOREM 5. If a and & are any elements of A, then
5(a0") S 745(0).75(0") and ty(a+a’ )= t(a) + ().

These relations are also true when t is replaced by ', provided that the
sets which occur on the right-hand sides do mnot contain o product 0. oo
or a sum oo + oo, respectively.

Proof. This also follows at once from Theorem 2.
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Theorem 5 can of course be extended to several elements of A4,
and combined with Theorem 4 to give information about the spectroid
of a rational function of several elements of A.

Next, a condition that the spectrum should consist of the whole of
K:

PROPOSITION 3. If o &oxa) (that is, a € B;) and a& B, then oxa)
=K.

Proof. Suppose that a € K is not in ox(a). Then f;(a—«e) is never
zero, for any maximal B-ideal J; hence, by Theorem 3 (i), (a—ae)™’
exists in B. Since f,(a—ae) is never o, it follows that f;((a—ae)™?)
is never zero. This implies that ((¢—ae)?)'=(a—ae) is in B, and
hence that a e B.

PROPOSITION 4. Let ae€ K be such that (a—ae)'e B. Then either
a € B, or oo €1(a).

Proof. Suppose that a& B. The set (e—«we)'B is clearly an ideal
of B; it is admissible, since (¢ —ae)b=¢ would imply @€ B, which is
not so. Hence, by Lemma 1 (ii) there is a maximal ordinary B-ideal,
J say, containing this set. Then we must have f;(a)=co; for (a—gfe)eJ
would imply (a—Be¢)(a—ae)-teJ, that is, e+(a—P)a—ae)teJ, that is,
e€J, which is impossible.

Note that it is possible to have a & B, < & r3(a)—consider Example
(iii) of § 1. In this case, of course, if a & B there is no a e K such that
(a—ae)'eB.

PROPOSITION 5. If, for each a€ A, there exists e K such that
(a—ae)"e B, then

(i) B s strongly saturated, and

(ii) each maximal ideal of B is contained in o unique maximal
ordinary B-ideal of A.

Proof. (i) This follows at once from Proposition 4.

(ii) Suppose that M is a maximal ideal of B, contained in two dis-
tinet maximal ordinary B-ideals of A4, J and J'. Let ae A be such that
Sila) = fr(a), and « € K such that b=(a—ae)~' is in B. Then

Fu®)=Ff:(0)=(fr(a)— )" 5= (Frla) —a) =[5 (0)=Fu(0) ,

which is a contradiction.
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5. The B.radical, semi-simplicity, etc. The theory given in this
section is based on the definition of the B-radical of A as the intersection
of all maximal ordinary B-ideals of A. There is, of course, a parallel
theory based on the definition of the radical as the intersection of all
maximal B-ideals; this set is a B-ideal but not in general an ordinary
B-ideal. The two theories resemble each other so closely that there
seems to be no point in writing out both sets of results explicitly.

DEFINITION 5. The intersection of all maximal ordinary B-ideals of

A is the B-radical of A.
It is evident that the B-radical is an ordinary B-ideal.

ProPOSITION 6. If tj(a)= {0} implies ae B (in particular, if B is
strongly saturated) then the B-radical of A consists of theose elements
be B such that (e—ab) has an inverse in B for all ae K.

Proof. 1If a is in the B-radical then t%(a)={0}, and a€ B, by as-
sumption. If e—aa had no inverse in B, then (e—aa)B would be a
proper ideal of B, and would be contained in a maximal ordinary B-
ideal of A, by Lemma 1 (ii). If J is this B-ideal then f,(e—aa)=0,
hence f,;(a)=a"'=£40, a contradiction. So e¢—aa has an inverse in B
for each ae K.

On the other hand, if ae B, and @ is not in the B-radical, there
will be a nonzero a e K such that f;(¢)=a for some J. Then we cannot
have (¢e—a~'a)~' € B; if this were so then e=(¢e—a~'a).(¢e—a~'a)™* e JBSJ,
which is impossible.

DEFINITION 6. If the B-radical of A is {0} then A is B-semi-simple.
If, whenever a = a' there is a maximal ordinary B-ideal J such that
fr(a)=~= f;(a'), then A is completely B-semi-simple.

In the case of a Banach algebra, semi-simplicity implies complete
semi-simplicity. Whether this is so in the present more general case
remains an open question. We shall obtain partial results in this direc-
tion under restrictive hypotheses.

ProposITION 7. If A 4s B-semi-simple, a 7% o, and ti(a) is not the
whole of K', then there is a mawximal ordinary B-ideal J such that f;(a)

7= fs(a').

Proof. 1If f,(a) never takes the value o, then clearly f;(a)=r5(¢)
for all maximal ordinary J implies a=a’, by the definition of B-semi-
simplicity.
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If f,;(a) never takes the value «, then by Theorem 3, (¢ —«e)=' € B,.
If fi(@)=f,(a@') for all J then f,((a—ae)")=f,((a’—ae)™") for all J,
whence (¢ —ae)'=(a’'—wae)™!, by the assumed B-semi-simplicity. Hence
a—ae=a —ae, and a=a’.

LEMMA 10. If A is B-semi-simple, and tx(a) contains mo nonzero
elements of K, then a=0.

Proof. Since K is assumed to be algebraically closed, there will be
in K an element different from 0 and from 1; let a be any such ele-
ment. Since f;(a) is never 1, (a—e)~! exists in B,, by Theorem 3. Similar-
ly, (aw—e)~' exists in B,. Clearly f,((a—e))=f;((ca—e)™*) for all J
(=0 if fi(a)=o, =—1if f;(a)=0). Hence (a—e)'=(axa—e)~', whence
a—e=qaa—e, giving a=0.

LeMMA 11. If o{a) contains a finite number of elements of K only,
then it does not contain <, ©f A is B-semi-simple.

Proof. Let a,, a,, -+, a, be the elements of K in z3(a). Then
frllo—ae)a—ae)--(a—a,e))=0 or o only. By Lemma 10 this implies
that (a—a.e)(a—a.e)- - - (¢ —a,e)=0, and this is clearly inconsistent with
fi(@)=o for any J.

COROLLARY. If there are only a finite number of maximal ordinary
B-ideals, then f;(a) is never o for any ac A, that is, A=DB,.

It is clear that if we know that for each ae A, fy(a)=cw for a
finite set of maximal ordinary B-ideals only, simplifications will result.

DeriNITION 7. The algebra A is of finite type (with respect to B)
if for each ae A the function f;(a) is infinite on (at most) a finite set
of maximal ordinary B-ideals .J.

The algebra of rational functions of an indeterminate is evidently
of finite type with respect to the sub-algebra of constants.

ProrositioN 8. If A is B-semi-simple and of finite type, it is com-
pletely B-semi-simple.

Proof. Suppose that f,(a)=f:(a’) for all J. Then f,(a—a’) takes
a finite set of nonzero values at most. Hence, by Lemma 11, f,(a—a)
is never «. If az4da/, then a(w—a’) would be such that (i) f;(a(a—a’))
=oco for some J; and (ii) f,(a(e—a’)) takes a finite set of values in K
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only—two contradictory properties. Hence a=a'.

There are two problems which are closely related to each other
and to B-semi-simplicity. These are, broadly speaking, (i) on how large
a set of maximal ordinary B-ideals can the function f,(a) be o? and
(ii) on how small a set can f;(a) be nonzero, with a % 07? In the absence
of B-semi-simplicity, of course, f,(a) may be o for all maximal ordinary
J, and f,(¢/)) may be zero for all such J, with ¢’ 7% 0 (consider the
example of formal power-series discussed after Definition 4).

In the next two propositions we assume that A is B-semi-simple.

ProOPOSITION 9. Let 7 be a finite set of maximal ordinary B-
ideals, and a € A an element such that f;(a)=c for Je 7 and f,(a)
#* oo for J& #Z Then, if fia)=0 for all J&_«, it follows that
a’' =0.

Proof. The function f;(aa’) takes a finite set of values only, hence
it is never o, by Lemma 11. This clearly implies that f,(a’)=0 for all
J, and so a¢'=0, by the assumed B-semi-simplicity.

A somewhat similar result is the following.

PrOPOSITION 10. Let .7 be o set of maximal ordinary B-ideals
such that there is an element o€ A with f,(a)=c for Je ., and f;(a)
=% o for J& _# Then there is no element o € A with f;(a')5%=0 for
Je  # and f(a')=0 for J& _

Proof. 1f there were such an element « then we would have
Ss(aa’)=0 or o only, whence aa’=0, by Lemma 10. This contradicts
Filaa'y=co for Je .

If A is B-semi-simple, then Theorem 2 states that 4 is isomorphic’
in a certain sense to an algebra of functions on the set of maximal
ordinary B-ideals. In certain cases it is possible to assert that there
is a genuine isomorphism between A and an algebra of equivalence-
classes of functions. We introduce this as follows.

Let X be any set. We shall call a family & of subsets of X a
Q-family if (i) the union of two (and hence any finite number of) sub-
sets of & is in &”; (ii) X is not in & For example, if X is the real
interval (0, 1), the subsets of measure zero form a Q-family. Take now
the set S of functions defined on X, with values in K’, which are fini-
te outside a set of &, Let T be the set of functions which are zero
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outside a set of &2 Let (S; T) be the set of equivalence-classes of
functions of S, modulo functions of 7. Then, in the familiar way, (S; T)
can be made into an algebra by defining the sum of two classes to be
the class determined by the sum of two functions, one from each class,
etc.; it is easy to verify that the algebraic operations are well-defined.
The object of condition (ii) is to ensure that the resulting algebra is
nontrivial.

DErFINITION 8. If X is the set of maximal ordinary B-ideals of A,
and there is a Q-family of subsets of X such that A4 is isomorphic to
(S; T), as defined above, then A has a Q-representation.

THEOREM 6. If A is B-semi-simple, and of finite type, it has ¢ Q-
representation.

Proof. If there are finitely many maximal ordinary B-ideals, then
f;(a) is always finite, by Lemma 11, Corollary. Then result follows at
once in this case, taking the @-family consisting of the empty set
only.

If there are infinitely many maximal ordinary B-ideals, then it is
easy to verify that the family of sets on which f;(a¢) is infinite for
some ¢ € A forms a Q-family. The required result then follows from
Proposition 9.

It would be of considerable interest to extend the above results,
in particular, to remove the qualification ‘finite’ from the set .~ in
Proposition 9. In 8§87 we shall do this under additional hypotheses
(Proposition 17). It is not evident that these restrictions are necessary
for the validity of the result, and more information on the point would
be welecome. There is one partial result in this direction, as follows:

ProrosiTiON 11. If A is completely B-semi-simple, then fr(a)=o
for Je .4, f:(a)=0 for J& _#, & € B together imply a’ =0,

Proof. Immediate.

6. Algebras over topological fields. We now consider the case of
a field K with a topology. We are primarily interested in the complex
case, but it is as easy to write out the results for much more general
fields. We require very little of the topology; the essential feature is
that it should provide a reasonable definition of ‘¢ bounded’ subsets of
K. We shall assume (until after Proposition 15) that K is a topological
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field in the sense of Bourbaki, that is, that the topology is Hausdorff
and the algebraic operations are continuous.

We adopt the definition of boundedness given by Shafarevich; the
subset H of K is bounded if, given any neighborhood N of 0, there is
a neighborhood N’ of 0 such that HN' < N. It is trivial that the union,
sum and product of two bounded subsets of K are again bounded sub-
sets. We shall further assume (again until after Proposition 15) that
K is of type V, in the sense of Kaplansky; that is, if the set S is dis-
joint from some neighborhood of 0, then the set of inverses S—' is
bounded. We assume that K is not discrete; if K is discrete then every
subset of K is closed and bounded, and the results reduce to those of
§ 4.

DEFINITION 9. Denote by B, the set of elements of 4 which have
a bounded B-spectroid, and by B; the set of elements with a bounded
B-spectrum. If B, 2 B then B is weakly bounded; if B; 2 B then B is
strongly bounded. 1f B, < B, then B is strongly boundedly saturated;
if B; < B then B is weakly boundedly saturated.

It is evident that B, 2 B;; B, is clearly a sub-algebra of A, by
Lemma 3, but B; is not a sub-algebra of A in general.

For the remainder of this section we shall assume that B is weak-
ly bounded, unless the contrary is explicitly stated.

ProPoSITION 12. (i) The maximal ordinary Bi-ideals of A are the
same as the maximal ordinary B-ideals.

(i) If M is any maximal ideal of B,, then B,/M =~ K.

(iii) (B),=B,, for any B.

Proof. This is analogous to that of Proposition 1.

It is always possible, for any given A4, to chose a strongly bounded
sub-algebra B; take B=Ke. Also, it is always possible to choose a
strongly boundedly saturated B; take B=(Ke),.

If B is not weakly bounded, there may be B;-ideals of 4 which are
not B-ideals. For example, let I be any infinite index-set, and A the
algebra of complex-valued functions defined on I, {a@;};e;, with point-
wise addition and multiplication. Take B=A; then B, is the set of all
bounded functions on I. Any function ae A with a,5%0 for all {el,
but ilélff la;|=0, will be in an ordinary B,-ideal but in no proper B-ideal

of A.

LemmaA 12, If 0 adheres to ox{a) then 0eoz(a); if 0 adheres to
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(@) then 0 e zxa).

Proof. We shall prove the second statement only; the proof of the
first is similar and slightly simpler. The set aB+a’B+a*B+ .-+ is
clearly an ordinary B-ideal of 4. If e were in this B-ideal, then

e=b,a+b,0"+ +++ +b,a"

for some b, 5, «--, b,€ B. It is elementary to verify that if 0 adheres
to t(a) then it adheres to ty(ba+ ---+b,a") also. Thus it would adhere
to r{e)={1}. This is impossible, since the topology of K is Hausdorff.
So the B-ideal specified above is admissible, and there is a maximal
ordinary B-ideal, J say, containing it. Thus a=aeceJ, and f,(a)=0, so
that 0 e zx(a), as asserted.

THEOREM 7. For each a€ A, ox(a) and z,(a) are closed subsets of
K.

Proof. If ae K adheres to oyz(aj then clearly 0 adheres to oz(a
—ae); hence, by Lemma 12, 0 is in oyxla—we) and so «a is in ox(a).
Similarly for z,(a).

We may topologise K’ by taking the basic neighborhoods of oo to
be the complements in K’ of the bounded subsets of K. In this topo-
logy, ti(a) and o3(a) are not in general closed in K'. Example (iii) of
§ 1 shows that we may have oo adherent to <j(a), but no maximal
ordinary J such that f;(a)=co.

THEOREM 8. If a is in no maximal ordinary B-ideal of A then a
has an tnverse in B,.

Proof. (1) As in Theorem 38 (ii), a has an inverse a~'in 4. Since
f;(a) is never zero, there is a neighborhood N of 0 such that N N 3(a)
is empty, by Theorem 7. Since we assume that K is of type V, this
implies that the set of inverses of elements of r3(a¢) is bounded; but
this set of inverses is evidently the B-spectroid of a~'; hence a~'e B, .

COROLLARY. If B is strongly boundedly saturated, then a€ A has
an tnverse a' € B if and only +f a is in no maximal ordinary B-ideal
of A.

ProposiTiON 13. If aeB,, a¢ B, and B is strongly boundedly sa-
turated, then th(a)=K.
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Proof. This follows from Theorem 8, Corollary, just as Proposition
3 follows from Theorem 3 (i).

We note that if B is strongly boundedly saturated, the hypothesis
of Proposition 6 is satisfied, and hence the conclusion of the proposi-
tion is wvalid.

PropoSITION 14. If p(a) € B, for some polynomial p of degree =1,
then a€ B, .

Proof. Since x(p(a)) is bounded, we can choose ae€ K so that
0 ¢ t3(q(a)), where ¢(a)=p(a)—ae. Thus ¢(a)e B, and (g(a))™' exists.
Write (g(a))~' as a sum of terms of the type B,(a—a,e)~%, it is a matter
of routine to verify that if <j(a) is unbounded, then 0 adheres to
3((¢(@))~*). This contradicts the fact that ¢(a)e B,, and zx((¢(a))™)

= {zh(q(a))} .

The corresponding result, with B, in place of B,, is true and
trivial.

The following result is analogous to Theorem 4, Corollary, and is
proved in exactly the same way:

PROPOSITION 15. A necessary and sufficient condition that the ra-
tional function r(a) exists as an element of B, is that r(cx(a)) is a bounded
subset of K.

For the remainder of this section we assume only that the field K
has a Hausdorff topology, and that addition is continuous. We may
topologise K’ by taking the neighborhoods of « to be the complements
in K’ of the bounded subsets of K. It is possible to introduce a topolo-
gy on the maximal ordinary B-ideals of A4 in at least three obvious
ways:

(i) Take as basic neighborhoods of the maximal ordinary B-ideal
Jy the sets {J: f;(a,)e N, r=1, 2, ---, n}, where N is any neighborhood
of 0 and a,, @, ---, a, are any elements of .J,. This clearly defines a
Hausdorff topology in which each function f;(a) is continuous (as a
function of J) wherever it is finite. In particular all functions repre-
senting elements of B, are continuous everywhere.

(i1) Take as basic neighborhoods of J, the sets

{J: fJ(a'r)eNr(fJg(ar))! r=1, 2, .--, ’I?;} ’

where a,, a,, ---, a, are any elements of A and N,, N,, ---, N, are any
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neighborhoods of f;(a), f;,(@), «++, fs(a,) respectively. This is the
weakest topology in which all the functions f,(a) are continuous. It is
evidently finer than (i).

(iii) Take as basic neighborhoods of .J, the sets {J: f;(b,)€ N,
r=1, 2, -+, n}, where N is any neighborhood of 0 and b,b, ---, b,
are any elements of J, N\ B.

Other variations are possible; for instance, B may be replaced by
B, or B, in (iii). We shall refer to these variations as (iii"), (iii"),
respectively.

In general, topology (iii) will not be Hausdorff; a necessary and
sufficient condition that it should be so is that each maximal ideal of
B should be contained in precisely one maximal ordinary B-ideal of A.
If the topology is Hausdorff, then the set _/% of maximal ordinary B-
ideals of A is compact; Gelfand’s proof of the corresponding result for
Banach algebras [4, Satz 9] applies to the present case. Similar re-
marks apply to (iit’) and (iii"”).

In the case where A is a Banach algebra, and B=A, all the above
topologies reduce to the customary Gelfand topology on the maximal
ideals. In the context of § 8, topology (ii) seems the most appropriate.

Similar topologies could of course be imposed on the space of all
maximal B-ideals of A.

7. Self-adjoint algebras. As in §5, we use the maximal ordinary
B-ideals; similar results could be obtained, starting from the maximal
B-ideals. In this section the scalar field is taken to be the complex
field C. The results could be formulated in a more general situation
(in a field with a suitable ‘conjugation’), but there seems to be no
point in doing this. Asterisks applied to scalars denote complex con-
jugates, and co*= 0,

DerINITION 10. The algebra A is self-adjoint (with respect to B)
if, given a e 4, there exists a* e A (not necessarily unique) such that
Sfr(@*)=f1(a)* for each maximal ordinary J.

From now on it is assumed that A4 is self-adjoint and B-semi-
simple.

PropPoSITION 16. The algebra A is completely B-semi-simple.
Proof. Suppose that f;(a)=rf,(a’) for all J. Then evidently (¢+aa™)?

and (e+a’a’*)~* both exist (in B)) and f;((e+aa*))=f;((e+a’a’*)"") for
all J. Hence the two inverses are equal, by the assumed B-semi-
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simplicity, and this implies aa®*=a’a’*. Next, it is easy to verify that
a(e+aa*) and a'(e+a’a’*)"" are both in B, and f,(a(e+aa*)"*)=f,(d/(e
+a’a’*)"") for all J. Hence the two elements are equal, and the con-
clusion a=a’ is immediate.

COROLLARY. The element a* is unique.
It is clear that a*=0 implies a=0, and aa*=0 impliés a=0.

The next result is, as promised in §5, an improvement of Proposi-
tion 9 in the present special case:

PROPOSITION 17. If % 4s a set of maximal ordinary B-ideals and
a € A is such that fr(a)=c for Je 4, fi(a)55 for J& _+, then f;(a')
=0 for J& _# implies a/=0.

Proof. Since f;(a’a’*+e) is either real and >1, or is infinite, it
is clear that fj(a¢’'a’*+a)=f,(a) for Je . #; and since f,(¢')=0 for
J & _#, the same equation holds for J¢& .# also. Hence aa’'a’*=0, by
Proposition 16. But this implies ¢’=0; if not, there would be a B-ideal
Je 7 with f;(¢')% 0, which would imply f,(ad’a’*)=c, which con-
tradicts aa’a’™=0.

THEOREM 9. If A is B-semi-stmple and self-adjoint, it has o Q-
representation.

Proof. If fi(a)=co for Je . 7 and fi(¢/)=c for Je. ', it fol-
lows that if a’=(e+aa*)(e+a’'a’*) then fi(a’)=c for Je Z\J 7.
Also, f;(a) cannot be infinite for all maximal ordinary B-ideals J, by
Lemma 10. Hence the family of sets on which f;(a) is infinite for
some o€ A is a Q-family. The required result now follows from Pro-
position 17.

So far the topology of C has not been involved; it is essential for
the results which follow. From now on we suppose B=B,, that is, B
is weakly bounded and strongly boundedly saturated (Definition 9). In
the absence of this assumption the following results remain true, when
suitably modified. But the statements then become more complicated,
and the gain in generality is not significant.

ProrosIiTION 18. B=28,.
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Proof. For any a, fi;(e+aa*) is never zero, and so (e¢+aa®)™ ex-
ists. If ae B, then f;((e+aa*)"") is never zero. By Lemma 12, it is
therefore bounded away from zero, and so f;(a) is bounded away from
infinity. Thus ae B,=B. Since B, 2 B, the theorem follows.

COROLLARY. t3(a) is closed in C' for any a.

LEMMA 18. Each maximal ideal of B is contained in exactly one
mazximal ordinary B-ideal of A.

Proof. Suppose that the maximal ideal M of B is contained in the
distinet maximal ordinary B-ideals, J and J’, of A. Let aelJ, a¢J'.
Then

Sul(e+aa™) ) =1+ f5(@)) 7= A+ 1)) =Ful(e + aa™)™),

a contradiction.
LEMMA 14. All the topologies described in § 6 are equivalent.

Proof. 1t is clearly sufficient to prove that (iii) is finer than (ii).
Let N be the neighborhood

| N={J: fi(a,) e N(Fs(a)), r=1, 2, -+, n} .
Write
b,=(e+a,a)";

it is easy to find neighborhoods N,, N, such that

f5(,) € N(f5,(8.)), fi(a,b,)e N/ (f5(a,b,))

together imply

fJ(a’r) € Nr(fJo(a"r))

(if fs{a,)=co, then N is superfluous). By translating the neighborhoods
N,, N/ to the origin if necessary, and taking their intersection, it is
easily seen that there is a neighborhood in topology (iii) which is con-
tained in N.

Combining the above results, we obtain at once:

THEOREM 10. Let A be a self-adjoint, B-semi-simple algebra, with
B=B,. Then the maximal ordinary B-ideals of A can be topologised so
as to become a compact Hausdorf space, and the mapping o — f;(a)
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sends elements of A into continuous C'-valued functions on this space.
The sets on which f;(a) is infinite for some ac€ A form a Q-family of
closed sets.

It is apparent that the structure space depends (set-wise and topo-
logically) only on the ‘bounded’ sub-algebra B of A, provided that this
satisfies reasonable conditions, which ensure that it is large enough. If
we assume a little more, namely that all bounded continuous functions
correspond to elements of B (for instance, if B is a Banach algebra
under a suitable norm), then we can clearly assert that the set on which
fy(a) is infinite is nowhere dense (since the set is closed, this is equi-
valent to its interior being empty). The conclusion of Theorem 10 is
thus strengthened.

To conclude this section we turn to Example (vi) of § 1, and see to
what extent the results of this section can be applied to it. First, it
seems desirable to state precisely what we mean by an algebra of nor-
mal operators on a Hilbert space; we mean a collection A of normal
operators such that any scalar multiple of an operator in A is in A4,
and the sum and product of any two operators in A have unique ex-
tensions in A. As always, we assume that A contains a unit (the
identity operator, here) and is commutative (in the sense that the product
of two operators, in a certain order, has the same extension in A4 as the
product in the reverse order). We take B to consist of the bounded
operators in A: we assume that if ae A, and a* exists as a bounded
operator, then a~'e B, and we also assume that B is uniformly closed.
This implies that the maximal ideal condition B/M == C is satisfied. If we
denote by a* the usual Hilbert space adjoint of a (we proceed immedi-
ately to show that this is in agreement with the previous use of a*),
and restrict attention to algebras A which are self-adjoint in the sense
that ae A implies a* e 4, then we have the following.

LEMMA 15. The algebra A is self-adjoint in the sense of Definition
10.

Proof. If a is bounded then it is clear that f;(a+a*) is real, since
(a+a*—2e) has an inverse in B for nonreal A. Similarly, f,(a—a*) is
imaginary, and so f,(a*)=f,(a)* for bounded a. Next, for any ac A4,
write b=(e+aa™)""; it is well known that be B and abe B; also b is
self-adjoint (b*=b), and (ab)*=a*b. If f,(a) and f,(a*) are both finite,
then from f;(a*b)=s,(ab)* it follows that f,(a™)=f,(a)*, since f,(b) is
real and nonzero. It remains to show that if one of f;(a), fi(a*) is
finite, then so is the other. Suppose the contrary; there is no loss of
generality in supposing f;(a)=1, f;(a*)=co, Then
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1 =fJ(6 _b) =f.7(a/af*b) :"fJ(a’)fJ(a’*b) =fJ(a’)fJ(ab)*=0 ’

which is impossible.

The sub-algebra B is semi-simple, by the usual reasoning, and the
B-semi-simplicity of A follows at once from this. The conclusions of
Lemma 13 and 14 are true, independently of any assumption that B
=B, since b=(e+aa*)"! and ab are certainly in B.

The conclusion of Theorem 10 is thus valid for A. Moreover, the
assumption that B is uniformly closed ensures that the functions f;(a)
become infinite only on nowhere dense sets. The fact that B=B, fol-
lows from the same assumption; for each bounded continuous function
on the maximal B-ideals of A (=maximal ideals of B) corresponds to
an element of B.

In the paper of Fell and Kelley [3], the authors deal with algebras
of operators from a somewhat different point of view. Starting from
a strongly closed algebra of bounded of bounded operators, they select
a class of unbounded functions on the structure space (the same
class as we have obtained above, namely the continuous C’-
valued functions infinite only on a nowhere dense set), and show that
to each such function there corresponds a normal operator. Every nor-
mal operator can be obtained in this way, starting from a suitable
algebra of bounded operators. The problem of the functional represen-
tation of an algebra of operators is not explicitly treated.

As a realization of the sort of algebra we have been considering,
take the following trivial example. Let the Hilbert space be L, (0, 1),
and consider continuous C’-valued functions on (0, 1) which are infinite
only on a set with empty interior. To each such function a normal
operator can be attached in an obvious way; the operator, applied to a
function of L,, yields the ordinary product of the two functions. If
we assume that A is an algebra of such operators, containing all opera-
tors corresponding to bounded functions, then the above theory can be
applied, and it is found that the operators are represented by the func-
tions from which they have arisen.

8. Algebraic function fields. Although it is not our main objective,
we give a few indications of the relation between the theory developed
in the preceding sections, and the theory of fields of algebraic functions
of one variable. All the relevant definitions, etc., will be found in
Chevalley’s book [2]. The first result is valid quite generally.

LEMMA 16. If A s o field, and K is a proper sub-field of A, then
Sor every mazximal ordinary K-ideal J of A there is an element a€ A
with fy(@)=oo.
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Proof. If not, J would be a proper ideal of A, different from {0},
by Lemma 38; this is impossible.

The definition of a V-ring, as required in the next lemma, will be
found in [2, p. 1].

THEOREM 11. If A is a field of algebraic functions of one wvariable
and K is an algebraically closed proper sub-field of A, lhen the maximal
ordinary K-ideals of A are in one-to-one correspondence with the V-
rengs in A (over K).

Proof. Let J be a maximal ordinary K-ideal of A, and write @
=J+ K. Then clearly Q is a ring; further (i) @ contains K; (ii) Q % A4,
since, by Lemma 16 there is an element a € A with f;(a)=c; and f;(q)
e K for all ge @; (iii) if x¢ Q then fi(x)=o; for if f;(z)=ae€ K then
z—ae€@ and so xe€ Q. If fi(@)=oo then f;(x"")=0, by Lemma 9, and
so 7€ Q. Thus @ is a V-ring.

On the other hand, let @ be any V-ring, and let J be the ideal of
non-units, Then Q/J~ K ([2], p. 10); every element of @ is of the
form ae+j, where jeJ. Clearly J is an ordinary B-ideal; we now
show that it is maximal. Let a be any element of 4, not in J. Then
if e, a—aeecJ for some o€ K and so e is in the K-ideal generated
by J and . If a is not in @ then a~! must be in J; for if a ! were
in @ but not in J then o', and hence a, would be a unit in Q. So
again e is in the K-ideal generated by J and a. That is, J is maximal.
This establishes the required correspondence.

We may thus identify the maximal ordinary K-ideals in A with the
places of 4, where A is a field of algebraic functions of one variable
over K. The value taken by a€ A at the place J [2, p. 6] is the same
as the value of the function f;(a) as defined in § 2.

The places of A may be topologised, if K is a topological field; the
topology (ii) previously indicated (§ 6) reduces to that given by Chevalley
for the complex case [2, p. 133].
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