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1. Introduction. Let R be a ring and let R* be the additive group
of R. If R* =S, PSP ---PS, is a direct sum of subgroups S;, then
each element of R can be written as an n-tuple (s, s,, «++, S.), ;€ S,,
=1, 2, .-+, n, and multiplication in R is given by n mappings

St SixSyx e x 8, x8x8,x-e xS, >R, k=1,2, «+-, n,

where fi(s;, 8y, +*+, Sp; €, by, -+, t,) i the k-th component of the product
(81, 84y *=+, 8,)+(ty, tyy -+, t,). The distributive laws in R imply that the
mappings f, are additive in the first » and in the last n arguments. If
S, S, ---, S, are ideals in R, then

f}c(sly Spy t0ey Sy by, By v e e, tn)zsktk, ’ k:l, 2: e, 1,

which is a homogeneous quadratic polynomial with integral coefficients in
the arguments.

If R is a commutative ring with identity, and if M is a free (left)
R-module with basis ¢, ¢,, -+, ¢,, then M is an algebra over R if and

only if there exist elements 7,,,€ R such that multiplication in M is
defined by

( z{ Si6i> . ( 21 75,10,7>=. > TimSitses o
i= J=

i,J,k=1
The k-th coordinate of the product,
flc(sh Suy * 0y Sy tly t:y ey tn): 'Zl T'Hl-;sit,) y
i,j=
is a mapping

2n
fit R*XR*x -+ xR*—>R*

which is additive in the first » and last n arguments, and which is a
homogeneous quadratic polynomial with coefficients in R in the argu-
ments.

These examples suggest the investigation of polynomial mappings
with the indicated additive properties, and a discussion of the problem
of constructing R-modules and rings which have an additive group which
is the direct sum of ideals of a ring R, and for which the multiplication
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is defined by a polynomial mapping.

In § 2 the basic properties of distributive mappings are given. The
form of a distributive polynomial mapping is investigated in § 3, and
such mappings are characterized in Theorem 2, under the assumption
that R is a commutative integral domain. In §4 and 5 the results of
the previous sections are applied to the construction problems mentioned
above.

2. Distributive mappings. Let S, S,, - -, S, be additive semi-groups
with identity 0, and let M be an additive abelian group. Let f be a
mapping of S;xS,x .- xS, into M.

DEFINITION. If there exists an integer m, where 1 <<m <k, such
that

( i ) f(Sl“{—S;, Ty Snz+s7,n; Smery "0, Slﬁ)
:f(sly Ty Sy Sman 0, sk)+f(8;; MY S;n; Simety *° " S;,,) »
(li) f(sl’ Tty Sm; Sm+l+s;n+1y Sty Sl\:_*_sl/»)

=.f(81, Sy Sy 00, 875)+f(sl’ Tty Sy 8;n+1’ M) SI:) ’

for all s, s,€8,, i=1, 2, ---, k, the mapping f of S, xS,x---S, into M
is called m-distributive.

If k=m, only (i) of the definition applies, and the mapping f is a
homomorphism of S;@S.H ---PS, into M. In the examples given in
the introduction, £=2n, and the mappings are n-distributive.

The following are rather obvious consequences of the definition.

(1) The m-distributive mappings of S,xS,x -+ xS, into M form a sub-
group H of the additive abelian group G of all mappings of S; xS, x -
xS, into M.

If M is a ring, then the set of mappings G is an M-module in the
usual way, and the set of m-distributive mappings H is a submodule
of G,

(2) The mappings in H satisfy the relation

f(sly Sty By Spey m e, SA‘)
k m
= Z Zf(oi Y 07 81y Oy St 0; O’ ety 0: S5, Os Tty 0)
J=m+1 i=1
for all s, €8, 1=1,2, -+, k.
Statement (2) is proved by induction from (i) and (ii) of the
definition.
(8) The mappings in H satisfy
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f(sly cecy S O; R O)Z.f(()r tc 0; Sty 00y S/\‘):O

for all s, €8S, =1, 2, ---, k.
Statement (3) is a generalization of the fact that the distributive
laws in a ring imply a-0=0-a=0.

3. Polynomial functions. Let S|, S,, -+, S; be subsemigroups (not
necessarily distinet) of the additive group R* of a ring R, all of which
contain the element 0 of R. Let R* be any ring containing R, and let

S(@, @y o oe, @ )=300 5,000 Bhate - 2l

be a polynomial in R*[x, «,, ---, 2.]. Then f defines a mapping of
S, xS, x -+ xS, into R* where

S(s1, 8 000, Sx)=zaj1.12---_fk3{1852'"S!Jck ’ $;€8;, 1=1,2, .-+, k.

The set S of all such mappings (polynomial functions) is a submodule
of the left R*module G of all mappings of S, xS,x --- xS, into
R*. As above, we let H be the set of m-distributive mappings of
S, xS, x---x8, into R*, so that H is a submodule of G. Consequently
the set of mappings H/N\S is a submodule of G.

THEOREM 1. Each mapping fe€ HNS is defined by a polynomial of
the form

k t—1

(A) S@y @y, o0, m)= 2 3 X affzlal .
L=m+l =1 j;y7;=1 ¢
Jirigst

Proof. Let f be defined by a polynomial in R*[x, x,, ---, z,] of
degree ¢t. Since f e H, we have by (2), Section 2

f(sly Sy vy, Slc)
k m

= ZA Zf(os "'yOy Siy 0’ "'90; 0! "'90v SI! Oy "',0)

T=m+1 i=1

k ki3 t

= Z Z Z an_---.0,ji,n,---,u,j,,n,---,oszjlsiil ,

Il=m+11l=1 j‘i,JL=0
;I St

for all s,e8,, =1, 2, ---, k. The latter expression can be written

k m
S Jigd
D20 20 yeenu 0000, 5,0, 0STISTE
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I {
i .
D D W0, g0, e, 080 Gy 0, o

l=m+1 J=1
By (8), Section 2,
0=f(0, 0, ey, O):ao’g’...‘u ;
t
Ozf(()’ teey, 0, S‘L} 0y tecy 0; 0, Tty 0):(101[)’...,0"}‘ ZGO,...‘U’ ji’n_..-.()sz‘2
J;=1
t
= Z a/u‘ ...,ijz,(]y...‘”S,J-i
3=t
for all s,eS,, i=1,2, ---, m;
Ozf(os Ty 0; O; ) 07 Slv 07 Sty O)
o .
::a/d,l), ...,\)+ Z‘ a/()_ vee,0, 3750, ...,OSgl
Jp=1
! :
=3 o, «vvy0, 35,0, 000,087
J.=1
foralls,eS;; I=m+1, ---, k. Denoting @, ee,0, 7,0, 00,0, 7,0, 44,0 by aﬂf;@’l, we
have
Eoomoogsl
f(sly 8y 0y, Sk)": 24 }_4 E a(jL.:J’)ZSgZS’}l
l=m#1i=1j,5,=1
Jr st
for all s,e8,, 1=1,2, --+, k, which completes the proof.

The following examples show that for an arbitrary ring R, the
converse of Theorem 1 does not hold, and that Theorem 1 is the best
possible theorem in the sense that there exist rings for which every
polynomial function defined by a polynomial of form (A) is m-distributive.

ExaMPLE 1. Let R=I, the ring of ordinary integers, let R*=R,
and let S;=S,=R*. Let f: S xS,— R be defined by f(z, x)=2ak,.
Then f is defined by a polynomial of form (A) with m=1. However
féeH for fA+1; 1)=1(2, 1)=4, and f({1; 1)+ F(1; 1)==1+1=2,

ExAMPLE 2. Let R be the ring with additive group R*={u}, the
cyclic group of order 9, and with multiplication defined by (iu)-(ju)=3iju.
Then R is a commutative ring [2] such that R*=0, R*740.

Let f be any mapping of S;xS,x--- xS, into an extension R* of
R, where S, S,, -+, S, are any subsemigroups of R* containing 0, such
that f is defined by a polynomial of form (A). Then
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L ! l i i
Fse oes)= 3 5 S afh shsh

= i iaﬁ”SzSz ,
je=m+li=1

since R*=0. It is evident that f is m-distributive, that is, fe HNS.

In the sequel we will be concerned with m-distributive polynomial
mappings of S;xS,x.--x S, into B. Since a polynomial with coefficients
in an extension R* of R may have its values in R, we obtain a larger
class of mappings by allowing the coefficients of f(x,, @,, - -+, ;) to be in
R*2 R. For example, polynomials with (ordinary) integral coefficients
have values in R, and if R does not have an identity, we may con-
sider the coefficients to be in an extension R* of R. Moreover it is
a consequence of the theorem that if R is an ideal in R*, then f has
values in R.

The following lemma is well known (see for example [6, pp. 65-
66]), but is given here in the form in which it is most useful for our
purposes.

LEMMA. Let
f= Z a’]p I "H.?';Cx{lwgg' * -.’L‘ilm S Rk[xls Lyy =0y le

where R* 1is a commutative integral domain, and let f be of degree m,
i x, 1=1,2, «-«, k. Let (s, s, -+, s{™’) be a set of distinct elements
of R* where n, >m,, 1=1, 2, «--, k, such that f(s{?, s, «--, six’)=0
for 1,;=1,2, «««, m;, ©=1,2, ««- k. Then f=0e R*[x, x, -+, x;].

THEOREM 2. Let R* be a commutative integral domain, let R be a
subring of R*, and let S,, S,, -+, S, be non-zero ideals in B. A mapping
S from S, x8,x -+ xS, into R* is an HNS of and only if f is defined
by a polynomial of the form

2

1 r
5 S .S
il 051 ST
> aly el al
Sl.,81=(] Py

M

(B) f(wh mz, Tty xk)zz:%l]

+1 0

[
-

when R has characteristic p >0, and by
k m
(©) f@, @, o0, x)= > 2 au@,

l=m+1 1=1

when R has characteristic zero.

Proof. Let f be defined by a polynomial of form (B) when R has
characteristic p >>0. Then
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f(Sl'“I_S;y tt Ty Sm+81,n; Sty *0 3/.')

k m 7
N0 St gD p¥i g
= >} 21 a%? o (sits)? s
I=n+li=1s,i5=0 POV
k m 7 s s s
. Y N [€R))] i S AEAPN Il
- Z 24 ZJ a s s,(si +s; )SL
l=m+1i=1 §,,8 =0 P O

:f(slr *ty Sy Skttt Sl\:)+f(S;7 ) S;n; Suats "0, slg) ’

so that f satisfies (i) of the definition for m-distributiveness. Similarly
(ii) is satisfied, so that fe HNS.

It is immediate that a mapping f defined by a polynomial of form
(C) is m-distributive.

Conversely, we divide the proof into three parts.
1. R s infinite and has characteristic p > 0.

If feHNS, then f is defined by a polynomial of form (A) by
Theorem 1. Then we have for each 4 (1=C4-Cm) and for each [
(m <1 =<k),

.f(0+0y Tty Sz"f‘S;y ctty O+O; O, ceey Sy v, O)
t—1
— S (sl
Jppdy=1 ‘
2;k0,=t

’:f(or""rsiv""'50;01“”v811”‘70)
+j~(0)‘.'asi)'..90;05"‘»Sl""’o)
= 3 afy slish+ S ah siisie
' i

for all s, s;e S, s,€8,. Therefore we have the identity
o T
(3.1) S agn [jis.;i_xsz_ v J,i(.vzé’f Dgrrg .
J=ni=1 '

+yi(jérl)s‘fs;jr?+_7'Lszs'i"z“]sz"1=0 .

Since R is an infinite integral domain, each ideal S;=~0 is infinite.
Therefore the polynomial in R*[x, y, 2] which has the same coefficients
as the above expression, vanishes for infinitely many values of each
argument x, ¥, z in R*. By the lemma, each coefficient is zero. Now the

coefficient of o/ "yzt (0<»r <74, 1<75,<¢t; 0<g,<t) is ('h) al = 0.
»

Jpdy
If 4, is not a power of p, then at least one of the binomial coefficients
(3’), r=1,2, ---, 4,—1, is prime to p. Since E, and consequently R*,

r
has characteristic p, this implies that a§j;’fl:O, for 7, and 7, in the stipu-
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lated ranges, whenever j, is not a power of p.

Using (ii) of the definition of an m-distributive mapping, a similar
argument shows that ai’} =0 for j,=1, 2, -+, t—1; 5,=2,8, ---, t~-1
whenever j, is not a power of p.

Since the above argument holds for each ¢ and each [, the polynomial
of form (A) which defines f has all coefficients zero except for coefficients

P ,=0,1,2, -+, 5,=0,1,2, ..., Thus f is defined by a poly-

pSipSt?
nomial of form (B).
2. R is finite and has characteristic p > 0.

Since R is a commutative integral domain, R is a finite field GF(p")
and each ideal S;40 in R is R itself. Since s*"=s for all se R, each
polynomial function of S, xS,x ... xS, into R* is defined by a polynomial
of form (A) of degree at most p"~' in each argument. Since the degree
in each argument is less than the number of elements in each S,=R,
the lemma can be applied to the identity 3.1, and the proof of 1. is
valid in this case also.

3. R has characteristic zero.

Since R and each ideal S;740 in R have infinitely many elements,

the proof of 1. can be followed to obtain

.7" G jl D —
< Haihh =0 and ai; =0,
r r

for 74,, 7;,, and = in the ranges previously stipulated. Since R, and

consequently R, has characteristic zero, this implies that a§"} =0 except

for j,=7,=1. Consequently f is defined by a polynomial of form (C).
The following result was obtained in the proof of the theorem.

COROLLARY. Let R=GF(p*) and R* be a commutative integral domain
containing R. A mapping f of

k terms
RxRx+-+xR

into R* is in HN\S if and only if [ is defined by a polynomial of form
(B) with r=n-1.

4, Application to the construction of R-modules. Let S%0 be
an ideal in a ring B. The set of (k—1)-tuples V=1{(s,, 8, ---, s:), 8, € S}
with equality, addition and left scalar multiplication defined component-
wise is a left R-module. The group of the module is the direct sum

k—1 terms
S*HS*P---PpST.
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Forre R, s; €S, the i-th component rs; of the scalar product r(s,, ss, =+ +, )
is a 1-distributive polynomial function f of the arguments r; s, 8,, +++, S;.
In this section we characterize the most general polynomial function f
for which V=S*@S*P---PS* is an R-module, where R is a com-
mutative integral domain with characteristic zero.

Now V is a left R-module if and only if there exists a mapping f
from Rx V into V which satisfies the module identities

(M,) Sy, vi+v)=f(r, v)+ S0, v),
(M,) Sri+ry, v)=71(r, v)+ f(r, v),
(M) Sy, v)=F(r, f(r, v)),

for every , r,e R and every v, v,€ V. Denoting the components of
S, v)=1(r; s, »++,8) by filr;s, -+, 8.), ©=2,3, ---, k, we observe
that f is given by a set of k—1 mappings f, from

k terms
RxSxS8x..+x8

into SE R. Setting B=S,, S=8,, ---, S=S, to agree with the notation
of the preceding sections, the identities (M,) and (M,) are just the con-
ditions (i) and (ii) that each mapping f, be 1-distributive. Interpreting
M, for the components f; we have

4.1)  filriry s,y o0, 8)=Tir; fol1y 8sy 200y 8k), w00, Su(rs 8y o0 0, SK))

for every , r,€ R and every s;€8; =2, 3, -+, k.

We now assume that RB* is an ideal-preserving extension of R, that
is, R* is a ring containing R with the property that if S is an ideal in
R, then S is an ideal in R*. For example, there exists a ring with
identity containing R which is an ideal-preserving extension of R. Let
fi, 1=2,3, «-+, k, be a mapping from Rx V into R* defined by a poly-
nomial

(4.2) Sy @y +0 e, xk)=2ajljz-~-;kwflxgz' -l

with coefficients in R*. Denote the system consisting of the group V
and the mappings f; defined by (4.2) by (V, f;). We obtain the following
application of Theorem 2.

THEOREM 3. Let R* be a commutative integral domain with charac-
teristic zero which is an ideal-preserving extension of R. Then (V, f,) is
a left R-module with scalar multiplication defined by r-(s,, Ss +++, Sp)=
(For Sy =+ =, Jo) if and only if each f; is defined by a polynomial of the
Sform
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k X
(4.3) Ji@s @, ooy )= 3 aiPmay ai® € B* ,

such that the matriz A=(af®) is idempotent; that is r-(s,, S5 *++, Sp)=
7(Syy Sy, + =+, Sp)A’, where the right member is an ordinary matric product
wn which A’ is the transpose of the matrixz A.

Proof. 1f (V, f.) is a left R-module, then by the foregoing discus-
sion, the mappings f; are 1-distributive polynomial mappings with values
in SER*., By Theorem 2, with S;=R, S,=S,=...=8,=S, and m=1,
each f, is defined by a polynomial of form (C)

k 1
Sl @y o0, )= §a§?x1xz= ZZ_;a?”a:locz .

Since each f; must satisfy the identity (4.1) we have

k ko k
ZZ asP(rr,)s, = ZZ (L%“?”IIZ > ag‘)rzsj]
=2 =2 j=2

k
= Sy afarrs,

(=2 j=2

k
for every r, r,€ R and every s, € S. This implies a®= >} a{Pa{”’ or that
j=2

the matrix A=(a{) is idempotent. Since

=2

k k
Jiry 8y 0o, sp)= 3, afPrs=r %W& ,

we have 7r:(s,, ++-, 8,)=0(s,, ---, sy)A’ where the right member is an
ordinary matrix product.

Conversely, it is readily observed that if f; is defined by (4.3) with
A=(a{®) idempotent, then f; has values in S since S is an ideal in R*,
fi is 1-distributive, and f; satisfies (4.1). Therefore (V, f,) is a left R-
module.

If we specialize to the case where R=F is a field, we have S,=S,
=...=8,=F and R*=F, so that (V, f)) is the group of (k—1)-tuples
with elements in F’ for which scalar multiplication is defined by (4.2).
Theorem 3 characterizes the (V, f,) which are F-modules, and we let
(V, A) denote the F-module (V, f;) with scalar multiplication defined by
(4.3) where A=(a{”) is idempotent. Let Em=(10’“ g), where 0 <m<k-—1.
The following theorem completely classifies the F-modules (V, f)).

THEOREM 4. The left F-module (V, A) is F-isomorphic to the F-
module (V, E,) for some m, 0 <m <k—1. Moreover (V, E,) is not F-
wsomorphic to (V, E,) if m % n.
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Proof. 1If A is similar to B, then (V, A) is F-isomorphic to (V, B).
For in (V, A),
7(8yy S5 v o0, Sp)=1(8y S, * 7, SpA,
and in (V, B),
(8, S5, *++, 8)="1(S,, Sy * -+, 8)B'=1(s,, 85, -+ -, 8, ) PA P!

for some non-singular matrix P. The mapping ¢ defined by

(P[(szy S:iy tty SIC)]=(S_’) 839 Tty Sk)P_l
is an F-isomorphism.
Since A is idempotent, A is similar to E, for some m, 0 <m <k—1

[1, p. 88], which completes the proof of the first part of the theorem.
In (V, E,),

7‘-(8_,, Ss; A SA)=(’)"SZ, 7‘83, ) rsm-&-lv Or R 0) ’

so that the submodule 1-(V, E,)=(s,, 85, ***, Sps+1, 0, -+, 0) is the vector
space over F' of dimension m. Any F-isomorphism of (V, E,) onto
(V, E,) induces an F-isomorphism of 1-(V, E,) onto 1-(V, E,), but if
m % n these submodules cannot be F-isomorphic since they are vector
spaces of different dimensions over F.

COROLLARY. The F-modules (V, A) and (V, B) are F-isomorphic if
and only if A and B have the same rank.

In the above discussion, the (V, f;) were all (k—1)-tuples for a fixed
k. We now consider (V,, f;) and (V,, f,), k%~1. By Theorem 4, it is
sufficient to consider (V,, E,), 0<m <k—1 and (V,, E,), 0 < n<1-1.

THEOREM 5. The F-modules (V,, E,) and (V,, E,) are F-isomorphic
aof and only if m=mn and either k=1 or F'* has infinite rank.’

Proof. Suppose first that ¢ is an F-isomorphism of (V,, E,) onto
(V,, E,). Then as in Theorem 4, 1-(V,, E,) and 1-(V,, E,) are F-
isomorphic vector spaces of dimension m and n respectively over F.
Hence m=n. Assume that k=%4{, and let M and N be the submodules
of (V,, E,) and (V,, E,) respectively which are annihilated by 1e F.
Then ¢ induces an isomorphism of M onto N as additive groups.

k—1—m
A ——
Mz{(oy Tty 07 Sqn-H’ “ Slc-l)! SieF}=F+@ “'@F+
! ’i‘h;e:uiditive group F'*+ of a field F' of characteristic 0 is a divisible torsion-free
group and therefore is the direct sum of « copies of the additive group of rational num-

bers. The cardinal number «, which is an invariant, is called the rank of F'+ [4, pp. 10-
11].
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and
{[—1—-m
N={(Oy tt Ty O’ Sm+l’ "'ysl—l)’ siEF}=F+@...@F+ *

If F* has finite rank, then M and N have different rank, and are not
isomorphic. Hence F'* has infinite rank.

Conversely, if m=n and k=I[, there is nothing to prove. Suppose,
then, that m=n and that F'* has infinite rank. Now (V,, E,)=
1(V, E)PM and (V,, E,)=1-(V,, E, )P N, where M and N each
have the decomposition into a direct sum of copies of F'* given above.
Since F'* has infinite rank, M and N have the same rank and are
isomorphic as additive groups. But since F annihilates M and N, this
isomorphism is an F-isomorphism. Finally, 1-(V,, E,) is F-isomorphic
to 1-(V,, E,) since they are vector spaces of the same dimension.

5. Application to the construction of rings. As in the previous
section, we let S=40 be an ideal in a ring R and consider the set of
n-tuples V=1{(s,, s, -+, 8,), ;€ S} with equality and addition defined
componentwise. Now V is a ring if and only if there exists a mapping
f from VxV into V which satisfies '

(R) Soitv, v) =5 (v, v)+ f(v,, v3)
(R.) Sy, vo+v)=f (v, v)+ f(v, vs)
(Rs) S (v, ), v)=F(vy, f(vs, v5))
for every v, v,, v;€ V.
Denoting the components of f(v, v,)=f (8, -+, $u; &1, +++, t,) by

filsy, v, 8t v, b)), t=1,2, --- n, f is given by a set of » mappings
[ from
2n terms
—
Sx8x xS

into S& R. The identities R, and R, are just the conditions (i) and
(ii) that each mapping f; be n-distributive. In this application, k=2n,
and S;=S, ¢=1, 2, ---, k in the notation of §2. Interpreting R, the
associative law, for the components f,, we obtain

(51) fll(fl(sh ceey Sy by, e tn)s "';.f‘n(sh SR - AP tn)y Uy *=* -, un)
=‘fz’(sl’ ttty Sn;fl(tl, ceey by Uy, ) u‘n)y ""fn(tly Tty tm Uy =y un))

for every s, t;, u,€S.
We assume that R* is an ideal-preserving extension of K and that
each f;, 1=1, 2, ---, n is defined by a polynomial
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(5'2) fi(xlv ety ‘/vn; yh ctty yn): Z a/jl"'jnkl'“knle' * '90'2"2/;(1' * 'nyn

with coefficients in R*. Denote the system consisting of the group V
and the mappings f; defined by (5.2) by (V,f;,, n). We obtain the
following application of Theorem 2.

THEOREM 6. Let R* be o commutative integral domain which is an
ideal preserving extension of R. Then (V, f,, n) s a ring with multipli-
cation defined by (s, «++, 8,)(t, +++, to)=(f1, -+, fn) of and only if each
fui=1,2, «++, n satisfies (5.1) and is defined by a polynomial of the
form

n n r

(5.3) G T D EDIYDYEDY U“’aéj.:?ﬂ?}’sjyé’sl ,
=1 )= j’st
or
n .
. i\l %y Lyy Y1y * 0y Yn)= R 12 AN
(5.4) Silx XY Yn) > a5y

T=1 j=1

according as B has characteristic p >0 or 0.

Proof. 1f (V,f,n) is a ring, then we have observed above that
the mappings f, are n-distributive mappings with values in S <& R*,
Since the f; are polynomial mappings into R*, it follows from Theorem
2, that they are defined by polynomials of form (B) or (C) according as
the characteristic of Ris p>>0 or 0. We have seen that the associative
law implies (5.1).

Conversely, if multiplication in (V, f;, n) is defined by (s, ++-, 8,)-
&, -+, t)=(f1, -+, f.), where each f, is defined by (5.3) or (5.4) ac-
cording as the characteristic of R is p >0 or 0, then by Theorem 2,
each f; is m-distributive. Thus, multiplication in (V, f;, n) is distributive
with respect to addition. Since each f, satisfies (5.1), multiplication is
associative, and (V, f;, n) is a ring.

ExaMPLE 8. Let R be a field F with characteristic zero. Then
R*=F, S=F, and (V, f, 1) is the group I'* and the mapping f defined
by f(x; y)= > a2’y*, a,eF. By Theorem 6, (V, f, 1) is a ring with
multiplication defined by s-t= 3 a,s't* only if f is defined by f(z; y)=
axy, ae k. If az£0, (V,f, 1) is isomorphic to F' under the correspond-
ence sa~*<>s, so that we can conclude that the only non-trivial rings
with additive group F'* and with multiplication defined by a polynomial
function of F'xF' into F' are fields isomorphic to F' [3, p. 177].

EXAMPLE 4. Let R be the finite field GF(38°). Then R*=GF\(3),
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S=GF(3*), and (V, f, 1) is a ring only if multiplication is defined by
(see the Corollary to Theorem 2).

s-t=1(8; t)=St + ayst’+ a, st + a;s°t* , a;,;€ GF(3) .

Selecting ayp=a,,=1, ay=0a,=0, f(s; t)=st+s%, and f(s; t) satisfies (5.1).
Hence (V, f, 1) is a ring. Let & be the primitive eighth root of unity
which generates the multiplicative group of GF(3?). Then &-1=f(¢ 1)
=&+ &=6(1+¢%=0. Hence (V, f, 1) has zero divisors, and in this case
we have an example of a non-trivial ring with additive group GF(8*)*
and with polynomial multiplication which is not isomorphic to GF(3%).
It should be remarked in conclusion, that when R has characteristic
zero and (V, f;, n) is a ring, the multiplication rule (5.4) is the same as
that for an algebra over R* (see Introduection); and if B* has an identity,
(V, fi, n) can be regarded as a subalgebra of an ordinary algebra of
dimension » over R*. Hence the coefficients ¢ of the polynomials f;
play the same role as the multiplication constants of an algebra, and

the associative law (5.1) can be interpreted as a matrix identity [5, p.
294].
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