ON THE CASIMIR OPERATOR

HOWARD ERNEST CAMPBELL
The Casimir operator is an important tool in the study of associative [4], Lie [4] and alternative algebras [7]. However its use has been for algebras of characteristic 0. We give a new definition of the Casimir operator for associative, Lie and alternative algebras, which keeps desirable properties of the usual Casimir operator and which is useful for arbitrary characteristic.

We show that under certain conditions our Casimir operator is the identity transformation and for non-degenerate alternative (or associative) algebras we show that it is the transformation into which the identity element of the algebra maps. We apply our results to obtain the first Whitehead lemma for non-degenerate alternative algebras of arbitrary characteristic. We also obtain a special case of the Levi theorem for Lie algebras of prime characteristic.

1. The Casimir Operator. Let \mathfrak{g} be an associative, Lie or alternative algebra with basis e_1, e_2, \ldots, e_n over an arbitrary field \mathbb{F}. For uniformity we use the notation $x \rightarrow S_x$ for a representation of \mathfrak{g}, where if \mathfrak{g} is alternative we mean the S_x part of a representation $x \rightarrow (S_x, T_x)$. If \mathfrak{g} is a Lie or associative algebra, $f(x, y) = t(S_x S_y)$ where t is the trace function, is an invariant symmetric bilinear form. In [7, p. 444] it is shown that if \mathfrak{g} is alternative this form is invariant if \mathfrak{g} is not of characteristic 2. For arbitrary characteristic we have

$$t(S_x S_y) = t(S_x S_y S_z + S_x T_y S_z - S_x S_z T_y)$$

$$= t(S_x S_y S_z + S_x T_y S_z - T_y S_x S_z) = t(S_x S_z).$$

Similarly $t(T_x T_y)$ is invariant.

We call \mathfrak{g} non-degenerate if $t(R_x R_y)$ is non-degenerate where R is the representation of right multiplications. It can be shown that this is equivalent to the non-degeneracy of the bilinear form $t(L_x L_y)$ of the left multiplications. It is well known that if \mathfrak{g} is a non-degenerate alternative (or associative) algebra it is a direct sum of simple algebras. Dieudonne [3] has shown that this is also true for Lie algebras.

If \mathfrak{g} is semi-simple and \mathfrak{g} is of characteristic 0, the usual Casimir operator $I^*_\mathfrak{g}$ for the representation S is defined as follows: Let \mathfrak{R} be the set of all x of \mathfrak{g} such that $t(S_x S_y) = 0$ for all y of \mathfrak{g}. Then $\mathfrak{g} = \mathfrak{R} \oplus \mathbb{C}$ where \mathfrak{R} and \mathbb{C} are semi-simple ideals of \mathfrak{g}. Let e'_1, e'_2, \ldots, e'_k be the
complementary basis to a basis e_1, e_2, \ldots, e_k of \mathbb{C} such that $t(S_iS_j) = \delta_{ij}$ (Kroneker’s delta). (Note that the complementary basis depends on the representation.) Then $I_s^* = \sum_{i=1}^{k} S_iS_i'$.

For arbitrary \mathfrak{g} we define a new Casimir operator I_s for each non-degenerate \mathfrak{g}. This will include every semi-simple \mathfrak{g} of characteristic 0, since \mathfrak{g} is non-degenerate in this case. We use the same complementary basis e_1', e_2', \ldots, e_n' such that $t(R_iR_j) = \delta_{ij}$ for every representation (or anti-representation) and define

\[I_s = \sum_{i=1}^{n} S_iS_i'. \]

If \mathfrak{g} is alternative we also define $I_t = \sum_{i=1}^{n} T_iT_i'$.

Unlike I_s^*, I_s does not automatically reduce to zero when $t(S_xS_y) = 0$ for all x, y of \mathfrak{g}. In fact it follows from Corollary 3.1 below that for alternative algebras $I_s \neq 0$ if $S \neq 0$. We note also that for the representation $x \rightarrow R_x$ we have $I_s^* = I_r$.

Analogous to the corresponding result for I_s^* for Lie and associative algebras [4, p. 682] and for alternative algebras [7, p. 445] we have the following theorem.

Theorem 1. Let I_s be the Casimir operator (1) for a representation $x \rightarrow S_x(x \rightarrow (S_x, T_x))$ of a non-degenerate Lie or associative (alternative) algebra \mathfrak{g} over an arbitrary field. Then I_s commutes with S_x (and T_x) for all x of \mathfrak{g}.

Except for the commutativity of I_s and T_x which will be proved along with Lemma 3.2, the proof is similar to those in the references.

We also have the following result which follows from the properties of the complementary basis.

Theorem 2. Let \mathfrak{g} be a non-degenerate associative, Lie or alternative algebra over an arbitrary field. Then the Casimir operators I_r and I_l of the right and left multiplications of \mathfrak{g} are both the identity transformation.

2. Application to alternative (and associative) algebras. Since every associative algebra is an alternative algebra, the results of this section hold for associative algebras.

In place of the identities (4) of [6] used in the definition of a representation $x \rightarrow (S_x, T_x)$ of an alternative algebra \mathfrak{g}, we will use the

For simplification we write S_t as S_i and S_t' as S_i'.

\[2 \text{ For simplification we write } S_t \text{ as } S_i \text{ and } S_t' \text{ as } S_i'. \]
equivalent (except for characteristic 2) identities

\[(2) \quad S_x^e = S_x, \quad T_x^e = T_x^e \quad \text{for all } x \text{ of } \mathfrak{A},\]

in order to insure that the semi-direct sum [6, p. 3] or split null extension \(\mathfrak{E} = \mathfrak{A} + \mathfrak{M} \) of \(\mathfrak{A} \) and the representation space \(\mathfrak{M} \) is an alternative algebra for arbitrary characteristic.

Theorem 3. For every representation \(S \) of a non-degenerate alternative algebra \(\mathfrak{A} \), \(I'_S = S_e \) where \(e = \sum e_i e'_i \) is the identity element of \(\mathfrak{A} \).

The proof follows from Theorem 2 and the properties of the complementary basis.

Corollary 3.1. If \(S \neq 0 \) the matrix of \(I'_S \) can be taken to have the form \(\text{diag} (I, 0) \). Hence if in addition the representation is irreducible, \(I'_S \) is the identity transformation.

Proof. By (2), \(S_x^e = S_e \) and the result follows.

Corollary 3.2. \(I'_S S_x = S_x \) for all \(x \) of \(\mathfrak{A} \).

Proof. Assume \(S \neq 0 \) and take \(I'_S \) to have the form \(\text{diag} (I, 0) \). Then the matrix of \(S_x \) must have the form \(\text{diag} (S'_x, S'_x) \) where \(I \) and \(S'_x \) have the same order. By identity (4) of [6] we have \(T_x I'_S - I'_S T_x = S_x - S_x I'_S \). Hence \(S_x'' = 0 \) and \(T_x = \text{diag} (T'_x, T''_x) \) and so \(S_x I'_S = S_x \). This completes the proof of Theorem 1, for we also have \(T_x I'_S = I'_S T_x \).

Evidently all of the above results also hold when \(S \) is replaced by \(T \).

Now for a non-degenerate alternative algebra \(\mathfrak{A} \) with neither \(S \) nor \(T = 0 \) we may apply Corollary 3.1 and Theorem 1 to take

\[(3) \quad I'_S = \text{diag} (I^{(1)}, I^{(2)}, 0^{(3)}, 0^{(4)}), \quad I'_T = \text{diag} (I^{(1)}, 0^{(2)}, I^{(3)}, 0^{(4)}) \]

where the superscript \((i) \) indicates the matrix has order \(k_i \) and each \(I \) is an identity matrix and \(S_x^{(3)} = 0^{(3)}, \ T_x^{(2)} = 0^{(2)} \). Also \(x \to (S_x^{(1)}, T_x^{(2)}), \ (i=1, 2, 3) \) are representations of \(\mathfrak{A} \) with respective Casimir operators

\[(4) \quad I'_S^{(1)} = I^{(1)}; \quad I'_S^{(2)} = I^{(2)}; \quad I'_T^{(2)} = 0^{(2)}; \quad I'_S^{(3)} = 0^{(3)}; \quad I'_T^{(3)} = I^{(3)}.\]

Thus the representation space \(\mathfrak{M} \) can be expressed as \(\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2 \).
where \mathfrak{M}_i is an invariant subspace of dimension k_i and hence is an ideal of the split-null extension $\mathcal{S} = \mathfrak{A} + \mathfrak{M}$. It also follows that \mathfrak{M}_2 and \mathfrak{M}_3 are in the nucleus [2] of \mathcal{S}.

We are now able to obtain the following generalization of the first Whitehead lemma (see [8]) for alternative algebras of characteristic zero [6, Theorem 3].

Theorem 4. Let \mathfrak{A} be a non-degenerate alternative algebra over an arbitrary field and let $x \rightarrow (S_x, T_x)$ be a representation of \mathfrak{A} acting in a space M. Let \mathcal{S} be the split null extension $\mathcal{S} = \mathfrak{A} + \mathfrak{M}$ and let $h(x)$ be a linear mapping of \mathfrak{A} into \mathfrak{M} such that

$$h(xy) = xh(y) + h(x)y = h(x)S_y + h(y)T_x$$

for all x, y of \mathfrak{A}. Then $h(x)$ is an inner derivation of \mathcal{S}. If \mathfrak{A} is not of characteristic 2 then

$$h(x) = [x, g] + \frac{x}{2} \sum_{i=1}^{n} \{[R_i, R_{h(e_i)}] + [L_i, L_{h(e_i)}]\}$$

where g is in the nucleus of \mathcal{S}; R, L are right and left multiplications in \mathcal{S} and e_1, e_2, \ldots, e_n are a complementary basis to a basis e_1, e_2, \ldots, e_n of \mathfrak{A}.

Proof. If either S or T is zero the theorem follows similarly to the associative characteristic zero case, so assume neither is. Since \mathfrak{M}_i is invariant,

$$h(x) = h_0(x) + h_1(x) + h_2(x)$$

where $h_j(x)$ is a linear mapping of \mathfrak{A} into \mathfrak{M}_j ($\mathfrak{M}_i = \mathfrak{M}$) such that

$$h_j(xy) = xh_j(y) + h_j(x)y = h_j(x)S_y + h_j(y)T_x.$$

Then we have

$$h_j(x)I'_s = \sum_{i=1}^{n} \{h_j(xe_i)e_i' - xh_j(e_i)e_i'\} = \sum_{i=1}^{n} \{h_j(e_i)(e'_ix) - xh_j(e_i)\cdot e_i'\}.$$

Consequently for $j = 0, 1, 2, 3$

$$h_j(x)I'_s = x \sum_{i=1}^{n} \{L_iL_{h_j(e_i)} - R_{h_j(e_i)}R_i\}.$$

Similarly

$$h_j(x)I'_r = x \sum_{i=1}^{n} \{R_iR_{h_j(e_i)} - L_{h_j(e_i)}L_i\}.$$
By (3) and (4) we have
\[h(x) = h_1(x)\Gamma_S + h_2(x)\Gamma_S + h_3(x)\Gamma_T. \]
Hence by (7) and (8) \(h(x) = xD \) where
\[
D = \sum \{L'_i L_{h_1(e_i)} - R_{h_1(e_i)} R_i\} + \sum \{L'_i L_{h_2(e_i)} - R_{h_2(e_i)} R_i\}
+ \sum \{R'_i R_{h_3(e_i)} - L_{h_3(e_i)} L_i\}. \]

To show that \(D \) is inner it suffices to show that for \(x, y \) in \(\mathfrak{g} \), \(L_x L_y - R_y R_x \) is in the Lie algebra \(\mathcal{L}(\mathfrak{g}) \) of linear transformations generated by the right and left multiplications of \(\mathfrak{g} \). This is true since \(L_x L_y - R_y R_x = 2[R_y, L_x] + L_{yx} - R_{yx} \).

Now let \(\mathfrak{g} \) have characteristic \(\neq 2 \) and use (7) and (8) to get
\[
h(x)(\Gamma_S + \Gamma_T) = x\left\{ \sum \left[R_i, R_{h(e_i)} \right] + \sum \left[L'_i, L_{h(e_i)} \right] \right\}.
\]
Then by (7) and the nucleus property of \(\mathfrak{m} \), we have \(h_2(x) \Gamma_S = [x, v_2] \) where \(v_2 = \sum h_2(e_i)e_i \) is in \(\mathfrak{m} \). Similarly \(h_3(x) \Gamma_T = [x, v_3] \) where \(v_3 \) is in \(\mathfrak{m} \). But
\[
h(x)(\Gamma_S + \Gamma_T) = h_2(x) \Gamma_S + h_3(x) \Gamma_T = 2h(x)
\]
hence
\[
h(x) = [x, g] + x \left\{ \frac{1}{2} \sum \left[R_i, R_{h(e_i)} \right] + \frac{1}{2} \sum \left[L'_i, L_{h(e_i)} \right] \right\}
\]
where \(g = \frac{1}{2} (v_2 + v_3) \) is in the nucleus of \(\mathfrak{g} \).

As is the case for similar theorems, the first part of Theorem 4 can be stated in the following form.

Theorem 5. Let \(\mathfrak{A} \) be a non-degenerate subalgebra of an alternative algebra \(\mathfrak{B} \) over an arbitrary field. Then any derivation of \(\mathfrak{A} \) into \(\mathfrak{B} \) can be extended to an inner derivation of \(\mathfrak{B} \).

3. **Application to Lie algebras.** We obtain the following special case of the generalization of the Levi theorem to algebras of prime characteristic.

Theorem 6. Let \(\mathfrak{L} \) be a Lie algebra over an arbitrary field with radical \(\mathfrak{R} \neq \mathfrak{L} \) such that \(2\mathfrak{R} = 0 \) and \(\mathfrak{L}/\mathfrak{R} \) is non-degenerate. Then there is an algebra \(\mathfrak{G} \) (which is isomorphic to \(\mathfrak{L}/\mathfrak{R} \) and is a direct sum of

\[
\text{This actually } = -v_2x \text{ since } xv_2 = 0.
\]
simple algebras) such that \mathfrak{L} is the direct sum $\mathfrak{L}=\mathfrak{S} \oplus \mathfrak{R}$.

Proof. Let e_1, e_2, \ldots, e_n be a basis for \mathfrak{L} such that e_1, e_2, \ldots, e_k are a basis for a subspace \mathfrak{B} and e_{k+1}, \ldots, e_n are a basis for \mathfrak{R}. Then the right multiplication of each x of \mathfrak{L} has the form

$$R_x=\begin{bmatrix} P_x & Q_x \\ 0 & 0 \end{bmatrix}$$

where $P_x=Q_x=0$ if x is in \mathfrak{R} and P_x is the right multiplication of the image \bar{x} of x in $\mathfrak{L}/\mathfrak{R}$. Now if $I'=\sum_{i=1}^k P_i P_i'$ is the Casimir operator (1) for the representation P of $\mathfrak{L}/\mathfrak{R}$, then by Theorem 2, I' is the identity I and hence

$$I'=\sum_{i=1}^k R_i R_i' = \begin{bmatrix} I & Q \\ 0 & 0 \end{bmatrix}.$$

By using the properties of the complementary basis of $\mathfrak{L}/\mathfrak{R}$ and the fact that the Lie algebra of right multiplications of the elements of \mathfrak{B} is isomorphic to $\mathfrak{L}/\mathfrak{R}$ it can be shown that I' commutes with R_x for all x of \mathfrak{L}.

We now show that the associative algebra \mathfrak{L}^* generated by the R_x for all x of \mathfrak{L} is isomorphic to the associative algebra \mathfrak{B}^* generated by the P_x. Certainly by (9) there is a homomorphism of \mathfrak{L}^* onto \mathfrak{B}^* which maps any polynomial $p(R_x, R_y, \ldots)$ into $p(P_x, P_y, \ldots)$. Now if $p(R_x, R_y, \ldots)=0$ then $p(P_x, P_y, \ldots)=0$ since I' commutes with $p(R_x, R_y, \ldots)$. Hence $\mathfrak{L}^* \simeq \mathfrak{B}^*$.

Now $\mathfrak{L}/\mathfrak{R}$ is a direct sum of simple algebras and therefore [1, Lemma 2], \mathfrak{B}^* (and hence \mathfrak{L}^*) is semi-simple. Consequently [1, Lemma 2] \mathfrak{L} is a direct sum of an algebra \mathfrak{S}, which is a direct sum of simple algebras, and an abelian algebra \mathfrak{R}_1. But we must have $\mathfrak{R}_1=\mathfrak{R}$ completing the proof.

It is to be noted that it is easy to give examples of prime characteristic where all but the non-degeneracy of $\mathfrak{L}/\mathfrak{R}$ of the hypothesis is satisfied but for which the conclusion is false.

References

Michigan State University
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silvio Aurora</td>
<td>Multiplicative norms for metric rings</td>
<td>1279</td>
</tr>
<tr>
<td>Ross A. Beaumont and John Richard Byrne</td>
<td>On the construction of R-modules and rings with polynomial multiplication</td>
<td>1305</td>
</tr>
<tr>
<td>Fred Brafman</td>
<td>An ultraspherical generating function</td>
<td>1319</td>
</tr>
<tr>
<td>Howard Ernest Campbell</td>
<td>On the Casimir operator</td>
<td>1325</td>
</tr>
<tr>
<td>Robert E. Edwards</td>
<td>Representation theorems for certain functional operators</td>
<td>1333</td>
</tr>
<tr>
<td>Tomlinson Fort</td>
<td>The five-point difference equation with periodic coefficients</td>
<td>1341</td>
</tr>
<tr>
<td>Isidore Heller</td>
<td>On linear systems with integral valued solutions</td>
<td>1351</td>
</tr>
<tr>
<td>Harry Hochstadt</td>
<td>Addition theorems for solutions of the wave equation in parabolic coordinates</td>
<td>1365</td>
</tr>
<tr>
<td>James A. Hummel</td>
<td>The coefficient regions of starlike functions</td>
<td>1381</td>
</tr>
<tr>
<td>Fulton Koehler</td>
<td>Estimates for the eigenvalues of infinite matrices</td>
<td>1391</td>
</tr>
<tr>
<td>Henry Paul Kramer</td>
<td>Perturbation of differential operators</td>
<td>1405</td>
</tr>
<tr>
<td>R. Sherman Lehman</td>
<td>Development of the mapping function at an analytic corner</td>
<td>1437</td>
</tr>
<tr>
<td>Harold Willis Milnes</td>
<td>Convexity of Orlicz spaces</td>
<td>1451</td>
</tr>
<tr>
<td>Vikramaditya Singh</td>
<td>Interior variations and some extremal problems for certain classes of univalent functions</td>
<td>1485</td>
</tr>
<tr>
<td>William Lee Stamey</td>
<td>On generalized euclidean and non-euclidean spaces</td>
<td>1505</td>
</tr>
<tr>
<td>Alexander Doniphan Wallace</td>
<td>Retractions in semigroups</td>
<td>1513</td>
</tr>
<tr>
<td>R. L. Wilder</td>
<td>Monotone mappings of manifolds</td>
<td>1519</td>
</tr>
</tbody>
</table>