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1. Introduction. The wave equation
AU+ EU=0
admits solutions of the form

UK,,AL= AK,M(S)BK M(U)Cxu(qs)

if the coordinate system is such that separation of variables is possible.
&, 7 and ¢ are the three independent variables, and ¥ and g represent
arbitrary complex parameters. In general U,, will not be regular and
one-valued over the whole space, but will be so for special values of &
and p. Let ¢, v and ¢’ be functions of & 7, and ¢ resulting from a
translation or rotation of the coordinate system; then a relation which
expresses U, (&, 7', ¢') as a summation of terms of the form U,.(& 7, ¢)
is called an addition theorem.

Addition theorems for cylindrical and spherical coordinate systems
are well known. These are the addition theorems for Bessel and Hankel
functions, Legendre polynomials, spherical harmonics, Mathieu functions
and spheroidal wave functions (see Meixner and Schiifke [5] and Erdélyi
[2]).

It is proposed to derive such addition theorems for those functions
of the paraboloid of revolution which are regular and one-valued in the
whole space. As will be seen subsequently, these restrictions are not
always necessary. That such theorems might exist can be inferred from
the invariance of 4U under rotations and translations of space, and from
the fact that the family of solutions that are everywhere regular and
one-valued will be mapped onto itself by motions of space.

It is possible to derive several of these theorems by using known
addition theorems. For example, it is possible to derive linear relations
between the functions of the paraboloid of revolution and spherical
harmonics, Since an addition theorem under a rotation of coordinates
is known for the latter functions, it is possible to derive one for the
functions of the paraboloid of revolution.

2. The functions of the paraboloid of revolution. The introduction

mRecierivedr November 14, 1956. The work was sponsored by the Office of Scientific
Research under Contract No. Af 18(600)-367. The author wishes to express his thanks to

Prof. W. Magnus for suggesting the problem considered here and for his help and interest
during the course of the investigation.

1365



1366 HARRY HOCHSTADT

of the parabolic coordinates

x=2)/E7 cos ¢
y=2V¢ysin¢
z=E—7
into the wave equation
AU +EU=0

leads to the equation

1 { 0 50U 0 50U  E+10°U

] +kU=0 .
2+ Lo o oy oy 28y 6(;5"’}

The method of separation of variables then shows, that the solution U
can be expressed in terms of functions of the type

U= e .

In the notation of Buchholz [1], these can be represented by

1Fl( 1+ p —x; 14+ p; ~—2ikE>
Ji&)=ml(—2ik&) = (— 2ikE)H? ¢ N2 )

and
FO=wt(~2ike)= | =2kt mi~ 2 7,
T /l _ ‘—/1 _ 4
r ( 2 x) F( 2 )

In case ¢ is an integer, wi(—27k&) must be derived by a limit process
from the above definition. Similarly

) . 7 1;" o 14 2@157;)
=my(2ikn) = (2kn) ‘et -
Jom)=mi((2ikn) = (2iky)*" e rds

and

flny=wy@iby— T [ k) miik) ]
sin 7p F<1+‘u——x> F(l_/’—x> '
2 2

When p is an integer the funection mi(z) is regular and single-valued
over the entire space; w4(z) in general is neither single-valued nor
regular.
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1+ p

For the case y=n-+ the function mi(z) can be expressed in

terms of the more familiar Laguerre polynomials

n!
n. 2 g=2l2] p
1+u( ) I (?’L-}-/l 1) (z)
However, the more general notation introduced by Buchholz in his book

on confluent hypergeometric functions will be used throughout this
article.

The generating function for the functions
aupy="AENEE) e (2GR n=0, 1,2, -+
7. 2 2

is known as the Hardy-Hille expansion (for proof and additional reference
see [1].) For the sake of completeness, it will be stated as a theorem.

THEOREM 1. For |t| <1, p%£ -1, —

exp [ik(é 77) } ,L<4k11{:t77t> —iud

(- ab o= ZQ(P)( = tu/z(1+t)f

The case in which g is a negative integer must be treated with
some care. From the limit relationship [1]

lim mt 1+M( 2ikE)m”: IJ,,L(Zzlmy)

M= —m

r n! : m > m y
L(n —m) Y} M 1-n( =20k my - (20k7) n

WY
3

0, n<m
it follows that

lim G#(P’ t)=(~—f,)me(P, t) e".’imd) .

> —m

A relationship between the spherical wave functions and the para-
bolic functions can now be established. The Fourier expansions of a
plane wave in cylindrical and spherical coordinates respectively are [4]

exp (tk[z cos ¥ +p cos ¢ sin ¥])= }_‘ ime, o, (kp sin &) e*2°*¥ cos me ,

m=0

o=y 2(27@4—1)%" wripz(kr)Pa(cos 7)
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cos y=cos 0 cos¥ +sin 0 sin ¥ cos ¢ ,

n —m)!
P,(cosy)= D¢, (n—m) "P(cos 0)Pr(cos ¥') cos mep .
=0 (n+m)!

Comparison of coefficients of cosm¢ leads to
exp (tkz cos U')J . (kp sin ¥)

= 3 i@+ 1) PTG () Pr(eos 0)P7(cos T)
n=Tm| (n+m)!

m=0, +1, +2, --- ,

where
k)= T T eplkr) .
Juller) ‘/2]67‘ k)

1

If we substitute 1;? for cos ¥ here, introduce parabolic coordinates,

and then use Theorem 1, we obtain an expression for G, (P, t) in terms
of spherical harmonics :

1—t\ _,

PZ’J( , >e""”¢
P —m)! 1+¢

2) G.(P, t)= S, i""(2n +1 (n—m) (er) P gy LFt/ ’

(%) (#0 n%z (an )(n+m)!j (k) P (cos 0) tm*(1+1t)

r=£f+79, cos =577
+7

The right-hand side of (2) can be expanded in a power series in ¢ by
using ‘

1—¢ (n+m)! - t
P70 o F(m—n, men+1; 1m0 )

Gae) OV oy fimmm mnddiddmsy )
t(1+1) ml(1 42y ’

The left-hand side of (2) has been defined as a power series in ¢ by
equation (1). Comparing coefficients of equal powers of ¢ in this series
leads to

onP)= . a(n; m, 5)j,(kr)P(cos O)e=*

(3)

a(n; m, ) _i"(2n+1) }i (=Y (m=n)p(m+n+D)ey(r+m+1)c-pn ‘
m! 7= (m+1)(s—r) r!

m=0,1,2, ---.
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That the above series converges everywhere follows from the fact that
a(n; m, s)P%(cos 0) behaves like a power of n for large n, but 7,(kr) is

of )

In order to find the inverse to the above relationship, the variable
w
1—w

it now follows that

t is replaced by in (2). From the resulting power series expansion

(4) S (—y HlonEDT onpy

= —s)lm+9)!
= 5 i en 1)2" m;’b(n m, 1) ju(kr) P2 (cos f)e=m
=0+
where
b(’)’l; m, l)_(7l+m+l)' ’ m:O’ 1’ 2y b

(n—m—1)!
The following vectors and matrices can now be defined :

wlm= 3 (- OO o),
/ ay(m)
a(m)
Almy=| am) |,

lp(m)_,bn-x-m(zn_{_ 1)2% m;' _’]n(kT)Pm(COS 0)6 Lm<1>
B..(m)
/9m+1(m)
B(m)= ﬂm+2(m) ’

b(m; m, 0) b(m+1; m, 0) blm+2; m, 0)
0 bm+1; m, 1) b(m+2; m, 1)
C(m)= 0 0 b(m+2; m, 2)
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With this notation the system of equations represented by (4) can be
written as

(5) A(m)=C(m)B(m) , me=0,1, «er .

In order to express the spherical functions in terms of parabolic func-
tions it is necessary to invert the system (5). The inverse of the matrix
C(m) is given by
r(m; m, 0) y(m; m, 1) 7(m; m, 2)
0 rim+1; m, 1) r(m+1; m, 2)
C-'(m)= 0 0 r(m+2;m,2) --- |,

where

(___ )7L+m+l(2,n + 1)

;m,y )= .
T D=t D on et Lt 1))

To prove the assertion that this matrix is really the inverse of C(m),
it must be shown that

>

ﬂ y(m+g; m, i)b(m+k; m, 1)=47,, .

.

We have

S r(m+ 55 m, b(m+k; m, 0)

=)

_ i (=)*(2m+274+1) 2m+k+1)!
=i (= DICm+ 7 +i+ DIk —1)!

—  @mAktil Gk, 2me k41 2m 2425 1)
(k=N 2m+27)!

(2m+k+j)! I'Cm+25+2)'(1) Z{O, k=147

B (=N @m+2)! I'Cm+Ek+j+2)['A+7i—k) 1 =3,
Use of the inverse matrix allows one to write
(6) Ju(kr)Pp(cos O)e=™*
SEZiZ;: [ (j—nim)[z((zm)gjﬂ)z }‘J:u =) (.7'—"3)?(!7%@43’)!'“031 ).

One can now state

THEOREM 2. For m=0,1,2, ---.
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02(P)= X, a(n; m, )7, (kr)Pi(cos e+
§)— 1" "(2n+1) i (=)y(m—n)o(n+m=+1)(r+m+1);, ,

a(n; m
( ’ m! 70 (m+1)(s—r) !

Julkr)Pr(cos 0) e~

_(m+m)! & mE DT Sy 7! onp).
(n—m)! 1<m (j—n+m) (m+n+j+1)! = (j—s) (m+s)!

It is not permissible to interchange the two summations in (6) because
the coefficient of the inner summation is O(1/j). Although the series
does not converge absolutely it can be shown to converge conditionally.
The inverse Laplace transform of the Kummer function is given by [2]

(= 20k exp | —zites(1- )]
3 ©

m+1
2

S (=0 L+ m; —2tké)= dz

2m1

where C is a circle enclosing the origin and z=1. If Q¥ P) is expressed
in terms of Kummer functions, then (6) can be rewritten as

L rPreos e-mi— §; (EMLITe e+ DI 5) e

s (m—m)!  (G—n+m)(m+n+j+1)
2k (nS—-32) [~
. 1.. S S ‘:’,ﬁ_utl +},_l]jdzdc .
2miy Jodor (20)"' Lz ¢ 2C

1
¢
ficiently small so that an interchange of summation and integrations is

permissible and the series converges. One then obtains the double
integral

On sufficiently large circles the quantity [1 + = 21 becomes suf-
2 2

juler) P2(cos 0)g=mt = (P! o7t ]
" * (n—m)! (2k1/ &)™ (2n+1)!

21k (g~ £2) n-m
1 SS o [1+1—1] ZFl(n+1,n+1; 2n+2;
[

C@miy e @ Ly T x
VR l)dzd: .
£ oz Lz

As consequences of Theorem 2 and the integral relations [4]

” !
S P(cos ) P2 (cos ) sin 0 @ — _2ntm)t 5
0 2n+ 1) (n—m)!
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S”[PW(,CQ,S}?}]@Q (n+m)!
0 sin ¢ m(n— m)'

one can state the following.

COROLLARY 1.

m 2 — —im¢ 2 2(n+m)'
S [Q"(P)J sin 0 d6 — Z[a(n mo iler)emop , ALEE

m m, 3 — . y 2(&'*_’1"’_)1 p-im¢
S QM P)PMcos 0) sin 0 df=a(n; m, s)j,(kr) @ +1)(n—m)] e
S"Q’”(P)P;,"(ycpsﬁ) ad ia(n m, 8)j.(er)e-imb (n+m)!

sin 0 —m P m(n—m)!

n(PYOM. " ume _ 2(m+m)!

S QP)OH(P) sin 0 d0— S\ alw; m, sa(n; m, o) (kr)e- o D

3. The addition theorem resulting from a translation of the axes
along the axis of symmetry.
Since 2z is the axis of symmetry one can introduce the translated
coordinates

4

d=x, Y=y, Z=z—6 .

It follows from Theorem 1 that

eXp[WHt] <2k1p l/tt )e—w roo1—t
7 P )y=-—— — 21" LA LeT T V]G P t).
(7) GJP,?t) o (1 4 14) exp L@ S s (P, t)

In particular, for pg=7=0, £=¢, Theorem 1 yields
exp | ike ) 4 |= (1 0) Smbvan—2ik) (1)
1+¢ 7=0

Using this expression in (7), expanding and multiplying the power series
in ¢ and comparing coefficients, we obtain the following.

THEOREM 3.

Qz(P)=§ [m?z+1/2-—j(_Zq:kEO)+m[7)l—l/2—j(_2?:k50)(3n3_1)]!-')";(13/) ’
p%~=-1 -2, n=0,1,2, ...

The case in which ¢ is a negative integer can be handled as a limiting
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case of Theorem 3. By differentiating both sides with respect to &, at
&,=0 one obtains the following.

COROLLARY 2.

d u 3,
Py  =-3oeupP)(1-29m).
doipey B~ B )(1--)

In particular for =0 one obtains from the above

1 d .
;,l!F(l+p+n)d’(2ik5)mﬁ+(l+;¢)/z(—2?;]{}5)
= 1,. Illm¢;+(1+’l.)[z(_2?:k5)1—'(1+I[j+n)
4ikén!

n

v . . 6n
+ 3 -11 I(1+/l+_’})m1'f+(1+u))z('—2’bkf) (1-—;,23 ) .

Jj=0 2

It is possible to define a vector

24(P)
2(P)

VHP)=| 2(P)

and a matrix

where

B atmzm—j(—ziksu)+ma_m_](—%ksu)(am—l)] , n=>j
o, n<j,

such that Theorem 3 can be restated as follows.

THEOREM 3.

VHP)=T(E)VHP)  pF—-1, =2, =3, «--.
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4. The addition theorem resulting from a translation of axes perpen-
dicular to the axis of symmetry.
The translation can be assumed to be in the z-direction without
loss of generality. Introducing the new coordinates

4

x='—0, y=y, z=2,
R=Vv/p*+ 5 —2pd cos ¢’

-4 — p—=0e"?

p—0e'?’

b

P:(W, Y, Z) ’
P=@,y,72),
one obtains from Theorem 1

o 1—t¢ 2kRY ¢\
e ]]( B i
exp[z Tt Tae )e

GuP, )= t2(L +t)

Under the condition p >3 one can take advantage of the addition
theorem for the Bessel functions

Ju(kR)e~ " = s I (k0) T, (erye=iCne

and obtain

Tt 2kpv/ t i .
s ) exp [%kz ]']711—;1.( e i(m+p)d
G#(Py t): ZJ,L <2k()1/ t >t7zlz = 1j~t ]_+t >

1+t (] 4 t)
(8)
=iJn(2ka/,t>t"”G“n(P’, £) g1, £2, e
== +t

The case where g is an integer must be handled as a limiting case.
To determine the addition theorem one must expand both sides in powers
of ¢ and compare coefficients. Using

(V) S
1+¢ =

g3y (GO (=Y (@s— 24 )
S (s—r)lri(n+s—1r)!

’

one obtains the following.
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THEOREM 4.
(=F2P)=3] 3} 0ems@(P)+ 5 (=) 3 s (P)
for p==+1, 2, -.. . For p=m, with m « positive integer,

(=2 P)= 5 50, P+ 3 S 0 (=P B PN

J=0n=m
For p=—m

lim Qg(P):{Q” € n=m
pr—m 0, n<m.

Another method by which such addition theorems can be derived is
to take advantage of a theorem by Friedman [3], which is an addition
theorem for spherical harmonics under translations of the coordinate
system, This theorem in combination with Theorem 2 will yield an
addition theorem, but in a very cumbersome form. Conversely the
theorem for spherical harmonics could be derived by using Theorems 2
and 4.

A similar plan will be used in the next section. The addition
theorem for spherical harmonics under rotations of the coordinate system
in combination with Theorem 2 yields the corresponding theorem for
parabolic functions.

5. The addition theorem resulting from a rotation of coordinates.

Since a rotation about the axis of symmetry, namely the z-axis,
yields trivial results, a rotation about the y-axis will be used without
loss of generality. Let

2=z cos ¥ —a' sin¥
(9) x=a' cos ¥ +2z sin ¥
y=y .

Under this rotation the following addition theorem holds for the spherical
harmonices [2]:

m -3 Z|) 1 N\ ,—ilp’
P(cos f)e™ b= L 0 (n | Surmn+ (@ YPIU (cos )14 |
(n+I])!

where

S;{m’n+l(?p‘):(— )72+m<n"‘m)(cos ?!;‘)—m—y (@ Sln 3[2/‘>nz~l

n+{

° 2F1(‘“n—-l, n—Il+1; 1—m—1; cos‘?%)
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for m+1<C0, and
7 PN\ ML YL N\L-m
S;ﬁ:"’“”(’]f):—<n+m><cos ]I/> <—i sin ! )
n—1 2 2

. 3F1<l“n, n+l+1: 1+m+1; cos? g)

for m+1>0, and where

(1, =0
9= . .
((=1), {<0.

Using the above in conjunction with Theorem 2 one can state the full
addition theorem.

THEOREM 5. Under a rotation of coordinates (9) the following state-
ment holds :

o n - ’ oo N RS N ll)!‘lz
Qr::. P — /; s Y lSzn myn+1 IF ? [(.7+‘ i
(P)= 2aln; m, ) 30 O 2 G UG 74 11 1))

. S )8 7777,4.7:!7”_“7,@“ PHelt-0¢
2 )(j—s)!(m+s)! F(E)e '

6. The infinitesimal transformations. It is possible to restate the
addition theorems for infinitesimal transformations. The theorem for a

translation along the z-axis can be rewritten from Theorem 3 :
a/n,j:l/yn’?z-iﬂl/z—j(‘—Z/ikg())+m?z~1/2—j(—2/l:k§())(8nj—1)_] , n=>j,

where

mi(z) = F, (; k1 z) .

For small values of &, namely d&,, it follows that

s+ 20z, (1= 07} n >
am:{ 2
0, n<J
and that
100 -
2 10 1
(10) T(de)=I+ikde,| 2 2 1 «-- |,

|

Ve
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where I is the identity matrix.

THEOREM 3"”. Consider an infinitesimal translation along the z-axis
such that

=, y=v, ?=z—d§, .
Then
VHP)=T(d&)V*(P') , pt—1, =2, ««.

where T(d&,) is given by (10) and V*(P) is as defined in Theorem 3'.
Similarly one can find the addition theorem for translations in the
x-direction from expression (8):

GuP, )=3 J(z’“f]r/tt )EG (P )

For a differential translation dé this expression reduces to

kdo

GM(P) t):G.u(P y t)+1+t

[tGuH(Plr t)_'GM—I(P/’ t)J

from which it is possible to state

THEOREM 4'. For an infinitesimal translation of coordinates given
by

r=x—do , y=vy, 2

I
[

the following holds:
Qq;(P):QZ(P’)—kdb‘{ S OEPY 4 S Q;‘“(P’)} o0, —1, =2, .
£=0 =1

For negative integral values of ¢ one can use limit processes.

To derive the analogous theorem for a rotation of coordinates it is
first necessary to derive the addition theorem for the spherical har-
monics. This can be done conveniently by starting with the following
definition of the spherical harmonies [2] :

(11) (D, +iDy t = (ZVT =L pueog gygrime
,],1 ,)4I1+
where
p=%, p=%, p-?¢.
dz de dy

Under the rotation
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¥’=zsin?+xcos ¥
y'=y
Z=zcos ¥ —sin¥

these differential operators are also transformed :
D\=D;cos ¥ +D,sin¥
D,=—D;sin¥ + D, cos ¥
D,=D;s .

Let

D,—iD=Q, D,+iD,=Q .

Then it follows that
(12) Dy-QO:[D; cos ¥ + ; sin WQ’+§’)]”""[—D; sin ¥
1 ’ raYs 1 ’ VaYi "
o esT@+ @)+ L@-D)] .

The existence of the operational equivalence

@l =-ml

r 7
follows from
(D+QQ) L =41 —o.
r r

If ¥ is taken to be a ditferential angle d¥ in (12), then one obtains
from (11)
(13) e~ PT(cos 0)=e " P™(cos 0’)

— d;F [e-im*D¥ Prti(cos ') — (n+m)(n—m+ 1)e~ "D Pr-l(cos 0')] .

Equation (2) written in the form

G, (P, t)
.2F1<m—n, m+n+l;, m+1;- 2 )
1+¢

=3 (20 + 1)4,(kr)P?(cos 0) e~ ™
2 @n e+ 1)gker)Pri(eos O)e ml (1+¢)
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combined with (13) yields

GulP, ) =GoP, )= S iom @+ 1), ()P cos 0)em'no0¥

zE(’m—n, m+n+1; m+1; L )
1+¢

ml (L + )"
(14)

Z 7 ™(2n+1)7,(kr)Pr-"(cos 0')e i (m-D¢

n=m

(n+m)(n m+1)F<m n, m+n+1l; m+1; _f_ )

Coml @+

In order to be able to rewrite the above as generating functions one
can make use of the differentiation formulas [2]

gz[zm“(l—z)m“zﬁ’l(m——n+1, MmN+ m+2; 2)]
=(m+1z(1—=2)" . Fi(m—n, m+n+l;, m+1;2),
jz[zFl(m-—n—l, m-+n, m; z)]
=—_(n+m)7%—':m+1) Fi(m—n, m+n+1; m+1;z2) .

Using these in (14) one obtains

—@ ey LI+ G (P, 8] |
from which one derives
’ 'def ’ ’
Gm(P’ t):Gm(P , t)+ [(m+1)Glﬂ+l(P t)+t(1+t) m+1(P ’ t)
— (m—1)Gy (P, t)—(1+t)(% Goor(P, t)] .
One can now state the following.

THEOREM 5. Under the infinitesimal rotation
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' =x+z2d¥ , y=y, Z=z—xd¥
one has the formula

zd!

QNP)=2(P) + [(m+1+n)Q2* (P') — (n—1)221(P")

—(m+n—12(P") +(n+1)2 5 (P)] .
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