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1. Introduction. In most of the self-adjoint differential eigenvalue
problems oceurring in mathematical physics we are concerned with finding
the extremal values of the quotient of two integro-differential quadratic
forms in a certain space of admissible functions. By setting up a
suitable basis in this space the problem can be reduced to that of finding
the extremal values of a quotient of the form (aX, X)/(fX, X), where
a and 8 are infinite symmetric matrices and X is a vector. The ordinary
Rayleigh-Ritz method of approximating the solutions of the latter problem
is to replace the infinite matrices a=(a,,)7 and f=(b,;); by their finite
sections a”=(a,;)? and F*=(b,,)7. The extremal values of the quotient
(X", X"))("X", X"), where X" is an = dimensional vector, are the
roots 2 of the equation

(1) det (" — 28" =0,

and these are taken as approximations to the first » solutions of the
original problem. If the roots of (1) are denoted by i} with 1} > 12>
«e. > 2" then for any fixed %, 17 increases monotonically with » and
its limit as n-> o is the kth eigenvalue of the original problem. It
should be stated here that the quotient of integro-differential quadratic
forms in the original problem is taken as the reciprocal of the usual
Rayleigh quotient so that the eigenvalues are all bounded.
If we let

(2) A= lim 27 ,
then the problem arises of estimating the difference 2, —i%.

We shall consider this problem under certain assumptions with re-
gard to the matrices a and 5. These assumptions are that « and 3 are
both positive definite, that the matrix (b,,)7,, has a positive lower bound
independent of n, that the matrix (a;;);,: has an upper bound which
tends towards zero as n— oo, and that

Iimy S =0, limY 3 6,=0.
n—eo i=1 j=n+1 n—roo t=1 j=n+1
2. The simplest case, which we take up first, is that in which £
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between the University of Minnesota and the Office of Naval Research.

1391



1392 FULTON KOEFEHLER

is the unit matrix. Let X¢ be the orthonormal eigenvectors correspond-
ing to the eigenvalues 27 as defined above. Let numbers ¢, and p, be
defined by

n L 1/2
( 3 ) &y >~ < Z Z a’?j ) ’
i=1 j=n+l1
( 4 ) f'n >— sup EA Z a’inim7 Z .’1’7: "
wp w4l JEn+l i=n+1

In general the exact values of the right-hand members of (3) and (4)
will not be available, and for this reason we define ¢, and p, as merely
upper bounds for these quantities. The more closely these upper bounds
can be estimated, the better will be the subsequent estimates of the
eigenvalues. TFor the ecffectiveness of the method it is necessary that
the values of ¢, and p, can be made arbitrarily small for » sufficiently
large. One method of defining p, is to take it as an upper bound for
< i S] a?;jyh in those cases where the latter series converges. A

i=n+l j=n+1
different method is given in the example of § 6.

We shall adopt the convention that, if X is a vector, ()", then
X" stands for the nm-dimensional vector (z,)7. let kF<n <" N. By the
minimax principle,

N N N
(5)  2¥—minmax (@ X" XY

N UF) =0, =1, 2, -, k=1,
ax 0 ) (KU =01, 2

i

Choose the vector U, so that its first » components are equal respec-
tively to those of X! and its remaining components are zero. Let

X=(e)r (@it oo)'@ b a b e ad)
Then

("X, X7)

, X7, XN=0, i1, 2, +--, i—1
(X", X ( o f

¥ <max
3

N N
—max[((r X XN 42 S aar+ &S a,,qm}/(ugru,)

i=1)=n+1 i=n+1 J=n+l

(X7, X)=0,i—1,2, -, k—1

by 92 o
< max A 2Ey Lt )
", i+

The last step is justified by use of the maximum principle for the first
term of the numerator and the Schwarz inequality for the second term.

The quantity on the right side of this inequality is the larger root
2 of the equation
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=2 e,

€n ,On—l

=0.

Hence,
< AotV (R—pa) + e
- 2
and, since the right side is independent of N,
(6) na < BTV (I—p) + 4
2
If p, < A%, this inequality gives the simpler, but less precise, one

2
n

)‘;cl_'pn

€

(62) <<+

The inequality (6) (or 6a) makes it possible to obtain arbitrarily close
bounds for 2, by taking = sufficiently large.

Better estimates for 1, can be obtained if one makes full use of
the available data, namely A7 and X{». With these it is possible to
transform « into an equivalent matrix (one having the same eigenvalues)
a=(a,,), where

= AT (k=1,2, -+-, n),

;=0 (¢, =1, 2, +-+, n; ©5%7) ,
G;;=0;, @, j=n+1, n+2, ---),
}ﬁ—ga) G=n+1, n+2, -++).

(n)
The actual formula for « is a=/1""«al’ where l'=(] 0), ™=
0 FE

(X, X™, «-«, X)) and the vectors X{” are orthonormal.
Let

(7) (S an)" (k=1,2, -+, n).
PR

If any one of the numbers ¢,, is equal to zero, then the corresponding
eigenvalue 27 of «” is actually an eigenvalue of a and the kth row and
column of @ can be deleted before proceeding with any further calcu-
lations. We may therefore assume without loss of generality that all
the numbers ¢,, appearing in subsequent formulas are different from
Zero.

Apply (5) with «” replaced by a” and with U, equal to the vector
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whose ¢th component is 1 and whose remaining components are zero.
This gives, with y=(a%,,+--- +2%)"

n N
e+ A1 @iy oo+ Apan + 2 Z Z 0; 524 xJ+ E Z Ay ;2,0 ;
(8) 2£’§ e B =k j=n+l o d=n+lj=n+1r
- Tttt - 3k
;rlef—*_ cer At )‘ZmZL+2 Z Emlmzly_l'pnyl
g B . 1=k
N Tk Tty
The maximum value of the quotient
i+ oo o + 2k + 2 Z €ni s y+pny
Bttty
can be attained when the variables w«,, ---, 2, ¥y are restricted to non-

negative values. Hence 2 cannot exceed the largest root 2 of the
equation

—2 0 0 Epr
0 Kei— A e 0 Enk+1

(9) 0 0 cee 0 0
0 0 cte 2377‘_ A Enn
Enk Enk+1 ot Enn n -

n n e?l H ()n_))
=(10n_)‘)5[=1k()‘?_)‘)_32577 xn '

If a number » appears m+1 times in the set A7, 7., ---, 2%, then
this number is an m-fold root of (9). If g, >p >.-.>p are the
distinct values in the set 2}, A%y, ---, 2%, then (9) also has roots
i, Ty =0 oy Tran, Where o < p <1, <pt,< oo+ < < 7,,,. The latter
roots are all the roots of the equation

n 2

9a dmpa=3, |
(%) P j:zu-z;?

3. As a simple example illustrating the estimates of the last section,
let us take the problem of finding the eigenvalues A defined by
Y =—A1+a)y , 021,
y#(0)=y(1)=0 .
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The reciprocals of these will be the extremal values A, >24,>2,>---
of the quotient

Q)= S:(l +x)y‘3dx/5:y’” dx

in the space & consisting of all functions y(x) with sectionally continu-
ous first derivatives and with y(0)=%(1)=0. As a basis for this space
we take

()= 1/2 sin nra (n=1, 2, --+)
nw
and let
f i=7,
1 2% ! v
ay=\ (I+z)¢ip,dw =+ .
7 S“ ' AL =11 g 5p s
<=y '

1
bi,=5 0 de=0,, .
0
If y=ixz%, then
i=1

_(aX, X)
Qy) (FX. X)

where a=(a;,)7, f=(b;;)7, X=(x,)7, so the problem is reduced to one
of the type for which the estimates of the last section apply.
Let n=3. The equation for A, 1, 2 is

3 _a - 0
27 9t
8 3 P 8
- ,TA T =0
9! 87 25t .
o -8 3
257" 18x*

The eigenvalues and eigenvectors are :
A3=.1527 0819 , X®=(.99684, —.07935, .00192) ,
28=.0377 8273, X®=(.07869, .98480, —.15482),
A3=.0163 7316 , X§=(.01040, .15449, .98794) .
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We make the following estimates

S L SR

=i 7=2 (40°—1)'
6[1 1,1 & 1 ]
e e AT TSR
<ol Tt et & e
64[1 1,1 18”01:10]
64 ! —1.389% 1077,
S plisT e a3l o vt0
S, 64 & 1
S ag,=""
= 2 [(20+1)*—4]"
<§4[ L 1,1 g“‘ ‘f‘”}:.SGle()“’,
#Lal’ 45t 17 2560 o
SIPRNN LT
}_,w3,=26 >

64[1 1 1 13
S IS TRt
< 727 b5t 8lJ: of

T
= 64 & 1
W — Z.J
j%: @y 505 7 6 (40” — 1)(4o* — 9)*

15%.7*  35*.27* 63°-55* 81

j}_: ljazj 2.4 a/zjasj_o

= 9 & 1,128 & & L
-l ! = a ~ >_4
i%l“’ 4nuf>:4 i P [(2n+ 26 + 1) — 4n?]
.
7 i= a1 [(2n+ 20)* —(2n+ 1)
9 &1, 1281a & 1
< R D YD) J——
o~ At o=t ot ° {112: 2: [4)1(1'*—2()‘”1
P> : }
= S [2(2n+1)(20— 1))

9 &1,82¢ 1 S| <
= .\ + > . { - -
PP (1+ 20)} = @n)t i (@n+1)

T dw :‘:——28.234 <107,

1

<O Sdf] -6.206 % 10 ,
L

|
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I
?»’Jz

1L 8. ”L]: 00017 9117 =4
slane w96l T P

T

v,=.013 3835 .

If the matrix « is transformed into the equivalent matrix « in which
the upper left hand 8x38 malrix is diagonalized, the formulas for the
clements @,, are (for j=4):

Gy, —.99684 a,,—.07935 a,,+.00192 a,, ,
G,;=.07869 a,, +.98480 «,,—.15482 a,,
@y, —.01040 «,,+.15449 a,,+ .98794 a,, .

Hence,

4

St at 1895 x 10~ —¢, |

al

S, < 1,042 x 10-" =, |
F
;’1 i3, < 27.630 x 10-"=

The first three extremal values of the quotient Q(y) can now be
estimated by either (6), (6a), or (9a). From (6) we get

1562 708 < 4, <152 730,
037 782 < 2,<.087 905 ,
016 373 << 4, < .017 167 ;
whereas (9a) yields the following more precise estimates:
152 7081 <C 2, << .152 7092 ,
087 7827 < ), <.037 7871,
016 3731 < 2,<C.017 1139 .

4. Returning to the general problem, let us assume that, by a
preliminary transformation, the matrices « and 3 are already diagonalized
in the nxn upper left-hand corner; that is, that

a’ii:l}l y bu=1 (/b:]-; 27 ct 0y n) ’
a‘ij:bif:() (l9 7217 27 MR (X 7/7’—_&7) .

Let the bounds p, and ¢, be defined by (4) and (7) (with a,; replaced



1398 FULTON KOEHLER

by a,): In addition let bounds 0,. and », be defined by

o0 1/2
(10) ow=( 3 0) (=1, 2, ++-, n) ,
J=n+1
(11) ro<inf 3. S bgaa,/ S oat
@; t=n+1 j=n+1 i=n+1

We assume that all these bounds exist, that

(12) o> S0,
k=1

and that ¢, +0,,7%0 (k=1, 2, ---, n) (see remark following (7)).
By the minimax principle with £t <n <N,

N N N
2 —minmax @ X XY vy )0, i=1,2, -, k—1.
v, x (BYXY, XY)
Proceeding as before, let U, be the vector whose ith component is 1
and whose remaining components are zero. Then
n N

N N
T+ + L +2 >, 3] 1%1%9‘7,7 + > X a,ww
, jen+ - _

i= A=mrlg=n+l

=

A < max w NN -
@ T+ +2> D buwa,+ > D) by,
i=k j=n+1 t=n+1 j=n+1
n
A;}x/{ S i;‘ﬂfl +2 Z Enbl$z\y+ pny:
< max P -,
“i iAo v o+ —2 3, Opslwily + 1,47
i=k

where y=(a?, +2%s,+ -+ +a%)"». The condition (12) is equivalent to
the positive definiteness of the denominator of the last expression.
Hence, 1Y and therefore 2,, cannot exceed the largest root 4 of the
equation

/27;3" 2 e 0 Enk + zank

13 .
( ) 0 e =12 €nn+ A0y,

BN N
Enp, T Aénk; ter Epnt ’{O’nn Pn _Z’rn

n n ]1 ('2‘? - /7‘)
= (pn - )‘Tn) H ()‘ZI - )) - 2 (enj + )‘arm)l lrikﬂnf <=0 ’
i=k j=x =4

which is the same thing as the largest root of the equation

o= (€ns +40,)"

/ 2 m
=k =4

(132) -
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To analyze the location of the largest root of (13a), let

S0(1) }_J (em + ’lonj)
i=k A—27

Then

& | 200,(60, +20,,) _ (et 20,))° ]
'{ 3 [ nI\"n) ny n i nJ ,
¢ ( ) ~ ) — An (/2 211)2

J=k

a4 )\ )
pi 2 (E 7+ Y ni
¢ () =22, (1= 1y

’

lim ¢'(2)= }_, On;

A—>00
For 2> 2%, ¢”(2) >0, and therefore in this range the graph of ¢(2) can
intersect that of the funection »,1—p, in at most two points. Since

lim ¢()=+o and since, by (12), r.,A—p, > ¢(d) for all 1 sufficiently
A= A% A-

large, there must be exactly one point of intersection, that is, one root
of (13) or (18a), in the range 1 >7. This root is the upper bound
which we obtain for .

Let us now assume that

(14) Tl — P =00 >0

for all » sufficiently large, and that

(15) lim Z (eh;4+0%,)=0,

N—oo J=

Then, for any ¢ >0, and for » sufficiently large, ¢(2}+e) < r, (ii+e)—p,
and so the largest root of (13) or (13a) is less than 27+e. Therefore,
(14) and (15) are sufficient to ensure that the method gives arbitrarily
close bounds on 1,, for any k%, by taking n sufficiently large.

5. To illustrate the method of the last section let us consider the
problem :

d dy\_
(e W )——y 0<z<1),

¥(0)=y(1)=0 .

The reciprocals of the eigenvalues .1 of this problem are the extremal
values of the quotient
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Qy)= .\.;y: dm/ S:’(l +a)y* da

on the space of functions y(x) with sectionally contlinuous first derivatives
and with y(0)=y(1)=0. If {¢,(®)}7 is a basis in this space and

1 1
a/ir'zg Pup; dw bi, 25 (L+a)eig;da

then the problem is reduced to that of finding the extremal values of
the quotient (aX, X)/(fX, X), where a=(a,;,)7, f=(b;)7.
Let the sequence {¢,} be defined as follows:

3

@,= 3 ¢;, sin jra (¢==1, 2, 3),
J=1
. sin ¢ -
p=V 2 (i>3),
1T

where the constants ¢,, are chosen in such a way that

(b )i=L",
.0696 820 0 0
(a;)i= 0 0173 553 0

0 0 0073 91456

The values of the conslants ¢;, are given by the table:

T\ 1 2 3
1 3713655 0378935 0089777
2 —.0189824 .1828646 0301791
3 .0007276 —.0197241 1199722

We now apply the method of the last section with n=2. Since the
matrix « is of diagonal form, e, and e, may be taken as zero and p,
may be taken as the maximum of the elements «;, (i >~3), namely
wy,=.0073 9145.

For ¢=1, 2 we have

M b= >\ bi;
j=3 j=4
o0 1 2
=2r* > (S 1 +a)(¢;, cos mx 4+ 2¢,, cos 2rx + 3¢, cos na) cos jrx dw)
J=4 \Jo

oo 1 2 ri 2
=271 Y [c‘fl (S (14 ) cos ma cos jna dw) + 40'3’;,(3 (1+2) cos 2w cos jrx d.L)
J=4 0 0
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1 2 1
+ 90‘53(5 (1+ ) cos 3nw cos jrx dx) +6¢;,C43 (S (1 +x) cos nx cos jaw dm)
0 0

X (gl(l + ) cos 3nx cos jrx d.v)]
0

8 (1+ 402 (4+ (20 + 1))
71"[ %‘(41 1)!Jr 3‘2((20+1)—4)!

£96, 5 OH) g S (1+4G1)(9+40)J

= (46*—9) 4 (40" — 1) (4o* — 9)

We make the following estimates :

i (L+do?y ~17° 37, 65° 1 1 go712702

i (4o*—1) > 15' 35' 63! 150 o

o (44 (20 + 1)) L9, 8 5 & —

$ o + £9249 Y -.00541918
u«%+n—4y< Tt T L 2 ey

$ (O+40) L85, T8 LS 1 oer14737
i (46*—9) < 7* T a5 g PR '

$ (L+4)(9+40) _17-25 3745 65-73 | 1 &
(4o —1)(40*—9) T 15°.7T* 35%.27¢ 63%.55' 8 o

=.04125482 .
This gives

S B, < .0011490 =03, ,

.
[}

oo

> by, <.0023514 =03, .
j=3

.
To obtain a value for r, we let Fl(x)= }:‘,xiw-(w) where («;); is any
given vector. Then

1 1 N
| 7@ da—a| grdor Sa
0 0 i=4

=.6469362% + Z x; == .646936 2, i,

ﬂumeMM=iﬁama.
0

i=3 j=3

Hence,
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,i _\‘ bijeix, SI (1+2)F"(x) dw
Jiuizg“"”* = S (646 936) = .646936 .
> @ g F(x)dz

b 0

i=3
Since the bound on the right side is independent of N we may take
7,=.646936 .

The use of equation (13a) now gives the following results, where
2, and 2, are the reciprocals of the first two eigenvalues of the original
problem : \

.06968 < 2, <C.06984 ,
01735 <2, < .01754
6. In conclusion we shall show how the method would work on

the two dimensional problem of an oscillating square membrane of
variable density; namely,

Uy + Uy = — Adgu in R,
u=0 on C,

where R is the region 0<a <1, 0<y<1, C is the boundary -’
and ¢ is a nonnegative function with the derivative g,, sectionally
continuous in R+ C. The reciprocals »” the eigenvalues 4 are the ex-
tremal values of the quotient

Q) =ﬁ19u“ da dy / H(u +u)da dy
0J0 0J0

in the space of functions u(x, y) with sectionally continuous first deriva-
tives in B+ C and vanishing on C.
As a basis for this problem we take the functions
2 sin mz2 sin nry

SIS R m, n=1,2,38, -+,
w(m* +n*)'?

and arrange them in a sequence ¢, ¢,, ¢;, -+- ordered according to the

value of w+n*; that is,

2 sin myzx sin n,w o aniyy
@, =" S Tmd S vy , o=(mi+ni)*,
Tf(fi

As N— «w, gy=0(1/N). Let
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11
Oy ;= SOSOQ‘Pi‘Pj dxdx ,

1
b”:glg (6507; 690"*)— ?(& aS?j)dde/:(gu .
T e\ 9z ox oy 0Oy ‘

If u= im,-ga;,, then
i=1

Qu)=(aX, X)/(pX, X)
where
a=(a;)’ , A=(0.)7 , X=(x,)7 .

In order to show that the method will give arbitrarily close esti-
mates of the eigenvalues, we must show that the quantity defined in

(4) can be determined and made arbitrarily small, and that i i a;, can

i=1 j=n+1

be made arbitrarily small by taking » sufficiently large. The estimate
P, can be managed by noting that (4) is equivalent, in the present
case, to

Py == SUD 5151 gv* dx dy/ Slgl(v_i-k v))dxdy ,

116{1,” 0Jo 0

whe' @, is the set of admissible functions which are orthogonal to
@iy @y o0, ¢, Let ¢<IM in R. Then we may define p, by

1

(16) p— sup MST?}‘“’ da dy / S Sl(v; oty dady
'nE/LM 0.0 0Jo

and this gives

17 = M~ (1)

2 2
T On+1 n

since the functions {¢,} are the extremal functions for the quotient in
(16).
Next, the numbers a,, satisfy

C

504

4,4,

234

Iaijl ~<t

where C is an absolute constant, and

1

if mi#mi 3
Ay ={ lm;—m| |

] if mi = m’j .
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(o it e,
Ai.7= lni—njl
1 if ’IL, == ’)’&j .
Henee, for 1 <7 <n,
oo Y2 oo —
Sa< O S a3,
F=n+1 Ti0p 41 T7n+1
and
oo 1 2
VP (14-22..,) ,
J=n+1 s=1 8
SO
$oa < G
f=n+1 7(’)7,—(’ 1)
Therefore,
L&, Clogn
23 e <R (n>1),

where C, and C, are absolute constants.
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