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In a paper [1] which appeared in 1936, J. A. Clarkson defined a
property of Banach spaces known as uniform convexity. Let ||f]| denote
the norm of an element f of such a space and let {f,, f.} be any
sequence of pairs of elements such that |fi|=]/.|=1 and lim §|f,+ /. |=1.

The space is said to be uniformly convexr if these conditions imply that
lim | f,— /7 |=0. It has been shown [2] that an equivalent definition is

one in which the condition |fi|=|f.]|=1 may be replaced with the
weaker ||| <1 and |f,|<1. Clarkson has been successful in showing
that the Lebesgue spaces L, are uniformly convex if pz£1 and that
L, is not uniformly convex. The convexity properties of more general
classes of Banach spaces have been investigated by M. M. Day [3], I.
Halperin [4] and E. J. McShane [7].

A concept of convexity related to uniform convexity has been de-
scribed and is termed strict convexity. It is defined in the following
manner. ot /0 " be any pair of elements in a Banach space such
that |f|=|f"]=1 and .f'+f.|=1. The space is said to be strictly
convex if these conditions imply that |f'— f”|=0. In a Euclidean space,
strict convexity corresponds geometrically to the property that the unit
sphere ||f|=1 does not contain a segment. We remark that, if a space
has the property of uniform convexity, then it possesses that of strict
convexity as well; however, the converse implication is generally untrue.

The principal objective of this paper is to investigate the conditions
which an Orlicz space [9] must satisfy to be uniformly convex. Also
the related problem of determining the conditions for strict convexity
is considered. A solution to both of these questions has been presented
which may be regarded as complete in the sense that both the neces-
sary and sufficient criteria are developed.

We begin by formulating the definitions of Orlicz spaces in accord-
ance with the notations to be used subsequently. Except in minor
details we shall adopt the standard conventions. Let v=¢(u) be a
monotonically nondecreasing function not identically zero, defined for
all 0 <wu such that ¢(u)=¢(u—) and ¢(0)=0; also, let @(u) denote the
associated function ¢(u)=¢w+). Let u=¢{(v) be the function inverse to
¢(u) which is defined by the relations:
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(1) ¢(0)=0,

(ii) ¢(w)=u if ¢(u)=v and u is a point of continuity for ¢(u),
(i) ¢v)=¢@-),

(iv) if ¢(u)7~=¢@(u), then ¢(v)=u for all ¢(u) <v=<¢(),

(v) if lim o(u)=1[< oo, then ¢(v)=+ o for all I <.

Also, let ¢(v)=¢(v+). Since ¢(u) and ¢(v) are monotonic functions they
are Lebesgue measurable and their indefinite Lebesgue integrals define
the functions:

@(u)=gjgﬁ(ﬁ)dﬁ and ZIT(v)=S:¢(5)d5.

Let 4 be a measure space with a os-finite nonatomic measure 2 and a
o-ring of measurable subsets. Let f(x) be a p-measurable funection
defined on 4; then, the functions ¢(|f(®)]), ¢(I/(x)), ¥(|f(x)|), etec., are
also pg-measurable on 4. For each function f(x), we define:

Ifls=sup | |r@g(e)dr

where the supremum is taken for all g(x) >0 satisfying SAQ’(g) de <1,

The Orlicz space L,=L4(4, ) is defined to be the collection of all fune-
tions f(x), #-measurable on 4, for which |f], <. It may be shown
(Zaanen, [10]) that the space L, is a Banach space with the norm |fJ.
If O(w)=u’, 1<p< o then L, is the classical Lebesgue space L,.
Necessary and sufficient conditions for both types of convexity will
be expressed directly in terms of the functions ¢, ¢, ete. For strict
convexity of L., these conditions are simply that ¢(v) and ¥ (v) should
be continuous in the extended sense. By this we mean that if V, is

defined by V,= supwv then ¢(v) and ¥(v) are continuous for v < V, and
PI<ee

lim ¢(v)=o0 and lim ¥(v)=o0. Of course, requirements additional to

vV, - vV —
thoose for strict convenxity must be satisfied to imply uniform convexity.
It is found that these conditions are alternative according as 4 is as-
sumed to have finite or infinite measure. If 4 is of infinite measure it
is necessary and sufficient that the space satisfy the following require-
ments: not only must the functions ¢(v) and ¥'(v) be continuous in the
extended sense but the function ¢(u) may neither increase too rapidly
nor too slowly. Precisely stated, there must be a constant 0 <N <
such that @(2u)/@(u) < N for all 0 <« (or what is readily shown to be
an equivalent statement, that there exist a constant 0 < N < o such
that ¢QRu)/e(u) <N for all 0< u), and also that for each constant
0 < e<(1/4 there is a corresponding constant 1< R,< o such that if
0 < u then R, < ¢(u)/¢((1—e)u). When 4 is of finite measure, the fune-
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tions ¢(v) and ¥'(v), as before, must be continuous in the extended sense;
however, slightly less stringent conditions apply to the functions ¢(u)
and @(u). It is required merely that the conditions stated for 4 of
infinite measure apply only in the limiting sense; namely, that there
exist a constant 0 <" N< o such that lim sup @(2u)/@(u) < N and that

for each constant 0< e<1/4 there is a corresponding constant 1< R, < o
such that R, <lim inf ¢(u)/¢((1—e)u).

We begin the demonstration by establishing first the statements
relative to strict convexity.

LeMMA 1. If f(a)e L, is a step function, then
I7le=sup | 1F1g d
9(@)z0 J A

where g T(@)dr <1 and where g(x) is also a step function with the
A

same regions of constancy as f(x) and g(x)=0 whenever f(x)=0.

Proof. Let |f(x)l=f, on sets e; of measure pe;)=4, >0 4=1, 2, ««-,
n. Let A(x) >0 be any function such that S T(h)ydpy <1. Define:
A

g(x)z/lglg hx)dp=g, on e, .

Since ¥(v) is the integral of a monotone nondecreasing function, it is a
convex function so that by Jensen’s inequality [10]:

i v an=v(ic| mwdr)=r)
(Zi Ei
and therefore:

[ r@an=Sren<g| roya

i

=S T(hydp<1.
A

On the other hand:

[ \rwdn=Srga—=$a(a| nan),

o

| 1.

It is clear that we may take g¢g(z)=0 where f(2)=0 since the

integral S |flgdp will remain unaltered in value while S 7(9)dp can
A A
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only become smaller.
THEOREM 1. If ¥(v) 4s discontinuous, then L, is not strictly convezx.

Proof. Since ¥(v) is defined as the integral of a positive function,
the only type of discontinuity which can arise is of the form ¥ (Vy)< oo
while ¥(V,+)=0o where 0 < V,< . (It is to be remarked that the
definition of the space L, excludes the case V,=0 as trivial). Let
A <min [p(4)/2, 1/2¥(V,)] be a finite number, A = 4, B< 4 be two sets
such that AN\ B=0 and p(A)=p(B)=1. Define f/'(x)=1/1V, on A and
0 elsewhere, f"(x)=1/2V, on B and 0 elsewhere. By Lemma 1, if ¢,
¢” represent positive numbers:
1

\f '”cx»:f,g? llVl, -d¢ where V()< -

’

1 1
"No=su <A¢”  where U(c)<-—.
I =sup L (=1

Since ¥(V,)<1/22 and ¥(v)=o for V,< v the largest value of ¢ or
¢’ that may be chosen is ¢'=c¢"=V,. Thus |fle=|/"].=1.

But /(@) + f(x)|=%f () — f"(x)|=1/22V, on A\JUB and 0 else-
where, so that by Lemma 1:

“ ff
2

f=r" l
2

= sup 1, 2%¢
o . =0 Vs

where ¢ represents any positive number with 7'(¢) <{1/22. As before,
it follows the largest value of ¢ it is possible to choose is: ¢= TV, so that

H + =3~ =1
THEOREM 2. If ¢(v) is discontinuous, then L, is not strictly convex.

Proof. Let v,= supwv, V,= sup v. By Theorem 1 it may be assumed
Pp(v)=0 (IO

that ¥(v) is continuous in the extended sense, so that lim ¢(v)=rco.

vaVO—
Two cases are distinguished according as ¢(v) is or is not continuous at
v=vo.

(A) v, i3 a point of discontinuity for ¢(w). Let v,< <V, be a
point of continuity for ¢(v) and choose /3 large enough so that the re-
lation ¥'(B)=1/1 defines 1<_p(4)/2 and A< . It is then possible to
determine sets A< 4, BE 4 such that: p(A)=p(B)=2 and AN\ B=0.
For each value of a parameter 0<_p< 1 define a,=[1—pd(v,)v,]/3,
b,=pd(v,) and
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Y% on A ,
F@={b o B
0 on (AUB).

By Lemma 1, ||fl.= sup (a,6+b,7) where T(&)+¥(y)<1/2. Since F(v)
7,?0
is the integral of a positive non-decreasing function not identically zero,
7'(v) increases continuously to infinity; hence, it is possible to replace
the condition Z(&)+¥(y)<1/2 by T (6)+¥(9)=1/2 with &§>v, p=>wv, for
it &, » satisfy ¥(&)+¥ () <1/2 it is always possible to find & =€,
7,=>7, so that ¥(&)+¥(y,)=1/2 and &=>v, 7=, while a,&+b,7, >
a5 +b,7,. Thus 7=7(¢) is determined as a single-valued function with
v L& f. If I(§)=a,E+b,y(&) then | fl.= sgp 1,(8). But I,(¢) assumes

its maximum subject to v, L& either foor E=v,, E=f or at points
for which d*I(¢)/dé and d-I,(¢)/dé simultaneously change their signs,
where d*/df, d~|ds denote respectively upper and lower derivatives.
That is, the maximum must be assumed either at a boundary of the
interval v,<{ € <{f or at a turning value or a cusp. But

d-p_—¢(8)
as  d(7(8)
so that

i 0 =5 [1- o (s sb(/(é)))]

If p is any value 0<_p <P where
0 << P<min [1, ($(v)v, +¢(B)B) "]

then d-I,(8)/dé>0, »,< < f; and since [,(v)< I,(fF) it follows: |f)],=
IL(f)=1 for all such p. Choose 0<p' < p”’ < P/2 and define

f@=rf@, ['@=r (2.

Then 3(f/(2)+ f/(&)) =1y p@) s0 that |Fl=|f Ta=3F"+ Flo=1. On
the other hand [f'(x)— f"(x)| is different from zero on B and therefore
its norm is not zero. Thus L, fails to be strictly convex in this case.

(B) v, is @ point of continuity for ¢(v). Let « be a point of dis-

continuity for ¢(v) so that ¢(a) < P(a)s%£0. Also, let a < F<V, be a
point of continuity for ¢(v) and choose f# large enough so that the relation
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U(a)+¥(B)=1/2 defines 2T pu(4)/2 and 0< 1< oo. It is then possible
to determine sets A < 4, B< 4 such that p#(A)=p(B)=21 and A\ B=0.
Consider the equations

aa+b'f=1

@' P(B) ~b'P(a)=0

a//a + b/l,8=1
a'p(@) - (PO ) o

Since ¢(B) == ¢(a) >0 it follows that the determinants of these equations
do not vanish; therefore, the equations may be solved and it may be
observed that the values of «/, ¥, a”, b’ are all greater than zero.
Define

@ on A “ on A
A A
F@= . p S@= g
2 Pl
0 on (A\UBY 0 on (A\UBY)

By Lemma 1, |f|,= sup (0’6 +bn) where ¥(&)+¥(7)<L1. As in (A)
720

above the condition ¥'(¢)+¥(y) <<1/2 may be replaced with ¥(&)+ ¥ (y)=1/2

and § >wv,, 7»>v, and these relationships determine £=£(y) and 7=7(%)

as single-valued functions with v, <{£<<é and v,<»=<4J respectively

where ¥(0)=1/A. If d*/dg, d-|d¢ denote respectively upper and lower

derivatives, it may be seen:

dry __ 9E) dy __ $)
de $(7(8)) ' de (7€)
de __ 9 de__ d0)
dy (@) dy (&)

where ¥'(¢)+ ¥ (y)=1.
If I'(6)=a’c+b'7(€) then |f'],= Sugpsl’(f). As in (A), I'(6) assumes

its maximum subject to v, <& either for &é=w, &=¢ or at points
for which d+I(¢)/d¢ and d-I(¢)/dé simultaneously change their signs.
Now

lim [fl;dé(fq—— a + b/[fd%:g(i) :léﬁv[)* —a— ) gy >0

§—>’vg<

since »=¢ when £=v, and ¢(8) >0. Thus, I'(§) increases in the im-
mediate neighborhood of &=wv, and &é=wv, cannot give a maximum,. Also



CONVEXITY OF ORLICZ SPACES 1457

lim [d*l’(g)"! a +b’[ dW(é)—] =a' —b lim = 9 _ _ o
£5— dE ._I dE £5~ &aE ¢(7])
71—"’0
since & > 0. Thus I'(¢) decreases in the immediate neighborhood of £é=¢
to the value I'(d) and £€=4 cannot give a maximum.
Now

CTE_ gy 9O g IO _ oy A
dé ¢(77(5)) dé (&)

Since a'¢(B)—b'P(a)=0 and the condition ¥(&)+ ¥ ((£))=1/2 implies that
as & increases, » cannot increase and conversely, a critical examination
of the expressions above establishes the following relations:

. d+I'(¢) a-I'(§)
f th 2 R0, <0,
it £>a en g = iz

3 * /(E) - /(E)
— h d,fli >0, d,, l,_,, =0,
if &£€=a then >

if £<a then d+ll(€) >0, @_Ii(@,> 0.

Sinece that d*I'(¢)/ds, d~I'(§)/dé can change sign only once, it follows
that the value é=«, 7=§ gives unique maximum to I'(§). Thus |f/|,=
ada+bpB=1.

If I"(¢)=a"é+0b"7(¢) then an analogous argument leads to the re-
lations

if £>a then ‘U_('f)<o t%’f’(é)<0y

?

if eé=a then TI© >0 ‘LOIZ;@ <0,

as
if e<a then d+f”(§)> i£(§2> 0,
so that |f"|,=a"a+b"f=1.
Consider
«Ra/+all on
22
@)+ @) _|
LI vy g

0 on (AUBY
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Let
a on A
g($)={ﬂ on B
0 on (AU BY
then
| v an=rre+wen-1
and
“ ) > a+d bﬁ+,bf’ p—1.
D: 2

Thus by the triangle inequality |/ + f"|,=1

A consideration of the defining equation shows that ¥’ 45", There-
fore | f'(x)— f”(x)| is not zero on B and it may be concluded immediately
that |f'—f"|,%0. Thus L, fails to be strictly convex in this case
also.

LEMMA 2. If ¢(v) is continuous in the extended sense and 0 vV,
0v <V, then T(v') =T (w)+d@)(v —v).

Proof. 1If v=1" then the relation certainly holds. If v <% then
v @)= |" @5 — | $@ds + | 9@)an = 1) + 901w —0)
If »>9" then

rw)={ y@ds = 9@)d5 - || p@in =)+ )0 -0)

THEOREM 3. If

(i) @) is continuous in the extended sense,

(ii) ¢(v) s continuous in the extended sense,

(ili) f(x)e L, and |f(x)|=esssup|f(x)|=M <= on some set of posi-
tive measure and also, when 4 is of infinite measure, f(x) vanishes
outside a set of finite measure; then there is a constant 0<C; < o and

a function g,() >0 such that |fl=| S, @), where $(g,)—=C/l7 @)

and S T(g)dpr=1.
A

Proof. We first establish the existence of a constant C, and a
function g,(x) which satisfy the last two relations of the theorem. Let
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E=E[|f(x)>0] and let S=S[|f(x)|=M] with u(S)=06£0. Since

¥(v) is continuous in the extended sense and increases from zero to
infinity, there is a value v <V, such that ' (v')=1/6. With C'=¢(v)M
define g'(x)=v" for e S and ¢'(x)=¢(C’|f(2)]) for zeS". Then ¢(g'(x))
=C’'|f(2)| and

1< | # @< wE)-0- < oo

Two cases will be distinguished according as

) [ vcirman=1,
or
®) [ recimman>1.

(A) For each value of the parameter 1 <% < « define

o(C'|f(@)) for xeS’,

gk(x):{min[kgﬁ(C’lf(x)l), v] for zeS.

The family of functions g¢g.x) is then a continuous one satisfying
(gx(@))=C’|f(z)] and increasing with %k from g, (x)=¢(C’|f(x)]) to ¢'(x).

The integral I(lc)—»—-g U(g,)dp increases continuously from value <1 to
A

values >1. There is then a value k, such thatg 7(gr,)dp=1. The
A
function g, (x)=g,(x) and the constant C’'=C, are those of the theorem.

(B) Let C,—inf C where SAT(QD(CI F@)))dp=1. Since

lim ¢(C|f (2))=#(Cal £ (2)1)

C—)Cg'

it follows by Lebesgue’s theorem that

| r@CIs @i =1,
Again, let C'=sup C where

[ r@cir@nap=1.

By the continuity of ¢(v) it follows that C°=C, and since

lim ¢(Clf(@))=¢(Cil S ()])

C—)CO—
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then by Lebesgue’s theorem X T(e(Colf()]))dxe <1. For each value of
A
the parameter 0 <%k <1 define
9:(@) =1 =k)p(Colf (@)]) + ke(Col f (x)])

then the family of functions g,(x) satisfies ¢(g.(x))=C,|f ()| and increases
continuously with & from ¢(C)|f(x)]) to ¢(Co|f(x)]). The integral I(k)=

S V(g,)dp increases continuously from values <1 so that there is a
A

value %, such thatS ¥(gr,)dpr=1. The constant C,=C, and function
A

gx,(@)=9,(x) are those of the theorem.
It is easily seen in either case (A) or (B) that 0<CC, for if C,=0

then the corresponding function g,(x) < v, and hence S U(9,)dp=0 which
A

is a contradiction of the proof already made that S U(g;)dr=1.
A

Finally, it follows from Lemma 2 that
7= lr@lga)dn

Let A(x) =0 be any function such that S Uh)dpe <1. In Lemma 2 let
A
v=g,(x), v'=h(x); then, integrating over 4 gives
[ rean= re)dprc,| 1r@i0E-g @ dn

or

1—5 (h)d
[ @l @dn=| lr@h@an+ s,
I

Since C,> 0 we obtain | fuq,:S |F@)lg, (@) de.
A
THEOREM 4. If
(i) the hypotheses of Theorem 3 are satisfied,

(ii) |fl.>0,
then

| ocirpan
= 1

where C, is the associated constant of Theorem 3.
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Proof. By Young’s inequality, for arbitrary 0 <<wu, 0w,
uv < O(u)+¥(v)

with equality if and only if at least one of the relations v=¢(u) or
u=¢(v) is satisfled. Let u=C,|f(x)l, v=gx) then since ¢(g,(x))=
C,|f(x)] the inequality becomes an equality and

Cof@)g(x)=2(C,l f (@)) + ¥ (g,(2)) .
Since 0 < C, < «, integration over 4 gives the stated result.

THEOREM 5. If

(i) () is continuous in the extended sense,

(ii) ¢(v) s continuous in the extended sense,
then Lg s strictly convex.

Proof. Let f'(x), f”(z) be any pair of elements of L, such that
H+ S lo=1, |fle=1, |f"le=1. Let f(z)=s"(2)+f"(x) and

S E§[If(90)l= ess sup |f(@)l] .

If ¢#(S)=0 let
E:El:l F@) < min (n, (1- 71%) ess sup | f(x)\)] (n=1,2, =) ;

if p(S)>>0 let E=8" (n=1, 2, --+). Let 4, be a sequence of sets snch
that 4, < 4,.. & 4, p(4,) <o, p(4,—E;)>0 and lim 4,=4. If p(S)=0
define

min l:n, (1 —l) ess sup lf(:c)l] on (4,—E,),
Fo(a)= "’

Lf ()] on (4,NE,),

0 on 4,

while if 4#(S) >0 define

ess sup | f () on (4,—E,)
0 on 4,

observing that since |f|,< o then esssup|f(z)|< o in this case. It
follows easily from the definition of the norm in L, that |Fyl,—|f’ + " e
The functions F,(x) have been constructed in such a way that they satisfy
postulate (iii) of Theorem 3 so that by this theorem and also Theorem
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4, there are constants 3+ <CC,< o and functions g,(x) satisfying the

relations: ¢(g,(2)=CuF(@), | #(g)dp=1 and lan|l¢=SAFn(w)gn(w)d/!-

Since F(x) < F,, (x) and S (g, dpe=1, (n=1, 2, ete.) it follows that
A
the sequence C, decreases to a limit 3 < C < w. Since ¢(g,(x))=C,F.(x),
F.(x)<F,, () and S ¥ (g, dp=1 it follows by the monotone properties
A

of ¢(v) that for each arbitrarily chosen but fixed m, the sequence g,(x)
ultimately decreases on (4, N\ FE,). When #(S)>0 we see (4,N\E,)—
(4—S8) and (4,—E,)— S so that in this event the sequence g, (x) de-
creases on S also. When #(S)=0 we see as before (4, N\ E,)— (4-S)
and (4,—FE,)—S. Thus the sequence g,(x) in both cases converges in
measure to its limit inferior which we denote by g(z).

By Theorem 3

= \lgndp = 157+ £ lgade

<{ 1 lmdpt | 10 dn ST+ 15
Since

1l = 15"+ o= 15" + 1 Ne
it follows that

lim | £ lgudp=Afle and tim | 1lgadp=1s)s

We show that there is a constant 0< D' < such that ¢(g(z))=
D' f(x)] almost everywhere. If this were not the case there is a con-
stant 0 < B <« and sets T;, T, of finite positive measure such that

(g(@)) > B|f(x)] on T
0<¢(g@) <BIf(x)] on T,.

By Egoroff’s theorem we may extract subsets 77 & T, Ty & T such
that the sequence g,(x) ultimately tends uniformly to g(x) on T'i and
7). From T, T, we may extract subsets T';”, T, of positive measure
such that the sequence is not only bounded on 7¢" and T;” but, since

g 7(g)de <1 and g(x)=Iliminf g,(x), it is also bounded away from
A

V,. We may again find subsets 7. < T, and T, =T, such that for
suitably small constants 0 <t < oo, 0<a < o:

(1) Hgu(2)—t") > B(|f (@) + ) , vel,, 0= t'<t,
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0 <d(gaulx)+t") < B(f(@)), zel,, 0=t <t
for all » sufficiently large.

Sinceg | lgndp = | f'lyy for each 0<e there is an =, such such

A

that if n, <n then: S |f\hdp— SAlf’[gnd,u<e where A(x)=>0 is any
A

function with S Uh)dpe <1. Also, since g(x) is bounded away from V,
A

and the sequence g,(x) converges uniformly on T, to g(x), there is a
constant 0<_f < o such that for sufficiently large n

(2) [, vo@nin<| se@+mdn<e.

Let

0 <e<ap(T,) min [t’ =7

t|, v@dp ]
 $lo(a)+ B

and choose % >n. so that (2) holds. Then, if
(3) |, Paddr+| r)dn=s
T, 7y
and if 0<t, <o, 0<t,< o also satisfy
(4) |, r@.@=t)dp+ | 1@ +t)dn=b
we have by the mean value theorem, for some 0<C ¢, <1, 0<46,<1,

(5) 4| da@—0t)dprt,| doa)+06)du=0 .

Thus, if
t| sto@nap
t,= min {t, S — ]
|, #t0(@)+8)dn
then ¢, <{¢t. Now by (1)

—t $u@—08)dn < ~Bt| \fldp—Bran®)
T, T,

tS G(gul@) + Ot) dpe ;Btzgr Flde
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so that by (5)

~t{, 1Flduet| 1flap=tanT)> ..
But if

gu(@w)—t, on T
MQ})= { gn(x) +t, on Tz
9a(2) on (T'UTy)

then by (3) and (4) SAZF(h)d;z=SAZF(gn)d,U=1 while

[rman={ 1r1gan =t \71duse | 171de
={ 1Plgndere,

which contradicts the demonstration already made that S If\hdp—
A

SA | flg.dpe<e. Thus, there is a constant 0 <D’ < oo such that ¢(g(x))=

D'|f'(z)]. Similarly, there is a constant 0 < D" <« such that ¢(g(z))=
| f" ().

Since |f'(x)l=¢(g(x))/D" and |f"(x)|=¢(g(x))/D" we see |f'(x)| and
|f"(x)] differ at most by a constant factor. But |f'|.=|f"|.=1 so that
this factor is unity. Thus, f'(») and f"(x) differ at most in sign. But
Mg(x)=C|f'(x)+ f"(z)] so that if f'(x)= —f"(x) at any point, then
dg(x))=D'f"(x)|=D"{f"(x)|=0 at this same point. Hence f'(z)=s"(x)
almost everywhere and |f'—f"|,=0.

Theorems 1, 2 and 5 together have established the necessary and
sufficient conditions for the strict convexity of the spaces L,. In order
to proceed with the more difficult demonstrations for uniform convexity
we shall require the following important proposition relating to the
norm of an element in L,.

THEOREM 6. If
(i) ¢(v) is continuous in the extended sense,
(ii) ¥(v) is continuous in the extended sense,
(iii) (a) there is a constant 0< N < oo such that @(2u)/d(u) <N,
(0 <u), when 4 is of infinite measure,
(b) lim sup @(2u)/@(u) < + oo when 4 is of finite measure, then

Sfor each f € L, different from zero there is a constant C, and a function
g,(x) =0 such that
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7= 171,
Hg,@)=C,\f @) and SAW(gf)d/zzl.

Proof. Let
S=§[lf(x)l= ess sup | f(@)I] .

If p(S)=0, let

E=E||f@| <min (v, (1= Desssw lr@l) |, (=12, --);

n

if 4(S)>01let E=S’, (n=1,2, ---). Let 4, be a sequence of sets such that
4, < 4,0 < 4, p(4,) < oo, (4, —F,) >0and lim 4,=4. If x(S)=0, define

min [n, (1 1 > ess sup \f(x)l] on (4,—FE,),
Fo)— §
If@)| on (4.NE,),

0 on 4,
while if #(S)> 0, define

[ess sup [f(x)] on (4,—FE,),
Fy@)=< |f(@)] on (4,NE,),
1 0 on 4,

observing that in this case ess sup|f(x)| < oo since ||f], < . The func-
tions F,(x) satisfy the postulates of Theorems 3 and 4 so that there are
constants |F|;' < C, <o and functions g,(x) =0 such that |F|;'<C, < oo

and functions g, (x)=>0 such that IIFn||q,=S F.o,dp where ¢(g,(x))=
A
C,-F,(x) and SAZF(gn)d/z=1. Since F(2) < F,..(x) <|f(x)] it follows

from the condition S ¥(g,)dr=1 that the sequence C, cannot increase
A
and since |fle=>|F.]|. it has a limit |f;'<CC < oo, Since ¢(g.(x))=
C.Fu(@), Fy)<F,.(z) and S W(g,)dpu—1 it follows by the monotone
A
properties of ¢(v) that for each arbitrarily chosen but fixed m the
sequence g,(x) ultimately decreases on (4, N\E,). When p(S)>0 we
see (4,N\E,)—(4—S) and (4,—FE,)— S, so that in this event the sequence

9.(x) decreases on S also. When p(S)=0 we see (4,N\E,) — (4—S8) and
(4,—E,)—=S. Thus, the sequence g,(x) in both cases converges in
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measure to its limit inferior, which we denote by g(x).

(a) Assume that postulate (iii) (a) holds. In this case there is a
constant 0 <M < o such that ¢(2u) < Me(u) for 0<u. Thus, if
O(2u) < No(u) for 0<u then @(4u) < N’@(u). Suppose there were a
sequence 0 < u, such that for each natural number ¢(2u,) > ne(u,),
then

L

o(du,) > S " o (0) i = 200, (200,) = 2t (0) == 2D (1)

K3

since u,¢(u,) == @(u,). Now

| lrwectrhde < ml 1figclshdn < Misl,
since
[ recirman=| timint r@)dp <limint | w,)dp—1

by Fatou’s lemma. By Young’s inequality

| r@ecisnap—2c| 157ecirhin- | oecirap

< 2CM|flo oo .

But for all n sufficiently large @(2C|f(2)|) = ¢.{(x) = g(x) therefore by
the monotone property of ¥(v) and Lebesgue’s theorem

1—lim infS W(gn)dp:S lim inf ?If(gn)d,u:S T(g)dp .
A A A

Let 2(x) >0 be any function such that S (hydp 1. In Lemma 2
A

let v=g(x), v'=h(z); then integrating over 4 gives

| rean=] W(g)derCSAlfl(h—g)d#

or

[ o semans T

Since C >0 we have ]!f"@:S |f(@)lg(z)dp. The function g(x) and the
A

constant C are those of the theorem.
(b) Assume that postulate (iii) (b) holds. Since lim sup @(2u)/@(un)

=< N, there is a «' such that for « <<wu, @(2u)/@(u)<2N. Then for
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w <w, O4u) << (2N)@(u). With appropriate modifications of the corre-
sponding demonstration in (a) above we easily show that there is a
constant 0 < M < oo and a value u, such that for u, <u, ¢(u)/e(x) < M.
Recalling that 4 is of finite measure, let v, >0 be a value such that
(1) <1/p(4), then

[ rweciman < | 1@ deeM 1rieci s
7w
<[ 7 Juste

since ¢(Clf(x))) < g(x) and by Fatou’s lemma

SAgrf(g) d,u=SA lim inf ¥(g,)dp < lim inf SA w(g,)dp=1 .
By Young’s inequality
|, r@ecirman—2c| reecishar - | oecirhar
<20{ iripecisn dnsec| FO i, <o

But ¢(2C|f(2))) = g.(x) =g(x) for all n sufficiently large, so that by

Lebesgue’s theorem and the monotone property of ¥(v)
S W(g)d/t=g lim inf ¥(g,)dp—1im infg W(g,)dp—1 .
A A A

The remainder of the proof is as in (a) above. The constant C and
the function g(z) are those of the theorem.

The above theorem may be generalized in several ways. The author
has secceeded in obtaining a number of analogous conclusions [8] when
the funection ¢(v) is discontinuous and when the hypotheses relative to
the function @(x) do not hold. It is interesting to observe that for
spaces in which conditions (iii) (a) or (iii) (b) do not apply, there is al-
ways an element f of the space for which the norm is not attained;

that is to say, there is no function A(x) >0 such that | f]l¢=S |flhdp
A

with S V(h)dp=1. In this case, however, there is a constant 0<C
A
such that

| r@cimdp=1-a,

where 0<a <1 is a constant; for any larger constant D > C the inte-
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gral | vl

case

)dp is infinite. It is further remarkable that in this

I7l={ 17RCIF D+ ac.

The proofs and complete statements of these propositions will not be
presented since they are not essential to the discussions relating to
convexity. Theorem 4 admits an obvious generalization not only to
spaces which satisfy the postulates of Theorem 6, but to the more
general case when only the first of these conditions holds. The problem
of determining the constant C which appears in all of these theorems
in terms of elementary properties of f(a) has hot met with a suitable
and satisfying solution despite the author’s attempts to find one.

We proceed now to a consideration of the necessary and sufficient
conditions for uniform convexity of Orlicz spaces. It was remarked in
the introduction that every uniformly convex space is strictly convex
but that the converse statement need not be true; therefore, it is clear
that any necessary condition for strict convexity must be also a necessary
condition for uniform convexity. Thus by Theorems 1 and 2 we must
assume at least that ¥(v) is continuous in the extended sense and ¢(v)
is continuous in the extended sense. For a similar reason, the following
theorems furnish us with further necessary conditions.

THEOREM 7. [5] Ewvery uniformly convex space s reflexive.

THEOREM 8. [6] Necessary and sufficient conditions that an Orlicz
space be reflexive are that there exist a constant 0 <N < o, such that

(a) 22u)/@(w) <N and ¥(20)T(W)<N, (0<u, 0<v) when 4 is
of wnfinite measure;

(b) lim sup @2u)/@(u) < N and lim sup ¥ (20)/¥(v) < N when 4 s of

Jinite measure.

The conditions implied in Theorems 1, 2 and 8 must be supplemented
with an additional necessary condition in order to insure uniform con-
vexity. This is expressed in the next theorem.

THEOREM 9. A mnecessary condition that Lo should be wuniformly
convex s that for every constant 0<a< oo there is a constant 1<K, < oo
such that (a) when 4 48 of infinite measure then o¢(u+au)/e(u) > K,,
(0<wu); and (b) when 4 is of finite measure then lim inf ¢(u+ au)/e(u)

>K,.

Proof. By Theorems 1, 2 and 8 and our above remarks we may
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and shall assume that Z(v) and ¢(v) are continuous in the extended
sense and that lim sup @(2u)/@(u) < N and lim sup ¥(20)/¥(v) < N for
some constant 0<3:7°°< . We see then that ¢(1;);:> oo for if sup ¢(v)<< A4,
0< A< co then ¢()—co, A<"u so that d(2u)— gm<p(ﬁ)d2—6= o for A/2<
which contradicts lim sup @(2u)/@(u) < N. Sfmilarly the condition
1i1’£1 sup ¥(20)/T(v) < Nu;r;plies that ¢(v)— oo,

—>o00

Suppose there were a value 0 < a < o and a sequence u, such that
alternatively according to the respective hypotheses

(a) el tan,)
()
(b) lim inf P(n+arn,) —1.
e )

There is then a sequence of pairs: {v,=¢(u,), V=9, +au,)} such that
Vpfvn—1. Let ,=1/(FT(»,)+¥(v,)) and define w, by 2¥(w,)=1/4,; then
Vy =W, = v, and v,/w,—>1, v,jw,—>1. We remark that in the second
case u, — o so that v, » o and ultimately 2, < (4)/2. Determine sets:
A,, B, of positive measure such that A, N B,=0, p(A4,)=pB,)=n,
=min [¢(4)/2, 2,]; and define functions fi(z), f. (x) respectively as

_ (+a) on A
[(1+ @), + Va ] 2a "
fley=4 \_177—” on B,,
1A +a)v, +v,]¢.
0 on (4,UB,)
1
A,
[(A+a)v, + v, o
S@)y=¢ (1f“), —— on B,,
[(1 + a/)’l/n + vn]/uﬂ
0 on (An U Bn)/ *

With C,=C, =[(1+a)v,+v,]p.u, we see: ¢(9,)=C,f., ¢(9,)=C., [, where

[En on A, ve on A,
g(x)=1v, on B, g.(@)={v, on B,
1 0 on (4,UB,) 0 on (A4,UB,)

and for all n sufficiently large so that 4,=p, we have
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| radn=nwy+ran-1,

SAQT(Q;')dy=1n(?IJ'(vn)+!V(in))=1 .
Thus, by Theorem 6

. . 1+a)v,+v,__ p
n = ” nd =,(,,k ,,,‘E_.ﬂ:,f n =1
k= fioudn ottt

. "o 1+a)yv,+v,_ ¢
= " d,:,(/;,_ LA N JY o R
I SAf S A+a)yv,+v, p,

Now

, (1+a/2)
Fa@)+12@) ) [(1+a)o, +v0] fta

0 on (4,\UB,)

on A4,\UB,

so that by Lemma 1 and Theorem 6

Fotfr
2

(1+a2w, 22

By G |

o [L+a)p.+v] 4

since v,/w, — 1 and v,/w,—> 1. Again

e 1 A UB,

i) — F @)= [+, o]

0 on (A,\JB,)
so that
=@ |t A N
1fa= £l +a2)| 2 ~’1+o¢/2>

and L, is not uniformly convex.

LEMMA 3. Let 0<e<{1/4 and 1<K, <T< oo, 0< b be constants
such that alternatively

ko A=) g 0,
(a) o((1—e)u) < (0<Tw)
b K, =) ~p b<u),
®) = —eyu) o=

then there is a constant 0 <L, such that
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V(') = V() + () —v) + LO(ju —ul)

when respectively

(a) ' —u| > ((216:5;) u >0
- (2e—¢*)
(b) o’ ~u| = max b, ol v

where (u, v), (W, V') are related by either v=¢(u) or u=¢w) and v'=¢(w’)
or w =¢().

Proof. Assume u’' Z>u and consider the first diagram

v
P
LA ‘457 Q C
R%
VA B
| 7}
b u (~e¥u’ (/-eu’ u’

We note first
@) - =u>0; b)) A—eyuw' =u>b

according to the respective hypotheses. Since ¢(u) is a monotone non-
decreasing function we find from the definition of ¥(v)

V(v')—~¥(v)=Area (OCT)— Area (OBA)
—> Area (ABST)+ Area (PQRS)
so that:
V(') = () + ()0’ ~v)+QP- PR .

Observing that respectively

w
(a) (1—e)

>u'>u >0,
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(b)
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(]u_,e)‘} uw >=u>b,

by corresponding hypotheses with u’/(1—¢) instead of u, we see that
p(1—ep’) < (1/K)p(w'). Thus

QP =¢()—¢((1—om) = (1= . Joluw) .

Also

M €

PR=(1—o —u>[(1—e)—(1—e)'’ =e(1—e)u’ .

Hence

P-PR > (1 - é ) e(1— ey’

> (1— 11( )e(l—e)(D(u’) > (1— ; )e(l—s)(ﬁ(\u’—ul) .

g

g

Thus with P,=(1—-1/K,)<(1—¢) >0 we have

V(') Z ¥ )+ () =)+ Pl(lu' —ul) .

Assume %' < u and consider the second diagram.

<I

Y7

v /‘“““ I B b

cy

We note first that

so that (1—e)u > o',

I
u (I-€¥u (-Feu b u

p—y == ZEm N — 9oy,

T (e

Since ¢(u) is monotone nondecreasing, from the
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definition of ¥(v) we find:

U(v)—W(v') = Area (OBA)— Area (OCT)

< Area (ABDT)— Area (PQRS)

so that

¥(v') > W(v)— Area (ABDT)+ Area (PQRS)

=¥ (v)+¢()(v' —v)+ PQ-RP .

But

PQ = ¢((1=)u)—¢((L—=yu)

1

2(1—7
K,

Jet—em = (1= ) o

where, if we are considering the second set of hypotheses, we make
use of the fact that b <<u. Also EP==cu; therefore

T(') = W () + Jo) o —v) + (1 - ;{ ) - us()
= TW)+(v)(v' —v)+ (1 — ;{ ) % D(u)

= U (v) + do) v —v)+ QL(|u —ul))

where Q.—(1—1/K)(e/T) > 0.
Taking L,= min (P,, @,) we have the stated result.

THEOREM 10. Let {(v) be continuous, w=¢@) and w'=¢@") and let
0<e<{1/4, 1<IR, =< N< oo be constants such that alternatively

(a) (i) ‘Z)((il;)<N (0= u)
¥ ¢(u)
(ii) RE<¢((1_E)M), (0 <" 2)

(i) | —u]> ((215::)? 2w >0

or

. . D (2u)
(b) (i) limsup o) <N

—> ’
o0
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TR D P(u)
(ii) hriliup (1) >R,

(i) ' —u| = max [((215:;?, ((215:5? “]

then there is a constant L, > 0 such that

V(") 2 ¥ (0)+ )0 —v) + LP(fu' — ) .

Proof. (a) By the same reasoning employed in Theorem 6, we
may use hypothesis (a) (i) to show that there is a constant 0<M <
such that ¢(2u)/e(u) <M, 0<u. Writing (1—e¢) for w and noting that
21 —eyu) = ¢((1—c)u), 0<e<1/4 we have

> $2A=efu) — ¢((1—eju) 0<u).

= op((l—eu) T e((l—eyu)

Again writing (1—¢)u for » in (i) we have

R, < (A=) 0<u).
< (=) O=w

With M=T, R,=K, we may apply Lemma 3 to obtain the stated result.
(b) As in the proofs of Theorem 6 we may use (b) (i) to show that
there is a constant 0< M < o such that lim sup ¢(2u)/e(u) << M; this

implies that for each 0< e<(1/4 there is a value u,< o such that if
(1—e)u, <u then ¢(2u)/e(u) < 2M.
Writing (1—¢)*u for u we see

p(1—eju) - ¢2(1—eu) —opr (< u).
p((L—eyu) — o((L—epu) — a

Since ¢(v) is continuous, it follows that if 0< b is any constant then
o((1—¢€)’d) > 0; since ¢(2u)/o(u) < 2M when (1—e)u, < u it follows that
o(2u,) < oo ; therefore

A0 - e
A= efu) = g((L—ey) (b=u<u).

Thus with

T=1+max 1:2M , 77—‘/3(2%)7 N
o(1—erb)

we have
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w(d=e)u) ~mp ®=<u).

P((1—e)u)

The second hypothesis implies that there is a u,< o such that

P(L=u) < R+1 4 _
ey~ 2 (=u) .

Let 7=(2e—¢%)/(1—¢)?, then 7 >0. Let

S= inf #d=oM)
<uc, ¢((1—c)u)

Suppose S=1, then there would exist a sequence » < u, << u, such that
(1 —e)u,)/¢((1—e)u,) —>1. From this sequence a subsequence u,, could
be extracted which either increases or decreases to a limit » < < w,.
If u, increases to u’, then the left continuity of ¢(u) implies that
o((1—e)u')e((1—e)u')=1; while if w,, decreases to %’ then the right
continuity of ¢(u) implies that ¢((1 —e)u')/@((1—efu’)=1. In either event
this would imply that ¢(v) had a discontinuity at alternatively v=
¢((1—e)u’) or v=3((L—e)u’), since ¢(v) < (1—efu’ < (1—e)u’ < J(v). Since
¢(v) is continuous by hypothesis, we conclude: S>1. If we let
K,=min [S, (R.+1)/2], b=2e—¢)/(1—e)® and T as above, we see that
the hypotheses of Lemma 3 are satisfied and we have established the
proposition.

We shall suppress the proofs of the two following lemmas since
they may be found readily in the reference cited.

LEMMA 4. [10] If f(z)e Lo and f(x) 0 on a set of positive measure,
then

o

LEMMA 5. [10] If f(z)€ Ly and if there is ‘a constant 0 < N < oo
such that (a) @Q2u)/@(u) <N, 0<u when 4 is of infinite measure; or
(b) lim sup @(2u)/@(u) << N when 4 is of finite measure, then

[ 20 @hdn<o .

LEMMA 6. If {f.(2)} s a sequence of elements of Lo such that
S (| fu@))dpe—0 and if there is a comstant 0 < N< oo such that
A
either (a) Q(2u)/Owm)<< N, 0<_u when 4 is of infinite measure; or
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(b) lim sup @(2u)/@(u) < N and also {(v) is continuous, when 4 is of finite

M—>00

measure, then |fl.— 0.

Proof. (a) let p>1 be any positive integer and choose n, suffi-

ciently small so that S O(|f@))dp < 1/N” for all n, <n. Then

[ o@nhdn < ne{ otshap =1
so that if g,(2) >0 and S U(g)dre <1 by Young’s inequality
A

[ 2nlgdr < o@\phan+{ vy <2

so that |fls < 2/27, (n, < m). Since p may be chosen arbitrarily large,
the proposition is demonstrated.

(b) Since lim sup @(2u)/@(u) < N it follows that there is a u' < e

such that: @2u)/0(u) < 2N, v’ <u and @(2u’)< . Since ¢(v) is con-
tinuous and ¢(0)=0, it follows that ¢(ux) >>0, 0<% and hence @(u) > 0,
0<7u; therefore, if 0<u” <u be any number we see @(2u)/O(u) <
Q2w @) < oo when u’ <u <w' so that if N,.=max [2N, @(2u')/@(u'")]
we have @(2u)/@(u) <N, <o, u’<u. Let p=>1 be any number
and choose 0<u” <<{1/27; let S,=FE[|fu(@)l=u"]. If g.(2)=0 and

S T(g,)dp <1 then by Young’s inequality
A

[, 2ty = | o@rhan+ | v
<, e@irndp+ | o@inhan

S| oFD e o1

n

By choosing » sufficiently large, we have f Q) Ly dpe<(N,.)"* so that
Sy,

il . 2+ O
Jalle T 2p .,

Taking p sufficiently large we see that |f,J = 0 since p(4) <o,

LeMMA 7. If «a, [ are real, then
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| — Bl =le| + A —lec + Bl + lla] — 1B]] .

Proof. If a>>[3>>0 then |a—p|=|la|—|A|] and |«|+|fl=la+g|. If
@>> 0> then la|+|fl=lae—f| and |a+fl=]la]—|All. If 0>a=>p then
la|+18l=la+pB| and |a—f|=|la|~|B]l. The remaining cases in which
7 = «a hold by symmetry.

LEMMA 8. If 7 <1 then OGu) 70u) and if n=1 then O(pu)=
70 ().

Proof. Since ¢(u) is monotone nondecreasing if 7 <_1 we have
o) =" ¢@ a7 < 1\ o) di—yow) .
0 0

If 7>>1 and é=1/7 <1 then @(&u') < £@(u'); so that, if éuw'=u, we have
70(u) < O(7u).

LeMMA 9. (a) If there is a constant O <N < oo such that @(2u)/@(u)
< N then

O(u,+u,) = N[O (u,)+D(u;)] ,

Sor arbitrary 0 < u,, 0 < u,;
(b) af for each 0<u'" there is a constant 0 < N,., < o such that
QQRu)O(u) < Ny, u’ < u, then

O(uy+us) << O(2u"") + Ny [O(ur) + P(u,)]

Jor arbitrary 0 u,, 0 u,.

Proof. (a) Let u,=max[u,, u,] so that u,+u, <{2u;. Then
DU+ uy) < O(2u;) < NO(uy) < NI[O(uw,) + D (u,)] .
(b) Let u;=max[u,, u,]. If u;<u”, then
Oy +u,) < O2u;) < 0(2u'') .
If u; >u" then
O(uy+u,) < 02u;) < N,w@(us) < N, [O(u)+ O(u,)] .
THEOREM 10. Let ¥(v) and ¢(v) continuous and let 0<e<1/4,

1<<R.<XN< o be constants such that alternatively
(a) when 4 is of infinite measure



1478 HAROLD WILLIS MILNES

(1) 2@2u)/e(w) <N, (0<Tw),
. P 77(&@777 N
(11) Rs\ y((l—e)u) ’ (O &u) ’

or
(b) when 4 is of finite measure

(1) lim sup @(2u)/O(u) < N ,

(i) lim sup ¢((§(ﬁ)e)u) >R,

then Ly is uniformly convezx.

Proof. We first assume that f,(z) 2= 0, /' (x) 2= 0, that || fille=]/"lle=1
and that 4| f,+ fJo = 1; and we shall prove that |f,—f. > — 0.
Let »p=(2¢—¢")/(1—¢)*; we observe that lim=0. By Theorem 9

20

there is a constant 0 <L, < o such that, corresponding to the alterna-
tive hypotheses, when

(a) ' —ul = 7u >0,

(b) o —u| == max (7, 7u) ,

then

(+) () = V() + () —v) + L,o(w' —ul)

where u=¢(v) and «'=¢(v’). By Theorem 6, let 1< D, < o0, 1<C,;< =
be constants, g,(z) =20, &'(x) 2= 0 be functions such that

PN =D,(FOTLEY g )dp—1

I(hi(@) = Ci filz) , SA?F(h,;)d/zzl .

Let alternatively

@  Em=E]|cr@= " e+ fe)| )]

b E) =B |Cifiw)— D (i) + fia)| = max by, 105 |

Write v =g,(2), v="h.(x) in (=) above and integrate over K, (7) to obtain
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S w(gn)dazj w(h;)dwg O, Foa) (gal) — () dp
o, () 7, () £, ()
> dy .

i, )
But, by Lemma 2, ¥(v') = ¥ (w)+dw)(v' —v); so that making the same
substitutions as before and integrating over E,(7) we may assert

L o(|cisie) = (i) + 1@

B,

| rade= 1, wehdpr| | Cif@loe - hie)ds

By By, (0 iy

Hence

| roadr = | vap+C Cirioae)~ni@)dr

+L,| o(lcise =" (e + @) ) dr

%

80 that

¢:| st - aiendn =1, o

A

Yz .

Clfi— ’; (Fot 1)

By Lemma 8, since 1< C; < o we have

) s —g@ndn =L, o(|a= D o))

0 2C,

Now

i 7= (i) + 5 @Dt dn

| A@@dn | f@o@dn <115
But
[, f@@dn < fon@dr <17,
and
| Fr@u@dn 150,

and also

Lot e = 1l + 15
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go that:

| @)t~ gu@n -0
Thus by (+) since O <1, < oo,

(+5) 1, o (|Fim g G|

on K;(y) alternatively

(a) Fi@) = 00 () + S| i)
) [ — 2 (o) - san| < max| 1 s | < max(y, 15@)
2C, o Cy

so that, since 7 <1, by Lemma 4 and 8 we have alternatively as e—>0

Jan<| . otsdn

E,

, D , ,
c ([) l n ” n+ Jn
() g!«:;(r/) < f 2C, (futfo)

<l o< o<y -0
oo (y) A

*Mn

Jar =, ot)dr

"

(b) oo ?(( 5 gon ()
| otran < oeu + | o rdn
<0+ 7| DA< 0@ pD+7 0

since p(4) is finite. Combining these results with (x+) we see that

Joo(|fi o (i)

)d,u—»O,

Thus by Lemma 6

D . .
n n +< n

ol (fo+12)

-

-0
)

and this implies in turn that

Fak 1
2

D,
C,

nd R
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But 3| fr+ 1

lo > 1=|fa]e so that D,/C; — 1. It then follows that

Fim(fE )

-0

@

from which we have immediately that

Ifa— Sl =0 .

We now prove the theorem for the general case when the functions
So@), fr(x) are not necessarily positive. We use the equivalent definition
of uniform convexity which has been noted in the introduction. Let

I fle=1/"le=1 and suppose | fr+ fille — 2. We define
, |fa@)  if  (fa@)+ (@) has the sign of f’(x)
Fia)={"" o
otherwise ;
. |fa @) if  (fu(x)+fr (@) has the sign of f,(x),
Fi@={"" .
otherwise .
Clearly
0 < F(x) < |fu@)l, 0 F (o) Z 1 (@),
Fya)+ F, () = | ful@) + fo ()]
and

2\F (@) —Fy/ (x)| = | fl) = S/ @)

so that |Fle <1, |Fy|e<<1, liminf|F,+F,}s=>2 and |f,—/fJ=
2|F,—F,|s. Our result for positive functions applied to F,(x) and F/(x)
now gives ||f»—fnle =0 and L, is uniformly convex.

THEOREM 11. Necessary and sufficient conditions that Le be uniformly
convex are
(a) in case 4 is of infinite measure
(i) ¥(v) is continuous,
(ii) ¢(v) is continuons,
(ili) there is a constant 0 <N < oo such that O(2u)/d(w)<.N,
V(2v)[T(v) <N, (0<u, 0<).
(iv) for cach constant 0 < e<1/4 there is a constant 1 <R, < oo
such that ¢(u)/e((1—eu) > R,, (0<u);
7
(b) in case 4 is of finite measure
(i) ¥(v) is continuons,
(ii) ¢(v) is continuous,
(ili) there is o constant 0 < N < oo such that
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lim sup @(2u)/@(u) << N, and limsup ¥(20)/T ()N

(iv) Sfor each constant 0<e<C1/4 there is a constant 1 < R, < o
such that lim inf ¢(u)/¢((1—e)u) > R,.

Proof. The theorem is simply a summary of the results of Theorems
1, 2, 7, 8 and 9 and of Theorem 10.

It is interesting to remark (a) that the condition ¢((1+ e)u)/e(n) >
R.>1 implies that #(2v)/%7(v) << N for some constant 0 < N < oo, and
(b) that the condition lim inf ¢((1+e)u)/¢(u) > R, >1 implies that
lim sup ¥'(20)/7 (v) << N for some constant 0 < N <  «; but the implica-

tions converse to (a) and (b) are untrue. To prove the direct statement
we choose an integer 0 < p such that ((R.+1)/2)>>2. Now, respectively
(a) for all 0 <7u,

e((1+&)u) R.+1\ .
Mo = (50

and (b) there is a value 0 < u, such that if u, <{wu, then

ALE) o (R

Then if (a) 0 <u, (b) u,<u, we see that
e+ = (T Y o) 2 20w
2
Letting v=¢(u) we have (1+¢)"¢(v) == ¢(2v) when alternatively:

(@) 0<wv,
(b) v.<v where v,=¢(u,). But then

(a) (1+ )W (w)=(1+ e)pg':m) d = S’;sb(zv) dv = 17/(20)
where 0<w,
b) (AT =(L+ e)”gv $@) A+ (1+)T(v)

> S (25) AT+ (1+ )W (v) > 3T (20) — 30 (20,)

where v, <w, and since ¥(2v,)< o and ¥(v)—> o we see that
Him sup 7'(20)/7 (v) < 2(1+¢)* < oo. To prove the converse construct the
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following function. Let u,=0, v,=0, u,=2" v,=2" u ,=(1+e¢)u,, v,=
2" +4%); (n=2, 8, ---). Join the points (uv) to (u.v,); (w2, to (u,v,);
(th, V1) 1O (Ups1, Uye;) €ach by straight line segments and let this function
be ¢(u). Then

P((L+eyu,) _olun) v, _2"+% 4
e(u,) o(u,) v, 2

while ¢(2v) < 4¢(v), (0 <v) and therefore ¥F(2v)/¥(v) <8, (0<»). It is
also clear that condition (i) is implied by the condition lim sup Z(2v)/¥ (v)

< N and consequently by (iv). Thus, if we wished to do so, we might
delete any statement relative to the function Z(v) from Theorem 11.
It is true, however, that the remaining conditions are independent for
none of them is implied by any combination of the other hypotheses.
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