
Pacific Journal of
Mathematics

RETRACTIONS IN SEMIGROUPS

ALEXANDER DONIPHAN WALLACE

Vol. 7, No. 3 March 1957



RETRACTIONS IN SEMIGROUPS

A. D. WALLACE

Let S be a semigroup (that is, a Hausdorff space together with a
continuous associative multiplication) and let E denote the set of idem-
potents of S. If xeS let

Lx={y\y\JSy=xVSx}

and

Rx= {y\y\JyS=x\jxS] .

P u t H X = L X Γ \ R X a n d f o r eeE l e t

H=U{He\eeE} ,

M e = {x\ex e H and xee H} ,

Zc=Hex{Rcf\E)x{Lef\E)

and

Under the assumption that S is compact we shall prove that Ke is a
retract of Me and that Ke and Ze are equivalent, both algebraically and
topologically. This latter fact sharpens a result announced in [6] and
the former settles several questions raised in [7].

I am grateful to A. H. Clifford and to R. J. Koch for their several
comments. This work was supported by the National Science Foundation.

LEMMA 1. Let Z^SxSxS and define a multiplication in Z by

(£, x, y)-(t', x', yf) = (txy't'y x', y)

then Z is a semigroup and, with this multiplication, the function f:
Z-+S defined by f(t, x, y)=ytx is a continuous homomorphism.

The proof of this is immediate. We use only the above defined
multiplication in Z and not coordinatewise multiplication. It is clear
that f(Ze)=Ke.

Since the sets He, eeE, are pairwise disjoint groups [1] it is legiti-
mate to define functions

rj: H-+E , θ: H-+H
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by " η(x) is the unit of the group He which contains x" and " θ(x) is
the inverse of x in the group He which contains x". If xeMe then
ex, xeeH so that η(ex), η(χe) are defined. Define g: Me-+Z by

g(x)=(exe, η(ex), η(xe))

and note that the continuity of η implies the continuity of g. For

xeMe let

p(x) = η{χe)χrj(ex)

so that p is continuous if η is continuous.

LEMMA 2. For any xeKc we have fg(x)=x=p(x) and g(Ke)=Ze.
The function f\Ze takes Zc onto Ke in a one-to-one way and is a homeo-
morphism if rj is continuous. If η is continuous then p retracts Me onto
Ke.

Proof. Let te He9e1eReΓ\E and e,eLef\E. Since Le>=Le it is
immediate that ee, = e and since t is an element of the group He whose
unit is e (Green [3]) we also have et=t = te. Similarly we see that
eλe=e. It is important to observe that the sets {Lx\xeS}, {Rx\xeS}
and {Hx\xe S} are disjointed covers of S so that, for example Lxf\Lyφ •
implies Lx=Ly. We see that eeMι=teι and e,teγe=e,t so that ee.2teιe=t.
We note next that teLeHei and thus ?y(ie1)=e1. For eeRef]Le=Reιf\Lt

and e>2=e, give te1eRtf\LCι in view of Theorem 3 of [2]. But

and HCi being a group with unit e1 we have, from the definition of η,
^(ίeι)=e1. In a similar fashion we show that η(e2t)=e2. If xeKe then
we have x=e.zteL with the above notation and

, rj(ex), η(χe)) =

I t w i l l su f f ice t o s h o w i n a d d i t i o n t h a t gf(z)=z f o r zeZ s i n c e fg(x)=x

gives x=p(x). Now let z=(t, el9 e2)eZe so that f(z)=e2te1eKe and

9(f(z))=(ef(z)e, Φf(z)), η(f(z)e)) = (t, e19 ez)

in virtue of the computation given earlier.
It remains to prove the continuity of η when S is compact. This

was announced in [7] but no proof of this fact has been published. Let

-Sf= {(x, y)\LΛ=Ly} , & = {(x, y)\RX-Ry]

and let 3ίf=&r(\&.
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LEMMA 3. // S is compact then <%'] S^ and & are closed.

Proof. Let

J*f'={(x,y)\SxClSy}

and assume that (a,b)eSxS\,Sff. Then SbCS\a and hence
Sb CZS\U* for some open set U about a since Sb is closed and S is
regular. Again from the compactness of S we can find an open set V
about b such that SVC.S\U*. Hence (UxV)Γ\ &" = Π and we may
infer that j£f' is closed. There is no loss of generality in assuming
that S has a unit [3]. Hence if h: SxS-^SxS is defined by h(x, y)
= (y, x) then h(£f') is closed and thus ^f= £f' f\ h{&") is closed. In a
similar way it may be shown that & is closed. Moreover, Sίf is
closed because 3ί?= £f f\ &.

THEOREM 1 [7]. // S is compact then H is closed, -η : H-*E is a
retraction and 0 : H->H is a homeomorphism.

Proof. Define p: SxS->S by p(x, y)=x. Then

H= \J {He\ee E] =p

is closed since £ίf and Έ are closed. We show next that θ is continuous
and to this end it is enough to prove that G={(x, θ{x))\xeH] in virtue
of the fact that H is compact Hausdorff. If m: SxS->S is defined
by m(Xj y)=xy then r9^f\(HxH) (~\m~ι(E) is closed and we will show
that this set is the same as G. For (x, θ(x)) in G implies m(x, θ(x))=
xθ(x) G E in virtue of the definition of θ. Since x and θ(χ) are in the
same set He, eeE, it is clear that (x, θ(x))e HxH and it is easily seen
from the definition of HX=LXΓ\RX, and J%?=£?Γ\& that also (a?, θ(x))
e rW. N o w t a k e x , y s u c h t h a t xy=eeE, x,yeH a n d (x, y) e Sίf.

The last fact shows that Hx=Hy and the penultimate condition, together
with this shows that x, y e HGχ for some eίeE. But e=xyeHβi and the
fact that Hβι is a group implies that e=e1. Now the uniqueness of
inversion in the group Hβ shows that y=θ(x). Hence θ is continuous
and Ύ] is continuous because rj(x)=xθ(x) from the definition of η and θ.

G. B. Preston raised the question as to the continuity of a certain
generalized " inversion"—Suppose that there is a unique function a :
S-^S such that xa(x)x=x and a(x)xa(x) = a{x) for each xeS. If S is
compact then a is continuous. To see this let ,/Kbe the set of all
(x, y)e SxS such that xyx=x and yxy=y and define ψ: SxS->SxS
by φ(x, y)=(xyx, x). If D is the diagonal of SxS then φ~\D) is closed.
Similarly ψ~λ{D) is closed where ψ(x, y) = (y, yxy) and ^1^=φ~\D) Γ\Φ~\D)
is therefore closed. The uniqueness of a implies that {(x, a(x))\x e S} =^/f/"
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so that a is continuous if S is compact. For a discussion of the ex-
istence and uniqueness of such functions as a, see [2, pp. 273-274] as
well as references therein to Liber, Munn and Penrose, Thierrin, Vagner
and the papers of Preston in London Math. Soc, 1954.

From Theorem 1 and Lemma 2 we obtain at once

THEOREM 3. Let S be compact and let e e E then Ke is topologically
isomorphic with

Zβ=Hex(Lef\E)x(Rβf\E)

and Ke is a retract of Me.
It is not asserted that Ke is a subsemigroup of S. The first corol-

lary is a topologized form of the Rees-Suschkewitsch theorem, see [6],
[7] and [2] for a bibliography of relevant algebraic results.

COROLLARY 1. If S is compact, if K is the minimal ideal of S and
ifee E f\K then K is topologically isomorphic with eSe x (Se f\E)x(es Γ\E)
and K and each "factor " of K is a retract of S.

Proof. We rely, without explicit citation, on the results of [1].
It is immediate that Me = S. Now Le=Se, Re=eS and He=eSe so that
(by definition and [1]) Ke=Se-eSe-eS (ZK and, being an ideal, Ke=K.
Clearly x->exe retracts *S onto eSe. Now SeCZKCZ.H and rj\Se re-
tracts Se onto Sef\E.

It is clear, when S is compact, that K enjoys all the retraction
invariants of S, for example, if S is locally connected so is K. We do
not list these nor do we give here the applications of Corollary 1 that
were mentioned in [6].

COROLLARY 2. // S is a clan [7], if KcZE and if Hn{S)φ0 for
some n^>0 and some coefficient group, then dim K > 2.

Proof. If KCZE then He={e} and K is thus topologically the
product Se x eS since Se, eS C K. Now Hn(Se) w Hn(S)« Hn(eS) [9] and
hence Se, eS are non-degenerate continua. It follows that dim KI>2.

It is possible to put some of the above in a more general frame-
work. Let T be a closed subsemigroup of S and let

LΛ={y\x\)Tx=y\)Ty} ,

with similar definitions for Rx and Hx. If e e E then He is a semigroup
and He is a group if eT\J TeC_T. If ,_%f £/] & are defined analogously
then . . 2 ί 7 o . ^ = , ^ o ^ 7 . Moreover we have ί̂ 7° &= J\ where
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when S is compact [5]. In this case J%? =S? &, Sf<>& and J^ are
closed. It is easy to see that many of the results of [3] and [2] are
valid in this setting. If we define a left T-ideal as a non-void set A
such that TACIA, then the basic propositions about ideals are also
available. Many of these results follow from general theorems on
structs [8].
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