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1. Introduction. Mappings of the 2-sphere, and more generally of
the 2-manifolds, have been studied by various authors. (See, for instance,
[9] and references therein, [7].) Generally, these mappings have been
subjected to certain “ monotoneity ”’ conditions on the counter-images of
points. Thus, in Moore’s first paper [8] on the 2-sphere, it was required
not only that counter-images be connected, but that they not separate
the sphere. In terms of homology, then, he required of a counter-image
C that p(C)=0 for r=0,1. Later studies of Moore and others usually
omitted the requirement that »'(C)=0, thus increasing the possible
number of topological types of images. With the condition 2'(C)=0
imposed, the image of the 2-sphere is a 2-sphere, and of a 2-manifold
is a 2-manifold of the same type. Without this condition, the various
types of “cactoids” are obtained.

In the present paper we consider some higher dimensional cases.
As might be expected, we impose higher dimensional “monotoneity ”
conditions.

DEFINITION 1. A mapping f: A—B is called n-monotone if
H(f'(b))=0 for all be B and r<m. (See [10; p. 904].)

ExAMPLE. Let us consider the mapping induced by decomposing
the 3-sphere into disjoint closed sets each of which is a point, except
that all points on some suitable “wild” are [5; Ex. 1.1] A are identified.
This mapping is r-monotone for all », but the image-space is no longer
a 3-sphere; indeed, it is not a 3-manifold in the classical sense at all,
since the point corresponding to A does not have a 3-cell neighborhood.

This example makes it at first appear that because of such “homotopy”
difficulties, it may be useless to look for any well-defined class of con-
figurations in higher dimensions. However, as we show below, the class
of configurations obtained is precisely that of the generalized manifolds.
Moreover, we need not restrict the mappings to the mappings of 3-
manifolds in the classical sense, since the generalized manifolds turn
out to form a eclass which is closed relative to the mappings considered.
This result forms, then, a new justification for the study of generalized
manifolds.

2. Preliminary theorems and lemmas. In general, spaces are
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Hausdorff, but no conditions of metrizibility or separability are assumed.

Except where noted to the contrary, we use augmented Cech homology
with an algebraic field as coefficient domain. We recall the following
definition [11; p. 237].

DEFINITION 2. If S is a locally compact space, such that for every
pair of open sets P,Q for which P> @ and @ is compact, the group

H*S:Q, 0; P, 0) (cf. [11; 166, Def. 18.28]) is of finite dimension, then
S is said to have property (P, Q)".

REMARK. Since the space is assumed locally compact, the above
definition can be stated in a number of different but equivalent forms.
Thus, @ may be replaced in the definition by any compact set M; that
ig, S has property (P, @)* if for every pair of sets P, M such that P is
open, M is compact, and P> M, then H*S:M,0;P,0) is of finite di-
mension. Another variant, but equivalent form of the definition, is
obtained if in either of the above definitions it be required only that

there exist at most a finite number of n-cycles on Q(M) which are lirh
on compact subsets of P (that is, in P).

Another variant would be to require that there exist at most a
finite number of cycles on compact subsets of @ (that is, 4n ) that are
lith on P (or, that are lirh in P). Each of the equivalent forms of the
definition may be found particularly adapted to a given situation.

We express the fact that S has property (P, Q)" for r=0,1, -+, n
by stating that S has property (P, Q)7 .

THEOREM 1. If S is a compact space having property (P, Q)", and
[:8—>8 s a continuous (n—1)-monotone mapping of S onto a Hausdorfi
space S, then S has property (P, Q)".

Proof. Let U’, V' be open subsets of S’ such that U'>V and V'
is compact. The sets U=f-(U"), V*=f-Y(V’) are open and closed sub-
sets, respectively, of S, such that U V*,

In the mapping f(V*)= V", counter-images of points are all r-acyclic

for r=0,1, -+, n—1. Hence [3] for any cycle 7* on V', there exists a
cycle Z® on V* such that

(1) f(Z)~yon V.

Since S has property (P, @)", there exist cycles Z}, i=1, -+, m of
V* such that if Z” is any cycle of V*, then
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(2) zwéaiz'; in U.
Consequently, since (2) implies
(3) FE~ S ai (@) in U,
we have, combining (1) and (3), that

P~ S @ f(Z) in U

It follows that at most m cycles on V' are lirh in U and hence that S’
has property (P, @)".

REMARK. It is worthwhile noting that the above proof gives the
following : If f:S—.S is a continuous (z—1)-monotone proper mapping
of a locally compact space S onto a Hausdorff space S’, and P’, I" are
open and compact subsets of §’, respectively, such that P’ > F”, then

fIP HYS:F,P)—HYS": F, P')

is a homomorphism onto, where F=f-Y(F"), P=f"(F’), and HS: F, P)
denotes the group of n-cycles on F' reduced modulo the subgroup of
n-cycles that bound ¢n P. A similar argument shows that f|P,:
H"(S: F, P)— H*YS': F', P') is an isomorphism onto. These are general-
izations of the Vietoris mapping theorem [2], [3].

THEOREM 2. If S is an Ic® compact space, n >0, and f:S—>8 is
a continuous (n—1)-monotone mapping of S onto a Hausdorff space S,

then S’ is lc”.

Proof. By [11; p. 70, Th. 1.6], S’ is 0-lc. And since S’ is a compact
0-lc space, it has property (P, Q). (See [11; p. 106, 3.7]). That S’ has
property (P, Q) for r=1,2, ---, n follows from Theorem 1. Since, for
compact spaces, l¢" and (P, Q) are equivalent, we conclude that S’ is
le* (see 11; p. 238, 7.17]).

LEMMA 1. In a locally compact space S, let P and Q be open sets

such that P is compact and PDQ; m:d let M be a closed subset of @
such that for any open set Q, for which MCQ,CQ, the dimension of

H(S:S,8—P;S, S—Q,) [11; 166, Def. 18.29] is the same finite number
k. If Z%, <« ZF form o base for r-cocycles mod S—P relative to co-
homologies mod S—@Q, then for every open set Q, such that M CQ,CQ,
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the cocycles Zt form a base for r-cocycles mod S— P relative to cohomologies
mod S—@Q,.

Proof. Let 7L, -+, 7* be a base for cocycles mod S—P relative to
cohomologies mod S—@Q, . Then there exist cohomologies:

(1) e S el Zimod S—Q, G=1, e k.
=1

Relations (1) hold a fortiori mod S—@Q, .
The matrix |¢/|| is of rank %, since otherwise there would exist a
cohomology relation between the y{’s, mod S—@, .

Suppose the Z’s are not lircoh mod S—@,. Then there exists a
relation

S a,Zi~0 mod S—@Q, .
But the system of equations
Gt Fela s Hu=a,, i=1, - k

has a non-trivial solution in the z,’s. Hence, multiplying the relations
1) by =, +-+, z,, respectively, we get

Sapl~> aZi~0 mod S—@, .

Thus, the assumption that the Z. are not liroch mod S—@, leads to
contradiction ; and since the dimension of H/(S:S,S—P;S,S—Q,)=Fk,
we conclude that the Z’s form a base for cohomologies mod S—@,.

LEMMA 2. In a locally compact space S, let M be a compact set
such that H'(M)=0; and suppose that there exist open sets P, Q such
that M CQ C P and such that H'(S:Q, 0; P, 0) has finite dimension. Then
there ewists an open sct Q, such that M CQ,CQ and H(S: Q,, 0; P, 0)=0.

Proof. Suppose, on the contrary, that for all such @,, H'(S: @,, 0; P, 0)
0. Since H'(S:Q, 0; P, 0) is of finite dimension, we may assume Q
shrunk so that all dimensions of groups H'(S:@Q,, 0; P, 0) are equal to
the same positive integer & for all @, such that ¥ CQ,CQ.

Since

H(S:S,5-P;S,5-Q,)~H"(S:Q,,0; P, 0)

[11; 166, 18.30], there exist, by Lemma 2, cocycles Z., i=1, «--,k,
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mod S—P, that form a base for cocycles mod S— P relative to cohomologies
mod S—@, for all @, such that M —Q, Q. Consider Z!, and U a fcos
of P such that Z)(11) exists. Let B>U be a normal refinement of 1
rel. M [11; 140], and let @, be such that if a simplex of ¥ meets Q,,
then it meets M. Since Z!~0mod S—@,, there exists on @, a cycle Z”
such that Z}-Z"=1. And by the choice of ¥, the coordinate Z"(¥) is
on M. Hence i, Z"(¥) is the coordinate on M of a Cech cycle 7" .

But H"(M)=0 and consequently y"~0 on M, and a fortiori, y"(1)~0
on Q; and since Z"(U) ~m, Z7(L) on @, it follows that Z/(11)~0 on Q.
But then Z(11)-Z,(11)=0, in contradiction to the choice of Z"(l). We
conclude, then, that for some Q,, H"(S: @,, 0; P, 0)=0.

THEOREM 3. A necessary and sufficient condition that a locally com-
pact space S be l¢” is that «f M s any compact subset of S such that
H'(M)=0, for some r<m, then for any open set P containing M there exist

an open set Q such that M CQ CQC P and such that H'(S: @, 0; P, 0)=0.
Proof of sufficiency. Trivial. (See [11; 193, 6.14]).

Proof of mecessity. With M and P as in the hypothesis, and any
open set @ such that @ is compact and M CQCQCP, the dimension

of H'(S:Q,0; P, 0) is finite [11; 193, 6.16]. Lemma 2 now gives the
desired result.

LEMMA 3. If S is an orientable n-gm and M « compact subset of S
which is r- and (n—r—1)-acyclic for some 1 such that r<n—2, then
for any open set P containing M, there ewists an open set Q such that
MCQCQC P and such that all compact r-cycles in Q— M bound in P— M.

Proof. Since S is l¢* [11; 244], there exists by Theorem 3 an open
set @ containing M such that @ C P and such that all »- and (n—r—1)-
cycles in @ bound in P. Suppose there exists a cycle Z” in @ —M that
does not bound in P— M.

By Lemma VIII 5.4 of [11; 255] there exists a cocycle Z,_,=7*Z"
in @—M such that Z,_, 1" ~Z" in @—M, where /™ is the fundamental
n-cycle of S. And since Z’~0 in P, we may assume that Z, ,~0 in
P. There exists a covering 11 and a relation.

(1) AC, - (W)=2Z,-, () in P.

The chain C,_,_,(11) is clearly a cocycle mod P—M=S—[(Ext P)\U M].
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And if C,_,-,~0 mod S—{(Ext P)\UM], then by [11; 164, 18.19] there
exists a cycle Z""-! on (Ext P)\UM such that C,_,_,-Z*""'=1. Since
Zrrt=7, 4+ 7,, where Z, is on Ext P and Z, on M, we may neglect Z,
(as C,_,—,(1) is in P) and write C,.,.,-Z,=1. But Z,~0 on M since
M is (n—r—1)-acyclic, implying C,_,_,-Z,=0. We conclude, then, that
Cyepei~0 mod P—M. There exists, therefore, a covering BL > and a
relation

( 2 ) (3C7L—r—2(58):n*uﬁlgcn—r-l(u)~Ln~r—l(§B) ’

where L,_,_ () is in P—M.
Applying & to (2) and utilizing (1), we get

SLn -7 —l(ig) = ﬂ*u%zn—-r(u) .

That is, Z,-,~0 in P—M. But this implies Z"~0 in P—M, contrary
to supposition.

REMARK. In the hypothesis of Lemma 3 it was assumed that
r<_n—2, that is, n—r—2_>0. The necessity for this is shown by the
following example: Let S be the 2-sphere, S? and in S let M be a
circular disk, and U and V open circular disks concentric with M and

such that MCVCVCU. Then in V—M an S' which encloses M car-
ries a Z' which fails to bound in U—M.

Note also that if M is an S' in S!, then M is 2-acyclic but in any
open set P containing M there exist 2-dimensional cycles linking M.
This shows the necessity for the assumption that M be (n—r—1)-acyclic
in the hypothesis.

LEMMA 4. Let Z"' be a cycle carried by a closed subset K of an
orientable n-gem S, and M a connected subset of S—K. If Z"'~( on
S, then must Z"'~0 on a compact subset of S—M.

Proof. This is analogous to that of Lemma XII 3.12, p. 375 of [11].

For the purposes of the proof of the next theorem, let us recall
the following form of the definition of an orientable n-gem: An n-
dimensional compact space S such that (1) p*(S)=1 and all n-cycles on
closed proper subsets of S bound on S; (2) S is semi-r-connected for all
r such that 1<r<n—1; (8) S is completely r-avoidable at all points
for all »r<{n—2: (4) S is n-extendible at all points. (This is IX 3.6, p.
273, of [11]). (By Lemmas VII 5.2, 5.3, p. 224 of [11], condition (4)
may be replaced by the requirement that S is locally (n—1)-avoidable
at all points; this fact will be utilized in the proof of Main Theorem A
below.)
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3. Main theorems.

MAIN THEOREM A. Let S be an orientable n-gecm and f:S—S" an
(n—1)-monotone continuous mapping of S onto an at most n-dimensional
nondegenerate Hausdorfi space S'. Then S’ is an orientable n-gem of the
same homology type as S.

Proof. Since S’ is nondegenerate, f is n-monotone and therefore
by the Vietoris-Begle Theorem [2], p"(S")=p*(S)=1. And since p(S") >0,
S’ is at least n-dimensional, and therefore, by the dimensionality as-
sumption of the hypothesis, is exactly #-dimensional. And if F” is a
proper closed subset of S, and Z" a cycle on F”, there exists on the
set F'=f~'(F") a cycle y* such that f(;")~Z" on F” (see [2; §5]). As
F' is a proper closed subset of S,7*~0 on S and therefore f(y")~0 on
S’—implying that Z"~0 on §’. Thus S satisfies condition (1) above.

That condition (2) is satisfied, follows from the fact that S’ is ¢
by Theorem 2.

Let e &, and U’ an open set containing p’. Then U=f-(U") is
an open set containing the set M= yF~'(p’). Let » be any integer such
that 1<r<n-—2. Since H'(M)=H"""'(M)=0, there exists by Lemma
3 an open set P such that MC PCPCU and such that all rcycles in
P—M bound in U—M. Let W’ be an open set such that o’ e W W C U,
and such that f-Y(W')CP. Let @ be an open set such that p’ e Q@ C
Q CW. As & is lc*, there exists a finite base Z7, ---, Z] of r-cycles
of F(W’) relative to homologies in U'—Q'. Let W=7~ (W), Q= F-(Q),
and consider any ecycle Z7. There exists a cycle y7 on f-'(F(W’)) such
that f(yi)~Z; on F(W). And as y!~0in U—M, Z; must bound in
U —P’. Finally, since there are only a finite number of the r-cycles
Z7, there must exist an open set R such that p' ¢ R C R CQ and such
that all »-cycles on F(W’) bound in U'—R’. Thus S satisfies condition
(3).

To show that S’ satisfies condition (4), let »’, U’, U and M be as
before. Since by hypothesis p*~'(M)=0, there exists by Theorem 3 an
open set V such that M TV CVCU such that all (n—1)-cycles of V'
bound on U. Let P’ be an open set such that p e P’ C P C U and such
that if F"=F(P’), then the set F'=f-(F") lies in V. Let @ be an open
set such that p e @ CQ CP’. As above, there exist cycles Z*-!,
=1, .-+, k, of F forming a base for (n—1)-cycles of F" relative to
homologies in S'—@'. And for each Z' there exists a cycle y** on F'
such that f(7')~Z" on F'. But since 777'~0 on U, hence on S, it
follows from Lemma 4 that ;77'~0 in S—M., Therefore each Z7'~0
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in 8’—9/, and it follows that, as above, an open set R’ exists such that

peRCQ and all Z" bound in S'—R. Thus & is locally (n—1)-
avoidable.

The necessity for assuming that S’ is at most n-dimensional above
may be avoided if the monotoneity condition on f is strengthened. We
recall that for the Vietoris Mapping Theorem to hold when the coef-
ficient group is not a field or an elementary compact topological group,
it is necessary to phrase the monotoneity condition in terms of the in-
dividual coordinates of cycles (just as, for example, may be done with
the #-l¢ condition; compare [11; 176, Defs. 1.1, 1.2]). In terms of the
generalized Vietoris cycles such as Begle employed [2], the condition is
defined as follows:

DeEFINITION 3. A mapping f of a space X onto a space Y is a
Vietoris mapping of order m if for each covering 11 of X and yeY
there exists a refinement V=LV(11,y) of 1 such that every r-cycle of
XA f~y) [11; 181], »<n, bounds on X)) A f-'(y). (By X(1) is
denoted the complex consisting of all simplexes o such that the vertices
of & are points of X and diameter of »<11.)

When the coefficient group is a field or elementary compact group,
this definition is equivalent to that of n-monotone. It will be convenient,
then, to retain the term ¢ w-monotone” with, however, a qualification

regarding the coefficient group employed. Also, for working with Cech
cycles, the definition is more suitable in the following form:

DEFINITION 3’. A mapping f of a space X onto a space Y is n-
monotone over (an abelian group) G if for each covering U of X, ye Y
and M=f"'(y), there exists a refinement ¥ of 11 such that for every
r-cycle Z"(B) over G, »r<<n, on VLA M the projection m,Z"(B) bounds
on T A M.

A routine argument shows that the two Definitions 3 and 3’ are
equivalent.

LEMMA 4. If f 4s an n-monotone mapping over the additive group
I of integers of a compact space S onto a Hausdor(f spoce S, then f s
n-monotone over every abelian group G.

(Remark. As will be seen from the proof below, it is sufficient to
assume the condition of the Definition 3" only for r=u and n—1.)

Proof. For n=0 the lemma follows at once since, as is easily
shown, 0-monotone over any group G is equivalent to the connectedness
of f(x) for all xze S,
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For #n>>0 we proceed as follows (see Cech [4; 11-13], where a
similar type of argument is employed for quite different purposes):
Given a covering 11, of S and xeS’, M— f~'(x), we choose 1I,”>1U, such
that for every n-cycle Z"(ll,) over I on U, A M, the projection =,Z*(11,)
thereof from W, to U, bounds on U, A M; and N,>11, such that for every
(n—1)-cycle Z"*(11;) over I on U, A M, the projection =,Z"~(11,) thereof
bounds on 1, A M.

There exists a base for n-chains over I for the complex U; A\ M
congisting of chains C’(1,), <=1, ---, a,, such that

aC?(Hd):v?CLn—l(ud) ’ /b=1y Yy ;‘Qn ’
aCZL(HS):O ’ /I’=ﬁn+1y e, Ay,

where 0<f, <min («,, @,_,).
Consider any cycle Z7(1,) over G of U; A M. Then

Z"(u;s)=i2=1 g,Cr (W) , 9,€G.
And since Z*(11;) is a cycle,

By,

> 97 C' (1) =0,

i=1

fl

implying that
(1) 9.7 =0 for 1<i<8, .

Also, since for (3,+1<i<<w«, the chain C}(1,) is a cycle, there exist
chains H!*'(11,) over I of 1, A M such that

(2) OHP (W) =m,my, CH(Us) B+1<i<La, .
Furthermore there exist chains D}(1,) over I of 11, A M such that
oOD}(,)=m,,CP~' (1) 1<i<f,.

And since the chains =,,C*(11,)— 77D} (1,) are cycles over I, we also have
relations

( 3 ) GHZ”'”(HI) ‘_‘771277330?(113) _ﬂlzvyrDZZ(uz) y 1 —<:'L ,—<:;8n
on I, AM. From (1), (2), and (3) we get

0 };}giH}‘“(ul) = ; Tyy7 550, CT(L)
=3,7, 2" (W)
~ (W) .
on U, A M.
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MAIN THEOREM B. Let S be an orientable n-gcm and f: S—S a
continuous mapping of S, (n—1)-monotone over the integers, onto a finite-
dimensional nondegenerate Hausdorff space S'. Then S is an orientable
n-gem of the some homology type as S.

Proof. The defining properties of an orientable n-gem S utilize
an algebraic field & as coefficient domain, and in particular specify
that if F' is a proper closed subset of S, then H*(F'; & )=0. It follows
that since S’ is nondegenerate, f is m-monotone as defined in Definition
1, and consequently [2; 542-3] is nm-monotone over .% as defined in
Definition 8. Furthermore, f is n-monctone over I. For it is trivial
that »-monotoneity over a cofinal system of coverings of a space is
sufficient for n-monotoneity, and S has a cofinal system Y of coverings
of dimension n; and sinece a cycle Z*(8), B e, over I is a fortiori a
cycle over &, for a projection m;;Z2"(¥), Ne 2, to bound implies
mpZ"(B)=0. We conclude then that f is n-monotone over I.

Now suppose the dimension, dim S’,”>n. Then ([6]; [1]) there
exists a closed set C S and cycle Z" over R, (the additive group of
the reals mod 1) such that Z"~0 on & but Z"+0 on C. As f is n-
monotone over R, by Lemma 4, there exists [2; §5] a cycle y* on f~YC)
such that f(;")~Z" on C. But since Z"~0 on §', it follows [2; 542]
that "~0 on S. As S is n-dimensional, this implies "=0 and a
fortiori that y"~0 on C and consequently f(;")~0 on C, implying Z,~0
on C, contrary to the choice of Z".

The theorem now follows from Main Theorem A, since by Lemma
4, r is (n—1)-monotone over .& .
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