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MULTIPLICATIVE NORMS FOR METRIC RINGS

SILVIO AURORA

1. Introduction. In his paper [19], S. Mazur stated two results
concerning real normed algebras. The first of these, which asserted
that the only normed division algebras over the real field were the real
field, the complex field, and the division ring of real quaternions, was
essentially proved by Gelfand in [10] and by Lorch in [17]. Elementary
proofs of that result have also been given by Kametani [13] and Torn-
heim [26], while generalizations in various directions have been given
by Kaplansky [16], Arens [4] and Ramaswami [23].

The second of the results given by Mazur was that a real normed
algebra such that |lay||=||z|| |lyl] for all # and y mnst again be isomor-
phic to the real field, the complex field, or the division ring of real
quaternions. This result was generalized in [8] by R.E. Edwards, who
showed that the same conclusion holds for a Banach algebra under the
weaker hypothesis that |x|| {lz"!||=1 for all elements x which have in-
verses 2°'. A. A. Albert has also obtained results in [1], [2] and [3]
similar to the second of Mazur’s results.

In this paper, the second result of Mazur is generalized for certain
types of metric rings. It is shown in section 6 that such rings must
be division rings if the condition |lay||=|lz|| |ly|| for all 2 and y holds.
Similar results hold under the weaker assumption that ||z|| |lz~'||=1 for
every element x which has an inverse z~!. Under suitable additional
conditions on the metric rings under discussion, it is shown in § 7 that
the results just mentioned may be strengthened to assert that the ring
is not only a division ring but is isomorphic to the real field, the com-
plex field, or the division ring of real quaternions. Finally, the results
on metric rings are applied to real normed algebras to obtain the results
of Mazur and Edwards under weaker assumptions.

The author is deeply indebted to Professor E. R. Lorch of Columbia
University for his invaluable guidance in the preparation of this paper;
heartfelt thanks are also due to Professor Lorch and to Professor Leo
Zippin of Queens College for their kindness in reading and ecriticizing
the manuscript.

2. Topological rings, metric rings, regular and singular elements.
We shall first introduce some pertinent definitions and recall some ele-
mentary results concerning topological rings and metric rings. By a
topological ring is meant a structure ® which is at once a Hausdorff

Received July 27, 1955 and in revised form October 1, 1956. Portions of this paper
were written while the author held an Atomic Energy Commission Fellowship.
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1280 SILVIO AURORA

space and a ring' such that the applications (a, ) > a+b and (a, b) - ab
of Rx R into R are continuous.

If R is any ring, then a real-valued function ||| defined on R is
called a norm for R if it satisfies the following conditions:

(i) 1l0l|=0 and l|la||>0 for a0,

(ii) lle+dl|<[lall+]l for all a, be R,

(iii) ||—all=|lal| for all a e R,

@iv) llabl|<Zllal|-|Ib]] for all @, b= R. A norm for R is called an
absolute value for R if it satisfies the following condition, which is
clearly stronger than (iv):

@iv’) llabll=]la|]|-]|b]| for all a, be R.

By a metric ring (ring with absolute value) is meant a ring R together
with a norm (absolute value) for B. In any metric ring R the function
d(z, y)=|lz—yl| is a metric for R and induces in the usual way a topo-
logy for R relative to which R becomes a topological ring. Every ring
admits as a norm the trivial function which takes the value 0 for the
zero element of the ring and the value 1 for all other elements; in this
case the induced topology is of course the discrete topology. The trivial
norm is easily seen to be an absolute value for a ring if and only if
the ring contains no proper zero-divisors.

For a finite ring which contains at least two elements it may be
observed that the existence of an absolute value is possible only if the
ring is a field and the absolute value is the trivial norm. In general,
one might expect that the existence of an absolute value for a ring will
require rather special properties of that ring. In the case of real
normed algebras, for instance, S. Mazur stated in [19, second theorem]
that when the norm is an absolute value the algebra must be isomorphic
to the field of real numbers, the field of complex numbers, or the divi-
gion ring of real quaternions. We shall consider below metric rings
which satisfy various multiplicative restrictions on the norm such as
(iv'), and we shall show that the class of such rings is strongly limited.

By an isometry of a metric ring R into a metric ring R, is meant
a ring homorphism o of R into R, such that ||lox||=]||x]| for all ze R;
clearly, o is necessarily an isomorphism of R into R,. A metric ring
R, is said to be an extension of the metric ring R provided that there
exist an isometry of R into R,. The notions of limet, convergent sequ-
ences, fundamental sequences, complete metric ring, and the completion
of a metric ring are introduced in the standard way and the usual pro-
perties of these notions are easily verified.

We now exhibit some metric rings, in each case taking the obvious
definitions for the operations of addition and multiplication when these
are not specified, and with the ordinary absolute value as the norm in

1 The rings in this paper are assumed to be associative and to possess a unit element, e,
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examples (1)-(5):

(1) The ring of rational integers.

(2) The field of rational numbers.

(8) The field R of real numbers.

(4) The field € of complex numbers.

(5) The division ring Q@ of real quaternions.

(6) The ring C(X) of all continuous complex-valued functions defin-
ed on the compact Hausdorff space X, with the norm given by
1/ l=sup |f(x)|, where the supremum is extended over all ze X.

(7) The ring <2 of all complex-valued functions which are defined
and continuous on the unit dise {¢}{¢|<{1} of the complex
plane and analytic over the interior, {¢||Z]<1}, of that dise.
The norm is given by |[|f||=sup|f()|, where the supremum
is taken for all ¢ such that |¢]=1.

(8) The field @, of rational numbers (where p is a fixed prime
number) with the norm defined by |l¢||=p~", where = is the
uniquely determined integer such that ¢ has a representation
g=p"(m/n) with m and n integers prime to p.

(9) The field P, of p-adic numbers, which is obtained as the com-
pletion of @, of example (8).

(10) The ring C™ of all real-valued functions which are defined on
the closed unit interval and for which the first »n derivatives
exist and are continuous. In this case the norm is defined to be

Ill=2 () sup | FO@)

where each supremum is extended over all x in the closed unit interval.

All of these rings except those of examples (2) and (8) are complete
metric rings; the norm is also an absolute value in all of these rings
except those of examples (6) when X contains at least two points, (7)
and (10).

The notions of (left, right) inverse of an element, (left, right)
regular elements, (left, right) singular elements, and the sets S7?, S, S,
G', G" and G are introduced as in [24]. Clearly, G(G!, G") is the com-
plement of S(S%, S). It is easily verified that S=S'\J 8" and G=G" N G".
Also, G* and G” are multiplicative semigroups® and G is a multiplicative
group with e as its identity element.

In many examples the distinction between left regular elements
and right regular elements disappears. For example, for a ring R

which has no proper idempotents it is true that Gi=G*. For, if ae Gt

2 A semi-group is understood to he a non-empty system which is closed relative to an
associative bhinary operation.
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and ¢'a=e, then aa’ is an idempotent distinct from 0, so aa’=e¢ and this

means that ¢ e G. Similarly, in a ring without proper nilpotents, G'=
G”. TFor, in such a ring all idempotents are central by Lemma 1 of [9],

so if aeG! where a'a—e, then ae’ is an idempotent and therefore
central. Thus,

ad’ =a'a(aa’)=a'(aa Ya=(cd'a)(a'a)=e ,

so a € G”, whence G'=G".

If R is a topological ring, its group G of regular elements is the
union of a family of disjoint, maximal connected subsets,—the compo-
nents of G. The principal component, G, is the component which con-
tains the unit element e. It may be shown that G, is an invariant
subgroup of G such that the cosets modulo G, are the components of G.

Following Kaplansky [14] we call a topological ring a Q-ring if the
set G of its regular elements is an open set’. For a complete metric

ring it is well known that G, G* and G are open sets so that S7, S
and S are closed sets. This is shown in [18], [20] or [24] for the case
of Banach algebras, and the present result, which utilizes essentially
the same proof, may be found in [14]. Thus, every complete metric
ring is a @-ring.

3. Generalized divisors of zero. In [25], G. Silov introduced the
concept of a generalized divisor of zero in a Banach algebra. A more
detailed study of this concept was presented by Rickart in [24]; the
present development of a theory of generalized divisors of zero in a
metric ring follows closely the development presented in the latter paper,
although the possibility of multiplication by complex scalars permits

stronger results in the case of a Banach algebra. Silov’s results demon-
strated the existence of generalized divisors of zero in any non-trivial
Banach algebra; as a corollary he obtained the result of Mazur mentioned
above on Banach algebras with a norm which is an absolute value. Our
study of generalized divisors of zero leads in a similar way to a gener-
alization of Mazur’s result to the case of certain types of metric rings.

DEFINITION. If o is any element of a metric ring we define I(a)=
inf (Jlazl|/llz|]) and r(a)=inf (||zal|/||z|]), where in each case the infimum
is taken as x ranges over the non-zero elements of the ring.

The results which follow are easily proven and in many cases follow
as in Rickart’s paper.

3 Kaplansky,s definition is in terms of quasiregular elements, but is easily seen to be
equivalent to the present one in rings with unit element,
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LEMMA 1. (1) 0<ia)<llal| for any a; (i) Ua)l()<I(ab)<|la||-(b)
for any a and b; (iii) [l(a)—10) <|la—>b]| for any & and b.

COROLLARY. [(2) is a continuous function of x.

DEFINITION. Z'={a|l(a)=0}, Z"={alr(a)=0}; Z=2"\UZ";
H'={all(a) >0}, H"={alr(a)>0}; H=H'NH".

It is easily observed that ZXZ7, Z) is the complement of H'(H’, H).
Since the corollary implies that Z! (and also Z7) is closed it follows that
Z=4"\JZ" is closed. Consequently, H', H" and H are open.

An element of ZYZ, Z) is called a generalized left-divisor (right-
divisor, divisor) of zero. Clearly, a (left, right) zero-divisor is always a
generalized (left, right) divisor of zero. The converse, however, is not
always true. For example, let B, be the metric ring consisting of the
same elements as the ring of example (7), but where the norm of an
element distincet from zero is taken as the maximum of 1 and the norm
as given in example (7). The topology of R, is then the discrete topo-
logy. There are no proper zero-divisors in E,, but the function f({)=
¢—1 is a generalized left-divisor of zero in R, for if f,(¢)=¢{"+¢" '+
<<« +1, then ||f,ll=n+1, while ||ff.l|=2 since

(C__l)(cn+c7L—1+ . +1)Ecn+1_1 ;

thus, {|fF/Fll=2/(n+1) for n=1, 2, ---, so that [(f)=0 and f is a
generalized left-divisor of zero.

In [24] Rickart defines a left generalized null divisor to be an ele-
ment s such that there exists a sequence {z,} such that |lz,||=1 for all
n, and such that sz, > 0. However, he notes that s is a left generalized

null divisor if and only if I(s)=0. In a metric ring, it is clear that a
left generalized null divisor in the sense of Rickart satisfies the condi-

tion {(s)=0 and is thus a generalized left-divisor of zero in the sense of
this paper. However, a generalized left-divisor of zero in the sense of
this paper need not be a left generalized null divisor in the sense of
Rickart; for example, the element f in the preceding paragraph is a
generalized left-divisor of zero in R;, but if there were a sequence {¢,}
of R, with l|g,/l=1 for all » and with fg, — 0, then for n large fg,
would be zero since R, is discrete, and, since R, has no proper zero-
divisors, either f or g, would be zero, and this is clearly impossible, so
f can not be a left generalized null divisor in the sense of Rickart’s
definition.

It is nevertheless true that for many metric rings the concepts of

t For brevity, right-sided results are often omitted.
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left generalized null divisor as defined by Rickart and that of generalized
left-divisor of zero as employed in this paper coincide. One can easily
show, for instance, that this is the case in a metric ring 2 such that
for any element a distinct from zero there is an element b of .27 (R)
(this set is introduced later in §5) such that ||a||-||b]|=1. It follows
also that the concepts coincide in a metric ring R such that for every
positive real number » there is an element b of .2 (R) such that ||b||="7.
In particular, this condition holds in any Banach algebra, so that the
two concepts coincide in any Banach algebra, as Rickart showed.

If R, is the ring of elements of R, but with the norm taken such
that |lg||=1 for any g¢ distinet from zero, then R, is also discrete, so
that the topological rings which underlie R, and R, are identical. How-
ever, the element f defined above is a generalized left-divisor of zero
in R, but not in R,, for the norm of R, is an absolute value, whence
llaxz|l/|lz]|=|la|| for all non-zero x in R, so l(a)=]||a|| for any a in R, and
consequently R, can not contain any generalized left-divisors of zero
different from zero. This shows that the notion of generalized left-
divisors of zero is not a purely topological notion. In particular, this
concept differs from that of a topological zero-divisor as defined, for
example, in [15]. For, while it is easily shown that a topological left
zero-divisor in a metric ring is necessarily a generalized left-divisor of
zero, the converse is not true since otherwise the element f of R, would
be a topological left zero-divisor in R, and hence in R, and hence a
generalized left-divisor of zero in R,.

LeEmMA 2. (1) If beZ, then abe Z* for amy a. (ii) If abe Z,
then ae Z or be Z-.

LEMMA 3. Z'CSY, Z7CS', ZCS, G"CH', G CH" and G H.
Lemma 3 shows that the sets H', H* and H are not empty and
contain in fact all regular elements. It is also clear that the zero ele-

ment belongs to the sets Z%, Z" and Z; but in many instances these sets
contain no element other than zero. For example, the metric rings of
examples (1)-(5) possess no generalized divisors of zero other than the
zero-element. However, for a complex Banach algebra distinct from €,

G. Silov showed in [25, lemma] that there always exist generalized
divisors of zero distinet from the zero-element.” The results which fol-
low give conditions under which certain types of metric rings contain
nonzero generalized divisors of zero.

LEMMA 4. For any metric Q-ring, H s the union of the disjoint
open sets G and SN\ H.

5 See also the remark by Lorch in [17].
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LeMmA 5. Let R be a metric Q-ring. Let {a,} be a sequence of
reqular elements of R which converges to an element a in R. If the
sequence {a,”'} 1s bounded,® then a is a regular element.

THEOREM 1. If R is a metric Q-ring, then’ [GINSTZ Nz, If, in
addition, BR™ is connected,’ then either R is a division ring or Z contains
an element distinct from zero.

Proof. The first statement follows as in Rickart’s paper.

If R is not a division ring, then the closed set S meets R®. Also,
the closed set [G] meets R®, and R® C[G]US. If R™ is connected,
then R N[G]NS is not empty, so [G] NS contains an element distinet

from zero. It follows that Z'/\ Z" contains a nonzero element, so Z also
contains a nonzero element.

4, Proper rings. Lemma 3 asserts that the inclusion Z S always
holds. Thus, every generalized divisor of zero is a singular element,
although, as we see below, a singular element need not be a generalized
divisor of zero. Indeed, the generalized divisors of zero possess the
special property of permanent singularity; that is, a generalized divisor
of zero does not acquire an inverse in any extension of the given ring
since it is still a generalized divisor of zero and hence singular in that
extension. In the ring <7 of example (7), the function f({)==¢ is a
singular element, but the ring C(X), where X is the unit circle of the
complex plane, is readily seen to be an extension of & in which f is
a regular element.®* Thus, f is not a permanently singular element of
27 and so f is not a generalized divisor of zero in &, even though f
is a singular element of <7, Thus, the inclusion Z S may be a proper
inclusion.

DEFINITION. A metric ring R is said to be proper provided that
Z=S8, or, equivalently, that H=G.

The preceding discussion shows that even a complete metric ring
which is connected and locally connected need not be proper; for ex-
ample, <7 is not proper. However, many metric rings are proper, in-
cluding any ring C(X) of example (6). We see that a proper ring is a
division ring if and only if there are no generalized divisors of zero
other than zero. In particular, a proper ring with absolute value can
have no generalized divisors of zero except zero and is therefore a divi-

5 A set A is said to be bounded if there is a number M such that |ja|j<<M for all a in 4.

7 If A is any set, the symbols [A] and A denote the topological closure of A and
the set of non zero elements of A, respectively.

8 Compare [24].
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sion ring. We shall give below some sufficient conditions for a metric
ring to be proper; these conditions, in combination with the existence
of an absolute value or with some other multiplicative restriction on the
norm, will imply that the ring must be a division ring.

THEOREM 2. If R is a metric Q-ring such that H is connected, then
R is proper.

THEOREM 3. If R is o metric Q-ring (complete metric ring) such
that S is nowhere dense (of first category), then R is proper.

Proof. Either hypothesis of Theorem 3 insures that S is a closed
set. Also, either hypothesis implies that S is nowhere dense, for if S
is assumed to be of first category in a complete metric ring, then S is
nowhere dense since a closed set of a complete metric space is of first
category if and only if it is nowhere dense. The proofs of these two
theorems then follow as in [24].

It must be noted that the hypothesis of completeness is needed
where it occurs in Theorem 3. For, let B be the set of all functions f
which belong to the ring & of example (7) and for which f(0) is a
rational number. It is easily seen that R is a metric Q-ring but is not
complete. Also, R is of first category, so the set S for R is also of
first category. However, R is not proper, for it contains the singular
element f(¢)=¢, which is not a generalized divisor of zero, as was
noted at the beginning of this section.

DerINITION. If R is any ring, then by an snwvolution of R is meant
a mapping @ — a® of R into itself such that:

(i) (a+b)*=a*+b* for all a, be R,

(ii) (ab)*=b*a* for all a, beR,

(iii) (a*)*=a for all acR.

That is, an involution of E is an anti-automorphism of period two. For
a given involution of R, an element « is said to be self-adjoint provided
that a*=a.

For €, for instance, the mapping which associates with each com-
plex number its complex conjugate is an involution. Similarly, the
mapping which associates with each quaternion its conjugate is an in-
volution of L. In both cases the self-adjoint elements are simply the
real numbers. In the case of the ring of all bounded linear operators
on a Hilbert space, the mapping which associates with each operator its
adjoint is an involution, and the self-adjoint elements are of course the
self-adjoint operators. Thus, many rings admit at least one involution.
For metric rings, one is naturally interested in the involutions which
are closely related to the metric or topological structure of the ring.
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DEFINITION. An involution ¢ — ¢* of a metric ring R is said to be
bounded provided that there is a positive constant /# such that |la*||<C
Bllall for all @. An involution ¢ -—a* of a metric ring R is said to be
real if no self-adjoint element is an interior point of the set of singular
elements.

The involutions described above are all bounded and real, if in the
case of the ring of all bounded linear operators on a Hilbert space we
take as the norm of an element its bound as an operator.

These definitions differ from the corresponding definitions of Rickart
in [24] by the omission of the mention of scalars in the present defini-
tions. Thus, the identity mapping of the field € onto itself is a real
and bounded involution in the present sense but is not even an involu-
tion in the sense of Rickart, since the image of ¢-1, where ¢ is a scalar,
should be (—4%)1 but is 4-1.

For a complex Banach algebra, an involution which is real in the
sense of Rickart is also real in the present sense. For, let an involu-
tion be real in the sense of Rickart. Then, for any self-adjoint element
@ the spectrum of @ is real. If {1,} is a sequence of non-real complex
numbers which converges to zero, then {a—2,-e} is a sequence which
converges Lo a. Since the 2, are not in the spectrum of «a, it follows
that a—2,-e is regular for all ». This shows that « is the limit of a
sequence of regular elements and hence is not in the interior of S.
Thus, the involution is real in the present sense.

The identity mapping of the ring < of example (7) is clearly a
bounded involution relative to which all elements are self-adjoint. But
the function f(£)=¢ is a singular clement of &7, and Rouché’s Theorem
implies that any element of <~ whose distance from f is less than 1
is also a singular element; thus, the set of singular elements of < has
a nonempty interior and contains the self-adjoint element f. The in-
volution in question is consequently not real even though it is bounded.

There are also real involutions which are not bounded. For example,
let B be the field obtained by adjoining z and 7 to a given field F, so
that R consists of rational expressions in x and y with coefficients in 7.
If P(z, y) is any irreducible polynomial belonging to F'[z, v], then each
element of R may be represented in the form ¢=P*-M/N, where M
and N are elements of F'|x, y] which are not divisible by P, and where
2 is a uniquely determined integer which depends only upon ¢ and P.
If |l¢l|=2-* where p is the integer which corresponds to ¢, then R be-
comes a metric ring relative to this norm. The involution of R which
maps an expression f(xz, y) onto f(y, x) is clearly real since R is not
discrete and the only singular element of R is 0. In case P(x, y) does
not divide Py, «), let Q(z, ¥)=P(y, #), so for any natural number =
we have ||P"||=2"", while ||Q"[|=1. But @" is the image of P" relative
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to the involution, and [|@"||/||P"||]=2", so that the involution is not
bounded, although it is real.

For an involution to be both real and bounded, the metric ring in
question must be proper, as the theorem which follows shows.

LeMMA 6. If @ — a* is a bounded involution of the metric ring R,
then (ZY)* =Z4" and (Z")*=2Z'}

Proof. 1If lla*™||<plla|| for all ae R, then |la||=|la™*||<p|la*|| for
all @, so that

Ua) < llaa*||/la*||= e ) ||/ llar*|| < 2]l ™ |||

for all nonzero z. Thus, {(a)<F(a*), so a* ¢ Z" implies a € Z*. That is,
(Z"* C 7', while, similarly, (Z")* CZ’. Taking images relative to the
involution, we obtain Z" C (Z)* and Z'C (Z")*. By combining the four
inclusions, we obtain the desired results.

THEOREM 4. If R is a metric Q-ring which admits o real, bounded
wnvolution, then R is proper.

Proof. Let a — a* be a real, bounded involution of R. If acS,
then a*-aeS' and a*-a is self-adjoint. Since the involution is real,
a*-ae[G]. Thus, a*-a€[G]NS. Theorem 1 implies that a*-a e Z7 N 2.
Since a*-a e Z', we may conclude from Lemma 2 that a*e Z' or ae Z'.
That is, ae (Z9)*=Z" or ae Zi, so ae Z=Z'\J Z'. This shows that ' C
Z. Similarly, 8" Z, whence S=S8'\JS"CZ. But ZCS by Lemma 3,
so Z=S, and R is thus proper.

5. The sets < (R), “#(R), & and %’. We shall now introduce
some sets which measure to some extent how closely the norm of a
given metric ring resembles an absolute value,

DEFINITION. The norm of a metric ring is said to be multiplicative
on a set A if |labl|=]|a|| ||b]] for all @, be A. (Thus, an absolute value
is simply a norm which is multiplicative on the entire ring.) By a p-
group is meant a multiplicative group contained in a metric ring and on
which the norm of the ring is multiplicative.

DEFINITION. If R is a metric ring, . “(R)={ala e R, |lax||=|la|| ||x||

9 If 4 is a set in a ring with involution @ — a*, then the set of all a*, where a is in
A, is denoted by A*. Note that the statement of the corresponding lemma in [24] assumes,
but does not use, a real involution.
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for all ze R} and Z(R)={ala e R, |lzal|=|lz| |la|]| for all x€ R}.

LEMMA 7. If R is a metric ring, then:

(1) ae L(R) if and only if Ua)=|lal;

(ii) 0e L (R);

@) of 2 (R)F£{0} then |le||=1;

(iv) ee L (R) if and only if |lell=1;

(v) Z(R) is a closed set and a multiplicative semigroup;
(vi) if a, abe L (R) where a=~=0, then be ¥ (R).

Proof. If ae 7 (R), then |laz||/|lz||=|lal| for all 240, so l(a)=|lall.
Conversely, if l(a)=|la|| then |la||={(a)<[lax|//|lx]| for any x50, so
Hall llz]] <||ax]| for any x, whence ae .2 (R).

Clearly, 0e .Z°(R). Also, l(e)=1, and since ec .~ (R) if and only if
I(e)=llell, it follows that ee " (R) if and only if |le||=1. If .2"(R) con-
tains an element a0, then ||al|=|lael|=]la||-|lell, Whence |le||=1.

/“(R) is the set where the continuous function |z||—{(x) vanishes,
so .Z7(R) is a closed set. If a, be .2 (R) then

llabl| < llall- bl =Ua)i(b) < i(ab) < |labl|

by Lemma 1 (i) and (ii), so ||ab||={(ab), whence abe ./ (R). This shows
that ~'(R) is a multiplicative semigroup.
Finally, if @ and ab belong to 2“(R) and a0, then

lall- ol ll2l| =[] [l2l| = [laba|| =Ilal| - [lbxl] ,

so |1b]|-]lxll=[lbx]| for any x, whence be ¥ (R).

The sets Z7(R) and <2 (R) measure the extent to which the norm
resembles an absolute value. Indeed, it is easily seen that the norm of
R is an absolute value if and only if .&#"(R)=R. For the ring C(X) of
example (6) the sets .Z7(R) and < (R) coincide and consist of all funec-
tions whose absolute value is a constant function. The elements of
Z7(R) in this case are then regular or equal to zero. In general, it
will be useful to consider the set of regular elements of .~'(R).

DEFINITION. In a metric ring for which |le||=1, let

2 ={alaeG, |laf|-lla”!||=1}
and
Z'={ala e G, |lal|=lla7[=1}.

DEFINITION. If A is any subset of a metric ring R, let ./7(4)=
{llall| @ € A}, v(a)=|la|| for any ae R.
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THEOREM 5. Let R be a metric ring such that |le||=1. Then
FRING=C=R)NG. Also, < 1is closed in G and is a subgroup
of G. Furthermore, < is a maximal p-group.

Proof. If ae < (R)N G, then |jali-|la™!||=]lea"*||=1, so ae Z. Con-
versely, if ae <, then

llall-llell=llall- [le~ ezl < {lall- lla~"|- llaw||= llax]]

for any «, so ae ¥ (R), whence ae “(R)\G. Since < (R) is closed,
T=<(R)NG is closed in G. The proof that Z(R) N\ G= ¥ is similar
to the above.

Since .’(R) and G are semigroups, <  is also a semigroup. Also,
e is in <, and ¢ contains the inverses of all of its elements, so < is
a group. The norm is multiplicative on ~(R) and hence on & C AR),
so % is a p-group. The definition of < clearly implies that & is the
largest p-group which is contained in . But any pg-group which con-
tains % must be contained in G since G is a maximal multiplicative
group, so < coincides with such a pg-group and is hence a maximal p-
group.

THEOREM 6. Let R be a metric ring with ||le||=1. Then the restric-
tion of v to & 4s a homomorphism of < onto the multiplicative group
A(L) and has < as its kernel. 7 is the largest multiplicative
group on the unit sphere U={x|||lx||=1}. If R s also a Q-ring, then
<" and < \J{0} are closed sets and & is closed if and only if © = <.

Proof. The restriction of » to % is clearly a homomorphism of <
onto _#(%), and the kernel of this homomorphism is £ N\U= <,
It is also clear that <’ is the largest multiplicative group on U.

Since € =.2(R)N\G by the preceding theorem, we have [ <]
A (RYN[G] because £ (R) is closed according to Lemma 7(v). If R is
a @-ring, then

[ZINSCZFRNIGCINSC = (RYNZNZ

by Theorem 1. But, if ae€ .Z"(R) then {(a)=|la|| by Lemma 7(i), while

if aeZ', l(a)=0. Thus, if ae L(R)NZ'NZ we have l(a)=]|la|| and

l(a)=0, so a=0. It follows that Z"(R) N\ Z' N Z"={0}, so [ £ 1N SC{0}.

But [ZINGC w(R)NG= < by Theorem 5, so [ 21 £\ {0}. Then
[ZU{0}]1C[ZT1U {0} < ZU {0},

so £\ {0} is closed. Z’ is the intersection of the closed sets U and
Z\J {0} and is consequently closed.
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Finally, if @ = <" then < is closed since < is closed in a Q-ring
by the preceding paragraph. Conversely, suppose < is closed and con-
tains an element ¢ not in %”’. Then theelement s a* for n=+1, £2, «+-
belong to %, and since |la||z%1 and {la”||=[lal|?, it follows that there
are elements a” in every neighborhood of 0. Since % is closed, 0 e ¥
This is a contradiction. Thus, &= 2" if < is closed.

6. Multiplicative conditions on the norm. We shall now consider
several related conditions on the norm of a metric ring. In the sequel
it will be assumed that |le]|=1 in the metric rings under discussion.

M1. The norm of R is an absolute value. (Equivalently, &« (R)=R.)

M2. <% =G, that is, the norm is multiplicative on G.

M3. < is open.

M4, <« fails to be nowhere dense in R.

M5. S(R) fails to be nowhere dense in R.

In the case of M5, Lemma 7(iii) indicates that, for a non-discrete
ring, this condition can hold only if |lel|=1. However, “ has been
defined only for metric rings for which |lej|=1, so that M2, M3 and M4
are meaningless unless |e|]=1; for that reason we have assumed that
llel|=1.

It is easily seen that for any metric ring M1 implies M2, M3 implies
M4, and M4 implies M5. For a metric Q-ring it is also true that M2
implies M3. Thus, for any metric @Q-ring if one of the conditions M1-
M5 holds then all of the later ones also hold. Under certain circum-
stances, two or more of the conditions M1-M5 may be equivalent.

LeMMA 8. If R is @ metric Q-ring, then conditions M3, M4 and Mb
are equivalent in R.

Proof. By the previous remarks it will suffice to show that when
M5 holds then M3 holds. We may assume that R is not discrete, for
if B is discrete then M3, M4 and M5 all hold. Now, if M5 holds in R,
the closed set .#7(R) contains an open sphere 3 which has center a=%0
and radius r >0, so

Y= {ofllw—all<lr} .
If
2= {a| llw—ell <Tr/llall}

is the open sphere with center ¢ and radius r/l|a||, then y €2’ implies
lly—ell <r/llall, so l|lay—all=llall-|ly—ell < 7, whence ayel C < (R).
Lemma T(vi) implies that ye & (R); this shows that ' .Z(R), so e is
an interior point of <’(R). Since R is a @-ring, e is an interior point
of G, s0 ¢ is an interior point of < (R) \G= ¢, Since ¥ is a topolog-
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ical group and is therefore homogeneous, '~ must be open,” so M3
holds for K. This proves the lemma.

LeMMA 9. If R is a metric Q-ring such that < wmeets every com-
ponent of G, then M2 and M3 are equivalent in E.

Proof. If M3 holds, % is open. By Theorem 5, < is closed in
G, so ¥ is open and closed in G. Thus, < contains every component
of G which it meets, so if % meets every component it follows that
& =G ; that is, M2 holds. Conversely, it has already been pointed out
that if M2 holds for a metric Q-ring then M3 also holds.

COROLLARY. If R is a metric Q-ring such that G is connected, then
M2 and M3 are equivalent in R.

LemMA 10. If R 4s a metric ring such that G is dense in R, then
M1 is equivalent to M2 in R. In particular, if R is o metric Q-ring

(complete metric ring) such that S is nowhere demse (of first category),
then M1 4s equivalent to M2 for E.

Proof. If R is a metric ring in which G is dense, then if M2 holds
we have R=[G]=[ T .¥(R), so M1 holds. Thus, M1 is equivalent
to M2.

If R is a metric @-ring and the closed set S is nowhere dense, then
G is dense, so that M1 is equivalent to M2 for R. For R a complete
metric ring and S of first category, it follows that R is a metric Q-ring
and S is nowhere dense since it is a closed first category set of a com-
plete metric space. By the preceding result, M1 is equivalent to M2.

Note. In the presence of condition M1, a metric ring B can have
no zero-divisors other than 0, for if ab=0, then |[la||-||bl|=|ladl|=0,
whence a=0 or b=0. Thus, the ring contains no proper nilpotents or

idempotents, and the remarks of § 2 imply that G'=G"=G, so inverses
are always two-sided and unique for such a ring.
The conditions M1-M5 are strong restrictions on the algebraic struc-

ture of a metric ring, as this remark on G' and G” indicates. Indeed,
under suitable conditions they will insure that the given ring is a divi-
sion ring. Some results in this direction follow.

LEMMA 11. Let R be a metric ring for which M1 holds. Then R is
proper if and only if it is a division ring.

1 See [6].
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Proof. TIf M1 holds for R, then l(a)=||a||=2(a) for all a in R, by
Lemma 7 (i). Thus, Z= {0} for this ring. Then Z=S is equivalent to
S={0}; that is, R is proper if and only if it is a division ring.

THEOREM 7. Let R be a metric Q-ring such that S is nowhere dense.

If M1 or M2 holds for R, then R is a division ring and its norm s an
absolute value.

Proof. S is nowhere dense, so G is dense, whence M1 is equivalent
to M2 by Lemma 10. Also, Theorem 3 implies that R is proper, and it
follows from the preceding lemma that R is a division ring. Since M1
must hold in R if M1 or M2 is assumed to hold, it follows that the
norm of R is an absolute value.

COROLLARY. Let R be a complete metric ring such that S s of first
category. If M1 or M2 holds for R, then R is a division ring and its
norm s an absolute value.

THEOREM 8. Let R be a metric Q-ring such that H is connected. If
M1 Zolds for R, then R s a division ring.

Proof. By Theorem 2, R is proper, so Lemma 11 implies that R is
a division ring.

If H is connected and also dense, then R is proper and G, which
therefore coincides with H, is connected and dense. Lemmas 8 and 10
and the corollary to Lemma 9 imply that M1-M5 are equivalent, so that
if one of the conditions M1-M5 is assumed, then M1 holds, and the
theorem just established shows that R is a division ring. This estab-
lishes the following corollary.

COROLLARY. Let R be a metric Q-ring such that H is connected and
dense. If one of the conditions M1-M5 holds for R, then R is a division
ring and its norm is an absolute value.

THEOREM 9. Let R be a metric Q-ring which admits a real, bounded
snvolution and for which M1 holds. Then R is a division ring.

Proof. By Theorem 4, R is proper, so Lemma 11 implies that R is
a division ring.

LeMMmA 12, Let R be a metric Q-ring which satisfies one of the con-
ditions M1-Mb. If A is a conmected subset of R which does not contain
0, then either AC & or A is disjoint from <.
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Proof. Because of the relations among M1-M5, M5 holds, so Lem-
ma 8 implies that M3 holds, whence = is open. But 2 is closed in
R® gince < '\J{0} is closed by Theorem 6. Then “ is open and closed
in R®, so any connected subset A of R® must be contained in < or
digjoint from <.

COROLLARY. If R is a metric Q-ring which satisfies one of the con-
ditions M1-Mb, then each connected component of < coincides with o
component of G, and, in particular, < DG,

THEOREM 10. Let R be a metric Q-ring such that R® s a connected
set. If one of the conditions M1-Mb holds for R, then R is a division
ring with absolute value.

Proof. Lemma 12 implies that ©° contains the connected set R®.
Thus, B= 2\J{0}, so R is a division ring with absolute value.

If it is assumed that S is nowhere dense and G is connected in a
metric @-ring in which one of the conditions M1-M5 holds, then Lemma
12 implies that £ =G, while G is dense since S is nowhere dense.
Thus, R=[G], and R™ is connected since G is connected. The theorem
implies that R is a division ring with absolute value in this case. The
assumption of completeness again permits the requirement that S be
nowhere dense to be replaced by the requirement that S be of first
category.

COROLLARY 1. Let R be a metric Q-ring (complete metric ring) for
which S is nowhere dense (of first category) and G is connected. If one
of the conditions M1-M5 holds for R, then R is a division ring with
absolute value,

COROLLARY 2. If R is a metric Q-ring such that R™ s connected,
then precisely one of the following statements s valid :

(@) <(R) s mowhere dense in R.

(8) R is a division ring with absolute value.

COROLLARY 3. If R is a metric Q-ring (complete metric ring) for
which G is a connected set and S is nowhere dense (of first category),
then precisely one of the following statements is valid:

(@) Z(R) is nowhere dense in R.

(8) R is a division ring with absolute value.

Corollaries 2 and 8 follow immediately from the theorem and Corol-
lary 1, respectively, since if (a) does not hold then M5 holds and there-
fore (B8), which is the conclusion of the theorem and of Corollary 1,
must hold,
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Corollaries 2 and 3 clearly continue to hold if («) is replaced by:
(«) ' is nowhere dense in R. In Corollaries 1 and 3 the hypothesis
that G be connected may be replaced by the hypothesis that £ meet
every component of . Another alternative for these two corollaries is
to replace all conditions on G and S by the hypothesis that < meet
every component of R,

7. Division rings with absolute value. In [21] A. Ostrowski clas-
sified the fields which admit an absolute value. However, the property
of commutativity played only a minor role in Ostrowski’s discussion. We
outline below the classification of division rings with absolute value. By
combining these results with the results of the preceding section we
obtain stronger statements of those results.

DEFINITION. If R is a metric ring such that {la+bl|=max (||all, |[b}])
for all @ and b in R, then R is called a non-archimedean ring, and the
norm for R is said to be non-archimedean. In the contrary case, R is
called an archimedean ring and the norm of R is said to be archimedean.

For any division ring K there is a unique field P, the prime field
of K, which is the smallest field contained in K. Then P is either iso-
morphic to the field of rational numbers, and K is said to have charac-
teristic zero, or P is isomorphic to the field of integers modulo p, where
p is a prime number, in which case K is said to have characteristic p.
If K is a division ring with absolute value, then the restriction to P of
the absolute value of K is an absolute value for P. The classification
of the absolute value of K as non-archimedean or archimedean depends
only upon its behavior on the prime field of K and, indeed, only upon its
behavior on the set of elements of the form ne, where n is a natural num-
ber. (If » is a natural number, na denotes the =n-fold sum a+---+a
(n summands). If » is a negative integer, na is defined as —[(—n)a],
while 0a denotes 0.) This result, given by Ostrowski in [21], appears in
Lemma 13, while a stronger result occurs in Lemma 14.

LEMMA 13. A division ring K with absolute value s non-archimedean
iof and only if ||nel| <1 for every natural nuwmber n.

LEMMA 14. A division ring K with absolute value is non-archimedean
if and only iof ||2¢|] <1.

Note. Lemmas 13 and 14 remain valid if we replace the hypothesis
that K is a division ring with absolute value by the hypothesis that K
is a commutative metric ring such that |la*|=|la|? for all ¢« in K. Al-
though many metric rings have the property that ||e®|=|la|/* for all a,
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the rings of example (10), with »n positive, do not have this property.
Lemma 14 also holds if 2 is replaced by any other integer greater than 1.

THEOREM 11. If K is an archimedean division ving with absolute
value, and K 1is complete, then K is algebraically and topologically iso-
morphic to R, to €, or to Q. Furthermore, the norm in K corresponds
to the pth power of the ordinary absolute value, for some p such that
0<p<1.

This theorem and Lemmas 18 and 14 are easily proved. The theo-
rem appears in essence in [21].

COROLLARY. If K is a complete division ring with absolute value such
that ||2e||>1, then K s algebraically and topologically isomorphic to R,
to € or to Q. The norm of K corresponds to the pth power of the
ordinary absolute value, for some p such that 0<p<1.

If we note that the completion of an archimedean division ring
with absolute value is again an archimedean division ring with absolute
value, the theorem implies that any archimedean division ring with
absolute value is algebraically and topologically isomorphic to a dense
subring of R, of €, or of Q. ‘

The non-archimedean division rings with absolute value constitute a
far more varied and extensive class, however. For example, even the
locally compact examples are fairly numerous, as may be seen by the
list given by Otobe in [22]; all of those examples are of course complete
since they are locally compact. We therefore combine the results of §6
with the preceding results on archimedean division rings for the sake
of simplicity.

Lemma 156, If K is a non-archimedean division ving with absolute
value, then K is totally disconnected.

COROLLARY 1. If K s a complete division ring with absolute value,
then K is non-archimedean if and only if it is totally disconnected.

COROLLARY 2. If K is a complete division ring with absolute value,
then K contains a connected set having more than orne point +f and only
if K is algebraically and topologically isomorphic to R, to €, or to Q.

The field of rational numbers with the ordinary absolute value is
archimedean and totally disconnected; this shows the necessity of as-
suming completeness in Corollary 1. In [7], Dieudonné constructed a
connected and locally connected subfield of € which is a pure trans-
cendental extension of the field of rational numbers. The field of
Dieudonné, with the ordinary absolute value, is then an example of a
field which is not complete and which is connected although it is not
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isomorphic to N, to €, or to ©. This shows that Corollary 2 requires
the assumption of completeness.

By combining the results just outlined with those of the preceding
section, we obtain the results which follow.

THEOREM 12. Let R be a complete archimedean wmetric ring such
that S is a first category set. If M1 or M2 holds for R, then R is
algebraically and topologically isomorphic to R, to €, or to Q.

COROLLARY. Let R be an archimedean metric Q-ring such that S is
nowhere dense. If M1 or M2 holds for R, then R is algebraically and
topologically 1somorphic to a dense division subring of N, of €, or of L.

THEOREM 13. Let R be a complete metric ring such that H is con-
nected. If M1 holds for R, then R is algebraically and topologically iso-
morphic to G, to Q, or to the fleld § of order 2 with the trivial absolute
value.

TEOREM 14. Let R be a complete metric ring in which H is con-
nected and dense. If one of the conditions M1-Mb5 holds for R, then R
18 algebraically and topologically tsomorphic to € or to Q.

THEOREM 15. Let R be a complete archimedean metric ring which
admits o real, bounded involution. If M1 holds for R, then R is alge-
brazeally and topologically isomorphic to R, to €, or to Q.

THEOREM 16. Let R be a complete metric ring such that R® s con-
nected. If one of the conditions M1-M5 holds for R, then R is algebrai-
cally and topologically isomorphic to €, to <, or to 3.

THEOREM 17. Let R be o complete metric ring for which S is of
Jirst category and G is connected. If one of the conditions M1-M5 holds
Sor R, then R is algebraically and topologically isomorphic to € or to Q.

COROLLARY. Let R be a metric Q-ring for which G is connected
and S is nowhere dense. If one of the conditions M1-Mb holds for R,
then R is algebraically and topologically isomorphic to a dense division
subring of € or of Q.

If the requirement of completeness for R in Theorems 13-16 is re-
placed by the weaker requirement that B be a metric @-ring, then the
conclusion becomes that R is algebraically and topologically isomorphie
to a dense division subring of one of the division rings mentioned in
the conclusion of that particular theorem. In Theorem 12 and its corol-
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lary, and in Theorem 15, the assumption that R is archimedean may be
replaced by the assumption that [|2¢|] >>1 or the assumption that R con-
tains a connected set with more than one point.

It is easily seen that completeness is required in these theorems.
For, let K be the subfield of € constructed in {7] by Dieudonné. Then
K is connected and locally connected, K is a dense, proper subfield of
€, and K is a pure transcendental extension of the field of rational
numbers. Clearly, K is not isomorphic to i, to €, to Q, or to §. But
the set S= {0} is nowhere dense in K, while G, H and K® coincide
and are easily seen to be connected. The identity mapping of K into
itself is a real, bounded involution, and M1 holds for K, so that K
satisfies all of the hypotheses of these theorems except for completeness
Since K does not satisfy the conclusions, completeness is needed.

8. Homogeneous metric rings and rings of quotients. In this
section we consider certain types of metric rings which may be embed-
ded in various algebras.

DEFINITION. A metric ring R is said to be homogeneous if ||nal|=
|nl-llall whenever n is an integer and @ is in R. A metric ring R is
said to be weakly homogeneous if ||nall=||ne||-lla|] whenever n is an
integer and a is in R.

For a homogeneous ring we have ||nel|=|n|, so every homogeneous
ring is also weakly homogeneous. However, a weakly homogeneous ring
need not be homogeneous; for example, the rings of examples (8) and
(9) are weakly homogeneous but are not homogeneous. The rings given
in the other examples are all homogeneous. It is clear that a metric
ring in which M1 holds must be weakly homogeneous. We can also
obtain a sufficient condition for a metric ring to be homogeneous.

LEMMA 16. If R is a metric ring such that ||2al|=2||al| for every a
wn R, then R 1is homogeneous.

Proof. For any natural number # and for ae R we have ||27al|=
27lal{. Thus, for n a natural number, we have

nllal]+(2" —n)llal|=2"lal|={2"al] < |lnall + (2" —n)al| <nllal| + (2" —n)llall,

so that nlla||=|ra|| for any natural number » and any a¢ in R. It fol-
lows easily that ||na||=|n|-|la|| for any integer » and any @ in R.

If R is any metric ring, and D is a nonempty multiplicative semi-
group in R which does not contain 0, which lies in the center of R,
and such that D %7(R), then the relation (a, d)~(a/, d’) (if and only
if ad’=a’d) is an equivalence relation in the set Rx7I) of ordered pairs
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(a, d), where a is in R and d is in D. Let B, be the set of equiva-
lence classes [a/d] modulo this equivalence relation, with

[a/d]+[b]f1=[(af +bd)[df] ,

[a/d]-[b) f1=[ab/df], and ||[[a/d]ll=]lall/[|d|| as the definitions for addition,
multiplication and the norm. It is clear that these definitions depend
only on the equivalence classes involved and not on the representatives
chosen from the classes. It is also easily verified that R, is a metric
ring, and the mapping x— [ad/d] is an isometry of R into B, if d is in
D. An element d in D may be identified with the element [d*/d] of R,
which has the inverse [d/d*]in R,. We thus obtain the following lemma.

LEmMA 17. Let R be a metric ring, and D o nonempty multiplica-
tive semigroup in R which does not contain 0. Suppose D < (R) and
D is contained in the center of R. Then R, is a metric ring which s
an extension of R such that every element of D has an inverse in Rp."

COROLLARY. Let R, be a commutative metric ring. Then there is
an extension, B, of R, such that (R)= < \J{0}. In particular, all of
the nonzero elements of 2 (R)) have inverses in R.

Proof. 1f D is the set of nonzero elements of .Z7(R)), then BR=(R)),
is the required extension of K.

COROLLARY 2. Let R be a commutative metric ring in which M1
holds. Then there s a field, K, with absolute value, such that K ts
complete and K is an cxtension of R.*

Proof. If D is the set of nonzero elements of R, then R, is a
field with absolute value. The completion, K, of R, is the required field.

If K is a field with absolute value, and B is a metric ring which
is also an associative linear algebra over K such that ||kal|=||k||-lla]] for
all £ in K and a in R, then R is called a normed algebra over K. For
example, the metric rings of examples (3)-(7) and (10) are normed
algebras over M, while the rings in examples (4), (6) and (7) are normed
algebras over €. It will now be shown that any weakly homogeneous
metric ring has an extension which is a normed algebra. Also, for
homogeneous metric rings, there is an extension which is a normed
algebra over ‘R.

THEOREM 18. Let R be a weakly homogeneous metric ring. Then

11 Compare the results on algebras of quotients in [24].
12 Compare the proof of Theorem 2, Corollary 2 in [4], where the technique of embed-
ding in a quotient field is also employed.
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there exists an extension of R which is a complete normed algebra over
some field K, where either K has the trivial norm, or K is the real field
with some power of the ordinary absolute value as its norm, or K is a
p-adic field, with some power of the norm given in example (9) as the
norm of K.

Proof. Let D be the set of nonzero elements of R which have the
form ne, with » an integer. Then R, is an extension of R and contains
a subset which is isomorphic to the quotient field, F, for D\J {0}. Then
R, is a normed algebra over F, so that the completion of R, is a
normed algebra over the field K, where K is the completion of F'; see,
for instance, [6]. Thus, R has an extension which is a complete normed
algebra over K. If the norm of F' is the trivial one, then K coincides
with F. In the contrary case, there is a natural number n such that
llne||l is distinct from 0 and 1. Also, F is a prime field and is therefore
isomorphic to the field of rational numbers since the other prime fields
are finite and would only admit the trivial absolute value. If ||ne|| <1,
we have ||pe|l|<’1 for some rational prime p. As in Ostrowski’s proof,
p is unique in that case and the norm is a power of the norm described
in example (8), so K is isomorphic to the field of p-adic numbers with
the norm taken as some power of the p-adic norm. In case |lnel|>1
for every natural number n greater than 1, we have the archimedean
case, so I is the field of rational numbers with the norm taken as the
pth power of the absolute value, with 0< p<{1. Thus, K consists of
the real numbers with the norm given as the pth power of the absolute
value.

COROLLARY. Let R be a homogeneous metric ring. Then there is an
extension of R which is a complete normed algebra over R.

Proof. In this case, ||ne|l|=|n|-|lejj=|n| for any integer =, so in the
proof of Theorem 18 the norm of an element of F is the usual absolute
value. Thus, K is the real field with its usual absolute value.

If K is a complete division ring with absolute value such that ||2¢]||=2,
then the corollary of Theorem 11 implies that K is algebraically and topolo-
gically isomorphic to i, to €, or to Q, with the norm corresponding to
the pth power of the ordinary absolute value. K is homogeneous since
the condition ||2¢||=2 implies that ||2a||=2||a|| for all ¢ in K. The prime
field of K is then the field of rational numbers with the ordinary abso-
lute value as the norm, as the preceding proofs imply. But [la||=]al’
for all @ in K, while for @ rational, ||a||=|a|. Thus, p=1, and the fol-
lowing theorem results.

THEOREM 19. If K is a complete division ring with absolute value
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such that ||2¢||=2, then K is algebraically isomorphic and isometric to R,
to €, or to Q.

This result implies that if the hypothesis that ||2¢||=2 is added to
Theorems 11-17 and their corollaries the algebraic isomorphism of the
conclusions must be an isometry. In a similar vein, Theorem 18 asserts
that a weakly homogeneous metric ring R may always be embedded in
a complete normed algebra, so a metric ring with absolute value may
be embedded in a complete normed algebra; the addition of the strong
hypothesis ||2¢||=2 yields a stronger result.

THEOREM 20. Let R be a metric ring with absolute value such that

l12el|=2. Then R is algebraically isomorphic and isometric to a subring
of Q.

Proof. Lemma 16 shows that R is homogeneous, so the corollary
of Theorem 18 implies that there is an extension of R which is a com-
plete normed algebra over R. The construction of this extension R, is
such that R, also has an absolute value. If the real dimension of R, as
a vector space is greater than one, then R{® is connected, so, by Theo-
rem 16, in the strengthened form just mentioned, R, is algebraically
isomorphic and isometric to R, to €, or to Q. If the real dimension
of R, is one, then R, is algebraically isomorphic and isometric to R. In
any event, R is algebraically isomorphic and isometric to a subring of
R, R, is algebraically isomorphic and isometric to R, to €, or to Q,
each of which is algebraically isomorphic and isometric to a subset of
L, and the theorem follows.

Note. If r is a fixed integer greater than 1, then the condition
|lrel|=r is equivalent to the condition ||2¢||=2 and may be used as a
hypothesis instead of the latter in any of the preceding results.

9. Real and complex normed algebras. The results of the last
two sections may now be specialized to the case of normed algebras
over N or €. Any normed algebra over € may of course be regarded
as a normed algebra over R. A complete normed algebra over R(C) is
called a Banach algebra (complex Banach algebra).

THEOREM 21. Let U be a Banach algebra for which one of the con-
ditions M1-Mb holds. Then U is algebraically isomorphic and isometric
to R, to €, or to Q.

Proof. If A has dimension one as a vector space over R, then A
is certainly algebraically isomorphic and isometric to . If the dimen-
sion of U is greater than one, then A® is clearly connected, and the
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result follows from the strengthened from of Theorem 16 mentioned in
the previous section.

COROLLARY 1. Let W be a normed algebra over N (Q-ring which is
alsy a normed algebra cver N) such that one of the conditions M1, M3,
M4 or M5 (M1-M5) holds. Then WU is algebraically iscmorphic and iso-
metric to R, to &, or to Q.

Proof. The completion, U,, of 2 is a Banach algebra. Because of
the relations among M1-M5, we may assume that M5 holds, and it fol-
lows that M5 holds for ¥(,. The theorem shows that 9, is algebraically
isomorphic and isometric to i, to €, or to L. But 9 is a dense, con-
nected linear subspace of the finitedimensional real vector space 2, and
therefore coincides with (..

The theorem, with M2 assumed, is essentially the result of Edwards
{8; Theorem 1] combined with the first of Mazur’s theorems. The
corollary, with M1 assumed is the same as Mazur’s second theorem in
[19].

It may be noted that the corollary does not hold when M2 is as-
sumed and 2 is not a @Q-ring. For example, the algebra of all real
polynomials f(z) with the norm ||f||==sup |f(x)|, where the supremum is
taken for all x such that 0<Cx<C1, is a normed algebra over N for
which G consists only of the constant polynomials distinet from zero;
clearly, < =G for this algebra, so M2 holds, even though this algebra
is not even a division ring.

COROLLARY 2. If W is a normed algebra over N which is not iso-
morphic to N, to €, or to Q, then » (A), ZQ), 2 and all p-growps
of U are nowhere dense.

Proof. The hypothesis implies that M4 and M5 can not hold, so
227, 22 () and © are nowhere dense in .

It remains to show that all g-groups of U are nowhere densge. Sup-
pose that A is a sp-group which fails to be nowhere dense. The unit
element, 7, of the group 4 is an idempotent, and we have the inclusion
ACJATHA, so that jU also fails to be nowhere dense. If {jz,} is a
sequence of elements of 59 which converges to an element « in %, then
{j*-ax,} converges to ja. But since j is an idempotent the sequences
{dxz,} and {7%-x,} coincide, so their limits coincide, whence a=ja is in
JA. This shows that 590 contains the limit of any convergent sequence
of elements of 79, so 79 is closed. Because ;7 fails to be nowhere
dense it must contain a nonempty open set. But 79 is a right ideal
and therefore, in particular, a topological group relative to addition; the
homogeneity of a topolegical group then implies that j is open. Since
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J is open and closed and nonempty in the connected space 9, we see
that j9=23. This shows that 7 has a right inverse, so j=e¢. Now, A
is a p-group which has e as its unit element, so if ae€ A then ¢ has an
inverse a~' relative to ¢ in A, and |la||-|la”"|=|laa""||=]le]|==1, s0 a€ £
This shows that AC ~. But it has already been observed that ¢’ is
nowhere dense, so the assumption that A fails to be nowhere dense
leads to a contradiction. This proves the corollary.

The same proof can be used to show that all p-groups are nowhere
dense in a connected metric ring for which 2 is nowhere dense.

In the case of normed algebras over €, one can also show that the
set [« is generally not too extensive.

THEOREM 22. If U is a normed algebra over €, them ' consists
exclusively of extreme points of the unit sphere of .

Proof. Suppose that a is an element of %7 which is not an ex-
treme point of the unit sphere. The mapping z — xa~! is a linear
automorphism of the linear space over € which underlies 2, and this
mapping also preserves distances since a~' belongs to < and has norm
one. Thus, the property of failing to be an extreme point of the unit
sphere is preserved, so e, the image of « relative to this mapping, is
not an extreme point of the unit sphere.

If 9 were completed, ¢ would also fail to be an extreme point of
the unit sphere of the completion, and we therefore assume, without
loss of generality, that 2 is complete. Now, e is the midpoint of a
segment which lies wholly in the unit sphere of 2, so e=(b+c¢)/2, where
[Ibll=]lell=1 and bz%e¢. Clearly, b and ¢ commute since c=2¢—b is in
the algebra generated by b and ¢, so the closed complex normed algebra
which is generated by e, b and ¢ is a commutative complex Banach
algebra. If y=(—¢)/2, then e—y=c and e+y=>, whence |le—yl||=
lle+yl|=1 in this algebra. But the remark which follows Theorem 1 of
[11] asserts that if y is an element of a commutative complex Banach
algebra such that |le—y||=|le+y||=1, then y=0. It follows that y=0,
so b=c. This contradiction shows that ¢ was an extreme point of the
unit sphere of .

In conclusion, while the results of this paper show that the sets
o, Z', Z(R) and <2 (R) are usually topologically trivial, they are not
algebraically trivial. For, in the case of the algebra C(X) of example
(6) where X has at least two points, it is evident that any two points
of X may be separated by an element of Z7’. The Stone-Weierstrass
approximation theorem may be used to show that the closed complex
subalgebra generated by ~” coincides with C(X).
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ON THE CONSTRUCTION OF R-MODULES AND RINGS
WITH POLYNOMIAL MULTIPLICATION

Ross A. BEAUMONT AND J. RICHARD BYRNE

1. Introduction. Let R be a ring and let R* be the additive group
of R. If R* =SS, P ---P S, is a direct sum of subgroups S;, then
each element of R can be written as an n-tuple (s, s,, *--, S,), S;€S,,
=1, 2, .-+, n, and multiplication in R is given by » mappings

St SixSyx oo xS, xS, xS, %+ xS, >R, k=1,2, .-, n,

where fi(si, 8y ¢+, Sp; by, &y, = -+, t,) is the k-th component of the product
(81, S35 ==+, 8,) (b, Ly -+, t,). The distributive laws in R imply that the
mappings f, are additive in the first » and in the last » arguments. If
S, S, ---, S, are ideals in R, then

fk(slr Sz, vy Spy by by, cee, tn)zskth ) k:17 2, ey,

which is a homogeneous quadratic polynomial with integral coefficients in
the arguments.

If R is a commutative ring with identity, and if M is a free (left)
R-module with basis e, ¢,, ---, ¢,, then M is an algebra over R if and

only if there exist elements 7,,,€ R such that multiplication in M is
defined by

n n n
ol

( L Siei> . ( > t,iej):: > TansSitses -
i=1 =1 Gjk=1

Js

The k-th coordinate of the product,

n
-fld(sl! Sy tovy Sy by by v e, tn): 'Zl T‘ijk‘sitJ ’
L=
is a mapping

2n
fii R xR* %+« xR*—> R*

which is additive in the first » and last » arguments, and which is a
homogeneous quadratic polynomial with coefficients in R in the argu-
ments.

These examples suggest the investigation of polynomial mappings
with the indicated additive properties, and a discussion of the problem
of constructing E-modules and rings which have an additive group which
is the direct sum of ideals of a ring R, and for which the multiplication
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is defined by a polynomial mapping.

In § 2 the basic properties of distributive mappings are given. The
form of a distributive polynomial mapping is investigated in § 3, and
such mappings are characterized in Theorem 2, under the assumption
that R is a commutative integral domain. In §4 and 5 the results of
the previous sections are applied to the construction problems mentioned
above.

2. Distributive mappings. Let S}, S,, ---, S, be additive semi-groups
with identity 0, and let M be an additive abelian group. Let f be a
mapping of S;xS,x -+ xS, into M.

DEFINITION. If there exists an integer m, where 1<m <k, such
that

(i ) f(sl+sir ".7SIIL+S';7L; Sm+ry "ty Sle)
:f(S], 0y Sy Sy '°';Slc)+f(siy Y S;n; Sin+1» '.'»Sk))
(li) f(slv °c 'y )IL’ m+l+s;n+ly Tty Sl\:_}_sL)

Z.f(slr Sty Sy Sy 0ty S/a)+f(slr ety Suy S;n-%l, Ty 8;;) ’

for all s, s,€ S, 1=1, 2, ---, k, the mapping f of S, xS,x.--§, into M
is called m-distributive.

If k=m, only (i) of the definition applies, and the mapping f is a
homomorphism of S, S, P ---PS, into M. In the examples given in
the introduction, k=2n, and the mappings are n-distributive.

The following are rather obvious consequences of the definition.

(1) The m-distributive mappings of S,xS,x --- xS, into M form a sub-
group H of the additive abelian group G of all mappings of S;xS,x -+
xS, into M,

If M is a ring, then the set of mappings G is an M-module in the
usual way, and the set of m-distributive mappings H is a submodule
of G.

(2) The mappings in H satisfy the relation

f(sb crry By S v, Sl-’)
k m
= Z Zf(oi R 07 SL! 07 R 0; 07 Sty 0! SM 0’ ) 0)
J=m+1i=1
for all s, €S, i=
Statement (2
definition.
(8) The mappings in H satisfy

1,2, -, k.
) is proved by induection from (i) and (ii) of the
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f(sly sty Sus O; tt 0):jn(07 ety Ov Smyy 0y S,():O

for all s;e8,, i=1, 2, ---, k.
Statement (3) is a generalization of the faet that the distributive
laws in a ring imply a-0=0-a=0.

3. Polynomial functions. Let S, S,, ---, S; be subsemigroups (not
necessarily distinet) of the additive group R* of a ring R, all of which
contain the element 0 of R. Let R*™ be any ring containing R, and let

S@y, @y oee, w)=3] ajljz'-'jkmflxzi"" -exlk

be a polynomial in R*[z, z,, ---, 2.]. Then f defines a mapping of
S, xS, x -+ xS, into R* where

f(sly Say * 00, 3«)=Zaj1.12---jk3’17‘3§2" 'Slik y Sw’,eSi; ?::17 27 cty k .

The set S of all such mappings (polynomial functions) is a submodule
of the left R*-module G of all mappings of S, xS,x .-+ xS, into
R*. As above, we let H be the set of m-distributive mappings of
S x8,x -+ xS, into B*, so that H is a submodule of G. Consequently
the set of mappings HNS is a submodule of G.

THEOREM 1. FEach mapping fe HNS is defined by a polynomial of
the form

x

(A) Sy, @, -, )= >

l=m+11

t—-
il cnd
S afihalih .
Jprag= ‘
i+

1

M

IIA

1

Proof. Let f be defined by a polynomial in R*[z, «,, ---, x,] of
degree ¢. Since f e H, we have by (2), Section 2

.f(sly Sy, vy, Sk)
= i if(oi "'50’ Siy Oy "'vO;Oy ”',Oysh Oy "‘,0)

k m t C
— J;
= Z DYDY Qo eee0, 3,0, 0000, 5,0, 00,0518
J jg277=0

for all s,€8,, =1, 2, ---, k. The latter expression can be written

k m i
D0 DL Gyeenu gy 0eee 05,0, 0STISTE

m t
+ 20 200 ST
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Eoot
3
+ 30X Wy, vee 0, 57,0, 00,0808 g g ene g o

l=m+1 =1

By (8), Section 2,
Ozf(oy 0; R O):aO,O\"',O

t
0=f(0, crey 0, S“ 0, ceey O; 0, Tty 0):(1/\],0’...'0'%' Za/o’...vg) ji,(\_...'os;l
t
= Zao,n-,u,jz,o,-n,ns/]'f

J;=1

for all s, €S, i=1, 2, --+, m;

0=£@, ---,0;0,---,0,8,0, ---,0)

=y, I 0, 97,0 0Sit
Jp=1
4 :
= D W, eey0, 550,000,080
i=1
for all s,€S;; l=m+1, -+, k. Denoting @ ....o.5,0,++-.0,7,0,++-0 0¥ a3, we

have

k m t-1
. — \" g N LD ol ql
f(sly 82’ ) Sk)_ ZJ 21 2_4 a’j[‘jlsi‘sll
l=m+1 i=1 j[,]Z=1
jl*‘jléﬁ

for all s,e8,, 1=1, 2, ---, k, which completes the proof.

The following examples show that for an arbitrary ring R, the
converse of Theorem 1 does not hold, and that Theorem 1 is the best
possible theorem in the sense that there exist rings for which every
polynomial function defined by a polynomial of form (A) is m-distributive.

ExamMPLE 1. Let R=I, the ring of ordinary integers, let R*=R,
and let S,=8,=R*. Let f: 8, xS,— R be defined by f(x, =)=xzxiz,.
Then f is defined by a polynomial of form (A) with m=1. However
féHfor fF1+1; 1)=1(2, 1)=4, and FS({1; 1)+ 7F(1; 1)==1+1=2,

ExaMpLE 2. Let R be the ring with additive group R*={u}, the
cyclic group of order 9, and with multiplication defined by (tu)- (ju)=3iju.
Then R is a commutative ring [2] such that R*=0, R*=%40.

Let f be any mapping of S;xS,x .-+ xS, into an extension R* of
R, where S, S,, ---, S, are any subsemigroups of R* containing 0, such
that f is defined by a polynomial of form (A). Then
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b Y U S 1) ols @l
.f(slv Soy 00, "’I.‘)”_ 2_4 L a; yjlé]jLSlZ
t=mt =1 5501 vt
Jrist

.
[}
=
+
—
i

since R*=0. It is evident that f is m-distributive, that is, fe HNS.

In the sequel we will be concerned with m-distributive polynomial
mappings of S, xS,x ... xS, into B. Since a polynomial with coefficients
in an extension R* of B may have its values in R, we obtain a larger
class of mappings by allowing the coefficients of f(x,, x,, ---, @) to be in
R* 2 R. For example, polynomials with (ordinary) integral coefficients
have values in R, and if R does not have an identity, we may con-
sider the coefficients to be in an extension R® of R. Moreover it is
a consequence of the theorem that if R is an ideal in R™, then f has
values in R.

The following lemma is well known (see for example [6, pp. 65-
66]), but is given here in the form in which it is most useful for our
purposes.

LEMMA. Let
f: Z a]pjzy "‘».)k.x{lxzjz' ° 'xl{k: € R?[xlv xZ’ R wlc]

where R* is a commutative integral domasn, and let f be of degree m,
n x, 1=1,2, «--, k. Let (s, s, «--, s"’) be a set of distinct elements
of R* where n, >m,, 1=1,2, <+, k, such that f(s{'0, s, «--, si¥’)=0
for 1,;=1,2, ««+, m;, ©=1,2, ««-, k. Then f=0e R*[z, x, -+, x:].

THEOREM 2. Let R* be a commutative integral domasn, let R be a
subring of R*, and let S,, S,, -+, S, be non-zero ideals in B. A mapping
S from S, xS, x -+ xS, into R* is in HN\S if and only if f is defined
by a polynomial of the form

k m r X
(B) F@, @y coey m)= > 3 3 atb ol
l=m+1 i=1 578,20 oL Yl

when R has characteristic p >0, and by

%

(C) .f(xly xl, cecy, mlxﬂ): ﬁ Z‘ a’ilxixl

l=m+1 1=1

when R has characteristic zero.

Proof. Let f be defined by a polynomial of form (B) when R has
characteristic p > 0. Then
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,
f(S +'51y cery S8 Suay o0, ""/x)
k m 7
e OV Y Y (L l) NpSi N 51
= 2 > > aly) o (sits)t s
T=m+l =158 .5,=0 ]’ &
k m r
\ ! ! A
=3 8 S s
h Lpol
I=m+)i=1§,5 =0 P OF

:f(slv 0ty Sus Syt gl\)—{"_‘f(gl! Sty ok m; Spats 2y Slc) ’

so that f satisfies (i) of the definition for m-distributiveness. Similarly
(i) is satisfied, so that fe HNS.

It is immediate that a mapping f defined by a polynomial of form
(C) is m-distributive.

Conversely, we divide the proof into three parts.
1. R s infinite and has characteristic p > 0.

If feHNS, then f is defined by a polynomial of form (A) by
Theorem 1. Then we have for each 4 (1 =7¢~Um) and for each [
(m <1 =k),

.f(0+07 M Si,"[_S;) ) O+O; Ov e, Sy oty 0)
t—1
— S A s
yJ,=1
J+JJ;‘f
"jf(()! ety Sy oty 0; Oy ccy 8y, “‘,0)

+.f(0! sy Sy oty O; 09 ceey Sy ot O)
=2l ai] slisl+ 2. asey sihist

for all s, s7eS,, s,€8,. Therefore we have the identity

t-1 S (4 L
(3.1) . Z‘, a,j‘ l}l [jls,{rls}—l— ji(j?‘:r —1r)s{z‘—sg+ ce
+yf’('7é’_ S’J‘“ers*e“‘Js”l*O.

Since R is an infinite integral domain, each ideal S,70 is infinite.
Therefore the polynomial in R*[x, y, 2] which has the same coefficients
as the above expression, vanishes for infinitely many values of each
argument 2, ¥, z in R*. By the lemma, each coefficient is zero. Now the

coefficient of a/-yz (0<"1 g3 1—f,<t; 0<"4,<t) is ( )a“”—O.
.

If 4, is not a power of p, then at least one of the binomial coefficients

(j">, r=1,2, +.-,4,~1, is prime to p. Since R, and consequently R,
»
has characteristic p, this implies that a“ =0, for j, and j, in the stipu-
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lated ranges, whenever j, is not a power of p.

Using (ii) of the definition of an m-distributive mapping, a similar
argument shows that i’} =0 for j,=1, 2, -+-, t~1; j,=2,8, ---, t~1
whenever j, is not a power of p.

Since the above argument holds for each ¢ and each [, the polynomial
of form (A) which defines f has all coefficients zero except for coeflicients
atP 5,=0,1,2 +--, 8=0,1,2, ..., Thus f is defined by a poly-

pSipSe?
nomial of form (B).
2. R is finite and has characteristic p > 0.

Since R is a commutative integral domain, R is a finite field GF(p")
and each ideal S;40 in R is R itself. Since s*"=s for all se R, each
polynomial function of S, xS,x ... xS, into B* is defined by a polynomial
of form (A) of degree at most p"-' in each argument. Since the degree
in each argument is less than the number of elements in each S,=R,
the lemma can be applied to the identity 3.1, and the proof of 1. is
valid in this case also.

3. R has characteristic zero.

Since R and each ideal S;7£0 in R have infinitely many elements,

the proof of 1. ean be followed to obtain

(9)aszs =0 and (¥)asn—o,

7 r

for j;,, 7;,, and r in the ranges previously stipulated. Since R, and

consequently RB*, has characteristic zero, this implies that ag:%;g:o except

for j,=j,=1. Consequently f is defined by a polynomial of form (C).
The following result was obtained in the proof of the theorem.

COROLLARY. Let R=GF(p*) and R* be a commutative integral domain
containing R. A mapping f of

k terms
RxRx++e xR

into R* is in HN\S if and only if [ is defined by a polynomial of form
(B) with r=n—1.

4. Application to the construction of R-modules. Let S=%0 be
an ideal in a ring R. The set of (k—1)-tuples V={(s,, 8, =--, &), 8,€ S}
with equality, addition and left scalar multiplication defined component-
wise is a left R-module. The group of the module is the direct sum

k—1 terms

St S @---@ST.
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Forre R, s;€ S, the 4-th component rs; of the scalar product r(s,, s;, « -+, S)
is a 1-distributive polynomial function f of the arguments r; s, 8;, *+-, ;.
In this section we characterize the most general polynomial funetion f
for which V=8S*@S*P.--PS* is an R-module, where R is a com-
mutative integral domain with characteristic zero.

Now V is a left R-module if and only if there exists a mapping f
from Rx V into V which satisfies the module identities

(M) Sy, vi+v)=f(r, v)+ flr, v),
(M,) S+, v)=Ff(r, v)+f(r, v),
(M) Sy, v)=rf(r, f(r, v),

for every #, r,e R and every wv, v,€ V. Denoting the components of
S, v)=F(r; s, =+, 8) by filr;s, ---,s,), 1=2,8, ---, k, we observe
that f is given by a set of k#—1 mappings f, from

k terms
RxSxSx.++x8

into SE R. Setting BR=S,, S=8,, ---, S=8, to agree with the notation
of the preceding sections, the identities (M,) and (M,) are just the con-
ditions (i) and (ii) that each mapping f;, be 1-distributive. Interpreting
M, for the components f; we have

4.1)  filriry s, =00, S)=Fulr; folry 8y 0y 80), c o0, Sy 8,y v 00, 81))

for every #, r,€ R and every s;€S; =2, 3, ---, k.

We now assume that R* is an ideal-preserving extension of R, that
is, R* is a ring containing R with the property that if S is an ideal in
R, then S is an ideal in R*. For example, there exists a ring with
identity containing R which is an ideal-preserving extension of R. Let
fi, 1=2,38, «++, k, be a mapping from Ex V into R* defined by a poly-
nomial

4.2) Fi@s; @y oo, )= 055,00, hThe - ]

with coefficients in R*. Denote the system consisting of the group V
and the mappings f; defined by (4.2) by (V, f,). We obtain the following
application of Theorem 2.

THEOREM 3. Let R* be a commutative integral domain with charac-
teristic zero which is an ideal-preserving extension of R. Then (V, f,) is
a left R-module with scalar multiplication defined by r+(S,, Ss =+, Sp)=
(For S ===y f2) if and only if each f, is defined by, a polynomial of the
Jform
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K X
(43) fz(xl; Loy ** Q"h): Z a‘goxlml ’ ay) € R* ’
1=2

such that the matriz A=(af®) is idempotent; that is r+(S, Ss, *++*, S)=
7(Ssy Sy, + =+, Sp)A', where the right member is an ordinary matric product
an which A’ 18 the transpose of the matrixz A.

Proof. 1f (V, f.) is a left R-module, then by the foregoing discus-
sion, the mappings f; are 1-distributive polynomial mappings with values
in SER*. By Theorem 2, with S;=R, S,=S8;,=...=8,=S, and m=1,
each f; is defined by a polynomial of form (C)

k k
Sl @,y o0, @)= ZZZ a5y @, = ;a?)xlwz .

Since each f; must satisfy the identity (4.1) we have

k

o %
> CLE‘)(’/}TZ)SZ= ZZA (Lf”?‘ll: Z; (IS-Z)/I‘.ZS{]
=5 j=

i=
AR (D) (D
k o

= > > aPa’rr.s,

2=

k
for every r, r,e R and every s,€S. This implies a’= >\ a%af” or that
j=2

the matrix A=(a{) is idempotent. Since
k " k .
Jir; 8y 200, 8)= lZ_Zai re=r lZ_ZaEL)sL ,

we have 7r-(s,, *+-, 8,)=r(s,, -, s;)A" where the right member is an
ordinary matrix product.

Conversely, it is readily observed that if f; is defined by (4.3) with
A=(a{®) idempotent, then f; has values in S since S is an ideal in R¥*,
fi is 1-distributive, and f; satisfies (4.1). Therefore (V, f,) is a left R-
module.

If we specialize to the case where R=F is a field, we have S,=S,
=...=S,=F and R*=F, so that (V, f,) is the group of (k—1)-tuples
with elements in 7' for which scalar multiplication is defined by (4.2).
Theorem 3 characterizes the (V, f,) which are F-modules, and we let
(V, A) denote the F-module (V, f;) with scalar multiplication defined by
(4.3) where A=(a{®) is idempotent. Let Em=(1;)” g), where 0 <m<k-—1.
The following theorem completely classifies the F-modules (V, f5).

THEOREM 4. The left F-module (V, A) is F-isomorphic to the F-
module (V, K,) for some m, 0 <m <k—1. Moresver (V, E,) is not F-
isomorphic to (V, E,) if mF%n.
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Proof. 1f A is similar to B, then (V, A) is F-isomorphic to (V, B).
For in (V, A),

7(8,, S5, v 00, Sp)=0(8,, S5, =+, $)A",
and in (V, B),
(8, 8y, *+ -, S)="0(s,, S5, * -+, 8)B =1(s,, 85, -+, 8,)PA'P!
for some non-singular matrix P. The mapping ¢ defined by

Sp[(szy S‘J; tt Slc):]:(sly sSv "ty SE)P_l
is an F-isomorphism.
Since A is idempotent, A is similar to E, for some m, 0 <m <k-—1

[1, p. 88], which completes the proof of the first part of the theorem.
In (V, E,),

T'(Su Sy 00y SA)=(7”82, TSzy oty PSpsry O, ey O) ’

so that the submodule 1-(V, E,)=(s,, 85, ***, Sp+1, 0, - -+, 0) is the vector
space over F' of dimension m. Any F-isomorphism of (V, E,) onto
(V, E,) induces an F-isomorphism of 1-(V, E,) onto 1-(V, E,), but if
m =~ n these submodules cannot be F-isomorphic since they are vector
spaces of different dimensions over F.

COROLLARY. The F-modules (V, A) and (V, B) are F-isomorphic if
and only if A and B have the same rank.

In the above discussion, the (V, f,) were all (k—1)-tuples for a fixed
k. We now consider (V,, f;) and (V,, f,), k%1. By Theorem 4, it is
sufficient to consider (V,, E,), 0 <m <k—1 and (V,, E,), 0 < n<1-1.

THEOREM 5. The F-modules (V,, E,) and (V,, E,) are F-isomorphic
iof and only if m=mn and either k=1l or F'* has infinite rank.!

Proof. Suppose first that ¢ is an F-isomorphism of (V, E,) onto
(V,, E,). Then as in Theorem 4, 1-(V,, E,) and 1-(V,, E,) are F-
isomorphic vector spaces of dimension m and n respectively over F.
Hence m=n. Assume that k=41{, and let M and N be the submodules
of (V., E,) and (V,, E,) respectively which are annihilated by 1e F.
Then ¢ induces an isomorphism of M onto N as additive groups.

k—1—m
M’__{(Oy Tty Ov Sin+1y ““;Sk—i)v SieF}':F+@"'®F+

o T}Te additive group F'+ of a field F' of characteristic 0 is a divisible torsion-free
group and therefore is the direct sum of « copies of the additive group of rational num-
bers. The cardinal number «, which is an invariant, is called the rank of F'*+ [4, pp. 10-
11].
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and
[—1—m
N={(O: ftty 0’ Sm+1s "'ysl—l)r sieF}:F+@'.'@F+ .

If F* has finite rank, then M and N have different rank, and are not
isomorphic. Hence F'* has infinite rank.

Conversely, if m=n and k=I, there is nothing to prove. Suppose,
then, that m=n and that F* has infinite rank. Now (V,, E,)=
1-(V, E)PM and (V,, E,)=1-(V,, E,)@P N, where M and N each
have the decomposition into a direct sum of copies of F'* given above.
Since F'* has infinite rank, M and N have the same rank and are
isomorphic as additive groups. But since F annihilates M and N, this
isomorphism is an F-isomorphism. Finally, 1:(V,, E,) is F-isomorphic
to 1-(V,, E,) since they are vector spaces of the same dimension,

5. Application to the construction of rings. As in the previous
section, we let Ss£0 be an ideal in a ring B and consider the set of
n-tuples V=1{(s, s,, -+, 8,), s, €S} with equality and addition defined
componentwise., Now V is a ring if and only if there exists a mapping
f from VxV into V which satisfies '

(R) S+ v, v)=F (0, v)+ (v, v)
(R.) Sy, v+ v)=f(v,, v.)+ f (v, v3)
(RS) f(f(vlr v'l)r US):f(/vly f(vzy US))

for every v, v, v;€ V.

Denoting the components of f(v,, v,)=f(s;, ++*, Su; &, +++, ) by
filsy, v, 8,5 8, +o0, &), t=1,2, --- n, f is given by a set of n mappings
[ from

2n terms
SxSx-+.-x8

into S R. The identities R, and R, are just the conditions (i) and
(ii) that each mapping f; be n-distributive. In this application, k=2n,
and S;=S, 9=1, 2, -+-, k& in the notation of §2. Interpreting R,, the
associative law, for the components f,, we obtain

(5'1) fi(fl(sly cecy Sny ﬁly ) tn)y "'!-f‘n(sh Sy tly Tty tn); Uy ** un)
=fz'(sly t Sn;fl(tly sy gy Uy, e, un); "'7fn(t1’ sy lay Uy oo ey un))

for every s, ¢,, u,€S.
We assume that R* is an ideal-preserving extension of R and that
each f;, 1=1, 2, ---, n is defined by a polynomial
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(5'2) fi(xly ety Xy Yiy o0ty yzz): Z ajl"']nkil"'k}nxljl- * '.’Ei‘;”? Ilrl' * 'ylnrn

with coefficients in R*. Denote the system consisting of the group V
and the mappings f; defined by (5.2) by (V, f;, n). We obtain the
following application of Theorem 2.

THEOREM 6. Let R* be o commutative integral domain which is an
ideal preserving extension of R. Then (V, f;, n) is a ring with multiplh-
cation defined by (s, ---, 8,)(t,, +++, ta)=(f, +++, [n) if and only if each
Jui=1, 2, -+ n satisfies (5.1) and is defined by a polynomial of the
form

K n

(53) fi(xly ety Xy Yiy 000y U?z) = 2 >_l Z (“a(] l)xp Jypl ’

=1= 1SJ SL#

or

(5.4) Ji@y, oo, @ Yy e, Yo)= Z Z aiey,

according as R has characteristic p >0 or 0.

Proof. 1f (V,f,, n) is a ring, then we have observed above that
the mappings [, are n-distributive mappings with values in S < R*.
Since the f; are polynomial mappings into R*, it follows from Theorem
2, that they are defined by polynomials of form (B) or (C) according as
the characteristic of Ris p >0 or 0. We have seen that the associative
law implies (5.1).

Conversely, if multiplication in (V, f;, n) is defined by (s, ++-, s.)-
&, -, t)=(fi, -+, f.), where each f; is defined by (5.3) or (5.4) ac-
cording as the characteristic of R is p >0 or 0, then by Theorem 2,
each f; is n-distributive. Thus, multiplication in (V, f;, n) is distributive
with respect to addition. Since each f, satisfies (5.1), multiplication is
associative, and (V, f;, n) is a ring.

ExampLE 8. Let R be a field F with characteristic zero. Then
R*=F, S=F, and (V, f, 1) is the group F'* and the mapping f defined
by f(z; y)= > a,a@'y", a;,€ F. By Theorem 6, (V, f, 1) is a ring with
multiplication defined by s-t= S a,s’t* only if f is defined by f(x; y)=
axy, ac k. If az£0, (V,f, 1) is isomorphic to F' under the correspond-
ence sa@~'<>s, so that we can conclude that the only non-trivial rings
with additive group F'* and with multiplication defined by a polynomial
function of F'x F' into F' are fields isomorphic to F' [3, p. 177].

ExampLE 4. Let R be the finite field GF(3%). Then R*=GF(3),
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S=GF(3%), and (V, f, 1) is a ring only if multiplication is defined by
(see the Corollary to Theorem 2).

Set=1(8; t)=geSt + A, St’ + a,(8°t + a,, s | a;,;€ GF(3%) .

Selecting ay=a,,=1, ay=0a,=0, f(s; {)=st+5%, and f(s; t) satisfies (5.1).
Hence (V, f, 1) is a ring. Let & be the primitive eighth root of unity
which generates the multiplicative group of GF(3?). Then &-1=f(¢&% 1)
=&+ =£E(1+£6=0. Hence (V, f, 1) has zero divisors, and in this case
we have an example of a non-trivial ring with additive group GF(3%)*
and with polynomial multiplication which is not isomorphic to GFY(3Y).
It should be remarked in conclusion, that when R has characteristic
zero and (V, f;, n) is a ring, the multiplication rule (5.4) is the same as
that for an algebra over R* (see Introduction); and if R* has an identity,
(V, fi, n) can be regarded as a subalgebra of an ordinary algebra of
dimension n over R*. Hence the coefficients a% of the polynomials f;
play the same role as the multiplication constants of an algebra, and

the associative law (b.1) can be interpreted as a matrix identity [5, p
294].
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AN ULTRASPHERICAL GENERATING FUNCTION

FRED BRAFMAN

1. Introduction. Let P{®®*(v) denote ultraspherical polynomials and
let

(1) w=2(v—t)(1— vt +¢)~V2,
g=1-—-2vt+1¢*,
y= —tu(1— 20t + )7,
r=>1-2yw+y)'"*,

with the roots to be those assuming the value 1 for ¢=0. Then this
note will prove that

¢, 14 2a—

(2) g~
o 14a 2 l+a 2

C, 1 y— 7/'“ F]\:C 11( 200 — C; 1+y /rjl

= (1 + 20) —-n, ¢, 14 2a—e¢;

- u]P;w,a)(v)tn ’
1+a, 1+2a

i (14a), ¢
valid for ¢ sufficiently small. In (2), ¢ is an arbitrary parameter. Equa-
tion (2) is a direct generalization of Rice’s result given in [8, equ. 2.14],
to which it reduces for a=0. (A different generalization of Rice’s
result is given in [3].) For ¢ the non-positive integer —#k, the left side
of (2) reduces to a product of ultraspheriecal polynomials:

171
( 3 ) g—d—l/ k k P(a “)(7‘+?/)P(‘” a)(T ?/)

1 —l—a)h (1+cz)A
n, —k, 1+2a+k;
ZJ (1 an)n I: u:lpfzw,w)(v)tn .
=0 (1+a), 1+a, 1+2a

In addition, this note Will show other results on ultraspherical
polynomials. Further, it will provide a new way of deriving some results
of Weisner. These will be shown later.

The author desires to thank the referee for helpful suggestions re-
garding the simplification of proof.

2. A preliminary result. It will be established in this section
that
Received May 7, 1956, aund in revised form November 28, 1956.
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oo (b) ; —n, &, —MN, C1y Gyttt Gy
(1) 5Our| e uf
n=0 N! b ; d17 dz’ crty dl] H

:(l‘t)a—b(l-—t-i-xt)”ai (012n'7:7’((7p),,‘('7—tu)n(b)n Ia l;—n’ @; @ :‘ ,

F @ @oa—tyn Ly et 1

for

1, [t (—8)| <1, at+1—t=£0, p<gq.
Start with

a-b—k —a I—Mk’ ®; x
(5) e R :1_th]
s B b+k, a; z
=R ]

X

(=g S CHRL

n=0 n!

[b+n+k, a; ]

- . —n—k, a;
_ 2(b +k)t ZF][ x] .

n=0 n! b

Multiply the first and last lines of (5) by

(6) (b){\‘(cl)k(c‘z)k' e (ep)(—tu)®
(dl)k(dz)/c' ¢ (dq)k,k!

and sum on k& from 0 to co. A shift of indices will then give equation
(4). The restrictions given insure the absolute convergence of the vari-
ous series which are multiplied together.

It should be here noted that (4) includes two results by Weisner as
special cases. See [7, equ’s. 4.3 and 4.6]. The first follows from (4)
by taking

(7) =1, q=1, ¢,;=d, d,=b

and summing the result by Chaundy’s equation 25 in [4].
The second Weisner result follows from (4) by taking

(8) 7)20’ (]:1! dlzby

and summing by the formula of Rainville as quoted in [5, p. 267, equ. 25].
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3. Proof of (2). The use of a quadratic transformation [6, p. 9]

on a standard form of the ultraspherical polynomials converts them
into
—n, a+1/2;
(9) Py =1 Do | 1-2|
n. 20 +1

with 2z=2+1/2. This is equivalent to a formula by Weisner [7, p.
1038]. Let

(10) v=é(2—x)(1—x)‘”2, a—a+1/2, b=2a+1,

replace ¢ by t(1—x)-"* in (4), and let w, g, y, r be defined by (1). Then
(4) becomes

o —MN, Cyy "y Cp;
(11) 1+2a), . o [ ] ’ “:‘Pﬁ‘”"”)(?})t"
=0 (1+a)" dly ] dq H

—gramir 5y (@ () n (L + 2000 paaanyyy
=0 (d,)y s+ (d)n (1t a),
In (11), take
(12) p=2, ¢=2, d;=1+a, d,=1+2a, ¢;=c¢, c,=1+2a—c

and apply the formula given in [2, equ. 17]. Result (2) above follows
immediately.

For an additional result from (11), take
(13) p=0, ¢=2, d=14+a, d,=1+2a,

and use the result from Bateman [1], that

(14) F(=iteas 007 DY R (=i Y00 ED)

s Preewyr
im0 (1+a),(1+ ),

This gives

(15) g_w—llzoFl(_ 14a: ?/7(}02—17)>0F1<— 14a; ?/(w2+ 1))

oo -—n ;
=3 A + 2a), IF.Z[ u]Pﬁf”'“)(v)t” .
1+a, 1+ 2a;
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Two further results are obtainable from (11) on ultraspherical poly-
nomials. However they are both special cases of the results by Weisner
mentioned above, and so are merely presented here for completeness.
For the first, take in (11)

(16) p=q=1, d=14+2a, c¢=a,
and sum the result by [2, equ. (18)] to get

/2, (a+1)/2;

(17) g =) | 1+ (;(w o) d
a ;

& (1 + 2a) - @ g
Z (1 + 2a), F[ u}Pfﬁ’”(U)t” .
= (1+a), T L 140,

If a is a non-positive integer —Fk then (17) becomes

! 1—yw
18 —amyy VK] P w)< —yu )
(18) g 1+a), ”

—n, —k;
Z (1+2a)n Fl: u:ip;m,a)(v)tn .
=+, L1y

For the other result of Weisner’s, in (11) take
19) p=0, q=1, d=1+4+2«a,

and sum to get:

(20) gerem (=14 ”(“Z )

= (1+2a), —r
Z ( FlI: j]lu(a o&)(v)tn
w=o (1+a), 142a;
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ON THE CASIMIR OPERATOR

H. E. CAMPBELL

The Casimir operator is an important tool in the study of associative
[4], Lie [4] and alternative algebras [7]. However its use has been for
algebras of characteristic 0. We give a new definition of the Casimir
operator for associative, Lie and alternative algebras, which keeps
desirable properties of the usual Casimir operator and which is useful
for arbitrary characteristic.

We show that under certain conditions our Casimir operator is the
identity transformation and for non-degenerate alternative (or associative)
algebras we show that it is the transformation into which the identity
element of the algebra maps. We apply our results to obtain the first
Whitehead lemma for non-degenerate alternative algebras of arbitrary
characteristic. We also obtain a special case of the Levi theorem for
Lie algebras of prime characteristic.

1. The Casimir Operator. Let 2 be an associative, Lie or alter-
native algebra with basis e, e,, ---, ¢, over an arbitrary field ¥. For
uniformity we use the notation z — S, for a representation of 2, where
if A is alternative we mean the S, part of a representation x— (S,, T.).
If % is a Lie or associative algebra, f(wx, y)=1(S,S,) where ¢t is the trace
function, is an invariant symmetric bilinear form. In [7, p. 444] it is
shown that if 2 is alternative this form is invariant if & is not of
characteristic 2. For arbitrary characteristic we have

£(S,S,.)=#(S,S,S, +S.T,S, —S,S,T,)
—#(S.S,S, +8,T,8, — T,8,S.,) =1(S,,S.) .

Similarly ¢(7,T,) is invariant.

We call A non-degenerate if t(R,R,) is non-degenerate where R is
the representation of right multiplications. It can be shown that this
is equivalent to the non-degeneracy of the bilinear form #(L,L,) of the
left multiplications. It is well known that if 2 is a non-degenerate alter-
native (or associative) algebra it is a direct sum of simple algebras.
Dieudonne [3] has shown that this is also true for Lie algebras.

If A is semi-simple and § is of characteristic 0, the usual Casimir
operator I'¥ for the representation S is defined as follows: Let 9 be
the set of all z of 2 such that ¢S,S,)=0 for all y of A. Then A=NPE
where N and € are semi-simple ideals of A. Let ¢}, e, ---, ¢, be the

777Reé’éiwx;éd70ctober 8, 1956. This research was supported by the United State Air Force
through the office of Scientific Research of the Air Research and Development Command.
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complementary basis to a basis e, e, ---, ¢, of € such that* #(S,S))=4d;;
(Kroneker’s delta). (Note that the complementary basis depends on the

k
representation.) Then I'y= Y S,5].
=1

For arbitrary § we define a new Casimir operator /"y for each non-
degenerate A. This will include every semi-simple 9 of characteristic
0, since 2 is non-degenerate in this case. We use the same comple-
mentary basis ¢, e, - - -, e, such that #(R,R;)=4d,, for every representation
(or anti-representation) and define

(1) re=X88;.

If 9 is alternative we also define / 'T=Zw, T.T; .
i=1

Unlike I'§, I's does not automatically reduce to zero when #(S,S,)=0
for all z, ¥ of 9. In fact it follows from Corollary 3.1 below that for
alternative algebras "¢~ 0 if S-%0. We note also that for the repre-
sentation « — R, we have I'}=1I,.

Analogous to the corresponding result for 7'¥ for Lie and associative
algebras [4, p. 682] and for alternative algebras |7, p. 445] we have
the following theorem.

THEOREM 1. Let I'g be the Casimir operator (1) for a representation
x— S, (x—(S,, T,) of a non-degenerate Lie or associative (altermative)
algebra A over an arbitrary field. Then I’y commutes with S, (and T,)
for all = of A.

Except for the commutativity of /¢ and 7, which will be proved
along with Lemma 3.2, the proof is similar to those in the references.

We also have the following result which follows from the properties
of the complementary basis.

THEOREM 2. Let U be a non-degenerate associative, Lie or alternative
algebra over an arbitrary field. Then the Casimir operators I', and I,
of the right and left multiplications of W are both the identity transfor-
mation.

2. Application to alternative (and associative) algebras. Since every
associative algebra is an alternative algebra, the results of this section
hold for associative algebras.

In place of the identities (4) of [6] used in the definition of a
representation o — (S,, 7',) of an alternative algebra 2, we will use the

2 Tor simplification we write Sp,, as S; and S'/fi as Si.
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equivalent (except for characteristic 2) identities
(2) S;=S, Ti;=T,: for all & of ¥,

in order to insure that the semi-direct sum [6, p. 3] or split null ex-
tension ©=2A+ MW of A and the representation space M is an alternative
algebra for arbitrary characteristic.

THEOREM 3. For every representation S of a mnon-degenerate alter-
native algebra WA, I's=S, where e=2e,e; is the identity element of U.

The proof follows from Theorem 2 and the properties of the com-
plementary basis.

COROLLARY 3.1. If S£0 the matriz of I'y can be taken to have
the form diag (I, 0). Hence if in addition the representation s -
reductble, 'y is the identity transformation.

Proof. By (2), S!=S, and the result follows.
COROLLARY 3.2. [I'4S,=S, for all = of AU.

Proof. Assume S0 and take [’y to have the form diag (I, 0).
Then the matrix of S, must have the form diag (S, S;) where I and
S, have the same order. By identity (4) of [6] we have T.["y—I"yT,=
S,—S,I's. Hence S,=0 and T,=diag (T,, T.") and so S,['s=S,. This
completes the proof of Theorem 1, for we also have 7. ["s=I",T,.

Evidently all of the above results also hold when S is replaced by
T.

Now for a non-degenerate alternative algebra U with neither S nor
T=0 we may apply Corollary 3.1 and Theorem 1 to take

Iy=diag (1D, I®, 0, 00) , I'y=diag (I, 0, I®, 0®)
(3)
S,=diag (S, 82, S8, 0) , T,=diag(T, TP, T, 0)

where the superscript (¢) indicates the matrix has order k; and each I
is an identity matrix and S®=0®, T¥=0®, Also - (S, TY),
(=1, 2, 3) are representations of Y with respective Casimir operators

IP=rP=10; [P=I®, =0 ;
(4)

qusg)zo(‘s) , F(ﬁ):]('s) .

Thus the representation space M can be expressed as W=, + M,
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+ M+ M, where M, is an invariant subspace of dimension k; and hence
is an ideal of the split-null extension ©=2+3IM. It also follows that
M, and W, are in the nucleus [2] of S.

We are now able to obtain the following generalization of the first
Whitehead lemma (see [8]) for alternative algebras of characteristic zero
[6, Theorem 3].

THEOREM 4. Let U be a non-degenerate alternative algebra over an
arbitrary field and let x—(S,, T,) be a representation of N acting in «
space M. Let & be the split null extension S=UA+M and let h(z) be a
linear mapping of A into WM such that

(5) Mawy) =ah(y) + h(@)y=1(@)S, + ()T,

for all z,y of N. Then h(x) is an inner derivation of ©. If U is not
of characteristic 2 then®

(6) Ww)=[w, g1+ 7 AR Rucp 1+ L))

where g s in the nucleus of & ; R, L are right and left multiplications
in S and e, €, -+, €, are a complementary basis to a basis e, e,, -+-, ¢,

of U.

Proof. 1If either S or T is zero the theorem follows similarly to
the associative characteristic zero case, so assume neither is. Since I, is
invariant,

Mx)=h(x)="h(x)+ () + hs(x)
where 4,(x) is a linear mapping of 2 into M, (M,;=IN) such that
bef@y)=ah () +h,(@)y=hx)S,+h,W)T. .
Then we have

B = 3 {hwedei—ah,(e)-ei} = 3% {hy(e)(eim)—ahfe)-ci} .

Consequently for 7=0,1, 2, 3

( 7 ) k](x)[15:m 2'; {L;th(ei) _—th(ei)R;} .
Similarly
(8) h(@) = g; {R;th(ei) _Lh].(prz,} .

3 We use [P, Q] to denote the commutator PQ—QP.
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By (3) and (4) we have
Wx)=h (@) s+ h () s+ hy) 7 .
Hence by (7) and (8) A(x)=xD where
D=3 ALiLu,ep =B pRi} + 35 ALinycep = Rigee pRi}
+ 5;4 {RiBnye) — Lo pLi}

To show that D is inner it suffices to show that for , v in &,
L.L,—R,R,is in the Lie algebra ¥(&) of linear transformations generated
by the right and left multiplications of &. This is true since L,L,—
R,R=2[R, L1+L,—R,.

Now let A have characteristic =2 and use (7) and (8) to get

M5t Ty =2{ SRl Rucep] + ST L]}

Then by (7) and the nucleus property of IR, we have! A, (x) =[x, v,]
where v,= 3\ h(e)e; is in M,. Similarly A x) =[x, v;] where », is in
i

M,. But
@)+ I'y) + ko) s+ h( @) =20 ()

hence

We) =L, g1+ 2 { L SR Rucpl+2 S i Locop] |

where g= é (v.+v;) is in the nucleus of &.

As is the case for similar theorems, the first part of Theorem 4
can be stated in the following form.

THEOREM 5. Let U be a non-degenerate subalgebra of an alternative
algebra B over an arbitrary field. Then any derivation of U into B can
be extended to an inner derivation of B.

3. Application to Lie algebras. We obtain the following special
case of the generalization of the Levi theorem to algebras of prime
characteristic.

THEOREM 6. Let ¥ be a Lie algebra over an arbitrary field with
radical N~ L such that LR=0 and ¥/N is non-degenerate. Then there
is an algebra & (which is isomorphic to L/N and s « direct sum of

4 This actually = — v,z since xv,=0.
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stmple algebras) such that ¥ is the direct sum L=S P R.

Proof. Let e, e, --+,e, be a basis for & such that e, ¢, -+, e
are a basis for a subspace B and e,,,, -+, ¢, are a basis for . Then
the right multiplication of each z of £ has the form

(9) R B O]

where P,=Q,=0 if z is in R and P, is the right multiplication of the
k

image & of « in {/R. Now if I',= 3, P,P; is the Casimir operator (1)
i=1

for the representation P of ¢/R, then by Theorem 2, /', is the identity
I and hence

I‘=2RiR;=[I Q].
0 0

By using the properties of the complementary basis of £/R and the
fact that the Lie algebra of right multiplications of the elements of B
is isomorphic to ¥/R it can be shown that I' commutes with R, for all
z of &,

We now show that the associative algebra £* generated by the R,
for all » of & is isomorphic to the associative algebra [3* generated by
the P,. Certainly by (9) there is a homomorphism of £* onto *
which maps any polynomial »(R,, R,, --+) into p(P,, P, --+). Now
if o, R, ---)=0 then pP,, P, --+)=0 since I' commutes with
»(R,, B, ---). Hence ¢* 2~ P*.

Now /R is a direct sum of simple algebras and therefore [1, Lemma
2], B* (and hence ¥*) is semi-simple. Consequently [1, Lemma 2] ¥ is
a direct sum of an algebra &, which is a direct sum of simple algebras,
and an abelian algebra R,. But we must have R,=NR completing the
proof.

It is to be noted that it is easy to give examples of prime character-
istic where all but the non-degeneracy of ¥/ of the hypothesis is
satisfied but for which the conclusion is false.

REFERENCES

1. A. A. Albert, The radical of a mon-associative algebra, Bull. Amer. Math. Soc. 48
(1942), 891-897.

2. R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc.
Amer. Math, Soc. 2 (1951), 878-890.

3. J. Dieudonne, On semi-simple Lie algebras, Proc. Amer. Math. Soc. 4 (1953), 931-932.
4. G. P. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math,
64 (1942), 677-694.



ON THE CASIMIR OPERATOR 1331

5. R. D. Schafer, Immer derivations of mon-associative algebras, Bull. Amer. Math. Soc.
55 (1949), 769-776.

6. - —, Representations of alternative algebras, Trans. Amer. Math. Soc. 72 (1952),
1-17.
7 -, The Casimir operation for alternative algelras, Proc. Amer. Math. Soc. 73

(1953), 444-451.

8. J. H. C. Whitchead, On the decomposition of an infinitesimal group, Proc. Cambridge
Phil. Soc. 32 (1936), 229-236.

MICHIGAN STATE UNIVERSITY






REPRESENTATION THEOREMS FOR CERTAIN
FUNCTIONAL OPERATORS

R. E. EDWARDS

1. Introduction. Almost all the operators arising in applications
of the Heaviside operational calculus share two properties. The precise
formulation of these properties may vary, but their general nature is,
in the first case, a commutativity rule relating to the operation of semi-
translation, whilst in the second case it is a condition of continuity of
some sort. Possible precise formulations of these conditions are typified
by postulates (0,), (0.) and (0;), which appear subsequently. Verifica-
tion of the opening remark is to be found by glancing at the diverse
illustrations of the technique to be found for example throughout [4].

It is the aim of the present paper to base proofs of general repre-
sentation theorems upon such characteristic properties. The appropriate
theorems will depend of course on the topologies envisaged in the con-
tinuity condition. Because of this, neither theorem proved here applies
to all conceivable *‘ operational expressions *’ : an outlaw expression would
be exp(Ap)(h > 0), for instance. Modifications are possible, however, and
would lead to theorems covering wider ranges of operational expressions.

As is well known, if the operands are restricted suitably, the ope-
rational ecalculus can be formulated in terms of the one-sided Laplace
transform. Special attention is given to this case, and the correspond-
ing representation theorem can be looked upon as a solution of the pro-
blem of factor functions for the Laplace transformation. The methods
employed were suggested by those used in [3] to study factor functions
for the Fourier transformation.

The general nature of all results obtained is very close to one given
by L. Schwartz [5, p. 18, Théoréme X].

2. Classes of functions and operators. The widest class of func-
tions to be considered will be denoted by & and will consist of those
functions f= f(¢) which are defined and locally integrable on the half-
line R,={t:t>>0}. Functions which are equal a.e. are identified. A
fundamental operator mapping & into itself is ‘‘ semi-translation by s’’,
where s> 0: this is denoted by U, and is defined by

_(ft—s) for t>s,
&b USf(t)—{O for 0 <t<s.

The first of the two characteristic properties to be postulated about

Received October 14, 1957.
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operators T is

(0) T commutes with U, for each s>0.
The second, which reads

(0,) T s continuous from % into 7,

is interpreted relative to the topology of convergence in mean over each
bounded interval of R,. This topology on .# 1is defined by the family
of seminorms

2.2) pul)=| 1)1t (1=1,2, )

and makes # into a Fréchet space.
The first of the representation theorems may now be stated.

THEOREM 1. Let T be a linear operator mapping & into itself which
satisfies (0,) and (0,). Then T is given by truncated convolution with a
certain Radon measure p concentrated on the closed half-line t >0, that
R

(2.3) TA) = £~ Flt—s)dp(s)

for f in F. Conversely, if p is such o measure, (2.3) defines an opera-
tor T satisfyiug (O,) and (O,).

The measure ¢ may fail to be absolutely continuous; for this reason
some care is needed in defining the right members of (2.3). This is
dealt with in the proof of Theorem 1, to be given in § 3.

The second theorem pays special attention to the subspace & of &~
composed of functions f for which

(2.4) 0 )= e 17 Bld < oo

holds for some n which may depend on f. & is practically the largest
domain for the Laplace transformation

2.5) fo) =\ e ra;

if f satisfies (2.4), then f(p) is defined for p_>n. Many of the opera-
tional expressions F(p) appearing in applications of the Heaviside
method act on 5 according to the ritual: take the Laplace transform,
multiply by F(p), and then invert the Laplace transform. The opera-
tional expression F(p) thus acts as a ¢ factor function’’. Detailed con-
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sideration of such factor functions is deferred until § 5.

In order to state the second representation theorem it is necessary
to introduce a topology on & . If &, (n=1, 2, ---) denotes the subspace
of & defined by the inequality (2.4), then ¢, &,,, and & =\j &
Furthermore ¢, is a norm on ¢, relative to which the latter is a Bgnlach
space. Accordingly, on <& one may introduce the inductive limit topo-
logy defined by the &, and the ¢,; see [1, p. 61] : this is the finest locally
convex topology on ¢ which induces on each &, a topology less fine
than that defined by the norm ¢,. We shall denote by (0.) the condi-
tion which results from (0,) by replacing therein the Fréchet space &
by the space & equipped with the said inductive limit topology.

THEOREM 2. Let T be a linear operator mapping into wtself which
satisfies (0)) and (0;). Then T admits a representation (2.3), where now
the measure p satisfies a condition

(2.6) S i p| () < + oo

Jor some n (which may depend on p, that is, on T); and conversely.

It may be noted here and now that Theorem 2 applies in particular
to any 7 satisfying (O,) and (0,) which happens to map & into & .
This is so because any such 7 has a restriction to & which is neces-
sarily continuous for & ’s topology, which assertion is most easily es-
tablished by applying the generalised closed graph theorem [2, p. 36,
Exercice 13]. Condition (0,) is easily seen to imply that the restriction
of T to & has a closed graph when considered as a map of & into
itself.

3. Proof of Theorem 1. The first thing is to define p» £ for f e
.% and any measure g concentrated on the half-line tZ>0. An analo-
gous process works in connection with Theorem 2 for functions fe &
and measures p satisfying (2.6) for some n.

In the present case we note that for fixed f in %, U,f is a conti-
nuous function with values in & and that p,(U,f)=0 for s>n. It
is therefore certain that the abstract integral

(3.1) S U.f-dp(s)

exists as an element of % : this element is g x f. To see how this

1 It is necessary merely to observe that, for each =, the topology of & induces on
%, a topology less fine than that defined by ¢n. So, by definition, the inductive limit
topology is finer than that induced on % by &’s topology. This being so, it is trivial to
verify that the restriction of T to ¢ has a closed graph.
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definition is related to the ‘‘ pointwise’’ one, we note that the dual of
% may be identified with the space of bounded, measurable functions
¢ on R, which vanish a.e. outside bounded intervals, the linear form
associated with such a ¢ being given by

(3.2) re>=| rwewat.

Now the definition of (3.1) is such that for all ¢ one has

Con £y o=\ <UL oY),

so that by (3.2)

[ v r@ - eoae={ ano| re-oewa

for all ¢. If f(¢t—s), qua function of s, is integrable for ¢ over bound-
ed intervals, and if Sbf(t—s)d,u(s) is locally integrable (Lebesgue), the
0

integral on the right can be rewritten as

[ et re—s)dnts).

Comparison shows that, under these conditions, u« f is the function
13

defined a.e. as S f(t—s)du(s). This latter definition covers in particular
0

the truncated convolution of two functions in & .

Consider then the operator 7' defined by Tf=pg+ f. By what has
been said, T maps .# into itself. Linearity of T is obvious. Since
also U, U,=U,U, for a >0, s>>0, and U, is continuous on .&# , the ab-
stract definition gives at once

TUaf=S UsUaf-dﬂ(8)=S UaUsf-dy(s)=UaS U F-dp(s)=U,TF;

thus T satisfies (O,).

To prove the continuity of 7' it is merely necessary to take stock
of the fact that p,(U,f) vanishes for s=>n and is everywhere at most
p,(f). As a consequence,

oI < | VPRI <mep ),

where m is the |p|-measure of the interval 0 <s<n. Thus (0, is
satisfied. The converse part of Theorem 1 is thus established.

Suppose now that T satisfies (O,) and (0,). If f and ¢ belong to
Z we have
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7(s * 9)=1({ Vg £@ds)={ TU.g- s (51

=S:UsTg~ f(s)ds—F + Tg .

This is applied to a sequence g=g,(r=1, 2, ---) forming an ‘‘ approxi-
mate identity ”’ for the truncated convolution. A simple example of such
a sequence is furnished by the functions

gv(t)___{v for 0 <t<1/v,
0 for t>1/v.

It is easily verified that fxg, — f in &, and that p.(g,) <1 for all n
and all ». Since T(f * g,)=f = Tg,, if we let v tend to infinity there
follows

Tf=lim, .(f * &),

where A,—=Tg,. Now the sequence (g,) is bounded in . and T is con-
tinuous; so the sequence (%,) is likewise bounded in &7, that is,

sup, [ 1h.(0)1dt < + oo

for each n. By dropping terms if necessary, we may assume that the
sequence (4,) converges weakly to a measure ¢ concentrated on the half-
line ¢ =>0. Accordingly, if f is continuous, f * A,(¢) will converge point-

wise to St f(t—s)du(s) for each t. However, f*h,—Tf in # and it
[\]

follows at once that the two limits must coincide. Thus 7'f=p * f holds
at any rate for f continuous. Such functions are dense in %, and both
members of this equality are continuous on &#. So equality holds for
all f. This completes the proof of Theorem 1.

4. Proof of Theorem 2. The general plan of the proof is very
similar to that of Theorem 1. As before, the existence of the abstract
integrals is dealt with first. In this connection it is useful to note the
inequality

where ¢,(z) denotes the left member of (2.6), provided both factors on
the right are finite. Thus if p satisfies (2.6) for a certain », and if f
belongs to 7, for some integer N, then (4.1) shows that g * f belongs
to &, where M=max(n, N). It shows also that the operator T defined
by Tf=p+ f has the property that its restriction to each subspace %,
is continuous relative to the norm ¢,. Hence [1, p. 62] T is continuous
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from ¢ into itself. In this way the converse part of Theorem 2 is es-
tablished.

The direct part also runs much as before. The sequence (4,) is
constructed again and will this time be bounded in & . The limiting
measure ¢ exists, but it remains to show that g satisfies (2.6) for some
n. This will follow as soon as it is shown that the 4, lie in some &,
where n is fixed independent of », and remain bounded in &,. This
does not follow directly from the boundedness of (4,) in & by virtue
of [2, p. 8, Proposition 6] since & is not a strict inductive limit. Never-
theless the desired result can be proved as follows.

LEMMA. Let B be o bounded subset of &. There exists an integer
n such that B C &, and B is bounded relative to the norm q,.

Proof. The dual of & may be identified with the space <2 of
measurable functions ¢ on R, which satisfy

(@)= esssup|e™p(t)| < +
t>0

for all n, the linear form associated with such a ¢ is given by (3.2).
Since B is bounded in &, the quantity

)= sup| e

is finite for each ¢ in <. Now <2, equipped with the seminorms r,(n=
1,2, --+), is a Fréchet space. Further @ is a seminorm on < which
is plainly lower semicontinuous, this last since @ is expressly defined
as the upper envelope of continuous seminorms. It follows from this
that @ is in fact continuous on 22, This signifies precisely that there
is an integer n and a number C such that

Q(e) < C - r(¢)

for all ¢ in ~2; C is independent of ¢. Thus

Hm h(t) c;(t)dt[ < C - ess sup
0 >0

e"‘(f(t)t

holds for all ¢ in 2 and all 2 in B. From this it is an easy deduction
that

S:” o \h(t) | di < C

for all 2 in B, which is the result stated.
This lemma permits the proof of Theorem 2 to be effected.
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5. Factor Operators on <. By a factor operator we shall mean
one which is defined via a factor funection for the Laplace transformation.
The factor function F(p) is assumed to be defined on some half-plane
N p>n, where n may depend on F, and to have the property that, for

each f in & the function F(p) - 7 (p) concides on some right-hand half-
plane with the transform §(p) of some gin & . This g, whose existence
is postulated, is then unique. The corresponding factor operator 7 is
then defined by T f=yg.

Such a factor operator 7' plainly satisfies (O,), but continuity of T
is not at all obvious. The relation

(5.1) Tfxg=f=xTyg,

which plays a crucial role on the above proofs, has hitherto been deduced
from (O,) by means of continuity. In the case of a factor operator,
(5.1) is verifiable right from the start due to basic properties of the
Laplace transformation. This fact permits us to deduce continuity of
T and thus renders possible an appeal to Theorem 2.

As we shall now see, continuity of T will follow if (5.1) is known
to hold for all f and for all ¢ of a quite restricted class, say G. For
this purpose we use again the generalised closed graph theorem. Ac-
cording to this, in order to show that 7' is continuous it will suffice to
show that: if a directed family (f,) converges to 0 in such a way that
Tf, converges to a limit, say f, then f is necessarily 0. However, we
have seen in §4 that convolution is continuous in each factor, so that 7'f,
— g implies T'f,*g— f =g for each ¢ in 2. Assuming that g belongs
to G, (5.1) permits this to be written f, « Tg — f x g. Since f,— 0, the
left member tends to 0. Hence f x¢g=0 for all ¢ in G. If this holds,
even for quite small classes G, it follows that f=0.

In this way we see from Theorem 2 that the factor functions F' are
precisely those which are themselves Laplace transforms of measures
¢ satisfying (2.6) for some n.
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THE FIVE-POINT DIFFERENCE EQUATION WITH
PERIODIC COEFFICIENTS

TOMLINSON FORT

The five-point difference equation described in § 1 has most of the
important second order partial difference equations as special cases and as
limiting forms of these the more important partial differential equations of
the second order. In the present paper all coefficients are assumed periodic
in the same one of the two independent variables. The purpose of the
paper is the study of the form of the general solution as affected by
the periodic character of the coefficients. This study centers around the
roots of the characteristic equation and so-called semi-periodic solutions.
The reader is referred to the theorem of §5 for a precise statement of
results.

1. General discussion. Let us be given the five-point equation
(1) k@, y(i—1, ) + k., Dy +1, 5) + kG, )y(e, 5—1)
+ k2, (@, 5+ 1) + ki3, 5)y(e, 5)=0

where k,, k,, k;, k. and k; are defined for integral values of ¢ and j over
the rectangle 1<i<nw—1, 1<j<w—1 where n>>1 and o >1 are
integers. This rectangle will be called the defining rectangle and will
be denoted by R. We assume moreover that

(2) k(i+w, )=k, 7) , vy=1,2,3,4,5

and that neither, %, k., k,, nor k, is zero at any point of R.

A solution of (1) is a function of (¢,7) defined at points of R and
at the border points (i=0, j=1,2, ---, o—1), (i=nw, j=1,2, ---, 0—1),
G=0, =12, -+, n0—1), (J=w. i=1,2, ---, nw—1) and which satisfies
(1) at all points of R. Notice that this second set of points, namely R
plus the border points, form a lattice which is rectangular except that
its corner points are missing. It will be referred to as the rectangle S.

A fundamental domain is a set of points of S such that there exists
one and only one solution taking on preseribed arbitrary values at each
point of the set.

All fundamental domains' contain the same number of points. We
denote this number by L. For the rectangle S

Recerive;iﬂDecember 6, 1956. This paper was sponsored by the Office of Ordnance
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1 For a detailed discussion see T. Fort, Amer. Math. Monthly, 62, (1955), 161.
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L=2w(n+1)—4 .

We note that all sets of L points belonging to S do not form a funda-
mental domain.

A fundamental system of solutions consists of L solutions which are
linearly independent over a fundamental domain.

If y.(4,9), ¥.(4,9), « -+, y:(¢,§) are a fundamental system of solutions
then any solution (i, j) can be written

L
y(% .7)2 M};U C,,‘y,,,(?:, .7)
where the ¢’s are constants.

We choose the following fundamental domain for S namely points
where

7=0, =1, 2, +++, no—1;

7217 7/=O’ o, o+1, -+-, 20—-1, 20, 30, ---, nw;
.7:27 %:Ov w, 2w, -+, No;

j=w—-1, =0, v, 20, «+-, nO ;

j=w, t=w, 20, +++, (n—1)w

We shall refer to this particular fundamental domain as DD. The domain
D is pictured in figure 1 with w=4, ®#=3. The points of D have no
accompanying numeral.

To prove D a fundamental domain simply assign values for y at
each of the points of D and fill in the rectangle by means of (1). This
can be done in a variety of ways. For example, the value of y at the
points of S not in D can be determined in the order indicated by the
accompanying numerals in Figure 1.

5n % {9 7 8 9 3 32 33

8 17 12 4 5 6 4 29 30

i6 14 11 1 2 3 23 2 28

15 13 10 . 4
Figure 1.

We now define all coefficients to the right of ¢=nw—1 by formula
(2). We then define every solution (4, j) at the points (ne, 0), (ne+1, 0),
voe, ((m+1)w—1, 0) by the formula
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Yo+, 0)=y(r+1, 0) , y=0,1, «++, w—1;
and at the points ((n+1)w,j), j=1,2, -+-, w—1 by the formula
y((n+1)w, 7)=y(0,5) also y(no, v)=y(v, v).

This definition serves to determine y over a longer rectangle than S, ne
being replaced by (n-+1)w, the rectangles being in every other way the
same. We call this the rectangle 7.

Basic THEOREM. If y(i,7) ts a solution over S then y(i+ w,J) is also
a solution over S.

This theorem follows immediately from the periodic character of the
coefficients in (1).

THEOREM. If w(4,7), y3,7), -++, ¥:(i,7) are a fundamental system
of solutions for S then so are y(i+w,J), w(i+w,7), «++, Yt +w, J).

This theorem follows from the fact that y.(s, 7), v.%, 7), ++ -, ¥.(¢, 7)
considered at the points of D constitute L sets of L constants linearly
independent over D and that, due to the extension of each solution over
T described above, y,(i+o,7), (1 +®,7), +++, y,(i+w,5) at the points of
D are precisely the same sets of constants as (¢, 5), 9.(%,7), + -+, ¥.(¢, 5)
although the order may be different.

2. Semiperiodic solutions. We ask the question : Does there exist
a solution of (1) not identically zero over S and satisfying the relation

(3) Y@+, 5)=py(, )

where p=%40 is constant? We, of course, except the case where either
(¢t+w,j) or (4,7) is a corner point of S since solutions are not defined
at corner points,

Let us assume a solution y,(4,7)==0 satisfying (3) and work for
necessary conditions. As previously, let w.(2,7), 4.(¢,7), ---, w(¢,5) be
a fundamental system of solutions for S. Then so are y,(i+o,7),
y(t+w,7), «+, y(i+w,5). Consequently

L
yv(i'*"w)j)zzlamyu(isj) ’ y:l’ "‘,L,
=
where det (a,,)%0. Moreover
L
i, )= S0, )

where not all the a’s are zero. Then
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. . L . . L L - .
Y(i+o,j)= Zl%yM (t+o,j)= ZI“" vZlawyv("o, 7)
= = =
L L L.
- 5[ S |6,
=1L p=1
Also
. - . . L . .
yq(/b'*‘wy .7)__*{02/11(7” .7)240 VZﬂ avyv(%s .7) .

We can equate coefficients since y,(¢, 7), «++, ¥.(¢,j) are linearly indepen-
dent over D. We get

(@, — P)al T A, Ao + aua; =0
apdty  +(An—p)ot+ e + apa, =0
(02772 SR ol 257 P SRR R + (@ —p),=0 .

But the «’s are not all zero. Hence

(@,—p) Ay e (I
a, (@n— . Uy

(4) i (@n—p) 2| _o
Az o (1) —p)

This condition is not only necessary but it is also sufficient as is seen
by retracing steps.

Equation (4) is the characteristic equation for the problem and its
roots are the characteristic values.

THEOREM. The characteristic equation is independent of the particular
Jundamental system of solutions chosen.

Consider a second fundamental system, (¢, 7), ¥5*(, 7), - -+, ¥, 7).
Then

I
B+, §)= 20,050, 3) 5 v=1,---, L.
p=1

The characteristic equation is

(bn _P) bzx M bm
blz (bzz—'p) ce bLz

-

b1L sz cc (bLL “P)
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But
I3
ysz)(iyj)z S.ihw-yu(irj) ’ V=1, ""L ’
o
where det (%,,)7%=0. Hence
. . Z sy s ] L ..
yS«Z)(q’ +w, .7): Zl bwyﬁ )(1” j) = 21 bvp. Zl hp.nyp.(@y .7)
p= p= n=
L E . .
=[5 bt [0 -
=1L p=1
On the other hand

. . L . » L L - .
Ui+, 5)= Sy i+ 0, )= 3 b 3% Gy, )

-3 [zk aﬂn]ymuj) .

We can equate coefficients, as already explained, because %, %, =, ¥z
are linearly independent. We have

L z
(5) wahw=2hwawy 77_—..1,.--,L; v=1,.-+, L.

=1 m=1

Now let us form the products

Py cce by (a,—p) Q.
Iy Rz 771 (r,—p)
and
(bn - P) bi; b Pz
by cee (by—p) R A

If we perform the indicated multiplication and then use (5) we get
identical determinants. This establishes the theorem.

THEOREM. No characteristic value is zero.
This theorem follows from the fact that det (a,;;)40.
If it were zero then y(i+ow,J), w(t+w,7), -, y.(¢+w,7) would be

linearly independent over a fundamental domain which they are not.

3. Roots distinct. Let the roots of the characteristic equation be
Py, Py ¢+-, o, and assume that no two are equal. Let corresponding
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semiperiodic solutions be (4, 7), -+, ¥.¢,7), that is y,(i+w,7)=p,1,7),
v=1,2, --- L and assume, as we can, that no one of these is identically
ZEero,

THEOREM. The solutions vy, +--,y, constitute ¢ fundamental system
of solutions.

To prove this theorem we assume first o, ---, ¥;-» are linearly
dependent over D but that ¥, ++-, y,-,-, are linearly independent over
D. Then

L-k
over D with at least one pz£0. Replace ¢ by (i+w). Then
L~k
(7) Sy (i+0,5)=0

over D). This is true because solutions linearly dependent over D are
linearly dependent over all of 7.
From (7)

L=k
(8) 2}0 e, 3)=0 .

But g, — k=40 else y,, +-+, ¥;-x-: would be linearly dependent. Eliminate
Y.-x between (6) and (8). We get

10, — pr- )y, 7)=0 .

L-k~-1

y=1

The only way that this can be true with the linear independence of
Yy ) Yr-p—1 18 that

/‘1((01—()L~k)=/’z(Pz"‘PL—k)= cee=py o (Opop1—Prx)=0.

If p=p,=+<v=p;_,_,=0, then p,_,y,(¢,7)=0. This is not the case
since ;740 and y,-.(%,7)=%=0 over D. Consequently p,_, must equal
some other p. This contradicts our simple root hypothesis. Hence,
Y., **+, Y, are linearly independent over D and the theorem is proved.

4. Multiple roots ; special discussion. Let us assume that p, is a
double root of the characteristic equation but that all other roots are
simple. Let y,(7,7) be as before ; namely (4w, /)=p(¢, 7)5%=0 and let
UL, 9), 942,59, -+, 9.2,5) be so chosen that w,, ¥,, ¥;, +--, ¥, form a
fundamental system. We have the relations
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(9) n(+o,g)=pu,J) ,
I
yv(z +o, j)=cv1y1(%; .7.) + %CW?]“(%, .7) ’ ”':2; ct L.
=

The characteristic equation is

(p.—p) 0 0 .- 0
(10) Cn (sz'_lo) Cpy v Cor =0.
CLI CL‘Z CLJ e (CLL_p)

Since p, is a double root of (10),

Hence from (9) the solutions #,(¢:+ w, 7)—e,.wi(¢, ) —e9(2, 5), v=2, -+, L
are linearly dependent.
This means that

I

Z Ci (i + o, 3)=u.(1, .7)2 Cvcv1+4012(/v7/v(7' 7).

Let ZCCH k and Y, (¢,7)= Zva (¢,7). We note that Y,(7, j)5=0 since
Y, Y.y + -+, Y, are linearly mdependent over D. Then

(11) Y.(i, + o, j)=p Y3, 7) + 602, J) .

This is a difference equation in Y, as a function of 7 with difference
interval w. We shall solve* for Y,(¢+ pw, §). Let U(i+ ro, 7) be a solu-
tion of the difference equation

12) Ui+ o, j)=pU(%, J) .

Then U@+ po, 7)=p*U(, 5). Moreover Ui, j) is arbitrary so we assume
it different from zero. Then

(13) Yz(z'+pw,j>=U(i+pw,j>[’§m”f—;f’(jﬁ’)-’)” eid) |-

We note that y,(i+vw, §)=piy(7,7). With this in mind (13) yields
Y i+ po, j)=[; G, )+ U G, 5) cl(z',j)] Pt
1

2 T. Fort, Finite differences and difference equations in the real domain. Clarendon,
1948, p. 117.
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We rewrite this®

(14) Yo+ o, =] = i, )+ Y6, ) Jot

This is an interesting form for Y,(i+ prw, 7). We note particularly the
o in the first term of the bracket.

THEOREM. The solution y.(z, 7), Y, 7), 42, 7), =+, y.(2, §) form a fun-
damenial system

To prove this theorem assume the contrary, namely linear depend-
ence :

(15) (3, )+ 6. Y4, 7) + es(3, )+ -+ - +eryu(3, )=0 .

Then increasing ¢ by o yields
(16) e:p:(%, J) + cz’cyl('l:, J)+ 02P1Y2('b., J)+ CsPYA%, J)+ o + c0yi(e, 5)=0.

Now ¢, is not zero else y, ¥, -+, y, would be linearly dependent
which they are not. We eliminate Y,(¢,j) from (15) and (16). We get

ckYi(t, 7)+ (P —p)Ys(8, J) + - - - (o —p)yi(3, 5)=0 .

But ¢, -+, ¢; are not all zero. If they were we would have y.(%,7) and
Y.(¢,7) linearly dependent. They are not sinece Y,(¢.7) is linearly
dependent upon #,(,7), *++, #.%¢,7) and by hypothesis y.(7, 7) is not. It
results that p, must equal at least one of p;, -+, p,. This contradicts
our hypothesis.

We now assume p; a triple root but that other roots are distinct.

We consider (4, 5) and Y,(¢,75) of the double root discussion and
note that they are not linearly dependent. We then define 7;(4,5), «--,
¥:(t, 7) so that w2, 7), Y.(@, 7), 94, 7), =+, ¥.(¢, 7) form a fundamental sys-
tem. The characteristic equation takes the form

(os—p) 0 o 0 .- 0
ex (=p) 0 0 .. 0
Cs € (Cp—p) Cu --- ¢ [=0 .
Cn Cr, Cs Cu -+ (Cpr—p)

Since p, is a triple root of this equation we have

-1
3 The convention used in (13) is > f(v)=0.

V=
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(css—p) € =-- Csi
A7) e e e e e e e e =0

€z Cu v+ (Cz—p)

It follows from (17) that ,(i+e,5)—cuy(s, 7)— Y3, 1) — e, 5), v=3,
..., L are linearly dependent. Let constants determining the linear

L
dependence be 74, 7y ++-,7;. Then let k,=>) r.c., v=1,2. Let
©w=3

I
YB(?:v j)zi% T/J.gﬂ-(?:’ -7) .
Then
Yi(i+ o, )=r(3, 5) +£,Y.03, 7))+ 0. Y0, 5) .

This is a difference equation in Y, as a function of ¢ with difference
interval . We solve precisely as we solved (11).
As previously we choose U(z, ) not equal to zero then

Vit o, )=Utit o, ) § P0C s DEELA00) 1 o) |

Now substitute %,(¢ + v, j)=p!u(, j) and
Y (i+vo, j>=m[;fv 06+ Yili5) |
1
we get

Yilict po, §)=pt” (i, )+ iy i, )

+ 08T Y (1, )+ Y, )

5. Multiple roots ; general discussion. The work that we have just
done is easily generalized. Details are ommitted but can be readily
supplied by one who has read § 4.

THEOREM. If p, is an «.-fold root of the characteristic equation
there exist solutions of (1) which we call Y°(@,7), Y(,7), ««-, Yf,‘f(i, 1),
were

YP(i+ po, 5)=pt Y, 5)
YiP(i+ po, ))=pilePpYiP0, )+ Y5000, )1

YPG + o, 5)=pt] {2 e+ = DNYRG, 4) 4o 1Y, )+ Y, M),
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Yo (i + po, 5)

” w212 —1 oy (p2—1) o o (r—at, + 2 L.
=P'1‘HC§ Ppr+ ¢ 1>’(’2! )+---+c;11_’1/-(/———()-a~1_(’1')» !—-C—“-‘— -)Yﬁ”(z,J)}

@D gyt v e a e (8D /‘(/‘“1):;,(/‘_“1+3)} (5 )t wes
+{c,,,11 R (c0—2)] Y3, 5) +

ol Y Y E,9) .

@} -api2

If' the roots are p, of order ay, p, of order «,, -+, p, of order «,;
then the solutions Y{°, YP, «+«, Y, Y, «v e Y;"fj, e, Y® ol Y;‘j form
a fundamental system of solutions.

UNIVERSITY OF SOUTH CAROLINA



ON LINEAR SYSTEMS WITH INTEGRAL
VALUED SOLUTIONS

I. HELLER

1. Introduction. We consider a system of linear equations and
inequalities in & variables

(1.1) Ax=b, xz>o0,

where the matrix 4 has » rows, k& columns, and rank less than k.
Assuming the system consistent, the solution set is a convex poly-
hedron P in k-space. A solution z° that satisfies £ independent relations
of (1.1) as equations, is a vertex of P, and conversely. Such solution
is generally called basic or extremal, and is equivalently defined by the
property, that the columns of A corresponding to nonzero coordinates
of " are independent. Basic solutions are of particular interest in
problems where a linear functional is extremised over P, the extremum
then being assumed at a vertex or at all points of a positive dimensional
face F of P, that is, the convex hull of the vertices of F. In such
problems the interest is often restricted to the integral valued basic
solutions as the only ones that have meaning in the application. Now
given P, any vertex of P can appear as solution of an extremum pro-
blem for some linear functional, and a question of interest is: when, that
is for which systems (1.1), are all the vertices of P integral valued.
Directing the attention to the system

(1.2) Az=b,

we may, slightly generalizing, respectively specializing, carry over the
definition and the question:

(1.3) DEFINITION. A solution o’ of (1.2) is basie, when its nonzero co-
ordinates correspond to linearly independent columns of A.

(1.4) QUESTION. Which systems (1.2) have all their basic solutions
integral valued?

Obviously (1.4) is not equivalent to the same question for systems
(1.1); the basic solutions of (1.2) contain those of (1.1); but they may
also contain others, namely such with negative integral coordinates.
Hence (1.4) asks more and will therefore yield a smaller family of

”Recrfrzirvrédioctober 26, 1956. Presented to the American Mathematical Society, August

1956. Work done under the sponsorship of the Office of Naval Research. Reproduction in
whole or in part is permitted for any purpose of the United States Government,
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systems as answer.

A further specialization in the same direction is obtained, when the
attention is restricted to the matrix 4 above and the question varied as
follows: B

QUESTION. WTJ ch matrices 4 have the property that

(1.5) whenever b is such that (1.2) has an integral solution (that is
whenever b belongs to the integral span of A), then all basic
solutions of (1.2) are integral ?

The subject of this note is precisely the question above, which
will receive a partial answer.
We note first that (1.5) is equivalent to

(1.6) If a column of A is a linear combination of a set of independent
columns of A, then the coefficients in the combination are integers.

The proof is nearly obvious: If d is a column of A, d is certainly in
the integral span of A; hence, when A satisfies (1.5), the basic solutions
of Ax=d are integral, which is precisely (1.6). Conversely, if A satis-
fies (1.6), let 2° be some (not necessarily basic) integral and %’ an ar-
bitrary basic solution of (1.2); let B and C be the set of columns of A
corresponding to nonzero coordinates of 2" and ¢° respectively, that is,

b=L(B)=M(C),

where L, M denote linear combinations. Extending C in A to a basis,
say C™, for the span of A, and substituting in L(B) for each column
of B its (certainly integral) representation in C*, yields an integral re-
presentation of b in C*, which representation, because of uniqueness,
is identical with M(C).

Next we observe that (1.6) is equivalent to

(1.7) THE DANTZING PROPERTY. If a column of A is a linear combi-
nation of a set of independent columns of A, then the coeflicients
in the combination are 1, —1, or 0.

To see that (1.6) implies (1.7): a representation of a column d where a
column ¢ enters with coefficient « 74 0, yields a representation of ¢ where
d enters with coefficient 1/a.

After these remarks the question can be rephrased as: which
matrices A satisfy (1.7)°?

Recent investigations on the subject comprise the following.

In the so-called Transportation Problem, there appears a matrix D,
which G. Dantzig [1] showed to have the property (1.7). This fact was
used by T.C. Koopmans and Dantzig to prove the existence of integral
solutions to the mentioned problem, and by Dantzig [1] to establish a
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simplified computational procedure for solving the problem.

The mentioned matrix D appears partitioned into an upper and a
lower submatrix, and the columns of D consist of all possible vectors
having a single 1 in each of the two submatrices and zeros everywhere
else. If ¢, denotes the »th unit vector, then

(1.8) D={e;+e;} (=12, -+, m; j=m+1, «+-, m+n=r)

Later C. Tompkins and the author [2] showed the property (1.7) to

hold for a somewhat larger class of matrices:
If

WUpy Ugy *ooy Upy Vi Vyy 00y Uy

is a set of linearly independent vectors in r-dimensional vector space
(r > m+n), then the set

(1.9) T={tu;, +v, +@-+v), W,—=uy), (v,—vy)}
(1, %=1, 2, «++, m; 4, 75=1,2, -+-, n)

has property (1.7).

Finally A.J. Hoffman and J. Krushall [5] showed property (1.7) to
hold for several classes of incidence matrices associated with partially
ordered sets.

The property (1.7) will be referred to as Dantzig property through-
out this note. The term wunimodular property has also been proposed
and used [5]. This term seems quite appropriate for the case of in-
cidence matrices, as in [5], where nonsingular submatrices then represent
unimodular transformations; in the general case it is the transition from
one basis in the matrix to another that is a unimodular transformation.

2. Unification of prior results. This is achieved by a few trivial
observations.

First, since the Dantzig property does not depend on the order in
which the columns of A are arranged, it is convenient to interpret A
simply as a set of vectors.

Second, the Dantzig Property is invariant under nonsingular linear
transformations, hence if 4 has the property, so does the image of A
under a nonsingular linear transformation.

Third, in (1.9) the partition of the set of vectors into two sets
{w;} and {v,} is rather artificial. If, for instance, we substitute —w,
for v;, (1.9) becomes

T:{iui’ j:w.,n i(ui_’wj)r (ui_‘ui*)) (w_:*"wj)}

which shows that T can be simply described by
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2.1) T={ta, @—a)} (5 6i=1,2 1),
or

(2.2) T={r,~x;} (G751, j=0,1, -+, 1),
where wx, denotes the null vector, and =z, z,, ---, x, are linearly indepen-

dent vectors.

In the last formulation 7T is the set of differences of the ;. Since
differences are invariant under translations, the z;, in (2.2) may also be
specified as a set of r+1 vectors whose affine span (all linear combi-
nations with coefficients sum equal 1) is of dimension r; in other words,
the w, are the vertices of an r-simplex. This reduces the result (1.9) of
[2] to the simple statement:

(2.83) The set of edges (that s, one-dimensional faces, taken in both
orientations and interpreted as wectors) of a simplex has the
Dantzig property.

In this form the statement is nearly obvious. Clearly, a basis B

among the edges:

(i) contains all the »+1 vertices (otherwise the vectors of B would
be among the edges of a lower-dimensional simplex, and hence
not a basis for the span of all edges),

(i) 1is connected (otherwise the vectors of B would be among the
edges of two simplices of s and r+1—s vertices, so that
dimB<s—1+r—s=r—1),

(iii) is free of cycles (the vectors of a cycle being linearly dependent).

Hence B is a tree containing all vertices and » oriented segments. Any
edge not in B closes a chain in B, which proves the statement.

Using the statement (2.3) one can show the Dantzig property to
hold for a series of incidence matrices (incidence matrices are defined
here simply as having only 0’s and +1’s as entries), some of which can
be identified with matrices exhibited in [5]. Let F be Euclidean n-
space, S an n-simplex in £, T the set of edges of S and B a maximal
independent subset of 7', hence a basis in S. If B is taken as the basis
for the coordinate system, the representation of T is the set of columns
of an incidence matrix with Dantzig property.

It is worthwhile to follow this somewhat closer. Since choosing a
basis among the vectors of 7" amounts to choosing, in the net of verti-
ces and edges of S, a tree containing all n+1 vertices and = oriented
segments, the construction leads to as many essentially different inei-
dence matrices as there are graphically different trees of n-+1 vertices
(note that permutation of columns or rows in a matrix preserves the
Dantzig property, so that matrices obtained from each other by such
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permutations may be considered as cquivalent; by essentially different
we then mean not equivalent).

We point out two particular choices.

(i) The star consisting of all edges radiating from a given vertex
and oriented from this vertex to the remaining vertices. This
yields the set T of (2.1) with the «, as unit vectors.

(ii) The oriented chain obtained by numbering the vertices from 0
to n and taking the set of oriented edges

Ty—Lyy Ly—Xyy **y Ly~ Tp-1

If these vectors are taken as basis in the listed order, then the repre-
sentation of all edges in this basis is the set of all columns that have
a consecutive string of 1’s or (—1)’s, and 0’s everywhere else. This is
a result of [5].

Obviously the transition from one basis to another is a unimodular
transformation.

3. Maximal Dantzig sets. Since with a set D each subset of D
has the Dantzig property, or briefly is a Dantzig set, the interest lies
in determining maximal Dantzig sets.

Obviously a maximal Dantzig set contains with each vector « also
—z. Further, it should contain, but we agree to exclude, the null
vector.

(8.1) A set T consisting of the edges of a simplex is a Dantzig set which
is maximal for its dimension (in the sense that there is no Dantzig
set of the same dimension properly containing T).

Proof. We have to show that when a vector x not belonging to T
is adjoined to T, the new set does not have the Dantzig property. In
the representation (2.1) with the x, as basis vectors, = will have at
least two coordinates of the same sign (both =1 or both =—1), since
all other possibilities are already in 7. Say

c=x+x,+ Lz, -+, 2,),
where L denotes linear combination. But then
r=(x,— )+ 22, + L(a,, -+ -, x,),
that is, the representation of z in the basis
By — Loy Ty By » v oy X,

does not satisfy the Dantzig property, since the coeflicient of x, equals
2£0, +1,
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The question whether every maximal Dantzig set is the set of edges
of a simplex will obtain a negative answer by an example. We first
note that in order to test whether a Dantzig set D can be extended to
contain an additional vector b without losing the Dantzig property, it
is sufficient to test the representation of b in every basis of D. That
is:

(8.2) Let D be a Dantzig set, b a vector not in D, and C the union of
D and {b}. Then C has the Dantzig property if and only if the
coordinates of b with respect to every basis in D consist of 0’s and
+1’s,

To see (indirectly) that the condition is sufficient, let d be a vector of
C, B a basis in C, and let the representation of d in B have a coeffi-
cient =40, +1. Then obviously d=£b, b is in B, and the coefficient of b
is not 0:

d=2b+ b+ -+ 20, (1%40; some 2,%~0, +£1)

But then the representation of b in the basis {d, b,, ---, b,} contradicts
the condition. This proves (3.2), since the necessity of the condition is
obvious.

Further we formulate a necessary consistency condition for the
Dantzig property which will be helpful in the sequel. Let b and d be
two vectors in a Dantzig set D, and C a basis in D. Comparing the
representations of b and d in C, we consider those vectors of C (if any)
that enter with nonzero coefficients in both representations; say these
are ¢, ¢, *+-, ¢, S0 that

b=pci+ur4 oo+ s+ 0 d=riCi+7.CF s 70+

(ﬂZ#O#TL ?'=1! 2! ) S)

Obviously 3,=.re,; €;,=+1. However, we confirm that e, remains con-
stant, that is

(3.3) Bi=er, (1=1,2, +++, 8)

where e=constant= +1.

Proof (indirect). Assume
b=cl+Cg+"°, d=01—62+"°

Replacing ¢, by d yields a new basis in which b is represented by b=
d+2¢,+ - -+, contradicting the Dantzig Property. This proves (3.8), which
excludes ‘‘ mixed incidences’ (and permits to assign an ‘“incidence
number ’’ 0, 1, —1 to every pair of vectors, with respect to a given
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basis in D).
Finally we give the example:

(3.4) Let e, e, e, e, be independent vectors and
A={+e, +e, +e, *+e, +{e,+e,+e;+e),
t(e+e), e +e), Flete), :b(ei+el)} .

Then A is a mazimal Dantzig set which is not the set of edges of
a stmplex.

To see that A has the Dantzig property, we note that the subset
A*, obtained from A by deleting +(e,+e¢,+e;+¢,), consists of (not all)
edges of the simplex S given by the vertices

0, e, —e&, €, —é.

Hence A* is a Dantzig set. The deleted vector is represented with
coefficients 0, +1 in every basis of A% as seen by direct verification.
By (3.2) this implies that 4 has the Dantzig property.

To see that 4 is maximal, assume a vector % can be adjoined to 4
without disturbing the Dantzig property. If 4 is expressed in the basis
e, e, ¢, e, then the nonzero coefficients are all equal, otherwise 4
would have ‘“mixed incidence’ with d=e,, +¢,+¢,+¢, in that basis and
contradict (3.3). This leaves for 4 the following possibilities:

:Ehzel_{‘e\;
+h=e,+e,
+h=e,+e,+e,=d—e, and the equivalents.

However, each of these possibilities contradicts the Dantzig property,
since, after adequate choice of bases, we obtain:

e te,=(e+e)+(e,+e)—2e,
e, +e,=(e,+e)+(e,+e)—2e
e+e+e=(e+te)te+(e;+e)—2e,.

Finally 4 has 18 elements and therefore is not the set of 20 edges
of a simplex (of dimension 4).

4, The two theorems in this section are prepared by the following
lemma:

(4.1) The image D’ of o Dantzig set D under a projection, along a sub-
space N spanned by vectors of D, is a Dantzig set.
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Proof. Let D be in a vectorspace V, both of dimension =,

N the span of {d, d,, ---, .} D, (k<_n; for k=n the lemma
is trivial),

M the range of the projection (some complement of N in V),

{b}, by, + -+, b;} a basis (for M) in D' (hence k+s=mn),

{by, by, =+, b} some set of originals in D (that is b, is image
Of bi)y

b’ an arbitrary vector in D,

b an original of & in D, and

b’:ﬂlbi +ﬂzb;+ e +|Bsb;-

Clearly the set B={d,, d,, -+ -, d,, b, by, »-+, b} is a basis (for V) in D
(a nontrivial representation of o could not have all its nonzero coefficients
attached to the d, alone, since these are independent; on the other
hand, nonzero coefficients of the b, would imply dependence for the &)).
Therefore b is representable in B:

b=rdi+ - +1d+Fb + -+ B0,

where all coefficients, and hence in particular the 3, are 0, +1, which
proves the lemma,

(4.2) THEOREM. A Dantzig set of dimension n contains at most n(n+1)
elements (not counting the nullvector); that s, 4f it contains
n(n+1) elements, then it is maximal.

The proof is by induction on the dimension n. For n=1 the theorem
is obvious. Assuming it holds for dimensions <” %, we prove it to hold
for n(n = 2).

Let D be a Dantzig set of dimension % >>2 containing at least
n(n+1) elements. We may assume that D contains with each vector also
its negative (otherwise we extend D to that effect, since adjoining the
negatives does not remove the Dantzig property).

After choosing a basis B={b, b, ---, b,} in D, D is projected along
b, on the span of {b, by, -+, b,}. Then the image D’ of D is of dimen-
sion <{ n—1, has the Dantzig property (by Lemma 4.1), and, excluding
the nullvector, has at most n(rx—1) elements (by the induction’s assump-
tion that the theorem holds for dimensions < ).

We prove that D has at most, and hence exactly, n(n+1) elements,
in showing that the number of nonzero elements cannot be reduced, by
the projection, by more than 2n=(n+1)n—n(n—1); this will be shown
in two steps, namely:

(i) that a vector in D’ is image of at most two originals in D, and
(ii} that the set of nonzero vectors with double originals consists of a

linearly independent set and its negatives,
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If distinct vectors 2 and y of D have the same nonzero image,
then, with respect to the basis B, they coincide .in all but their first
coordinates. Further they cannot both have nonzero values for the first
coordinate, since these would then have to be 1 and —1 and contradict
the consistency condition (3.3). Therefore the first coordinate of the
two vectors is 0 and +1 respectively. This implies that no three vec-
tors can have the same nonzero image. If the image is 0, the only two
originals are +b,. Hence

(4.3) a vector 2’ in D’ is the image of at most two vectors « and y in
D; if x4y and a’'=y %0, then z=2" and y=a'+b, (if a'=0,
then a=+b,, y=%Fb)

Denoting by D* the set obtained from I’ after removal of the null
vector, let E* be the set of vectors in D* that have double originals in
D. Since D contains with each vector also its negative, so does E*.
Furthermore E* is also in D. If 2’ is in E*, then its originals are

2’ and y=a +eb, (e==+1)

while the originals of —a’ are —z’ and —y=—2a'—¢€b,.

From the pair —2a’, @ we choose one vector, call it d’ so, that its orig-
inals are d’ and d=d’+b,. Making this choice from each such pair in
E*, we obtain the set F*={d;, d;, - -+, d;}, where certainly d; 7%= +d; for
17, and d; and d,=d;+b, are the originals of d; in D.

An indirect proof will establish that the vectors of F™* are linearly
independent. Obviously a linear relation between them' must involve
at least 3 vectors, say the first 3, with nonzero coefficients (which im-
plies in particular that the assertion is true when F™* contains less than
3 vectors). We consider separately each of-the two following possibilities

(1) di=+(d;+dy) + L(ds, + -+, d))

where L denotes a linear combination with nonzero coefficients through-
out. We assume to have chosen, among all existing linear relations, the
one that involves the smallest number of vectors. Then the vectors ap-
pearing on the right hand side, that is d,, d;, di, ---, d;, are linearly
independent. Therefore each of the following two sets in D is also
linearly independent:

(a) bl! dz; dsr d;y d;y Tty d;
(b) bl; d;! d:ﬁ; d;y d;n Sty d; .
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We now obtain,
in case (i): di=+(—=2b+d,+d))+L(d,, «+-, d;)
in case (ii): d,=2b+d;~d,+IL(d, ---, d}),

hence in either case a contradiction to the Dantzig property (note that
all vectors are in D).

This completes the proof that the vectors of F'* are linearly indepen-
dent, which implies, because of dim D* <n—1, that F* contains at
most n—1 vectors. Hence E* contains at most 2(n—1) vectors.

Now, since E* consists of all nonnull vectors with double originals
and the null vector has two originals (namely +b)), it follows that the
number of vectors in D exceeds the number of vectors in D* by at
most 2n. Since D*, as a Dantzig set of dimension <<n—1, contains at
most n(n—1) vectors, it follows that D contains at most n(n—1)+2n=
n(n+1) vectors.

This completes the proof of Theorem (4.2), and, in addition yields
the following conclusions, which will be used in the proof of next
theorem.

From the assumption that D contains at least n(n41) vectors it
now follows that

(4.4) D contains exactly n(n+1) vectors
D* contains exactly n(rn—1) vectors
F* contains exactly »n—1 vectors,

and hence

(4.5) Fr={d, d;, -+, d,-,} is a basis in D*,

(4.6) THEOREM. If a Damntzig set D of dimension n contains n(n+1)
vectors (not counting the null vector), then D is the set of edges of
an n-stmplex.

Proof. We will construct a basic H={A,, A, ---, h,} in D, such
that every element of D which is not in H, is a difference of two ele-
ments of H. The mechanism that governs the construction is based on
the obvious geometrical picture (assuming the theorem true).

We take over the projection, notation and facts from the proof of
theorem (4.2); the assumptions made in that proof contain the assump-
tions of the present theorem as special case (note, that the induction’s
hypothesis made there, is now a true statement).

For ease of writing we renumber the vectors of F7* in (4.5) to

(4.7) Fr={d,, d;, ---, d,} ,
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and first show that

(4.8) the representation of an element of D* in the basis F'™ has at
most two nonzero coefficients.

Proof (indirect). Let 2’ be in D*, and
r’'=e,d,+ed;+ed+ L(d;, ++ -, dy); e,=+1.

We distinguish whether 2’ is, or is not, in D.

(i) 2’ is in D: We use the fact, that two of the e, are equal, say
€,=¢e;=1 (if=-—1, we take —2’), and consider the basis in D (see page
1356):

bl! dz; di%; d;’ d“:; Tty d;z .
Then
x,:—2b1+dz+d5+€4d;+L y

which contradicts the Dantzig property.

(i) 2 is not in D: Then its original z=a'+eb, (¢e=+1) is in D,
and we distinguish whether all three e, are equal or not. In the first
case we may assume all €,=1 (otherwise we take —z), and obtain, after
adequate choice of basis

r=(€-3)b,+d,+d;+d,+ L,

where €e—3=—2 or —4 contradicts the Dantzig property. In the second
case, € and one of the ¢;, say &,, have opposite sign. Then a contradic-
tion is obtained by the coefficient of b, in the representation

r=(c—e)b, +ed,+ed,+ed.+ L.

This completes the proof of (4.8), and furthermore establishes the more
specific assertions (i) and (ii) of the following statement:

4.9) (i) If « of (D*—E*) is in D, then x'=d,—d,,
(it) If ¥ of (D*—E™*) is not in D, then +y'=d,+d,,
(iii) Conversely, for any two distinct d, and d, of F'*, either +a’
of (1) or +y of (ii), but not both, are in (D*—E*).

Part (iii) follows from the fact that D* has n(n—1) elements and the
observation that the sum and the difference of d, and d, cannot both
belong to the Dantzig set D* because of the consistency condition (3.3).

By means of (4.9) F'* can be divided in (at most two) classes, by
putting two distinet vectors of F'* into the same class when their dif-
ference is in IV,
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We first prove that this is an equivalence relation. Reflexivity and
symmetry are obvious. Transitivity is shown indirectly. Let only the
first two of the following three differences be in D’

di—d;, di—d;, di—d; .

Then in particular d;—d; %= o0, and hence by (4.9 iii), d;+d;=d’ is in D*.
But then

d'=(d;—d;)—(d;—d;)+2d,

violates the Dantzig property of D*.

To see that there are at most two classes, we assume that dj, dj,
d; belong to three distinct classes, which by (4.9 iii) implies that the
sum of any two of the three vectors is in D*. Then the representation

(di+ di) =(di+ d) +(d;+ d) — 2d

violates the Dantzig property of D*. This establishes that F* decom-
poses in two classes

I= {d;y d:;9 c d}i}
= {dis1, dissy =+, d3}
(where II may be empty), such that

(4.10) (i) the difference of two distinet vectors of the same class is
in D*
(ii) the (positive and negative) sum of two vectors of distinet
classes is in D*
(iii) the representations (i) and (ii) comprise all vectors of D*
which are not in E*

We are now ready to construct the basis H={h, &,, ---, k,} of D,
setting

(4.11) hi=b; h=d+b 2<Li<k);, h=—d;, (k<j<n).

That A,=d;+b,=d; is in D, follows from the construction of the d; on
page 1359.

To verify that every « of D is represented by either xz=4+h, or
x=h,—h, we consider the projection 2" of x, so that w=a'+ab, where
« may be one of the values 0, 1, —1. We may disregard «= —1 (which
amounts to consider only one vector of each pair #, —z), and distinguish
the following cases:

(a) 2'=o
(b) 2'%~0 and a=0
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(¢) a'z%0 and a=1.

(a) implies x=b,=h,.

(b) implies =2’, that is, z is in D*; we distinguish (bl) z is in E*,
(b2) z is in D*—E*,

(bl) implies +x=d;; hence, according to whether d, belongs to class I
or II, we have either +x=h,—b=h,—h, or +tx=—h,.

(b2) and (4.9 i) imply #=d,—d;, where the last two vectors are in the
same class because of (4.10); hence either =#h,—h, or x=—(h,—h,).

(¢) implies x=a'+b,; we distinguish: (cl) 2’ is in E*, (¢2) 2’ is in
D*—FE* and in D, (¢3) ¢’ is in D*—E* and is not in D.

(cl) implies = +d,+b,; the negative sign would yield mixed incidence
of z and d,=d,+b, and hence contradict (3.3); this leaves only
x=d,+0b,; hence either x=hn, or x=>b—h,=h,—h,.

(c2) cannot occur, since &' 7~ « and 2’ in D imply that 2’ has two dis-
tinet originals in D and therefore z' is in E*,

(€3), (4.9 ii) and (4.10) imply «’'= +(d;+d}); hence x= +(d;+d;)+b; the
negative sign would yield z=—d;—d,;+3b, violating the Dantzig
property. This leaves only

This completes the proof of Theorem (4.6).

5. Open questions. While the set of edges of a simplex, which we
may briefly call ¢ difference set’’, is maximal in the sense of statement
(3.1), it is, by Theorems (4.2) and (4.6), also maximal in the sense that
it contains the largest number of elements for its dimension. Obviously
the class of all difference sets of a given dimension can be obtained
from a single one of its members by nonsingular linear transformations,
and we may consider the set

(5.1) D={e;—e,} (15%7; 1, =0, 1,-+-, n; eg=0; e¢,=ith unit vector)

as a canonical representative of the class.

In regard to computational aspects we refer to [3].

For dimensions » =>4 the example (3.4) establishes the existence of
other maximal Dantzig sets of necessarily less than n(n+1) elements.
A classification of these sets has not been attempted, yet would certain-
ly constitute the next natural step. The problem may be formulated as
follows: Determine, for each dimension 7, a complete (obviously finite)
set of representatives D,, D., -+, D, (k=Fk(n)) of maximal Dantzig sets,
in the sense that

(i) two distinet D, are not related by a linear transformation
(ii) every maximal Dantzig set of dimension % is the image of some D,
under a linear transformation.



1364 I. HELLER

6. Interpretations. Geometrically, the statement (3.1) and Theorem
(4.6) solve the following problem: Given a set S of n(n+1)/2 (free)
vectors %40 in Euclidean space, such that S is of dimension n, and
does not contain the negative of any of its vectors; what is a necessary
and sufficient condition that S may be so arranged in space as to form
a simplex? Statement (3.1) gives the Dantzig property as obvious ne-
cessary condition, while Theorem (4.6) proves that it is also sufficient.

The considerations of this note were carried on in vector space in
order to assure the benefit of intuition from the geometric picture. It
is clear, however, that the study of Dantzig sets belongs properly to
group theory; from the number field underlying the vector space only
the integers are used, which amounts to actually restricting the con-
siderations to an Abelian group. To interpret the results in terms of
this structure, let G be a free Abelian group, and S a set of rank =,
in G. The Dantzig property for S is, by §1, precisely the condition
that every set of n linearly independent elements of S span the same
group as S. In particular; if S spans G, the Dantzig property means
that every set of n linearly independent elements of S is a basis for
G. The translation of statement (3.1) and Theorems (4.2) and (4.6) is
immediate (compare [4]).
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ADDITION THEOREMS FOR SOLUTIONS OF THE WAVE
EQUATION IN PARABOLIC COORDINATES

HARRY HOCHSTADT

1. Introduction. The wave equation
AU+ EU=0
admits solutions of the form

UK,,AL= AK,M(S)BK M(U)Cxu(qs)

if the coordinate system is such that separation of variables is possible.
&, 7 and ¢ are the three independent variables, and ¥ and g represent
arbitrary complex parameters. In general U,, will not be regular and
one-valued over the whole space, but will be so for special values of &
and p. Let ¢, v and ¢’ be functions of & 7, and ¢ resulting from a
translation or rotation of the coordinate system; then a relation which
expresses U, (&, 7', ¢') as a summation of terms of the form U,.(& 7, ¢)
is called an addition theorem.

Addition theorems for cylindrical and spherical coordinate systems
are well known. These are the addition theorems for Bessel and Hankel
functions, Legendre polynomials, spherical harmonics, Mathieu functions
and spheroidal wave functions (see Meixner and Schiifke [5] and Erdélyi
[2]).

It is proposed to derive such addition theorems for those functions
of the paraboloid of revolution which are regular and one-valued in the
whole space. As will be seen subsequently, these restrictions are not
always necessary. That such theorems might exist can be inferred from
the invariance of 4U under rotations and translations of space, and from
the fact that the family of solutions that are everywhere regular and
one-valued will be mapped onto itself by motions of space.

It is possible to derive several of these theorems by using known
addition theorems. For example, it is possible to derive linear relations
between the functions of the paraboloid of revolution and spherical
harmonics, Since an addition theorem under a rotation of coordinates
is known for the latter functions, it is possible to derive one for the
functions of the paraboloid of revolution.

2. The functions of the paraboloid of revolution. The introduction

mRecierivedr November 14, 1956. The work was sponsored by the Office of Scientific
Research under Contract No. Af 18(600)-367. The author wishes to express his thanks to

Prof. W. Magnus for suggesting the problem considered here and for his help and interest
during the course of the investigation.
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of the parabolic coordinates

x=2)/E7 cos ¢
y=2V¢ysin¢
z=E—7
into the wave equation
AU +EU=0

leads to the equation

1 { 0 50U 0 50U  E+10°U

] +kU=0 .
2+ Lo o oy oy 28y 6(;5"’}

The method of separation of variables then shows, that the solution U
can be expressed in terms of functions of the type

U= e .

In the notation of Buchholz [1], these can be represented by

1Fl( 1+ p —x; 14+ p; ~—2ikE>
Ji&)=ml(—2ik&) = (— 2ikE)H? ¢ N2 )

and
FO=wt(~2ike)= | =2kt mi~ 2 7,
T /l _ ‘—/1 _ 4
r ( 2 x) F( 2 )

In case ¢ is an integer, wi(—27k&) must be derived by a limit process
from the above definition. Similarly

) . 7 1;" o 14 2@157;)
=my(2ikn) = (2kn) ‘et -
Jom)=mi((2ikn) = (2iky)*" e rds

and

flny=wy@iby— T [ k) miik) ]
sin 7p F<1+‘u——x> F(l_/’—x> '
2 2

When p is an integer the funection mi(z) is regular and single-valued
over the entire space; w4(z) in general is neither single-valued nor
regular.
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1+ p

For the case y=n-+ the function mi(z) can be expressed in

terms of the more familiar Laguerre polynomials

n!
n. 2 g=2l2] p
1+u( ) I (?’L-}-/l 1) (z)
However, the more general notation introduced by Buchholz in his book

on confluent hypergeometric functions will be used throughout this
article.

The generating function for the functions
aupy="AENEE) e (2GR n=0, 1,2, -+
7. 2 2

is known as the Hardy-Hille expansion (for proof and additional reference
see [1].) For the sake of completeness, it will be stated as a theorem.

THEOREM 1. For |t| <1, p%£ -1, —

exp [ik(é 77) } ,L<4k11{:t77t> —iud

(- ab o= ZQ(P)( = tu/z(1+t)f

The case in which g is a negative integer must be treated with
some care. From the limit relationship [1]

lim mt 1+M( 2ikE)m”: IJ,,L(Zzlmy)

M= —m

r n! : m > m y
L(n —m) Y} M 1-n( =20k my - (20k7) n

WY
3

0, n<m
it follows that

lim G#(P’ t)=(~—f,)me(P, t) e".’imd) .

> —m

A relationship between the spherical wave functions and the para-
bolic functions can now be established. The Fourier expansions of a
plane wave in cylindrical and spherical coordinates respectively are [4]

exp (tk[z cos ¥ +p cos ¢ sin ¥])= }_‘ ime, o, (kp sin &) e*2°*¥ cos me ,

m=0

o=y 2(27@4—1)%" wripz(kr)Pa(cos 7)
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cos y=cos 0 cos¥ +sin 0 sin ¥ cos ¢ ,

n —m)!
P,(cosy)= D¢, (n—m) "P(cos 0)Pr(cos ¥') cos mep .
=0 (n+m)!

Comparison of coefficients of cosm¢ leads to
exp (tkz cos U')J . (kp sin ¥)

= 3 i@+ 1) PTG () Pr(eos 0)P7(cos T)
n=Tm| (n+m)!

m=0, +1, +2, --- ,

where
k)= T T eplkr) .
Juller) ‘/2]67‘ k)

1

If we substitute 1;? for cos ¥ here, introduce parabolic coordinates,

and then use Theorem 1, we obtain an expression for G, (P, t) in terms
of spherical harmonics :

1—t\ _,

PZ’J( , >e""”¢
P —m)! 1+¢

2) G.(P, t)= S, i""(2n +1 (n—m) (er) P gy LFt/ ’

(%) (#0 n%z (an )(n+m)!j (k) P (cos 0) tm*(1+1t)

r=£f+79, cos =577
+7

The right-hand side of (2) can be expanded in a power series in ¢ by
using ‘

1—¢ (n+m)! - t
P70 o F(m—n, men+1; 1m0 )

Gae) OV oy fimmm mnddiddmsy )
t(1+1) ml(1 42y ’

The left-hand side of (2) has been defined as a power series in ¢ by
equation (1). Comparing coefficients of equal powers of ¢ in this series
leads to

onP)= . a(n; m, 5)j,(kr)P(cos O)e=*

(3)

a(n; m, ) _i"(2n+1) }i (=Y (m=n)p(m+n+D)ey(r+m+1)c-pn ‘
m! 7= (m+1)(s—r) r!

m=0,1,2, ---.
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That the above series converges everywhere follows from the fact that
a(n; m, s)P%(cos 0) behaves like a power of n for large n, but 7,(kr) is

of )

In order to find the inverse to the above relationship, the variable
w
1—w

it now follows that

t is replaced by in (2). From the resulting power series expansion

(4) S (—y HlonEDT onpy

= —s)lm+9)!
= 5 i en 1)2" m;’b(n m, 1) ju(kr) P2 (cos f)e=m
=0+
where
b(’)’l; m, l)_(7l+m+l)' ’ m:O’ 1’ 2y b

(n—m—1)!
The following vectors and matrices can now be defined :

wlm= 3 (- OO o),
/ ay(m)
a(m)
Almy=| am) |,

lp(m)_,bn-x-m(zn_{_ 1)2% m;' _’]n(kT)Pm(COS 0)6 Lm<1>
B..(m)
/9m+1(m)
B(m)= ﬂm+2(m) ’

b(m; m, 0) b(m+1; m, 0) blm+2; m, 0)
0 bm+1; m, 1) b(m+2; m, 1)
C(m)= 0 0 b(m+2; m, 2)
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With this notation the system of equations represented by (4) can be
written as

(5) A(m)=C(m)B(m) , me=0,1, «er .

In order to express the spherical functions in terms of parabolic func-
tions it is necessary to invert the system (5). The inverse of the matrix
C(m) is given by
r(m; m, 0) y(m; m, 1) 7(m; m, 2)
0 rim+1; m, 1) r(m+1; m, 2)
C-'(m)= 0 0 r(m+2;m,2) --- |,

where

(___ )7L+m+l(2,n + 1)

;m,y )= .
T D=t D on et Lt 1))

To prove the assertion that this matrix is really the inverse of C(m),
it must be shown that

>

ﬂ y(m+g; m, i)b(m+k; m, 1)=47,, .

.

We have

S r(m+ 55 m, b(m+k; m, 0)

=)

_ i (=)*(2m+274+1) 2m+k+1)!
=i (= DICm+ 7 +i+ DIk —1)!

—  @mAktil Gk, 2me k41 2m 2425 1)
(k=N 2m+27)!

(2m+k+j)! I'Cm+25+2)'(1) Z{O, k=147

B (=N @m+2)! I'Cm+Ek+j+2)['A+7i—k) 1 =3,
Use of the inverse matrix allows one to write
(6) Ju(kr)Pp(cos O)e=™*
SEZiZ;: [ (j—nim)[z((zm)gjﬂ)z }‘J:u =) (.7'—"3)?(!7%@43’)!'“031 ).

One can now state

THEOREM 2. For m=0,1,2, ---.
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02(P)= X, a(n; m, )7, (kr)Pi(cos e+
§)— 1" "(2n+1) i (=)y(m—n)o(n+m=+1)(r+m+1);, ,

a(n; m
( ’ m! 70 (m+1)(s—r) !

Julkr)Pr(cos 0) e~

_(m+m)! & mE DT Sy 7! onp).
(n—m)! 1<m (j—n+m) (m+n+j+1)! = (j—s) (m+s)!

It is not permissible to interchange the two summations in (6) because
the coefficient of the inner summation is O(1/j). Although the series
does not converge absolutely it can be shown to converge conditionally.
The inverse Laplace transform of the Kummer function is given by [2]

(= 20k exp | —zites(1- )]
3 ©

m+1
2

S (=0 L+ m; —2tké)= dz

2m1

where C is a circle enclosing the origin and z=1. If Q¥ P) is expressed
in terms of Kummer functions, then (6) can be rewritten as

L rPreos e-mi— §; (EMLITe e+ DI 5) e

s (m—m)!  (G—n+m)(m+n+j+1)
2k (nS—-32) [~
. 1.. S S ‘:’,ﬁ_utl +},_l]jdzdc .
2miy Jodor (20)"' Lz ¢ 2C

1
¢
ficiently small so that an interchange of summation and integrations is

permissible and the series converges. One then obtains the double
integral

On sufficiently large circles the quantity [1 + = 21 becomes suf-
2 2

juler) P2(cos 0)g=mt = (P! o7t ]
" * (n—m)! (2k1/ &)™ (2n+1)!

21k (g~ £2) n-m
1 SS o [1+1—1] ZFl(n+1,n+1; 2n+2;
[

C@miy e @ Ly T x
VR l)dzd: .
£ oz Lz

As consequences of Theorem 2 and the integral relations [4]

” !
S P(cos ) P2 (cos ) sin 0 @ — _2ntm)t 5
0 2n+ 1) (n—m)!
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S”[PW(,CQ,S}?}]@Q (n+m)!
0 sin ¢ m(n— m)'

one can state the following.

COROLLARY 1.

m 2 — —im¢ 2 2(n+m)'
S [Q"(P)J sin 0 d6 — Z[a(n mo iler)emop , ALEE

m m, 3 — . y 2(&'*_’1"’_)1 p-im¢
S QM P)PMcos 0) sin 0 df=a(n; m, s)j,(kr) @ +1)(n—m)] e
S"Q’”(P)P;,"(ycpsﬁ) ad ia(n m, 8)j.(er)e-imb (n+m)!

sin 0 —m P m(n—m)!

n(PYOM. " ume _ 2(m+m)!

S QP)OH(P) sin 0 d0— S\ alw; m, sa(n; m, o) (kr)e- o D

3. The addition theorem resulting from a translation of the axes
along the axis of symmetry.
Since 2z is the axis of symmetry one can introduce the translated
coordinates

4

d=x, Y=y, Z=z—6 .

It follows from Theorem 1 that

eXp[WHt] <2k1p l/tt )e—w roo1—t
7 P )y=-—— — 21" LA LeT T V]G P t).
(7) GJP,?t) o (1 4 14) exp L@ S s (P, t)

In particular, for pg=7=0, £=¢, Theorem 1 yields
exp | ike ) 4 |= (1 0) Smbvan—2ik) (1)
1+¢ 7=0

Using this expression in (7), expanding and multiplying the power series
in ¢ and comparing coefficients, we obtain the following.

THEOREM 3.

Qz(P)=§ [m?z+1/2-—j(_Zq:kEO)+m[7)l—l/2—j(_2?:k50)(3n3_1)]!-')";(13/) ’
p%~=-1 -2, n=0,1,2, ...

The case in which ¢ is a negative integer can be handled as a limiting
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case of Theorem 3. By differentiating both sides with respect to &, at
&,=0 one obtains the following.

COROLLARY 2.

d u 3,
Py  =-3oeupP)(1-29m).
doipey B~ B )(1--)

In particular for =0 one obtains from the above

1 d .
;,l!F(l+p+n)d’(2ik5)mﬁ+(l+;¢)/z(—2?;]{}5)
= 1,. Illm¢;+(1+’l.)[z(_2?:k5)1—'(1+I[j+n)
4ikén!

n

v . . 6n
+ 3 -11 I(1+/l+_’})m1'f+(1+u))z('—2’bkf) (1-—;,23 ) .

Jj=0 2

It is possible to define a vector

24(P)
2(P)

VHP)=| 2(P)

and a matrix

where

B atmzm—j(—ziksu)+ma_m_](—%ksu)(am—l)] , n=>j
o, n<j,

such that Theorem 3 can be restated as follows.

THEOREM 3.

VHP)=T(E)VHP)  pF—-1, =2, =3, «--.
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4. The addition theorem resulting from a translation of axes perpen-
dicular to the axis of symmetry.
The translation can be assumed to be in the z-direction without
loss of generality. Introducing the new coordinates

4

x='—0, y=y, z=2,
R=Vv/p*+ 5 —2pd cos ¢’

-4 — p—=0e"?

p—0e'?’

b

P:(W, Y, Z) ’
P=@,y,72),
one obtains from Theorem 1

o 1—t¢ 2kRY ¢\
e ]]( B i
exp[z Tt Tae )e

GuP, )= t2(L +t)

Under the condition p >3 one can take advantage of the addition
theorem for the Bessel functions

Ju(kR)e~ " = s I (k0) T, (erye=iCne

and obtain

Tt 2kpv/ t i .
s ) exp [%kz ]']711—;1.( e i(m+p)d
G#(Py t): ZJ,L <2k()1/ t >t7zlz = 1j~t ]_+t >

1+t (] 4 t)
(8)
=iJn(2ka/,t>t"”G“n(P’, £) g1, £2, e
== +t

The case where g is an integer must be handled as a limiting case.
To determine the addition theorem one must expand both sides in powers
of ¢ and compare coefficients. Using

(V) S
1+¢ =

g3y (GO (=Y (@s— 24 )
S (s—r)lri(n+s—1r)!

’

one obtains the following.
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THEOREM 4.
(=F2P)=3] 3} 0ems@(P)+ 5 (=) 3 s (P)
for p==+1, 2, -.. . For p=m, with m « positive integer,

(=2 P)= 5 50, P+ 3 S 0 (=P B PN

J=0n=m
For p=—m

lim Qg(P):{Q” € n=m
pr—m 0, n<m.

Another method by which such addition theorems can be derived is
to take advantage of a theorem by Friedman [3], which is an addition
theorem for spherical harmonics under translations of the coordinate
system, This theorem in combination with Theorem 2 will yield an
addition theorem, but in a very cumbersome form. Conversely the
theorem for spherical harmonics could be derived by using Theorems 2
and 4.

A similar plan will be used in the next section. The addition
theorem for spherical harmonics under rotations of the coordinate system
in combination with Theorem 2 yields the corresponding theorem for
parabolic functions.

5. The addition theorem resulting from a rotation of coordinates.

Since a rotation about the axis of symmetry, namely the z-axis,
yields trivial results, a rotation about the y-axis will be used without
loss of generality. Let

2=z cos ¥ —a' sin¥
(9) x=a' cos ¥ +2z sin ¥
y=y .

Under this rotation the following addition theorem holds for the spherical
harmonices [2]:

m -3 Z|) 1 N\ ,—ilp’
P(cos f)e™ b= L 0 (n | Surmn+ (@ YPIU (cos )14 |
(n+I])!

where

S;{m’n+l(?p‘):(— )72+m<n"‘m)(cos ?!;‘)—m—y (@ Sln 3[2/‘>nz~l

n+{

° 2F1(‘“n—-l, n—Il+1; 1—m—1; cos‘?%)



1376 HARRY HOCHSTADT

for m+1<C0, and
7 PN\ ML YL N\L-m
S;ﬁ:"’“”(’]f):—<n+m><cos ]I/> <—i sin ! )
n—1 2 2

. 3F1<l“n, n+l+1: 1+m+1; cos? g)

for m+1>0, and where

(1, =0
9= . .
((=1), {<0.

Using the above in conjunction with Theorem 2 one can state the full
addition theorem.

THEOREM 5. Under a rotation of coordinates (9) the following state-
ment holds :

o n - ’ oo N RS N ll)!‘lz
Qr::. P — /; s Y lSzn myn+1 IF ? [(.7+‘ i
(P)= 2aln; m, ) 30 O 2 G UG 74 11 1))

. S )8 7777,4.7:!7”_“7,@“ PHelt-0¢
2 )(j—s)!(m+s)! F(E)e '

6. The infinitesimal transformations. It is possible to restate the
addition theorems for infinitesimal transformations. The theorem for a

translation along the z-axis can be rewritten from Theorem 3 :
a/n,j:l/yn’?z-iﬂl/z—j(‘—Z/ikg())+m?z~1/2—j(—2/l:k§())(8nj—1)_] , n=>j,

where

mi(z) = F, (; k1 z) .

For small values of &, namely d&,, it follows that

s+ 20z, (1= 07} n >
am:{ 2
0, n<J
and that
100 -
2 10 1
(10) T(de)=I+ikde,| 2 2 1 «-- |,

|

Ve
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where I is the identity matrix.

THEOREM 3"”. Consider an infinitesimal translation along the z-axis
such that

=, y=v, ?=z—d§, .
Then
VHP)=T(d&)V*(P') , pt—1, =2, ««.

where T(d&,) is given by (10) and V*(P) is as defined in Theorem 3'.
Similarly one can find the addition theorem for translations in the
x-direction from expression (8):

GuP, )=3 J(z’“f]r/tt )EG (P )

For a differential translation dé this expression reduces to

kdo

GM(P) t):G.u(P y t)+1+t

[tGuH(Plr t)_'GM—I(P/’ t)J

from which it is possible to state

THEOREM 4'. For an infinitesimal translation of coordinates given
by

r=x—do , y=vy, 2

I
[

the following holds:
Qq;(P):QZ(P’)—kdb‘{ S OEPY 4 S Q;‘“(P’)} o0, —1, =2, .
£=0 =1

For negative integral values of ¢ one can use limit processes.

To derive the analogous theorem for a rotation of coordinates it is
first necessary to derive the addition theorem for the spherical har-
monics. This can be done conveniently by starting with the following
definition of the spherical harmonies [2] :

(11) (D, +iDy t = (ZVT =L pueog gygrime
,],1 ,)4I1+
where
p=%, p=%, p-?¢.
dz de dy

Under the rotation
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¥’=zsin?+xcos ¥
y'=y
Z=zcos ¥ —sin¥

these differential operators are also transformed :
D\=D;cos ¥ +D,sin¥
D,=—D;sin¥ + D, cos ¥
D,=D;s .

Let

D,—iD=Q, D,+iD,=Q .

Then it follows that
(12) Dy-QO:[D; cos ¥ + ; sin WQ’+§’)]”""[—D; sin ¥
1 ’ raYs 1 ’ VaYi "
o esT@+ @)+ L@-D)] .

The existence of the operational equivalence

@l =-ml

r 7
follows from
(D+QQ) L =41 —o.
r r

If ¥ is taken to be a ditferential angle d¥ in (12), then one obtains
from (11)
(13) e~ PT(cos 0)=e " P™(cos 0’)

— d;F [e-im*D¥ Prti(cos ') — (n+m)(n—m+ 1)e~ "D Pr-l(cos 0')] .

Equation (2) written in the form

G, (P, t)
.2F1<m—n, m+n+l;, m+1;- 2 )
1+¢

=3 (20 + 1)4,(kr)P?(cos 0) e~ ™
2 @n e+ 1)gker)Pri(eos O)e ml (1+¢)
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combined with (13) yields

GulP, ) =GoP, )= S iom @+ 1), ()P cos 0)em'no0¥

zE(’m—n, m+n+1; m+1; L )
1+¢

ml (L + )"
(14)

Z 7 ™(2n+1)7,(kr)Pr-"(cos 0')e i (m-D¢

n=m

(n+m)(n m+1)F<m n, m+n+1l; m+1; _f_ )

Coml @+

In order to be able to rewrite the above as generating functions one
can make use of the differentiation formulas [2]

gz[zm“(l—z)m“zﬁ’l(m——n+1, MmN+ m+2; 2)]
=(m+1z(1—=2)" . Fi(m—n, m+n+l;, m+1;2),
jz[zFl(m-—n—l, m-+n, m; z)]
=—_(n+m)7%—':m+1) Fi(m—n, m+n+1; m+1;z2) .

Using these in (14) one obtains

—@ ey LI+ G (P, 8] |
from which one derives
’ 'def ’ ’
Gm(P’ t):Gm(P , t)+ [(m+1)Glﬂ+l(P t)+t(1+t) m+1(P ’ t)
— (m—1)Gy (P, t)—(1+t)(% Goor(P, t)] .
One can now state the following.

THEOREM 5. Under the infinitesimal rotation
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' =x+z2d¥ , y=y, Z=z—xd¥
one has the formula

zd!

QNP)=2(P) + [(m+1+n)Q2* (P') — (n—1)221(P")

—(m+n—12(P") +(n+1)2 5 (P)] .
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THE COEFFICIENT REGIONS OF STARLIKE FUNCTIONS

J. A. HUMMEL

1. The coefficient regions of schlicht functions have been studied
at some length by Schaeffer, Schiffer, and Spencer [2, 3]. Properties
of these coefficient regions are obtained only with difficulty, and in
particular the actual coefficient regions can be computed only with a
great deal of labor [2]. In fact, the computations necessary to deter-
mine the coefficient region of (a,, a;, a,) probably would be prohibitive.

The class of starlike functions is of course much simpler in be-
havior. Since f(z)=z+da.2>+az’+ --- is starlike if and only if zf'(z)/f(2)
has a positive real part in |z] <1, one might say that everything is
known about such functions. However, in practice, our rather complete
knowledge about functions with positive real part proves difficult to
apply back to the class of starlike functions. This is easily seen to be
true by noting the number of papers on starlike functions which appear
every year.

In an earlier paper, the writer presented a new variational method
in the class of starlike funections. It is the purpose of this paper to
apply this variational method to find the coefficient regions for starlike
functions.

Let S* be the class of all normalized functions f(z)=z+ a2 +a;2*+ + - -,
schlicht and starlike in the unit circle. Let V) be the (2rn—2) dimen-
sional region composed of all points (a,, as, ---, a,) belonging to the
functions of S*. Since the class of functions p(z) with p(0)=1, regular
and having a positive real part in |2| <1, is a compact family, so is S*.
Thus V, is a closed domain (i.e., the closure of a domain).

We will study Vi by determining its eross sections with a., a,, *+ -, @p-;
held fixed. In §2, a simple proof of the fact that each such cross
section is convex is given. It is then shown that any point on the
boundary of this cross section must lie on a particular circle, and thus
that the cross section itself is a circle. The actual equations for the
region ¥V} can be determined for each » by means of a simple recur-
sion, but the calculation becomes tedious after the first few .

2. For fixed a, as, -+, a,,, let CF=C}¥(a,, +--, a,.;) be the two
dimensional cross section of V} in which «, varies.

LEMMA 1. C} is a closed, convex set.

ﬁeceiveé June 24, 1957. The work reported on here was done while the writer held
a National Science Foundation post doctoral Fellowship. The writer wishes to thank Pro-
fessor M. Schiffer for many helpful conversations during the course of this work.
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Proof. C} is certainly closed, since it is a cross section of the closed
set V¥, To show that it is convex, we introduce a new variation.

If f(z) and g(z) belong to S*, define for any ¢, 0 e <1,
(1) h(2)=1(2)"*9(2)" .

Here, appropriate branches of the powers are chosen so that 2.(z) is
regular at the origin and has a series expansion z+4 .- there. Taking
the logrithmatic derivative of (1), we have,

0) & e
Therefore, if f and g are in S*, so is A(z), for all ¢ between 0 and 1.
If f(2) and g(2) are any two functions of S* belonging to C3, say,
J@)=fi(@)+a2"+ -+, 9@)=[f(z)+bz"+ -+, where f(z)=z+az"+ -+
a,-z""', then by direct computation from (1),

2h(@) _ g _ 2@ 4 20'(7)

rmrrs{in ) (1)

=f,+[a,—e(a,—b,) "+ -,

and so, as ¢ goes from 0 to 1, the n-th coefficient of %.(z) moves along
the line between a, and b,. Therefore this entire line segment is con-
tained in C}, and the lemma is proved.

3. In an earlier paper [1], the writer showed by use of a vari-
ational method in the class of starlike functions, that any function f(z)

in S* which maximizes Si{imv} must be of the form

y=2

(2) f@= % =0, Xp=2 m<n-1
I (1—r2)™
and that f(z) must satisfy the differential equation
(3) ?f,/,(ﬁ',),R )=Q(),
f(z) ( )
where

RE&=3 245 % Sarae],
g v=2 p=1gv ¢ p=1
(4) (

N ” V-1 y—-1
Q=32 S 1 -z--(u—1)zyay+z;§;pa:av—ﬂ.
p=1 g¥ =1

V=2
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(Here, and throughout the paper, an asterisk attached to a value in-
dicates the complex conjugate of that value.) The function E(z) has m
zeros on |z{=1 corresponding to the m poles of f'(2)/f(z). The function
Q(z) has m zeros on |z|=1 corresponding to the tips of the m slits (where
S'(?)=0). The functions R(z) and Q(z) have 2n—m—2 additional zeros
in common.

In order to study the coefficient regions, we will determine the
nature of C} (a,, ---, @,-;). Since C7* is convex, as shown above, the
boundary points of C} can be determined by finding a function which
maximizes N{A,a,} for fixed a,, s, +--, d,-; and for each 1,=e? If f(2)

maximizes R{1,a,}, then it also maximizes ER{Z zvay} where 4,y A3, +++, 4,_,
V=2

are a set of Lagrange multipliers which are determined by the fact
that a,, ---, a,_, must take on the prescribed values.

The desired results are obtained by use of 2n—m—2 zeros which
R(z) and Q(z) in (4) have in common. To this end, we obtain the GCD
of R(z) and Q(z). The Euclidean algorithm is used in a simple form.
That is, having two polynomials of the same degree.

p(R)=0a, g+ - + a2,
p;(z):ﬂ0+/’?lz+ o +/’?7zz’ﬂ s

two new polynomials of lesser degree are obtained by the process

(0= LAn ) — e
(5) l o
(]‘:(Z):ﬂnpl(z) - anpz(z) .

This scheme is started by taking Q(z)—R(z) and multiplying through
by an appropriate power of z (the functions Q(2) and E(z) have no zeros
at z=0 or z=w). From (4) this gives a polynomial

Rl(z)=aa,1+a1,1z+ se +(¥n_2‘1z”“7‘+‘8;"_21127‘~1+ oot BE

where

( ) av,1:(1’+ l)jnawkz +”')*n—1a/v+1+ st Znﬂ/a'z s
6
Fya=(+2) 2ty s+ (0 + 1)ty + -0 - + 24, .

In a similar fashion, taking Q(z)+R(z) we obtain

QuR)=Po 1+ PR+ + Py @@, 2 e a2
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The coefficients of Q,(z) are exactly the conjugates of the coefficients of
R/(z) in reverse order. This is easily seen from (4), except that it must

be noted that for the extremal f(z), the center term i(u—-l)ﬂﬁv is a

purely real number, (see [3])

The polynomials R,(z) and @,(z) have in common the same 2n—m —2
zeros that R(z) and @Q(z) have in common, and each has in addition m—1
other zeros. The latter zeros are distinct in K,(z) and Q,(z) since any
common zero of R(z) and Q,(2) must be a common zero of R(z) and
Q7).

This process may then be continued, combining R,(z) and Q,(z) as
in the scheme (5) to produce two new polynomials R,(z) and Qz), each
one lower in degree. It is easily seen from (5) that the relationship
between the coefficients of R(z) and Q,(2) will be preserved in the
reduced polynomial. Thus, as this scheme is continued, pairs of poly-
nomials Ry(z) and Q.(z) of degree 2n—k—2 will be produced. The coef-
ficients of @Qi(z) will be the conjugates of the coefficients of R,(z), in
reverse order. R.(z) and Q.(2) will have in common the 2n—m—2 zeros
that R(z) and G(z) have in common, and m—% others, not in common.
The process will terminate with R,(z) and @, (2), for these two will then
be identical up to a constant factor.

Because of the relationship between the coefficients, we need to
determine only R,(z) for each k. The corresponding @.(z) can be com-
puted as needed.

LeMMA 2. For 1<k <m, the polynomial R.z) is of the form
R(R)=ay +a g+ o d g 2 e R 2!
Y < e AT
with
Q=2 A Y idt Ao+ oo+ 4,04
Buv=2Busi st dnBupt o+ 2,-.Biy.

Here, each A;, and each B,, is a polynomial in the a, and their
conjugates (independent of the 7,), and the A4,, and B,, satisfy the
recurston relations

Ai,v+1 zBl,vAJH,v_ Al.ijﬂ,v ’

(7) ‘
Bi,wl:BﬁvBl,vﬁAivAj,v .

Proof. We first remark that the coefficients of R.(z) belonging to
powers of z between z°~*-' and #z"~' are of no interest to us here. From
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(6) we see that the form of the coefficients is as asserted in the lemma
for k=1. Suppose now that the form is correct for k=y. Then using
the scheme (5) (removing a common factor of 2,) we can compute

1
Ky 1= /gu,vauﬂ,v ’—) ao,w‘gun,v

‘n ‘n
::Bl,v['znA/Hz,v A +X7L—/J.Az,‘/ + }‘n—¢¢—1441,u]
‘AI,V[JHBMFJJ"}_ ¢t +2n—u.Bz,v+2n—,u.—1Bl,v] .

Thus, «, .+, has the form asserted in the lemma, with the A4, .., deter-
mined by the recursion formula (7). The other recursion formula and
the remainder of the lemma is proved in an exactly similar fashion.

LEMMA 3. For each 7, %k, 0 L3 <m—k—1, 1<k<m, the 4, and
B, . of Lemma 2 satisfy the following:
(1) A, is a polynomial in a,, @y, -, Gisyp ONd G5, @7, iy
(i1) B, is @ polynomial in a,, s, -+, Gy, and @y, &, <+, a5,
(ili) B, s real for any choice of a,, G, += -, @y.
(iv) A, =0G+k—=1)B, B, . -« B 410, — A4, B, B3+ By By,
—A BBy BB gy — o0 — A BB
~A o By -1
(v) For any v, 11 <"k
B ,=B}.,B, ,.Biy., - B, — A P =B a4y -l
— By By A =
~B yoiBy iy s Broynldy P
Proof. From (6) we see that
jAj,1=.7'am ,
(3)
(B, =G+ 1)a, (B.,=2),

hence properties (i), (ii), and (iii) of the lemma hold true for k=1. Us-
ing the recursion formulas (7), properties (i) and (i) can be verified
inductively for all & < m. Property (iii) is obvious from (7) since B,
:‘Bl,k,—1|2_‘A(,k—II2-

Property (iv) is clearly true for k=1 from (8). It also can be
verified simply by induction on £.

Finally, property (v) is clearly true by (7) and (iii) for »=k—1 and
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any k, 1 <k <m. It can then be proved in general by backward in-
duction on ». Thus, from (7)

Bl,v: ?,v-l - 1A1,v—1|2

and substituting this for one of the B,, factors in the first term of (v),
the corresponding formula for v—1 is obtained.

4. The reduction process given above must lead to R,,.,(z) == 0 since
R,(2) and @,(2) have all of their roots in common. Therefore the ex-

tremal function f(z), maximizing S‘L{ ﬁxva,}, must have |4, ,,|=|B.| be-
y=2
cause of (7). We may now prove.

THEOREM 1. Let (a,, a3 -+, at,. )€ Vi, If (@, as -+, a,-) s an
interior potnt of V., then Ci(a,, ++-, a,_,) is a circular disc determined
by |A ooil=DB,\ -1; furthermore |4, | < B, for k<n—1. If (ay «*+, Gpy)
is a boundary point of V%_, then C%(a,, ---, a,_,) consists of a single

point.t

Proof. Note that the statement of this theorem makes the tacit
assumption that B, , (which is real by Lemma 3) is always non-negative.
This of course will be true by (7) if we merely prove |4, ;| < |B, .l for
all k.

Given (ay, +-+, @,-,) in V3, Lemma 1 shows that the cross section
C is convex. Hence, given any point ¢, on the boundary of CF, there
is a line of support for C; passing through this point, and therefore a
4, such that the function (or functions) belonging to this point satisfy
(2) and (3). The reduction process described above then leads to |4, .l
=|B, | for some m, 1 <m <n-—1,

We now procede to prove the first half of the theorem by induection.
If n=2, then m must be n—1=1, and hence the function correspond-
ing to each boundary point of C} must satisfy |A4,,|=B.,, or, using the
values from (8), there is some ¢ such that a,=2¢®. Therefore each
boundary point of C is a point of this circle and hence C¥ consists of
the dise [a,l << 2. However, a, is an interior point of Cj if and only if
14,1 < B....

Now suppose (a,, +--, d,-;) is an interior point of V;_,. Then q, is
an interior point of Ci(a,, ---, dy-;) for »=2, ..., n—1, and hence by
the inductive hypothesis |4, ,|<B,, for v=1,2, ..., n—2. Therefore
m=n—1 and each boundary point of C} must, from (iv) of Lemma 3,
satisfy

I Professor G. Pdlya has shown the writer that the fact that the cross sections are
circular discs can easily be proved with the help of the Carathéodory theory for functions
with positive real part. The exact expressions for these cross sections found from (9),
(8), and (7) do not seem to be obtainable from the Carathéodory theory in any simple way
however.
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A LB, A LB, ;. A, ,_.B.
(9) ) = L1 ~n-1,1 + 1,282 n-2,2 e 1, n—=22"3,n"2 3
(n_l)Bm (n — 1)Bi,le,z (7?, - 1)B1 IB 2t Bl,n—z
el _ _ ﬁi’l L S
(n=1)B\,B, .+ By .-,
=C,+¢°R, ,

for some ¢, 0 <0 <<2r. Then expressions C, and R, are rational
functions of the @, and their conjugates and are defined by (9). In
particular R, is real and positive since B, ,-,=|B, ,-.['— |4, ,.-.[* > 0.

From (9), each a, on the boundary of C;} must lie on the circle
with center C, and radius R,. This means that C} is itself this circle.
Thus if a, is interior point of C}, we must have |4, < B, ,-.. By
induetion, the first half of the theorem is proved.

Now suppose that (a,, - -, ¢,-,) is a boundary point of V;_,. Then
there is a unique smallest v <An—1 such that @, is an interior point of
CHay +++,a,,) for p=2, --- v—1 and a, is a boundary point of
Cf(a»-_;, ) av-])- But then ‘Al,v—llsBl,v—l > 0, |A1,u‘ < BL,M for “ < v—1
(and in particular B, , >0 for p=1, 2, «++,v—1), and B,,=0. Choose
a sequence of interior points {(ai”, ---, ai2)} of Vi, which approach
(a,, +-+, a,-1). For each such point, a(” is contained in a circle (9) of
center CY° and radius RY’. Now C, is a rational funection of the coef-
ficients and their conjugates. Hence as j— o, C$ must approach
some limit, finite or infinite. However this limit cannot be infinite since
C, is always bounded (indeed |C,| < n because la,| <_n for starlike func-
tions). Thus the limiting value C, must exist and be finite. On the
other hand, the radius RS> — 0, since by (v) of Lemma 3

R(j)_ BWL -1 < B(]) BW’ +1 "0 Bl(,jv)z—»

7 —— (e S LA

(n—1)BY -+ B, (n—1)B?R - -- BI_,

BL L.

(n I)B(” .+ BY)_,

Therefore, the cross section Cf(a,, -+, a,.-,) consists of the single point
C,=lim C¢. This completes the proof of the theorem.

oo

5. With the help of the above theorem, we may now describe
something of the nature of the coefficient region V. The region ¥V} is
(2n—2)-dimensional and its boundary is a (2n—3)-dimensional manifold.
This manifold, however may be decomposed into n—1 parts. That is,
the boundary of V} is composed of [P, 115>, --- m-D - where [[
is a (2v—1)-dimensional manifold lying on the surface of V¥ and such
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that (a, @, --+, a,) is in |[” if and only if (a, ---, @) is an interior
point of V¥ and (a,, -+, &) is a boundary point of V..
For example, from (9) we can explicitly calculate the first few cross

sections €, C¥, Cf. The boundaries of these cross sections are given
by

(10) a,=2e" ,
2 _ El
(11) = sz+ei"4 4‘%1,, ,
4a.0; | (4as—3a3)(6a,—2afa;)
12 a,= 3y \FU 7T O/ D, ™ aths Ty
e ©6 6(4—la.f)

w0 (4—a,l') — |4, — 3az)*
+ e o

6(4—la.)
Taking for example VF, the 5-dimensional manifold [[$¥ is defined by
(10), (11), and (12) as a. varies in the interior of the dise (10), a; varies
in the interior of the dise (11), and ¢ varies from 0 to 2z. The 3-
dimensional manifold [[{ is determined by (10), (11), and

= Ay | e“’(,;,a"%,— 2(1‘; Ay
6 6
as @, varies in the interior of the disc (10) and # varies from 0 to 2=.
Finally, the 1-dimensional manifold [}§” is determined by a,=2¢%,
a,=3e", a,=4¢*® and 0 varies from 0 to 2.

As a final remark, we may note that the coefficient regions V) be-
come quite ‘‘thin’’ as n becomes large. In fact, using (v) of Lemma 3

T(=1Bi - By (a=1)Bi, - B, n—1’

Bl,n—l < BTJBI,Z ot Bl,72—2 — 2

n

and hence the radius of any cross section C; is less than or equal to
2/(n—1). This estimate in sharp since it is attained for a,=a,=---
=a,.,=0, the functions being

f(Z)ZZ(l — eiﬂzn—d)—"/(n—l) .

Since a funection f(z) is convex if and only if the function 2f'(z) is
starlike, the structure of the coefficient regions for convex functions
can be determined directly from the structure of the coefficient regions
of starlike functions.
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ESTIMATES FOR THE EIGENVALUES OF
INFINITE MATRICES

FurtoNn KOEHLER

1. Introduction. In most of the self-adjoint differential eigenvalue
problems occurring in mathematical physics we are concerned with finding
the extremal values of the quotient of two integro-differential quadratic
forms in a certain space of admissible functions. By setting up a
suitable basis in this space the problem can be reduced to that of finding
the extremal values of a quotient of the form (aX, X)/(fX, X), where
« and f are infinite symmetric matrices and X is a veetor. The ordinary
Rayleigh-Ritz method of approximating the solutions of the latter problem
is to replace the infinite matrices a=(a;,)7 and f=(b;;); by their finite
sections a”=(a,;;)? and [*=(b,,)7. The extremal values of the quotient
(X", X"))(5"X", X"), where X" is an n dimensional vector, are the
roots 2 of the equation

(1) det ("~ 28" =0 ,

and these are taken as approximations to the first » solutions of the
original problem. If the roots of (1) are denoted by i} with 7> 1>
... >2" then for any fixed %k, 17 increases monotonically with »n and
its limit as n— o is the kth eigenvalue of the original problem. It
should be stated here that the quotient of integro-differential quadratic
forms in the original problem is taken as the reciprocal of the usual
Rayleigh quotient so that the eigenvalues are all bounded.
If we let

(2) A= lim A7,
then the problem arises of estimating the difference 1, —2%.

We shall consider this problem under certain assumptions with re-
gard to the matrices @ and 8. These assumptions are that « and f are
both positive definite, that the matrix (b,,);,,; has a positive lower bound
independent of =, that the matrix (a,,);.; has an upper bound which
tends towards zero as n — oo, and that

ImY S a,=0, lim3 3 5,—=0.
n—oo §=1 j=n+1 n—oo i=1 j=n+l
2. The simplest case, which we take up first, is that in which S

Receivéd September 22, 1955. Prepared under contract N onr 710 (16) (NR 044 004)
between the University of Minnesota and the Office of Naval Research.
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is the unit matrix. Let X be the orthonormal eigenvectors correspond-
ing to the eigenvalues 27 as defined above. Let numbers ¢, and p, be
defined by

2 [ 1/2
~- 1 Y 9
(3) En%(}J >.-Aa’fj> ’
i=1 j=n+l
(4) P 2 SUD D DL 4,0, / >, @
2, dmn+l jEasl i=n+1

In general the exact values of the right-hand members of (3) and (4)
will not be available, and for this reason we define ¢, and p, as merely
upper bounds for these quantities. The more closely these upper bounds
can be estimated, the better will be the subsequent estimates of the
eigenvalues. For the cffectiveness of the method it is necessary that
the values of ¢, and p, can be made arbitrarily small for » sufficiently
large. One method of defining p, is to take it as an upper bound for
< i S] a,?,.)”* in those cases where the latter series converges. A

i=n+l j=n+1
different method is given in the example of §6.

We shall adopt the convention that, if X is a vector, (), then
X" stands for the n-dimensional vector (x,)7. Let F<n-"N. By the
minimax principle,

v N N
(5) A,Q’:minmax((XAX\’X )
U,

NN =0, 5= vee k=1,
ax 0 ey (XY, UMY=0, i=1, 2, ++-, k—1

?

Choose the vector U, so that its first » components are equal respec-
tively to those of X! and its remaining components are zero. Let

X=(@)r, o=l agd oo bm) ™ =@ b - an)
Then
NYN A7
W < max (X% X7 (X7, X0V =0, i=1,2, -+, k—1
F(XY, XY

7 11'1 ]x Nﬂ ]‘11 2 9
—max| (@X, X028 S amet S5 awe, | /o
X ]

i—1)=n+1 f=n41 J=n+1
(X7, X)=0, i—1,2, -+, k—1

< max W 2e,000+ P00
" Y+

The last step is justified by use of the maximum principle for the first
term of the numerator and the Schwarz inequality for the second term.

The quantity on the right side of this inequality is the larger root
1 of the equation
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e—2 €

€n Pn_l

=0,

Hence,

1< BtV (= p) 4
B 2

and, since the right side is independent of N,

(6) n< < REOHV(BR—p) +4eh
2

If p,< 27, this inequality gives the simpler, but less precise, one

2

€n

(6a) G2 <A+

)‘;cz_/)n

The inequality (6) (or 6a) makes it possible to obtain arbitrarily close
bounds for A, by taking = sufficiently large.

Better estimates for 1, can be obtained if one makes full use of
the available data, namely A7 and X{”. With these it is possible to
transform « into an equivalent matrix (one having the same eigenvalues)
a=(a,,), where

=12 (k=1,2, ---, n),

(_i’l’.?'_—_o (7;7 .7.219 2, e, Ny 7’#.7.) ’
aij:a’zif (74 7=n+1: 7’L+2, "’) ’
> a5= 3 ai; (j=n+1,n+2, ---).

i=1 i=1

- _ (n)
The actual formula for « is a=I/""al’ where l'z(l 0), ™=
0 K

(X, X, «-«, X) and the vectors X{” are orthonormal.
Let

(7) - ><z aij)”" (k=1,2, ---, ).
J=n+

If any one of the numbers ¢,, is equal to zero, then the corresponding
eigenvalue 27 of «” is actually an eigenvalue of a and the kth row and
column of @ can be deleted before proceeding with any further calcu-
lations. We may therefore assume without loss of generality that all
the numbers e,;, appearing in subsequent formulas are different from
Zero.

Apply (5) with a” replaced by a” and with U, equal to the vector
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whose ith component is 1 and whose remaining components are zero.
This gives, with y=(a%,,+ -« - +2%)"

Azxk+lk+1xk+1+ + A, + 2 Z Z Q52,25+ 2 Z a’zﬂ' w]
(8 ) 2;\’ g o L B o =k j= n+1777 . d=m+lj=n+1
o T IR

~;rlmli+ R /)‘Zx?z+2 Z EnzlleU+ I()ny2
< . 1=k

R PRy
The maximum value of the quotient

it . +2nwn+225mwu+p Y’
I R v

can be attained when the variables =, ---, z,, ¥ are restricted to non-
negative values. Hence 2 cannot exceed the largest root 2 of the
equation

n—1 0 Y N
0 —d eee 0 e
(9) 0 0 - 00
0 0 e m 2 e
Enk Entl S
n €ny H (7"—7)

— (=) [ (=2 = > iz
(=2 I (2 =2)= 2 T

If a number » appears m+1 times in the set 27, A%, ---, 2%, then
this number is an m-fold root of (9). If g >p > ... >p are the
distinet values in the set A}, A%y, ---, ),7;, then (9) also has roots
P, ¥y =00y a1, Where o < pry <, <pt,< oo+ < p,<r,,,. The latter
roots are all the roots of the equation

n 2

(92) A==, M

A=
3. As a simple example illustrating the estimates of the last section,
let us take the problem of finding the eigenvalues A defined by
y'=—AM1+z)y, (02z<1),

y(0)=y(1)=0
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The reciprocals of these will be the extremal values 2, >2,>4,>--.
of the quotient

Q=| a+owds /| v as

in the space & consisting of all functions y(x) with sectionally continu-
ous first derivatives and with »(0)=y(1)=0. As a basis for this space
we take

v 2 sin nrx

)= " ° (n=1,2, ---)
nm
and let
3 . ..
f =5,
1 o Y
a,L.:S(u-x)W.,dw: o
gL AL =10 e hp s
ﬂt(,iz_jz)z “

1
bi,=} ?290} dox=20;; .
0
If yzixbtpw then
i=1

_(aX, X)
Qy) (PX. X)

where a=(a;,)7, f=(,,)7, X=(«,)7, so the problem is reduced to one
of the type for which the estimates of the last section apply.
Let n=38. The equation for 2, 2, 2 is

3 _, _8 0
2 97t
8 3 P 8
— LA —_ =0
97! 8 257t :
o -8 3 _,
257" 18x*

The eigenvalues and eigenvectors are :
23=.1527 0819 , X®=(.99684, —.07935, .00192) ,
23=.0377 8273, X®=(.07869, .98480, —.15482),
23=.0163 7316 , X=(.01040, .15449, .98794) .
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We make the following estimates

S 64 & 1
?4“1] ’;r (;—‘2 (402_1)1

64[1 1,1, & 1 ]
At ot ot 2
S wlist et 6 =5 (30’

64|:1 1 1’+15 s

o+ -1.389 % 107 ,
15 35 63" 81 ] ~

X

2 1
j_‘J‘ [(20—}-1) —4]

6%[ +1+1 " dw

S ]=.368x10*/,
45t 77t 256J: of

641 1 1 1(~dz

27" 55t 8131 558]228'234“0'{’

- 64 = 1
>, a, i
I 2 (Lot = 1)(40 — 9
/54[ LI S S‘”Lﬁz%xwf
sL150. 7" 35007 68155 81di o

Z ljaz} 2_4 auau—()

=4

1,128 & S 1
()‘1 T A [(2n+ 26 4+ 1)* —4n?]'

SRS 1

:
;
",
=
N‘
3
+‘
[\')
Q
v
I‘
A
no
S
+
[y
\./
—

I A 1
TRz z<z?;+’i’)’(zi;’:ﬁf}

q
L
I

||M8

1 o 1 o1
P (1+ 20)*{ Y (2n)* ) 2n +1)'f
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RS L 9.8 ]_ 00017 9117—p*
(7

=4 4= 7% 96

pe=.013 3835 .

If the matrix « is transformed into the equivalent matrix &« in which
the upper left hand 3x8 malrix is diagonalized, the formulas for the
clements @,; are (for j-=4):

Gy, —.99684 a,,—.07935 a,,+.00192 a,, ,
d,,=.07869 a,, +.98480 «,,—.15482 a,,
i@y, —.01040 @, +.15449 a,,+ 98794 a,, .

Hence,

Sz, 1,895 < 10~ <&,

1

-

s

il < 1.042 % 107 =¢;,

<
L
-

i g

i, <7 27.630 x 10" =

.
I
[y

The first three extremal values of the quotient Q(y) can now be
estimated by cither (6), (6a), or (9a). From (6) we get
152 708 < 2, <152 730,
037 782 < 2, <037 905,
016 373 =< 2, .017 167 ;
whereas (9a) yields the following more precise estimates:
152 7081 <C 1, << 152 7092,
L0387 7827 =L 2,087 7871,

016 3731 <C 4,=C.017 1139 .

4, Returning to the general problem, let us assume that, by a
preliminary transformation, the matrices « and 8 are already diagonalized
in the nxn upper left-hand corner; that is, that

Gy=27 b“=1 (7’21’ 2, .-, 7’&) ’
a’i.i:bilzo (7:? 7:1! 27 ey, Ny ?/:#.7) .

Let the bounds p, and ¢, be defined by (4) and (7) (with d,; replaced
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by a,): In addition let bounds 4,, and », be defined by

oo 1/2
(10) ow=( 3 o) (h=1,2, oo, m)
J=n+1
(11) ro<<inf S S baw,/ S oat .
@; t=n+1 j=n+1 i=n+1

We assume that all these bounds exist, that

(12) Ty > Z Ok »

and that e, +,,5%0 (k=1, 2, ---, n) (see remark following (7)).
By the minimax principle with k <» <N,

N (C(NXN X ) ANY N — P “oe j—
Ph —nlljtn m‘gx (XY X%) , (/ , U)=0, =1, 2, , k—1.

Proceeding as before, let U, be the vector whose ith component is 1
and whose remaining components are zero. Then

7 N

2 Al ‘_'1 <
AR+ -+ ann +2 ZJ >_4 zjximj + }—J Z aljx W
N< _di=k j=n+l f=n+1 ] n+l
¢ = max P =
© 2 ! O
i Tit et t+23 3 b+ S }_. by,
i=k j=n+1 T=n+1 j=n+1

Rai+ -+ 129331 +2 Z;C EmlleyJ“ Pnyz

“ Tt o+ xn—2 3 0laly + 7.y
i=k

where y=(a’,,+a,,+---+2%)"". The condition (12) is equivalent to
the positive definiteness of the denominator of the last expression.
Hence, 1Y and therefore 2,, cannot exceed the largest root 1 of the
equation

Ag—2 o 0 €ni 28%76

0 v = et A
Enp T )‘b\nk Tt &g + )‘(37175 Pn— Mﬂn

(13)

n n 11 (2=2)
(=) TL i =D = S (e 420, ™5 =0,
t=k i=k )n]"‘ll‘

which is the same thing as the largest root of the equation

(133) )‘7‘71‘ ; ), == }L: (env + )67”)

i
J=% Z—A]
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To analyze the location of the largest root of (13a), let

50(’{) }_4 (Em+ 207&])

j=% A=A
Then
20,,(e0, +40,,) _ (en;+ 20, )}

l{ [ J 7 7 ) 2l ,
¥(2)= ZJ A=1 (A=27)*

" 250,.4)
j 2 (Enf'i_ St n7 ,

¢"(A)= 2 G—ny

lim ¢'(2)= }_, on; -

A->00
For 2> 2%, ¢"(1) >0, and therefore in this range the graph of ¢(1) can
intersect that of the funection #»,1—p, in at most two points. Since

lim ¢()=+o and since, by (12), r.2—p, > ¢(2) for all 2 sufficiently
A= A -

large, there must be exactly one point of intersection, that is, one root
of (13) or (13a), in the range A >2¢. This root is the upper bound
which we obtain for 1.

Let us now assume that

(14) TM?' - lun ;f— a > 0

for all » sufficiently large, and that

(15) lim z (&,+6%)=0 .

N—oo J=

Then, for any ¢ >0, and for »n sufficiently large, ¢(2i+¢) <7, (it +e)—p,
and so the largest root of (13) or (13a) is less than 17+e. Therefore,
(14) and (15) are sufficient to ensure that the method gives arbitrarily
close bounds on 21,, for any %, by taking = sufficiently large.

5. To illustrate the method of the last section let us consider the
problem :

a dy\_
dx((l”)dx)— Ay O0< o< 1),

¥(0)=y(1)=0 .

The reciprocals of the eigenvalues .1 of this problem are the extremal
values of the quotient
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Qy)== \;Z/ da’/ E;(l + )y’ da

on the space of functions y(x) with sectionally conlinuous first derivatives
and with y(0)=y(1)=0. If {¢,(x)}7 is a basis in this space and

1 1
au=gu%<ﬂf dw , 7)£,=S (1 +a)pi¢;da
then the problem is reduced to that of finding the extremal values of

the quotient (aX, X)/(FX, X), where a=(a;,)7, f=(b;)7.
Let the sequence {¢,} be defined as follows:

14

¢;, Sin Jnw (t=1, 2, 3),

I
@,

J=

p =V 2 Sin iz (>3,

(%9

where the constants ¢,, are chosen in such a way that

(by)i=E,
.0696 820 0 0
(@;,)}= 0 0173 553 0

0 0 0073 9145

The values of the conslants ¢;, are given by the table:

©\J 1 2 3
1 3713655 0378935 0039777
2 —.0189824 1828646 .0301791
3 0007276 —.0197241 1199722

We now apply the method of the last section with n=2. Since the
matrix « is of diagonal form, e, and e, may be taken as zero and p,
may be taken as the maximum of the elements «;, (i > 3), namely
ty,=.0073 9145.

For ¢=1, 2 we have

> bi= >, bj;
j=3 j=1
oo 1 P
=27 > <S (1 +z)(e;, cos mw + 2¢,, cos 2rmx + 3c;; cos 3na) cos jaw dw)
J=4 0

oo 1 2 (1 2
=21 [cfl(s (14 ) cos mx cos jrw dav) + 40'52(3 (1+ ) cos 2mw cos jrnx da;)
0 0
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1 2 1
+ 90‘23(5 (1+ ) cos 37w cos jnx dx) +6¢4,C45 (S (1 +x) cos nx cos jna dw)
0 0

x (Sl(l + ) cos 3rx ¢os jrx dx)]
0

8 (140 (4+ (20 + 1)
- [‘“ 2 o1yt %((204-1)‘—4)'
9 -+40)’ (1+45%)(9 +40?)
+ 96k 3 (45 —g) T Boucu py L (4o — 1) (4o — )]'

We make the following estimates :

3 (L+do’)* - 17T, 37", 65" 1 & 1 gor10722
7 or—1) 15 35 63" 15 5% o
o @A+ (204 1)) 58,8, 5 & 1
cot + + 9242 00541918 ,
(20 + 1) — 4) < 45777 4 S Qe+ 1)
S O+do?y - 26°, 45° T8, 1 G ] —.26514737,
72 (4o*—9)t < T 27L 55l >“
§ (U440 +47) _17-25, 8745, 65.73 | 1 & 1
(4o =14’ —9y 1557 35°.27° 63%55° 8 o of
—.04125482 .
This gives
SY B, < .0011490 =3, ,

<.
I
[

S b, < .0023514 =02,

=3

[

~
To obtain a value for r, we let Fiz)= 3 x;¢,(x), where (x,); is any
i=3

given vector. Then
1 K ! r y N s,
S F'"*(x) dx=xg'g pidae+ > )
[} 0 i=4

=.646936x; + Z x; 2> 646936 Z xi,

N

|, +oF (@) do= 3, S bwia,
0 i=3

J=

Hence,
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Evj 3 by, Sl I +a)F"x)d

' ez (.646 936) 2> .646936 .
g Fra) da

0

Since the bound on the right side is independent of N we may take
r,=.646936 .

The use of equation (13a) now gives the following results, where
2, and 2, are the reciprocals of the first two eigenvalues of the original
problem : :

06968 < 4, < .06984 ,

01735 < 2, < .01754 .

6. In conclusion we shall show how the method would work on
the two dimensional problem of an oscillating square membrane of
variable density; namely,

Uy + Uy = — Agu in R,
u=0 on (C,

where R is the region 0 <z <1, 0<y<1, C is the boundary -~
and ¢ is a nonnegative function with the derivative g,, sectionally
continuous in R+ C. The reciprocals " the eigenvalues 4 are the ex-
tremal values of the quotient

Qu) = S:SO gu dz dy | H(u +u2)da dy

in the space of functions u(x, y) with sectionally continuous first deriva-
tives in K+ C and vanishing on C.
As a basis for this problem we take the functions

2 sin mzz sin nry

T m, n=1, 2,3, «++,
(m’ +n?)'

and arrange them in a sequence ¢, ¢,, ¢, +-+ ordered according to the
value of w?+n*; that is,

2 sin m,nx sin n,m . )
p=2SMMTT SN MY = (i) ",
o,

Olgazéag cee
As N— o, O‘V:O(‘I/N). Let
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!
Wy 5= SOSOQ‘Pz"Pj dxdx

b:H(W 09, 0y, 5%) do dy =0, .
T b\ox 6x oy oy

If u= imi%, then
i=1

Qu)y=(aX, X)/(BX, X)

where
a=(a;)’, A=(0,)7 , X=(a)7 .

In order to show that the method will give arbitrarily close esti-
mates of the eigenvalues, we must show that the quantity defined in
(4) can be determined and made arbitrarily small, and that é i aj, can

i=1 j=n+1

be made arbitrarily small by taking » sufficiently large. The estimate
p, can be managed by noting that (4) is equivalent, in the present
case, to

11 111
/)nzsupg S gv’ dxdy/‘ 5 (vi+v))dady ,
0Jo Jo

vE a, 0

whe' o, 1s the set of admissible functions which are orthogonal to
¢, @, o0, ¢, Let g<CIM in R. Then we may define p, by

1
(16) 0, = sup Mﬁlpz daedy / S Sl(v; o) dady
vven"’ 0.0 0J0
and this gives
a7 Pn= zﬂ{ = ()( ,1 )
T 0h+1 7

since the functions {¢,} are the extremal functions for the quotient in
(16).
Next, the numbers «a,, satisfy

Li=g
7404
where C is an absolute constant, and

1

4= [7;1,—7%1

it m,=m,,

1 if m,=m,,
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B
A. = l’nl-nl

1 if n,=mn,.
Hence, for 1 <i<n,

oo

Z aq,___,'». Z A _'117

J=n+1 o; (777+'1 j=n+1
and
—g g 1 2
S ,,\<1+22,),
J=n+1 s=1 8
SO
Soa< O
j=n+1 17(97,+ 1)
Therefore,

oo

S S e Glogn (n>1),

i=1 j=n+1 n

1=

where C, and C, are absolute constants.
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PERTURBATION OF DIFFERENTIAL OPERATORS

HENRY P. KRAMER

Introduction. N. Dunford, in a series of papers [3, 4, 5], has
initiated the study of operators on Banach spaces that allow a represen-
tation analogous to the Jordan canonical form for operators on a finite
dimensional vector space. Such operators he has called spectral opera-
tors. They include, of course, self-adjoint operators which have found
such wide application to problems of analysis. J. Schwartz [9] has ex-
hibited an interesting class of spectral operators which contains many
classical ordinary differential operators. His chief tool was a pertur-
bation theorem that guarantees that if 7' is a regular spectral operator
with a discrete spectrum that converges to infinity sufficiently rapidly
and B is a bounded operator, then T+ B is again a regular spectral
operator. This result provides a tool for showing that second order dif-
ferential operators with suitable boundary conditions are regular spectral
but does not suffice for proving this property for differential operators
of higher order. This paper refines the method of J. Schwartz to allow
application also to differential operators of higher order by showing
that under certain conditions a regular spectral operator T may be per-
turbed by an unbounded operator S with the result that 7'+ S is still
regular spectral.

The paper is divided into three parts. The first part presents
preliminary notions and lemmas to be used in part II where the prinei-
pal theoretical tool is fashioned in Theorem 1. Its object is to set
forth conditions under which an operators is spectral (see Definition 1).
This problem is attacked in the following form. Suppose that 7 is known
to be a spectral operator. Under what hypotheses on 7 and a per-
turbing operator S may it be said that the operator T+ S is spectral?
An answer to this question is given in Theorem 1. This theorem is
then applied in the third part to differential operators of even order
with ‘‘ separated > boundary conditions on a finite interval. First, the
gsimple operator defined by means of the formal differential operator

da
dmill,
Then, with the aid of Theorem 1, the perturbed operator

and ‘‘ separated ”’ boundary conditions is shown to be spectral.

2 24 2k — 1
@ g

dae i 'd ot

Received August 21, 1956. This paper constitutes part of the author’s doctoral dis-
sertation submitted to the University of California, Berkeley, 1954, prepared under the
guidance of Professor Frantisek Wolf
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where @; may be any bounded operator on . (0, 1) is seen to be
spectral as well,

1. Preliminaries. N. Dunford [3, p. 560] has laid down the
following.

DEeEFINITION 1. Let X be Banach space and 7 a transformation on
X to X. If E(e) is an operator valued function of Borel sets in the
complex plane and

(a) E(e)E(9)=E(e N g), E()=I—E(e), TE(e)=E(e)T,

(b) E(e)x is completely additive in e for each xe X,

(c) the spectrum of 7, with domain and range restricted to E(e)X,
is contained in the closure of ¢, and

(d) there exists a constant A such that for every Borel set ¢ ||E(e)|]
<" M, then E(e) is called a resolution of the identity for T and T is
called a spectral operator.

The preceding definition covers a wide class of operators. In what
is to follow, attention is focussed on a very restricted subset consisting
of the regular spectral operators. The meaning of the adjective regular
is clarified as follows.

DEFINITION 2. An operator 7 is regular if the resolvent set o(T")
# ¢ and if for some 1€ p(T), (T'—2)"' is completely continuous. (To be
abbreviated c.c.)

Note that the spectrum of the c.c. operator R,(7)=(T—2)"! consists
of a sequence of isolated points converging to 0.

It follows by the spectral mapping theorem [12, p. 324 et seq.]
that the spectrum of T congists of a sequence of points 1, converging
to oo,

In the sequel, the condition

[=Y,E(})

shall sometimes be made in regard to the spectral measure of a regular
spectral operator 7. The above condition asserts that the spectral
measure corresponding to the point at infinity is the null operator or
7=0 is not an eigenvalue of 7-'. The existence of 7' as a c.c. opera-
tor may be assumed without loss of generality in view of the following.

LEMMA L. If 2,€ o(T) and R,\(T) is c.c., then R\(T) is c.c. for all
2e p(T).

Proof. The first resolvent identity [6, p. 99] states that for A,e p(T)
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and 1€ p(T)
(1) E\T)=R,(T)+ (2= 2)B(T)R,(T) .

The product of a bounded operator and a c.c. operator is c.c. and

the sum of two c.c. operators is again c.c. Thus it is apparent from
(1) that R,(T) is c.c. for all 1€ p(T).

LeMMmaA 2. If S 4s a closed operator and B is a bounded operator
and 2(S) D F(B), then SB is bounded.

Proof. SB is closed. For suppose that z, — x and SBx, — y. Since
B is continuous, Bx, — Bx. But since S is closed S(Bz,) — S(Bz)=(SB)x
—=y. Thus SB is a closed operator defined on all of X and therefore
by virtue of the closed graph theorem [1, p. 41] it is bounded.

LEMMA 3. Let J be a finite set of integers and suppose that B, is
a set of bounded operators and K, a set of mutually orthogonal projec-
tions®, both sets being indexed by J. Then

| SEBuP < S

T nes

Proof. Let feH and ||fl|l=1. It is an easy consequence of the
Hermitian nature of F, and Schwarz’ Lemma that

”n; Eanf! lzzng

k!

g} (E,B,f, E.B.f)
< SBuf, EBuf) < S IB.SI IEB.S
< 2 IB.IP.
neJ
In the sequel, reference shall be made several times to the following.

CoNDITION A. All but a finite number of the idempotents® E(1,)
associated with the points of the speetrum of T project onto a one-
dimensional range and

I=§ E,) .

For a regular spectral operator, the last statement is equivalent to the
assertion that the range of

1If T is an operator then Z(T) denotes its domain and #(T) its range.
2 An idempotent is an operator I such that F=F2. Idempotents F; and F, will be
called orthogonal if E1F,=0. I K=F* then F is a projection.
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E.=I-S E®)
1
consists only of the null vector.

CONDITION B. Let d, denote the distance between 1, and the rest
of the spectrum of 7'. Then there exists a number r > 6 such that

Sdim<
k=1

For use in the theorem to follow, it is necessary to define explicit-
ly the concept of a fractional power for the special class of operators
with which the theorem is concerned.

In this definition an application shall be made of a theorem of
Lorch [8] and Mackey which asserts that if E(e) is a uniformly bound-
ed spectral measure, then there exists a nonsingular transformation of
Hilbert space into itself such that WE(e)W-' is a Hermitian spectral
measure.

Let T be a regular spectral operator on Hilbert space H which
satisfies Condition A. Let 27 be the finite set of characteristic values
A for which the idempotents F(2) project onto ranges of multiple dimen-
sion. Let W be the automorphism of H into itself which ecarries the
spectral measure E(e) of T into the Hermitian spectral measure FE'(e)
=WE(@eW-" of T'"=WTW-",

Since E'(9°) | I—E'(7”), the two projections effect a unique decom-
position of H into a direct sum

H=H ®H,
where
H=F(7)H
and
H={I-F(7)}H.
Now
T=T+T,
where
T \=T'E(7)
and

T,=T {I—E' (7))} .
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Upon restricting the domain of T, to H, and that of T, to H, one is
confronted by a finite dimensional operator T{ and a normal operator

A

T,.
If —1<v <1, the function f(2)=2" of the complex variable 1 is

regular on the spectrum of 7% provided 0¢ o(T) (which is no essential
limitation of generality) and f(1) is restricted to its prinecipal value.
Then, following Dunford [4], one defines

(dry= f:“z(Tl ) 1) e DR ()

=1m=0

where s, is the order of the pole 2, or the resolvent and E"(xi) is the
restriction of E’(2,) to E'(.7’)H. Since T, is normal one has the spec-
tral decomposition

=3 LE'()

and by the operational calculus for normal operators (cf. [10, pp. 48-
51] for example)

(=3 2B (%)
Now define (T7) and (T%) by the rules
fie L= (Tyfi=Dyf (TS =
foe H, = (T))f,=0 (Toyfi=(T)f, .
Then
Ty = (T + (T2
and finally,
T = W-(TyW

The proof of the perturbation theorem below strongly depends on
the operational caleulus for spectral operators developed by N. Dunford
and explicitly adapted to the case at hand by J. Schwartz [9]. For
the sake of ready reference the pertinent results are presented here.

If T is a regular operator with a finite set of characteristic
numbers

{2]’ ’22’ M) Xn}

which are multiple poles of the resolvent and
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S () =1

and f(2) is a complex-valued function which is uniformly bounded on
the spectrum of T and possesses the required derivatives, then

e &
) =3 S @ —2yB0) - 5 S0)BG)
For such an f(7) Dunford [5] has shown that the series defining it

converges in the strong operator topology and that there exists a con-
stant K(7) such that

Hf(T)H<.K-A12§(>T€) AN

On the Dbagis of this result J. Schwartz [9] enunciates the
following.

LeMMa. If S is a regular spectral operator all but a finite set of
whose eigenvalues 2, are simple poles of the resolvent, and +f S also
satisfies

Ms

E(Z,)‘——I ’

1
—-

then there exists an absolute constant K such that
1(2=9)~"|| < K/dist (2, o(S))

for all 2 not within o fixed radius e of any multiple pole of the resolvent.
In the theorem below let it be understood that

G (T+8)= Z(T)N\ Z(S) .

2. The perturbation theorem. The principal result of the present
paper is the following.

THEOREM 1. Let T be a regular spectral operator on Hilbert space
H and suppose that it satisfies conditions A and B. Let S be such o
closed operator that for some v, 0<_v <1, Z(S)>D Z(T%) and 7 (S*)D
T(T™). Moreover, suppose that for all but a finite set P of positive
integers, for all

. 1 |£2¥] M
zecnﬁ{z\aq,n: d,ﬂ}ﬁ max WL
I l 3 pE(T) M_/’l - d;/‘z

Under the above hypotheses, T+ S is again a regular spectral operator.
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Proof. Since, for 2e p(T),
FBAT)=2(T) v s 2(185),

SE(T) is well defined and is, in fact, by Lemma 2, a bounded operator.
By the same token ST-¥ is bounded. In order to show that 7'+ S is
regular, it need merely be ascertained that R(T+S) is c.c. at one point
lep(T) and for this purpose we examine the formula

(1) R\(T +8)=R\(T){I-SR\(T)}~

which is valid for 1€ p(T') provided only that {I—SR\(T)}' exists. If,
U—=SE,(1)} ' not only exists but is also bounded, then R,(7'+S) as the
product of a c.c. and a bounded operator is itself c.c.

But the hypotheses of the theorem allow one to state that
{I—-SR\(T)} ' <2 for 2e C, and all n sufficiently large. This is proved
as follows

SR(T)=ST>T"{ —T}'=ST~>{(A-T)T""}*.
By Dunford’s operational caleulus and the hypotheses of the theorem it

Is true that

L= T)T= | < M, max 1 < L
weocns [a—p| T di
Let |[ST*||=M,. Then

./ V7 U]
(2) ISRl =" =

and since in view of Condition B, limd;"*-=0, one has for all n suf-
ficiently large ||SE,(T)|| < 1/2 while 1e C,. From this estimate follows
the possibility of expanding

{(I-SR(T)} '=1+SER(T)+(SR.(T)y+ - - -
in an absolutely convergent series so that

1

(3) H{IMSRA(T)}%H<1~1/2:2E

It is immediate from the above that if 2 lies outside the assemblage
of circles C,, then for each g, € 4(7) we have

el el
[2— ] H,_ﬂkl

where 1 is the intersection of the line connecting 1 with g, and the



1412 HENRY P. KRAMER

circle C,. From this, the above estimates follow a fortiori. Consequent-
ly, except for a finite set, all points of o(7T'+S) lie inside the circles C,.

In order to show that the spectral measure {E'(2;)} of T+S is
uniformly bounded it is convenient to assume that the spectral measure
{E(2)} of T consists of Hermitian idempotents, that is, that F(4,)=E(2,)*.
That this assumption may be made without sacrificing generality is due
to the theorem of Lorch-Mackey. It must be verified that if 7 and S
satisfy the conditions of the theorem so do T"=W7TW-! and S'=WSW-.

(a) o(T"y=o(T). For suppose ‘e p(T). Then R(T) is a bounded
operator. But

WOL=T) W=~ WTW-)~'==(1[—T")

is also bounded. Hence p(T)=p(71") and the result follows on taking
complements with respect to the extended complex plane.

(b) dim WE(1,) W-'=dim WE(,) < dim E(2,) .

However, since W is continuous, with a continuous inverse, it maps no
nonzero vector into zero and thus, since dim E(2,)=1 for almost all £,
the same is true with regard to WE(2,)W-'. Also

0=W<I— M E(zk))W~1=I— SSWE, W~

(©) fe D(WD'W-)= W-'fe (T = W-'fe Z(S)=>fe I(S)

and similarly for the adjoints.

In the remainder of the proof it shall, therefore, be supposed that
the spectral family E(2,) consists of Hermitian idempotents. For con-
venience, the primes introduced above shall be suppressed.

The proof of uniform boundedness rests on the formula

(4)  B(T+8)—E\(T)
=R\(T)SR\(T)+ R(T)SEA(T)SE(T){I—SE\(T)}

which is easily obtained from (1) and the operator analogue of 1/(1-uw)
=1+4+2z+a*(1—x), and on the basic relation

(5) E(L)— 2}% JS RA(T)dJ .

Let J be a finite set of positive integers all of which are sufficient-
ly large that is, NeJ = N> N, The nature of N7, S) will be
specified somewhat more precisely in the sequel. Then, on integrating
both members of (4) one finds that
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(6) ISE-EI=] S, 0§ ROSE@G|

+

Sok: J BOSR@SR) 1=t 01|

where E, represents the spectral measure corresponding to that portion
of the spectrum of 7'+ S which lies inside the circle C,. In order to
place bounds on the right member of (6) one employs a well established
inequality for operator valued functions A(2) analytic on a contour C
of length L [12, p. 324].

|§ A0ar| < max a1 L

Applying this result to the second term of the right member of (6) one
finds

neJ 272'7,

5 51> RAT)SEDSILD T —SE,(D)~d) ”

§>:1

B NISERA(D)IPIHL - SENT) }~ ‘H

Now using inequalities (2) and (3) to estimate ||[{I—SR,\(T)}"'|| and
NSEAN(D)|| and Lemma 3 of J. Schwartz reproduced above, one obtains
for this term the bound

1 « M M <

277:ne.f dn T 27[ 7%“1d" <

The term

524§, mensaal

requires closer investigation. By employing the representation

E(&;) + B(3,) + A0~ 1)

n

R(T)=

where A,(A1—12,) is a power series in 1—1, without constant term and,
applying the residue theorem, one finds that

21 ) 95 R\(T)SR(T)da=E'(%,)SE(1,) + E(1,)SE'(2,)
o o,

It remains to find bounds for
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ll%E(ln)SR“(ln)H

and
2 BU(A)SE)] -
neJS

On observing that

I3 R(2)SEL)I= 3 B()S™B'G,)"|

and identifying SR(2,) is one case and S*R'*(4,) in the other with B,
of Lemma 3, one sees that the terms in question are bounded by

S ISEGIE -

It is not difficult to estimate ||SR°(4,)]|]. Again turning to the
device

ISR Q= IST| TR (2
and noting that

E(Zn)

1(2,)— lim By(T') — Fa

one has

Ry2)= > M)
kfn \,,l——-lk

(In this formula, in order to avoid notational complications, the effect
of the finite set of multiple poles of the resolvent has been neglected.)
One sees that R'(1,)=F(T), where F(2) is defined in the neighborhoods
of the spectral points 2, as follows:

1
0 2 near 2, .

A near 2, k% n

Consequently, 17P%4,)=G(1") with

PX

0 A near 2,

A near A, k% n

Now applying the bound arising from the operational calculus one
obtains
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ISEY () < IST-

(T < MM, max |G(2)] .
A€a(l")

Let peC,.
ol s
A=A -Hn_#‘—lx_/ll‘\ 11— l_ ‘
M—/zl
< V‘v\ . < 3 l)* I .
7|,z__ id, -l)r 2 12— p

n 1

Using the hypothesis made with regard to this function one finally has

ISRG . § MO, =

Now one is prepared to state that

S } (DS A(l)d&\\ s b

Thus
H%-} (b"v:b—E()‘n))” < K .

If it were known that K, is the spectral measure corresponding to one
point of the spectrum of 7'+, the proof of uniform boundedness would
be complete. The next few lines shall be devoted to showing that,
indeed, except for a finite number of indices, in every circle of radius
id, about A,e€ a(T) there lies exactly one point 4, eo(T'+S) and the
spectral measure E’(1,) corresponding to this point has a one dimensional
range.

In (6) let the index set J have n for its only member. Then one
sees on examining the estimates of the bound of the right member of

(6),
v - K
( 7 ) HE”W*]L(}\”)H <o d /

For » sufficiently large

K’ 1
a2

which by Lemma 4 of [9] (also c¢f. |10, p. 320]) implies that E’ and
E(1,) have the same dimension, which by hypothesis is 1. Therefore,
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(T'+ S)E;, considered as an operator on the range of E, is a scalar 1, and
precisely one point 1, € o(7'+S) lies in the circle C,.

Thus T+S8 is a regular operator with uniformly bounded spectral
measure and is therefore a spectral operator. (cf. [9, Lemma 2].

From the foregoing proof flow two consequences deserving of ex-
plicit mention.

COROLLARY 1. The operator T+ S satisfies Condition B and for all
n sufficiently large \i,— 2,|1<3d, .

Proof. In virtue of the remark following inequality (3) of the
proof, all but a finite number of the points of «(7T'+S) lie inside the
circles C, with center at 1,€ o(7T) and radius id,. Moreover, the dis-
cussion following (3) shows that except for a finite number of indices
exactly one point 1, of o(T'+S) lies in the circle C, about 2,. Now
suppose ;€ o(T+S) and its nearest neighbor is 4-;€ o(T+S). Then

d;c= M}lc— l;—l‘él%_ )ucl + ch_ Alc—ll + l’)‘lc-—l'_xllc—'ll
<1/8d,+d,+1/3d,-, <5/3d,,

and

oo

Sar (DY Sdr <.

m

It is of importance to know whether the perturbed operator 7'+S
still enjoys the ‘‘ completeness’’ property

i E ()=

with which the unperturbed operator 7' is endowed by hypothesis.
The answer is given in the following.

THEOREM 2. If T and S satisfy the conditions of Theorem 1, then

S E)=I.

Proof. The proof rests on Lemma 16 of [9] which states:

The space S.(T) = {f| for each positive integer k, E(2,)f=0} is the
set of all fe H for which f()=R(T)f is an entire function of A.

Suppose C is a contour in the complex plane whose minimum dis-
tance from the spectrum o(7) is d(C). Consider the function
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7, =1
A—p
for 1€ C and peo(T). Now let 1 e C be such that dist (2, o(7T"))=d(C),
and let p, be the point in o(7") such that dist (4, g,)=d(C). Then

o ml< < aage,
By choosing C properly one can achieve that ||SR(T)|| < 1/2 for 2eC,
and, therefore, a fortiori, for 1e C. Hence, by (8) [|{I—SR.(T)}||< 2
and by the above cited lemma, for fe S.(T), one then has for 1e C

HEAT + S I =|IB(T) {I—SEN(T)} -]

k/
g’d(C) LA

Now, given e >0, choose C in such a way that &'/d(C)<le. Then

HEAT+S)FI el

The arbitrary nature of e, the fact that f(A)=Ry(T+S)f is an entire
function of 4, and the permissible application of the maximum modulus
principle allow one to assert that for all 1 in the interior of C,

R(T+S)f=0.

In particular at points 1€ p(T), R\(T +S) has an inverse. There are such
points in the interior of C. Thus f=0 and the theorem is proved.

3. Application to differential operators of even order. N=2u,
In appliying Theorems 1 and 2 to differential operators, the unperturbed
operator T is identified with the operator z=d"/dz” with domain
restricted by the two considerations:

(@) feZ(T) only if feC¥ 0, 1) and %l—;f is absolutely continu-
x

-1

ous, and

(b) fe Z(T)only if f satisfies N=2p linearly independent boundary
conditions of which g bear on the point =0 and ¢ on the point z=1.
These boundary conditions can always, by linear combinations, be brought
to the form

k-1

A =FEPO+ S e, 1(0) i=1,2, .-, 1
j=0

I, >k, > - >kv-
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i—1

(8) B(f)=fC0)+ 5 B £ P2 e
7o
ll>lz> cee >[H

To show that 7' is a regular operator it is most convenient to refer
to Lemma 10 of |9, p. 434] which states:

Let T be a differential operator and suppose that for some complex
2 both T'—4 and T*—2 have an inverse. Then T and T* are regular
operators, T and T* have spectra related by o(Ty=o(T*), and determine
spectral measures E, and E, related by E.()=E#().

Consider the differential equation (r—2)f=0. By manipulating a
tentative power series solution it can be shown in an elementary fashion
that there exists a set of linearly independent solutions which are entire
in the parameter i. Let this set be {u,, 2, ---, #y}. The general solu-
tion of the above equation can then be expressed in the form:

fa)=3 Cander, 7).

On imposing the N linearly independent boundary conditions, one obtaing
a system of N homogeneous equations in the N unknowns C,;. This
system has a nonvanishing solution vector if and only if the determinant
of the matrix of the coefficients vanishes. This determinant, however,
being a linear combination of entire functions in 1 is itself entire.
Hence its zeroes are isolated. Thus, for all but a countable set of
points 2., one finds that f(x)=0, and thus (7'—2)~' exists. DBut, since
the adjoint operator also has exactly N linearly independent boundary
conditions associated with it, it follows by the same argument that there
exists only a countable number of points p, where (7™ —p,)"' fails to
exist. Consequently, one can find a point 2 such that both (7'— i)'
and (T*—2)"" exist and, therefore, by the cited lemma, 7 is regular.

It shall now be verified that T satisfies the spectral Condition B.
This will be accomplished by showing that the above boundary conditions
are what Birkhoff [2] has called regular. To clarify the meaning of
this term the technique for obtaining an asymptotic development for
the characteristic numbers and functions established in the general case
by G.D. Birkhoff [2] and amplified and developed rigorously by J. Ta-
markin shall here be briefly recapitulated.

Since there are N linearly independent solutions of the equation

PSas,

dx¥

a solution of the boundary value problem must have the formn
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A= Cauz)

The requirement that A,(f)=B5,(F)=0 leads to a set of N linear equa-
tions in N unknowns {C,}. A necessary and sufficient condition that
a nontrivial solution {C;} of this system exist is the vanishing of the
determinant of the coefficients:

Al(ul) °tc Ax(ujv)

A -+ Ay

B\(u) -+ Biuy)

A7) =

Bo(w) - B,(uy)

It should be noted that the solution is unique provided not all of
the first minors of 4(2) vanish, that is, in this case, the characteristic
value is simple.

A fundamental set of solutions of the differential equation

&f
T =)
A

consists of
w,(x; )= ™"
where

X]I.N :{): l;‘l]/New‘,(]/N) arg A

and o, are the N distinct Nth roots of unity. The transformation
p¥=1 transports the entire JA-plane into a sector of angular width 2=/N
of the p-plane. There is, then, a biunique correspondence between the
zeroes of 4(1) in the 2-plane and the zeroes of §(p) = 4(p”) in a sector
of angular width 27/N in the p-plane.

The clements of the determinant J(p) can, by (8) be written as
follows:

k-1

A=t 5t A,

k. —t

{l

B (’M ) {) 'Pp“ {(,) i - }“ IHLS‘(’)

e

}‘{‘ e i{wji+ By}

where lim 4,,= lim B,,=0. After removing the factors p*, p’ from -

Ipl-ver Al »oo
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the rows with index ¢ and ¢+ ¢ one has

wn+ Ay, wi+ Ay, coeof 4+ Ay

u e+ A, in+ A, ceroge + Ay
apy=1Lp"*" ,
=t e (wh + Bp)e(wh + Byy) -« - ev(wh+ By)

1w+ Bm)epmz(wé“ + Bm) e eePon(wynt Bwv)

The sector S shall now be chosen in a convenient fashion. To this
end, it is proper to distinguish between two cases:
(1) p is even

(2) pis odd

T

S={p|0ﬁargpé»‘} .
/l

Let w=¢"'*. Then in the first case, for arg p=0
R(pa*?)=NR(po~+%=0,
In the second case
R(pa P01 =R(pw=*+D1?)=0

for arg p=nx/2¢. Suppose the indexing is arranged so that in the first
case

oy~ M2 VLS S, et — 2 NTIL IS B e 321
W= , Wy== y y W, == y Wy =0, Wy gy = y Ty Wy =@

and in the second,

7 —wf2-1/2 S =M [24+12 o 2-3{2 4 _ j2—1{2 S Smf2=3[2
R I R O e R et N T Lt L A Lt N

Upon bringing ¢*r out of the determinant wherever NR(pw,) >0, one
has

H'_ . fl_-l-l
2e) =11 ¢4+ 01 (o)

where #'(v) has the appearance
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x
ot + Ay (”;Al+1 + A1n+1
. . v
wylrf" + A}Ll wp.:l + A,u,u.+1
0'(p)=
e”’(‘“il + Bu) epm“‘l(wwu + Bw.+ 1)

1 (e + B,y euri (s + By

Here, " and B are matrices consisting of z—1 columns and g rows
all of whose terms have for a factor an exponential term with negative
real part. Asymptotically, these matrices are therefore negligible.

W=

P K
1 1
ww-z'l"Am-rz' . .(UZ}L+A12}L }
.

k . k
> 2
Wyt AW”- syl + AM,L

¢ (wh+ B) - - - ew(wn+ B,,)
*Br:{ ° :

e awlp+ B,)- - e u(wl+B,,)
Thus
k 12
W, wlh wf Wl
o'(p)y=e| « WT B geroner | o W BT L + 01/p).
e . . .
5 W @y wly

Only the case in which s is even shall be considered explicitly since
the treatment for ;2 odd is completely analagous. First note that

-~ g

w =€
and

Wy =e" =1,

Thus w,= —w,;;. Now let #;,=o" and y,=o%. The conditions that
Iey>k, >+« >k, and [, >1,>---1, and the fact that w=é'* is a
primitive root of unity imply that z,% x,, y, =%~ v, for i 7% 7. Recall that
by the arrangement of the indices, w,=w(-**s=1=y=+24*-!  Therefore,

(z)ifi =(U(—p.l2)k£w(s—l)kiin—p.ﬂxgs—l)
and

Wl = @D DL gl 5=

Using now the explicit representation of 7 and B’ given previously,
but taking only zero order terms into account, one has
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2

L ~ ]2 g+ 1 ]2, 2 —wj2 - - -1
ot S e N il | Tl Tl R Tl

=2 = 12+ 1 e ee 25201 —f2 g2 —~ (42, )~ 1
&(p) =" Ly, Ty "Xy y Ly Xy R TP VN T

M2 e 2 3 ]2 1 a— M2 a2k~ 1 —f2 —p]2 . —_
:I/MM/ .’I/'t, ‘I“[L“' ’ a‘;u.M ‘%t+ P Q/MN :I’MM y;LM ’ ?IMN Yy =0,y yuwzyﬁ !

]2 — 12 a1 — 1 f2 020 -1 - ]2, — ]2 =1 —wl2
R L N YTy, - YT Py Py

—l2 a2+ — 22 —1 — 2 —f2y =1 =gl
ey | m y Loy ! H I # st Y, v Yoy =2y Yo wl YT, Yy uf yy
. . . . . :
. . . . . .
—uf2 =21 =221 = 2 . =2 =1 = ]2 0
Xm0 XX, y Ty Yo "Yus s Y Yy, ?/,L“ Y

+0(1/p) .

By bringing common factors outside the determinant, one can simplify
the expression for &'(p).

oo <--at™t ) | 1y eyt
o'(p)y=e" ]ul afy 1oz --eaf™ 1oy, -y
=i . . .o .
i qu .o g;ﬁ“‘ i y;L e y't—l
1ot eee mt 1oy -yt gt
4+ et IM[ m;‘ﬂ/‘.‘. I»u.lz 1 Il’?ff“ e e {l‘/?f'"] 1 Y, =" ?/54} ‘ng -+ 0(1/{)) .
i=t .. : o . .
1 -""'.ffH . a;i,LJ i ?/‘;L . y;_z’ yﬁ'_x

The first determinantal factor of the second term above can be treated
by noting that 1=z and switching columns z—1 times and then bring-
ing the factor a* outside. These manipulations yield

1 @ - 1y ooyt

F(py=ern T aptyres] 1oa cemat™ L L g e gt
F=1 : : : : :
1 ceeatt |1 gy eee g
R e I R R T
—eme T agryr | Low T L T 0(1)
i=1 : : :
1o, ceeat || 1 gy, eee g

Now note that the determinants involved in the above expression are
Vandermonde determinants. But such determinants do not vanish
provided only the entries (a, @, -+-, ©,) or (¥, ¥ -+, ¥.) are distinct.
That this is the case was demonstrated above. Therefore, the given
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boundary conditions are regular in the sense of Birkhoff since in the
equation

0'(p)=0,+ 0,6 + O~

not both 6, and 6, vanish. Tamarkin [11] who examined *‘ separated ”’
boundary conditions failed to reach tbis general conclusion. By includ-
ing common factors in the term O(1/p), the equation ¢'(p)=0 can now
be written in the form

ei—een Iyt + O(1/p)=0 .
i=1
But
y’,ﬁ=a)lku=e("”“)lk“=€”’”k=(—l)lk .
Hence, on multiplying by e~*“1, one obtains
e1—=(—1)>=1%4 O(1/p)
or
e=(—1)-1%+0(1/p) .
On taking square roots of both members, one finds that
e”'=+4(1+0(1/p))
or
e'=+(1+0(1/p)) .
Taking logarithms of both members and noting that

log (1+0(1/p))=0(1/p)

results in the expressions

Pr=m|2+ 21k + O(1]p)

(9)

Prv=7[2+ 27k + O(1/p)
or

p,kzzn'k—{- 0(1/40)
(10)

Orp=n+2rk+01/p) .

By neglecting the terms of order 1/p first estimates may be obtained
which may then be inserted in (9) or (10) with the following results:
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pro= (27l) E(k)
(2k)1+ S }

4k
(11)
= _ 1 Eylk)
Prrk (2/17{:){1 4k+ f }
or
«—~(2nk>{14-53<k>}
(12)

Priv= (277]5){1-}- .t %(k)}

where the E/(k) and E;;(k) represent bounded functions of k.

It should be noted that (11) and (12) are valid not only in the
case in which gz is even, but also when g is odd.

Reverting to the A-plane one finds that

n~@mwﬁ+1+ﬁww

k*
(13)
zInc~(27'rk)m‘{1 2";6 EI];(k)}
or
A= (Zﬂk)z"{l 4 EIIE@, }
(14)

21'115—(271‘717)“‘{1—1- - 4 EZ(]C)}

Since the zeroes of 4(1) furnish the poles of the Green’s function,
one sees that all except a finite set of characteristic values of 7T are
simple poles of the resolvent. This does not, however, assert anything
about the number of linearly independent characteristic functions as-
sociated with each characteristic value. This matter will be dealt with
below.

From (13) and (14) one obtains expressions for the distance separating
the points of the spectrum (7).
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e 2ursl = (27rk)2"{ Z E,ik )}

(e B0}
Az 01— Arel = (22~ 1{2,,+E(k)}

so that in any case, for r > 1/2¢—1
> di7 < oo
k=1

This verifies that Condition B is satisfied.

In view of a prior remark it is merely necessary to exhibit a non-
vanishing first minor of 4(1) in order to permit the conclusion that all
but a finite number of characteristic values are simple. Moreover, since
A(2)=F(p)d'(p) where F(p)=~0 it is sufficient to find a nonvanishing
first minor of &(p).

Reverting to the expression for ¢'(p) and singling out the minor of
the element in the first column and 2xth row results in the exhibit:

k
wul+1 -+ Al,p+1
[ . . 97
. .
w,fil + Ay.,p.+1
My, =(— 1)
, !
i
epw"”(wp.ﬂ + Bl,lut+])
Do . WII
-
enri(wlyy + By i)

Here B and B’ are obtained from B’ and B by deleting the last
row in each of these matrices. On expanding M,,, in terms of the
¢ x p minors occupying the first ¢ rows and their complements and not-
ing that all the terms of A’ and B/’ are negligible in view of the fact
that each has an exponential factor with negative real part, one has

kl 761 k l ll f
l Wyy1 Wyys **° Wy Wy cre Wy
. o .

Mm,l =P %u+1

. %
w "
w,u,—!—l w,u.+2

+ 0(1/p).

u Ut o
- a) ILL ! w LN ) (U’U4+1 l

In the previously employed notation, z;=w"i, y,=w", one can write M,, ,
in the form:
1 @ ...x’l“l 1 " ...yll"_]

] 5 /2 1 .o il
M, =ewst [T at Z, L
i=1 : .

ﬁly’;” 1y oy
Ll . Y .

. o . . -
M...xﬁ 1 yy—l"'y;:——l
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Again, the Vandermonde determinants appearing above do not vanish
because the z; and the y, are distinct. Upon using the previously deriv-

ed expressions for p,, one sees that Ie"k“’u+1\i>1. Hence, it follows that
M,,. .7 0 except, possibly, for a finite number of indices %k, and thus
all except possibly a finite number of characteristic values are simple.

In order to show that T is spectral, it is necessary at this point
merely to establish a uniform bound on the spectral resolution E(e) of
T. But because T is regular this is tantamount to giving a uniform
bound for sums

% E(4)

keJ
whenever J is a finite set of indices. In establishing such a bound,
the finite set of {2,} which are multiple poles of the resolvent or multi-
ple characteristic values cause no difficulty. Therefore, it shall be sup-
posed that E(J,) projects onto a one-dimensional range. One can
construct E(J;) explicitly by drawing on Lemma 12 of J. Schwartz which
states:

“Let E be a projection of B-space X onto a finite dimensional range,
and let E*: X* — X* be its adjoint. Then if ¢, ---, ¢, is a Dbasis of
EX, we can find a unique basis of ¢, .-., ¢F of E*X™*™ such that
¢*(¢,)=0,;, and then

Ef= 3¢ 4H(f)

for any fe X.
Now let ¢,(x) be the mth characteristic function of 7', and ¢,(x) the
corresponding mth characteristic function of 7*. Then

[, @)y
E(zm)f:"o" ’ ’:i: T
[, ent@tn(o)do
Now suppose that
(15) ¢ @) =0,(2) + * Ki(m, )
m
(16) Gul(2)=0,,(z) + ~ K (m, 2)
m

where K(m, ) and K.m, z) are uniformly bounded in . Then

oW ) =0, )0 y) + O, Bl D0n(0) ) Kl )l )

m m
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and
S 9071 (x)¢,,L($)d$ (5071 ’ ‘r,}w)“lloml] + (07” Kz) +7’ (Kl’ 0m) + (Klr K)

Upon inserting these expansions in the expression for E(1,)f above, we
get

E(M)fjﬁ(w)a'"(m@’)dy Cuom) ) @, ) )y

116,01 m 10,01

€ K DDA | Kioms o, ) )
m 12.1¢ e .17

_Emf+ E Amf+ BmEnlf+

o
where l:)'m is a Hermitian projection since its norm is unity and it is an
integral operator with symmetric kernel and A,, B,, K, are multipli-

cation operators that are uniformly bounded in .
Now if J is a finite set of integers,

IS BOI <11 S Ba ll+ | P

Z*l

n€J N*

K,

n
neJ

The first term is bounded by 1 because of the Hermitian character of

the idempotents. Applying Lemma 3 to the second and third terms
yields the bounds

sup 14,/ 3, L.
n n=19

and

sup 1B, |

Mz
=

]

n=10"

For the fourth term one has the bound

sup | K Il Z

n=1

So that, granting the above representation for the characteristic func-
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tions of the operator T and the adjoint 7™, one may draw the conclusion
that 7' is spectral.

In order to exhibit ¢,(x) and ¢,(x) in the forms (15) and (16) it is
necessary once more to resort to an asymptotic development. (cf. p. )

24
<P1n(x) =t=214 Ciui(w) u’z(w) €Pmi®

(17) 0= Cd )

ZJ j:1727"

j(uz) y M.

From the compatibility of equations (17) it follows that C; is proportional
to the minor M,,,; of the element in the z#+1 st column and the 4th

row of the matrix.

wfi+ Ay, i+ A, oyt Ay
a)’flh—l—AP_l a).’fm—!—x‘lMz (l)léﬂfl"*"A}LN
() ~ e m1® &"m® o
e"m“’l(wiz + le) e“m“’z(wéz + le) e”mN(wA’;z + B2N)
e*n1(wh + Bm) ePm®2(whs + Bm) eoe @V + B,uv) .

This gives then the representation

Here and in similar expressions to follow, proportionality factors are
freely discarded. Since the above determinant closely resembles &'(p),
essentially the same techniques that were successful before shall be
applied again. For k=2, 3, ..., # we have R(p,»,) > 0. Bring e"=°

outside the determinant.
o1+ A,

gpmmlc(x— D

.

.
13
i+ A,
ePn®1®

() ~

¢’y w'z + By;)

epm(‘;] ((l)in —'[- BH«I)

The entries of the matrices A’ and B are all negligible for large k.

Expanding the above expression one

k
1
Wyt Al,p.+1
: DIk
5.
'3
w5+ AM,M—H
ePmu+1%

14
Pnlur i@y + By i)
.

¢ 14
pm‘"l“'l(wﬁ,_l + BH« M'H)

obtains

P K"

g
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4

epm“’uﬂwlfﬂ

l
b 2
e'm ;1.+1(1)M+1

BPanZ(’“D ces e”mwl-"(z—l)

@+ 0,(1]p).

epm“’z(:c—l) cos epm"’p.(w—l) P nPu+1®
¥t
. I wla el
(@)~ - AU 2 e
w* . .
Wl cee s
x epmwlm
1
w1
— | v oy || el o
" . .
wu+l . .
eniwly  wle

4
CL),LV-

Recall that the two determinants involving '/ are proportional to lowest

order in 1/p and that the factor of proportionality is 1.

Hence, on

incorporating this factor in O(1/p; «) and bringing e’»“w+1 and e’»*1 out-

side the determinants one has:

epmwz(z—l) LRCI epm‘"p.(x_l)
! 1
- w a) 2 e o w 2
Pu (@) ~ € Pn 2 0
. .
. .
12 12
Wl 0. (O
epmwl(x— D
11 !
£, wiz Wy
-+ e’m A .
l l
Wi Wyt

1,
w2

epmwf#'*'l('t— D

Yy

(1)”‘_,_1

P
2
D41

e,’)mmz(.t——.l') e epmmﬂ(x—l)

+ 0.(1/p) .

It should be noted that except at z=1, the terms (-7 k41 are

negligible asymptotically since R(p, w(x—1)) < 0.

Now using the pre-

viously obtained asymptotic expressions for p,, one finds that for x 71

Soml(x) ~ 6—27li(m+1/4):c .

. e‘zni(m+ll4)z

fra(@) ~ ereicntive |

_ e‘lﬂi(m—l/4):c

+ OQ/m; x)

+ O(1/m; x)
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or else

a)éz a),fu

Spml(x) ~ e—%iﬂm :
Wi ol

1
wh oo @l

— grmimz N -+ O(l/m; CI})

(uéu a),fu

7
wy2 w,2

SDMII(-’I;) ~ 6~Zﬂi(7ﬂ+1l2)z
Wk wlp
ws oo wl
T RSP . + O(/m; x) .

wé,,, P a);[\b

On incorporating common factors that are uniformly bounded with
respect to m into the terms O(1/m; x) one has

0,1(a)=sin 27r(m+ %»)H&(ﬁg@

m
(18)
S"mn(x):Sin 27T(m—- l‘,)x_l_ ML‘Z
4 m
or
@, (x)=sin 2rmax + K, (m, x)
m

19)

907)11[(x)=Sin 27T<m+ 1 >x+‘[§111(ﬂ’,7x_) .
2 m

Thus the characteristic functions of T have been brought into the
desired form. Note, however, that since r=d"/dz" is formally self-
adjoint, T and T* differ only in the boundary conditions. But it is a
simple matter to see that the boundary conditions of 7% will again be
of the ‘ separated’ type (cf. [7, p. 186]) and that therefore all the
developments leading to an asymptotic expression for ¢,,, and ¢,,;; will
be the same as those that served to find (18) and (19). Now note that
the first terms in (18) and (19) in no way reflect the quantities occur-
ring in the boundary conditions. Therefore it may be concluded that
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() —=sin 27r(m T i)x 1+ Bulm, 2)

m
(20)
(@) =sin 27r(m - 1)90 + Kon(m, @)
4 m
or
¢ (@) =sin 2rmae + K, (m, x)
m
(21)

G orr(w)=sIn 27r<m+ 1 >x+K2”(m—’ 28
2 m

By what has preceded, then, it may be concluded that T is spectral.
To complete the verification of Condition A for 7T is still necessary
to show that

SUEG)=I.
To this end note that

lim

M—> oo

—0

(-3 00)-(1- 2. 2)

so that in virtue of the fact that EA‘L is Hermitian and the above cited
lemma of J. Schwartz and F. Wolf, the range of

I- S EQ)

k=m

for sufficiently large m 1is finite dimensional. But in his Lemma 15
J. Schwartz asserts that

So ={fIE(A)f =0, 0 <k <o}

is either infinite dimensional or else the null space. But since

S.. < range <I~k}: E(zk)) ,
the above implies that S. is finite dimensional and hence consists of
the null vector alone.
It remains to verify the special hypothesis placed on the spectrum
of T in Theorem 1 and embodied in the requirement that for all suf-
ficiently large N, for all
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1
xeC}zz{zwz—zﬂ==§dN},

¢
d

max ,JNZL\L <

s Eo) |1—2y]
where
dy=dist [Ay, o(T) ~ {ix}].
First observe that if N=kFk,

and if N#4F%k
L N T .if%N +1}
T S R oA o VIR B
LI L R S 1 E S
= RULARN L A
;d};”{dN }“ d,

Dy == (s —Ay)e® .

In any case, therefore, there exists a € such that

max b < CJ&ﬂ .

2, €0 |1 — 2] dy

Now recall that according to the previously obtained asymptotic formulas,
Ay ~ N* and dy ~ N*~', Hence

L’z‘l\jll ~ Nzu.(v—l)+1 .
N

Convergence of

=1

?ﬁ‘i“

is assured for = >1/2x—1. It is thus required that 2x(—1)+1 < —1/2.
This requirement is satisfied by taking v < (p—38/4)/r and, a fortiori, by
the choice v=(2¢~—2)/2p.

Finally. it is necessary to determine the class of operators S for
which & (S) > & (T*). To this end it shall be shown first that if
fz)ye & (T*), then f(z) is »=2y¢—2 times differentiable. Suppose
feZ(T"). Then
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fla)= 5, B
If this series is differentiated termwise 22—1 times one has formally,
S (=11 @aye s 12y
x {S sin 2(k + 1/4) sin 22k = 1)y fp)dy + 5L gﬂ 2y

But this expansion converges for fe ZZ(1") almost everywhere to

Je9(x). Now let S be any closed operator whose domain consists of

2u—2 times differentiable functions on the closed interval (0, 1) such

that the (2/t—2)nd, derivative is square-integrable. Theorem 1 applies.
Thus in conclusion one has the following.

THEOREM 3. Let T be the operator d**[dx* with boundary conditions

Alf)=FEO)+ 5 S @, fO0) i=1,2, -+, g
by >k, > e >kﬂb
BAA =)+ 3, a fO(1) ie1,2, e, p

l1>l2>"'>ly.

then, ©f S is any closed operator whose domain consists of 2¢—2 times
differentiable functions f with [f@*?(@)e 0, 1), T+ S is a spectral
operator and, o E(R,) is its spectral measure, then

I= > E(%) .

||M8

In particular, one may make the following choice for S:

@ L@ T+ o)

2

where the coefficients ¢,(x) € .<7(0, 1)*. More generally, S may be chosen
in the form:

7/;,2

Qz +Q.2

‘7,;,_ ﬂ)p, 3

* +Q2/J.

2 Note that the theorem actually holds for the wider class of boundary value problems
in which the 2u—1th derivative can be eliminated by a standard change of dependent
variable [7, p. 72],
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where @, is any bounded operator in 25(0, 1).
Application of Theorem 2 shows that if fe %/ (0,1) and E(4,) are
the idempotents corresponding to T+.S, then the series expansion

f= S EQ)S

converges in .~ (0, 1) norm.
An additional consequence of Theorem 38 and Corollary 2 of [9, p.
448] is the following.

COROLLARY 1. If fe C*', fC+=D(g) is absolutely continuous, f @ (x)
e 70, 1), and f(zx) satisfies the boundary conditions above, then [ can
be expanded in the series

F=3EQ)f
where convergence s wn the sense that, letting

S, ()= kﬁ:lE(A,;) 7,

we have

lim {Sl]f(x)(m)_ S;QM)(x)lde}IIZ

N—>o0

+max max [fP(x)—SP(x)|=0.

0=2=] 0Si=ou—1
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DEVELOPMENT OF THE MAPPING FUNCTION
AT AN ANALYTIC CORNER

R. SHERMAN LEHMAN

1. Introduction. In this paper we shall apply some theorems proved
in [3] to study the following problem in conformal mapping. Let D be
a domain of the complex plane, the boundary of which in the neighbor-
hood of the origin consists of portions of two analytic curves 7', and I,.
Suppose I'; and I, meet at the origin and form a corner with opening
na>>0, and suppose the origin is a regular point of both curves. Let
F(z) be a function which maps conformally the upper half plane Jz>0
onto the domain D, and suppose that F(0)=0. How does the mapping
function F(z) behave in the neighborhood of the origin?

A partial answer to this question is given by a theorem stated by
Lichtenstein [5]. Let F-’(z) be the inverse function which maps D onto
the upper half plane. Then Lichtenstein stated that for z in the neigh-
borhood of the origin

dF-'(z) — 2110 (2)

dz
where ¢(z) is a continuous function with ¢(0)7%0." This same result
can, however, be obtained with much weaker requirements on the
boundary curve as has been shown by the work of Kellogg [2] and
Warschawski [6].

In the case a=1 where the curves I'; and I', meet at a straight
angle Lewy [4] has proved a much stronger result—that F(z) has an
asymptotic expansion in powers of 2z and logz. The method used in this
paper is a generalization of that used by Lewy. We find that for all
a >0 the function F(z) has an asymptotic expansion in the neighborhood
of the origin. If «a is irrational then the expansion is in integral powers
of 2z, and 2°. If « is rational then the expansion is in integral powers
of z, 2% and log z.

2. Notation. First let us make clear what type of asymptotic
expansions we will be congidering. Let y,.(2), (r=0,1,2,---) be a se-
quence of functions such that y,..(2)/y.(2) >0 as z—0 in the sector

Received September 11, 1956. This work was sponsored by the Office of Naval Research
and the National Science Foundation. It appeared in report form as Tech. Report No. 21,
Contract Nonr 225(11), March 1954. The author wishes to acknowledge the guidance of
Professor Hans Lewy.

1Lichtenstein proved this result only in the case of irrational n. The complete theorem
has been proved recently by Warschawski [7].
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0, <argz<0, A series }JAnyn(z) is called an asymptotic expansion for
f(2) valid in the sector 0 <ar0f 2=.0,, and we write

FO~ 3 A

if for every integer N>0

F@O= S At@) +ola(2)

as z—0, 0, <arg2<4,.

Clearly, in a sector 0,<Cargz<6, a function f(z) cannot have more
than one asymptotic expansion in terms of such a sequence of functions
An(2)-

We shall sometimes be concerned with asymptotic expansions which
are valid in every finite sector on the logarithmic Riemann surface with
the origin as branch point. By this we mean that the limits hold for
z—0 in any finite sector 6, arg z<{0, where 0, and 0, are arbitrary con-
stants. Otherwise expressed, we consider any sequence z, 2, 2, °***
such that there exist constants ¢, and 6, for which

0, <argz, <0, (n=1,2,8,--+)
and

lim |z,|=0.

N—ro0

Thus we exclude any sequence for which hm 1 sup larg z,|=oo.

Throughout this paper we will use the 1etter ¢ to denote a typical
coefficient in a series when the exact value of the coefficient is not im-

portant in the discussion. For example, instead of writing > ¢,..2", we
7=0

may write simply f]cz”. Thus we avoid a multiplicity of subsecripts.
n=0

3. Principal results. Let F(z) be the mapping function which maps
the upper half plane onto the domain D, and let I, be the image of
a portion of the negative real axis and I", the image of a portion of
the positive real axis. We shall prove the following theorem.

THEOREM 1. If «>0 dis irrational, then for z—>0 in any finite
sector

F(z) ~> A2
where k and 1 run over integers, k>0, |>1; and the coefficient Ay7~0.

If a=p/¢g >0, a fraction reduced to lowest terms, then for z—0 in any
finite sector
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F(z)~ > Azt (log 2)™
where k, I, and m run over integers for which
k=0, 1<I<q, 0=mZklp;

and the coefficient Aqya=%0.

In this theorem the terms in the series are supposed to be arranged
in an order such that a term of the form 2****(logz)™ precedes one of
the form 2"*"*(logz)™ if either k+la<k' +la or k+la=k +l'«a and
m>m'. Arranged in this order, these products of powers of z and
log z form a sequence of functions y,. The coefficients in these expan-
sions are complex constants, some of which may be zero.

From Theorem 1 an asymptotic expansion for the inverse function
F-’(2), which maps the domain D onto a portion of the upper half plane,
can be obtained easily by replacing the asymptotic expansions by finite
developments with error terms and proceeding as usual in the inversion
of functions. The result obtained is stated in the following theorem.

THEOREM 2. If « is wrrational, then for z-—-0 in any finite sector
the inverse of F'(z),
F"l(z)NZ Bmzkﬂ/w

where k and [ run over integers, k=0, {=>1; and B,%40. If a=plq,
a fraction reduced to lowest terms, then for z— 0 in any finite sector

F_I(z) ~ Z Bklm zk-HIM (1Og z)m

where k, 1 and m run over integers for which k=0, 1<I<p, 0<m<Fk/q;
and By,70.

There is another way to state Theorems 1 and 2 in the case of ra-
tional «. We can write

F(z)~2"" M,(z, 2%, 2" log 2)
and
FY(2) ~2° M,(z, 2%, 2” log 2)

where M, and M, are triple power series in their three arguments. In
the case a=1 the triple power series reduces to a double series in z and
2z logz as found by Lewy [4].

Observe that the function F'(z), defined originally for 0<argz<m,
can be extended by the reflection principle across both the positive z-axis
and the negative ax-axis since the curves I', and I', are analytic curves.
The images of I, and /', in such reflections are again analytic curves.
Hence F(z) can again be extended by reflection, and in fact can be con-
tinued near the origin onto the entire logarithmic Riemann surface with
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branch point at the origin. The function F(z) is regular for |z| suf-
ficiently small, say, 0<7]z|< p, on any sheet of this Riemann surface ;
but, generally speaking, p depends on the sheet of the surface.

4, Extension of developments to larger sectors. If the asymptotic
expansions of Theorems 1 and 2 hold for z—0 in 0<arg 2=z, they
hold for z—0 in any finite sector 6, <Cargz<C#,. Suppose, indeed, that
for given » >0, F(z) has a finite development of the form

4.1) F(2)=2>] Ay 2°**(log 2)™ + 0(2")

as z—0, 0<argz<m, where the sum is extended over integers %, [, and
m such that k+la<r, k=0, {=>1; and 0<m<Fk/p when a=p/q, m=0
when « is irrational. Then the same development is valid for z—0 with
—r<{argz<0. To see this let ¢* be the image of ¢ in an analytic reflec-

tion on the curvel’,. Then ¢*, the complex conjugate of £*, is an analytic
function of ¢, say @(%), which is regular for |£| sufficiently small. By
the reflection principle, since F(z) takes the positive real axis, arg z=0,
into the analytic curve I';,, we have

F(Z)=(F(2)*=2(F(z))

for 0<<argz< m. Observe that this formula continues F'(z) for |z| suf-
ficiently small into the sector —r<Cargz<=. Since @() is regular for
|| sufficiently small and @(0)=0, we have

0(0)= e +o(c™)
for z—0. Then with
C=F(z)=2"[> cz"*"*(log )" +0(z"*)], k=0, [>=0, k+la<Lr—a)
we have by (4.1) for z—0, 0<largz<m,
gr=2"> ez® " (log 2™+ o (2" "))

where k>0, (>0, k+Ila<r—na; m is limited as before. Also

o(£"")=0((0(z"))"*) =0(z")
as z—0. Consequently for z—0, 0<argz<n,

FR)=0(F @)=y cz"*"(log z)" + 0(z")

where k, I, and m are restricted in the same way as in (4.1). But this
means that F(z) has a development of the same type as (4.1) for
—n<argz=<_0. This new development must coincide with that given
by (4.1) since both hold for z—0 with arg z=0,
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In the same way we can reflect across the line arg z== and estab-
lish that (4.1) holds in the larger sector thus obtained. By induction we
can prove that (4.1) holds in any finite sector 0, <larg2<C6,. Thus we
see that if Theorem 1 holds for z2—0 in the sector 0 <arg z <=, it holds
for z—0 in any finite sector.

5. Some lemmas. We now state some lemmas which will be used
in the proof of Theorem 1. Lemmas 1 and 2 are special cases of
Theorems 4.1 and 4.2 of [3]. The integrals are Lebesgue integrals ex-
tended over positive values of £. The range of z considered is 0<|z| <A,
—2r<arg 2<.0. We take the branch of the analytic function of gz,
log (1—2/t) which is real for 0<z<¢, argz=0.

LEMMA 1. Let A be a positive real number, ¢ a real number >—1,
and n a nonnegative integer ; and let

o(z)= S:t"(log £y log (1—z/6)dt .

Then there is a power series ¢(z), which converges for |z|< A, and
a polynomial in log z, P(log z), such that

¢(2)+ 2" P(log 2) + q(2) .

If p is an integer then, the polynomial P is of degree n+1; and if p s
not an integer, it is of degree n.

LEMMA 2. Let 3(t) be a measurable function, bounded absolutely for
0<t<A and such that B({t)—0 as t—0 through positive real values.
Let p be a real number >-—1 which is not an integer, and let

ﬂl(z)zrﬂ(t)t“ log (1—2/¢)dt .

0

Then there is a power series q(z) such that for z—0
Bi(z)=a(z) +o(z""") .

LEmMMA 3. Let ¢ be a real number. Let 7n(z) be an analytic func-
tion, regular for 0<|z|< R, 0, <argz=<0, and such that 7(z)=o0(2"*) for
2—0 in the sector 0, <argz<0,. Then the derivative

7'(z)=0(""")

for z—0 4n any sector in the interior of the sector 0, <argz=40,,
A proof of Lemma 3 is obtained by estimating a Cauchy integral
with path a circle about z with radius ¢{z|, ¢ small.
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LEMMA 4. Let 2 be a real number. Then for z—0 with |argz|
bounded, |z~*F(z)| tends to zero iof 1<« and tends to infinity if 2 >«.

A proof of Lemma 4 can be obtained by a study of the Poisson
integral (see Gross [1, pp. 57-61]; the requirement that z—0 in an
angle in the interior of 0<{argz<rm can be eliminated by using the fact
that 7", and I", are analytic curves).

This lemma also follows from the theorem of Lichtenstein mentioned
in the introduction.

6. DPreliminary transformations. First we establish that the general
case can be reduced to the special case in which the curve [, is an
analytic curve tangent to the positive real axis and /", is a portion of
the ray arg(¢=—na in the ¢ plane. Consider a function ¢(¢), regular
for |¢| sufficiently small, for which ¢(0)=0, ¢'(0)=b=40, and which takes
the analytic curve [, into the line arg = —=«a. The function ¢ maps I,
into an analytic curve tangent to the positive real axis. TFor the sake
of simplicity of notation we carry through the proof in detail only for
irrational a.

Suppose that we know Theorem 1 in the special case in which I, is
the line arg = —r«a, then for z—0 we have

P(F(2)=2"{>. Cp, 2"+ 0(z")}

where the sum is extended over integers &k and [ for which £>>0, [>0,
k+la<r. In addition, we can suppose that Cy,=%0. Then since the
inverse

N
I(O= 7+ 3 el ()
as £—0, we have
Fz)=¢((F (2'))=%fz“{2 Ci 2" +0(2)} +2"{ 2] 2" +0(2")}
+ oo 2" {30 e 4 0(27)) +o(27%)
for z—0. Hence by taking N large enough, we obtain
Fz)y=z*{>) Ci, z¥"" 4+ 0(2")}
where C{,G———-%Coo;éo. All of the sums considered are extended over

integers k>0, (<0, k+Ila<r. Thus we need consider only the special
case in which 7', is a portion of the line arg {=—r«.

Now we make another preliminary transformation. Let w=¢'%, so
that the line arg ¢= —ra goes into the negative real axis. The analytic
curve /', goes into a curve /7 tangent to the positive real axis. This
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new curve /7 is not analytic at the origin; we will find it useful to have
the equation of 7.

Let ¢=¢&+4%. The analytic curve /', is given by an equation with
real a;

D=0, + a8 + @+ - - -

for £>0, where the series is convergent for ¢ sufficiently small. Then
on /" we have
W=t (i) = 8L 4 0,6+ - - )
=1+ cE+c&+--1) .

Separating real and imaginary parts, we have with w=u-+iv

u=E""(1+c&+c&+--+)

v=E""(cE+cE+cE+ - ) .
Consequently,

w=E+c&+ck+ .-
and thus
E=u"+cu’+cu®+ .-+ .

Hence we obtain finally that the curve I is given by an equation of
the form
(6.1) v:u;bkukw

for <0, where the series converges for u sufficiently small.

7. Obtaining the asymptotic expansion. Let D’ be the image of
D under the transformation w=¢""; we can now assume that near the
origin I is bounded by the negative real axis and the curve I” given
by the equation (6.1). We consider the function w=G(z)=(F(—=z))"*
which is a univalent conformal mapping of a semi-neighborhood y<C0 of
the z=a+idy plane into the domain D’ of the w=u+4v plane. Observe
that G(0)=0, a portion —A<x<<0 of the negative x-axis is mapped into
a portion of the negative u-axis, and a portion 0<Cax<CA of the positive
x-axis goes into 717,

We will need an estimate for G(z) and its derivative G'(z). By
Lemma 4 we have for 2—0, |argz| bounded

G(2)=[F(—2)]""=[o(")]"*
for any A< a. Hence for any ¢>0
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(7.1) G(z)=o0(z""%)

as z— 0 with |arg z| bounded. Using Lemma 3 we conclude further that
for z—0

(7.2) G'(z)=0(z7%) .

Now we construct a certain function H(z) which differs from G(z)
by a single-valued function. Observe that the function

G(2)=u(x, y) +iv(z, y)

can be continued across the negative real axis, argz=—m, by the reflec-
tion principle. In particular, we have for argz=0

G(2)— (Gze ™) =u(z, 0)+iv(z, 0)—[u(z, 0)—iv(z, 0)]
=2iv(z, 0) .

Consider for —27<Cargz<<0 the analytic fﬁnction

(7.3) H(z)zggj@(gt’ﬁl log (1~2/¢) dt

where the integral is extended over positive real values and the branch
of log (1—2z/t) considered is the one which is real for 0<z<¢, argz=0.
That the integral converges follows from the estimate (7.2).

For arg2z=0 we have

H(z)——H(ze-M)JZ? Szﬁﬁa’/‘é@dtzzw(z, 0)

since

271 for t<z,

log (1—z/t)—10g(1-29'2”/“:{ 0  fort>z

Thus the difference p(z)=G(z)— H(z) satisfies the condition p(z)=p(ze~*)
for argz=0. Furthermore p(z) is regular for 0<|z|< 4, —2r<argz<0;
it is continuous as z approaches a point of the positive real axis for
arg 2z=0 or arg z=—2r, and it is bounded for z—0. Hence by Riemann’s
theorem on removable singularities p(z) is equal to a power series con-
vergent for |z|<A.

From (6.1) and (7.3) we conclude that for —2r<argz<0

T4 G@)= 71r S: { "”“gt’ 0) S0 +na)u"“} log (1 —2/t) dt + p(2)
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where p(z) is a power series with constant term equal to zero.
By (7.1) and (7.2) we have f?’lé(at; 0 _o@t-1) and wr=o(t-9%) for
t—>0, ¢ an arbitrary positive number. Hence for t—0

ult, 0) Sy (14 nayure—o(ta+o 01

ot n=1
Inserting this estimate in (7.4) and applying Lemma 2, we obtain for
2—0, —2r<argz<<0

(7.5) G(2)=az+2°q(z) +0(z* P -9)

where ¢(z) is a power series in 2z which converges for |z| sufficiently
small. We conclude that a=£40 by applying Lemma 4 with 2 slightly
larger than «. Knowing this, we can conclude further that ¢ is posi-
tive from the fact that G(z) maps the positive real axis into /7, a curve
which at the origin makes an angle of = with the negative real axis.
Since G(z)=[F(—=2)]'" the result of §4 shows that the estimate (7.5)
holds for z—0 in any finite sector.

Now we prove Theorem 1 by induction. We consider first the case
in which « is irrational. We shall prove that there are constants a,
such that for every integer N,
(7.6) GR)= >, apzt*+o(2"), k=1, 1>=0

k+la=No
as z—0 with |arg z| bounded. We begin by noting that G(z) has such

a development for N=N, where N, is the integer for which 17_§_N0<1
a
+—1. This follows directly from (7.5) since for ¢ sufficiently small
a
1+ a)l—e¢)=Nxx and hence o(z** - =¢(z",*), Consequently, to prove
(7.6) by induction it will be sufficient to show that if G(z) has a develop-
ment of the type (7.6) with an error term 0(z™), then G(z) has such a
development with an error term o(z®***). In proving (7.6) by induction
we will simultaneously obtatin a proof of Theorem 1 by using the fact
that F(2)=[G(—2)]".
By the induction hypothesis we have
ut, 0)= >, R{ag}t***+o(t"), (k=1, 1=0),
k

+lo=Na

and thus since a,=a>0
u(ty 0)=at{1+thk+lw+0(t1\7w—1)}

where the sum is over k>0, {>>0, for which (%, {)%4(0, 0) and k+l«
< Na—1. Using the binomial theorem, we find
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unwzanatnw{ 2 ctk+zw+0(tsz—1)} , (kgo’ Z;_O) .

k+losNw—-1

Moreover, by Lemma 3 and the induetion hypothesis we have for {—0

0 _qet)y= S (14 I)R G, 0T

at k+lasNa—1

where £>0, [>>0. Inserting these estimates in (7.4), we obtain
4
G =p@)+ || (S et ot} log (1—ft)dt
0

where the sum is over integers k>0, [>1, for which k+la <(N+1)a—1.
Now we apply Lemmas 1 and 2, observing that since {Z>1 and « is
irrational, & +la cannot be an integer. We find for z— 0, —27z<largz=<0,
(7.7) GR)= 3 au@o+o(z9Y), k=1, 1=0).
k+lo=(WN+1Da

When £ and [ are integers for which k+Ila <X Na, the coefficient a,, must,
of ceurse, be the same as that appearing in the development with error
term o(z%%).

We wish to prove that (7.7) holds for z—0 in any finite sector.
We note that for z—0, 0<larg2<2r

F(z)z[G(_z)]ob:aw( _z)ar,{l + Z C(__z)lcﬂd,_l_o(z(:vﬂ)m—l)}w

where the sum is over £>0, [>0, which for (%, [)54(0, 0) and k+l«x
<(N+1)a—1. Hence by the binomial theorem

(7.8) F(z)zz Amzk +m+0(zczv+2)m-1)

where the sum is extended over k>0, [>1, for which &+ la(N+2)a—1.
Note further that A4,40. We have proved (7.8) for z— 0 with 0<{arg=z
< 2m, but by the result of §4 this formula must hold for z—0 in any
finite sector. Consequently, from (7.8) by using the binomial theorem
we can obtain (7.7) for z—0 in any finite sector. Thus G(2) has
a development with error term o(z¥*"*). Hence by induction (7.6) and
also (7.8) hold for all N. This proves Theorem 1 for irrational «.

Now we prove Theorem 1 for a=p/q, a fraction reduced to lowest
terms. Let 7 be a positive irrational number less than «. We shall
prove that there are constants a,,, such that for every integer N, as
z—0, in a finite sector
(7.9 G(z)= ZN G2 (log 2)™ + 0(2™7)

Y

k+lo=

where £>1, 0<{I<{¢g—1, and 0<m << rk;:l‘. We begin by noting that
D
G(z) has such a development for N=N, where N, is the integer for
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which 1 < N,<1 +~L, as can be seen directly from (7.5). Consequently,
7 7

to prove (7.9) by induction it will be sufficient to show that if G(z) has
a development of the above type with error term o(z*?), then it has
such a development with error term o(z*%?).

By the induction hypothesis we have for positive t—0

ut, 0)= Zm%{%m}t’“”“(log £y +o(t™)

k+le=

where k=1, 0<1<¢—1, 0<m<""1. Since ay—a£0, we have

P
u(t, 0)=at{l+ > ct®****(log {)™ +o(t"")}
where the sum is over integers for which
(7.10) E>0; 0<I<q-1; 0<m<Zkip; hb+la<Nr—1.
Using the binomial theorem, we obtain
u=a"t"{ 3" ct*+***(log t)™ + o(t""1)}

where %, [, and m are restricted by the conditions (7.10). Moreover, by
Lemma 3 and the induction hypothesis we have

Buft, 0)

0 St ettt (log ty™ + o(£¥7Y)

where again k, [, and m are restricted by the conditions (7.10).
Inserting these estimates in (7.4) we have, since
O(tNy+a—1):O(t(NH)y—l) ,

the formula
G(z)=p(z)+SA{Z et 4otV log (1 —2/t) di .
0

The sum in the integrand is extended over integers k, I, and m for which
E=>0; 1<i<q; 0<m=<klp; k+la<(N+1)r—1.

Now we apply Lemmas 1 and 2 to obtain a better development for
G(z). Note that k+Ila=Fk+Ip/q cannot be an integer unless {=¢q. Con-
sequently terms of the form

ct*+%(log t)™

in the integrand, with Is%4¢q, produce besides a power series only terms
of the form
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Czlc +1+ Lw(log z)m’

with

I

in the development for G(z). On the other hand, when [=q they produce
besides a power series only terms of the form

Czk+1+ld(10g z)m’zczk+p+l(log z)m'

with

0<m <m+1<k p1_btpt)—1
P vy

In applying Lemma 2 we observe that (N+1)ry—1 is not an integer be-
cause 7 is irrational. Hence we conclude that for z—0, —2r<largz<0,

(7.11) GR)= > . (log 2)™ +o(z )

k+la(N+1)y

where k=1, 0</<¢—1, and 0<m=<""1.
D
As in the case of irrational a we obtain from this the result

(7.12) F(2)=3 A2t (log 2)™ + o(z ¥ +Prv+e-1) | (Ayp#0)
where the sum is over integers k%, [, and m for which
E20, 1<I<q, 0=Zm<Zkip; k+tla<(N+1lr+a—1.

By (7.11) this result holds for z—0 with 0<Cargz< 2z, but by the
result of § 4, it must hold for z->0 in any finite sector. From this we
then obtain (7.11) for z—0 in any finite sector. Hence G(z) has a deve-
lopment with error term o(z**»¥). Thus by induction (7.9) and also
(7.12) hold for all N. This completes the proof of Theorem 1.

We note finally that by Lemma 3 derivatives of F(z) and F-'(z) of
arbitrary order have asymptotic expansions which can be obtained by
differentiating the expansion for F(z) and F-'(z) termwise and then
rearranging the terms in the new series in an appropriate order.

REFERENCES

1. W. Gross, Zum Verhalten der konformen Abbildung am Rande, Math. Z. 3 (1919),
43-64.,

2. 0. D. Kellogg, Harmonic functions and Green’s integral, Trans. Amer. Math. Soc., 13
(1912), 109-132.



DEVELOPMENT OF THE MAPPING FUNCTION 1449

3. R. S. Lehman, Devclopments in the meighborhood of the beach of surface waves over
an inclined bottom, Communications on Pure and Applied Mathematics, 7, No. 3, (1954),
393-439.

4. H. Lewy, Developments at the confluence of analytic boundary conditiorns, University
of California Publications in Mathematics, 1, No. 7 (1950), 247-280; also Proceedings of the
International Congress of Mathematics, (1950), 601-605.

5. L. Lichtenstein, Uber die konforme Abbildung ebener analytischer Gebiele mit Ecken,
J. Reine Angew. Math., 140 (1911), 100-119.

6. S. Warschawski, Uber das Verhalten der Ableitung der Abbildungsfunktion bei kon-
former Abbildung, Math., 35 (1932), 321-456.

7. ————, On a theorem of L. Lichtenstein, Pacific J. Math., 5 (1955), 835-840.

STANFORD UNIVERSITY






CONVEXITY OF ORLICZ SPACES

HaroLp WILLIS MILNES

In a paper [1] which appeared in 1936, J. A. Clarkson defined a
property of Banach spaces known as uniform convexity. Let |f| denote
the norm of an element f of such a space and let {f,, f.,} be any
sequence of pairs of elements such that |/7]=]f"|=1 and lim3|f,+ f.|=1.

The space is said to be uniformly conver if these conditions imply that
lim|f,—f.]=0. It has been shown [2] that an equivalent definition is

one in which the condition |fi|=|f.]=1 may be replaced with the
weaker |/ <1 and |f,]<1. Clarkson has been successful in showing
that the Lebesgue spaces L, are uniformly convex if p5~1 and that
L, is not uniformly convex. The convexity properties of more general
classes of Banach spaces have been investigated by M. M. Day [3], 1.
Halperin [4] and E. J. McShane [7].

A concept of convexity related to uniform convexity has been de-
scribed and is termed strict convexity. It is defined in the following
manner. ot /0 " be any pair of elements in a Banach space such
that |f|=|f"]=1 and .+ f.]=1. The space is said to be strictly
convex if these conditions imply that |f'— f”|=0. In a Euclidean space,
strict convexity corresponds geometrically to the property that the unit
sphere |f]|=1 does not contain a segment. We remark that, if a space
has the property of uniform convexity, then it possesses that of strict
convexity as well; however, the converse implication is generally untrue.

The principal objective of this paper is to investigate the conditions
which an Orlicz space [9] must satisfy to be uniformly convex. Also
the related problem of determining the conditions for strict convexity
is considered. A solution to both of these questions has been presented
which may be regarded as complete in the sense that both the neces-
sary and sufficient criteria are developed.

We begin by formulating the definitions of Orlicz spaces in accord-
ance with the notations to be used subsequently. Except in minor
details we shall adopt the standard conventions. Let v=¢(u) be a
monotonically nondecreasing function not identically zero, defined for
all 0 <wu such that ¢(u)=¢(u—) and ¢(0)=0; also, let @(u) denote the
associated function ¢(u)=¢(u+). Let u=¢(v) be the function inverse to
¢(u) which is defined by the relations:

Received December 26, 1956. This paper is part of a doctoral dissertation with the
same title completed under the direction of Prof. G. G. Lorentz at Wayne State University,
January, 1956. The work was in part, supported by the National Science Foundation
(Grant: NSF G 1014).
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(i) ¢(0)=0,

(ii) ¢w)=u if ¢(u)=v and u is a point of continuity for ¢(u),
(i) ¢v)=¢-),

(iv) if ¢(u)7=¢(w), then ¢(w)=u for all ou) <v<"g¢(w),

(v) if lim ¢o(u)=1I0< oo, then ¢(v)=+ o for all I <w.

Also, let ¢(v)=¢(w+). Since ¢(u) and ¢(v) are monotonic functions they
are Lebesgue measurable and their indefinite Lebesgue integrals define
the functions:

@(u)zg:go(ﬁ)dﬁ and ?F(v)=S:¢(77)d17 :

Let 4 be a measure space with a o-finite nonatomic measure gz and a
o-ring of measurable subsets. Let f(x) be a p-measurable function
defined on 4; then, the functions ¢(|f(2)]), ¢(If(z)]), ¥(F(x)]), etc., are
also g-measurable on 4. For each function f(x), we define:

Ifls=sup | Lr@lote)ds

where the supremum is taken for all g(x) >0 satisfying SAW(g) de < 1.

The Orlicz space L,=L4(4, #) is defined to be the collection of all fune-
tions f(x), #-measurable on 4, for which |f],< . It may be shown
(Zaanen, [10]) that the space L, is a Banach space with the norm |fJs.
If &(u)=u?, 1<p< o then L, is the classical Lebesgue space L,.
Necessary and sufficient conditions for both types of convexity will
be expressed directly in terms of the functions ¢, ¢, ete. For strict
convexity of L, these conditions are simply that ¢(v) and #'(v) should
be continuous in the extended sense. By this we mean that if V, is

defined by V,= supv then ¢(v) and ¥(v) are continuous for v <V, and
Pv)<Lee

lim ¢(v)=o and lim F(v)=oco. Of course, requirements additional to

vV - vV —

those for strict conveuxity must be satisfied to imply uniform convexity.
It is found that these conditions are alternative according as 4 is as-
sumed to have finite or infinite measure. If 4 is of infinite measure it
is necessary and sufficient that the space satisfy the following require-
ments: not only must the functions ¢(v) and ¥(v) be continuous in the
extended sense but the function ¢(x) may neither increase too rapidly
nor too slowly. Precisely stated, there must be a constant 0 <N <
such that @2u)/@(u) < N for all 0 < u (or what is readily shown to be
an equivalent statement, that there exist a constant 0 <N < such
that ¢(Qu)/e(w) < N for all 0< u), and also that for each constant
0 < e<(1/4 there is a corresponding constant 1< R,< o such that if
0 <u then R, < ¢(u)/¢((1—e)u). When 4 is of finite measure, the func-
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tions ¢(v) and ¥ (v), as before, must be continuous in the extended sense;
however, slightly less stringent conditions apply to the functions ¢(u)
and &(u). It is required merely that the conditions stated for 4 of
infinite measure apply only in the limiting sense; namely, that there
exist a constant 0 <  N< oo such that lim sup @(2u)/@(u) < N and that

for each constant 0< e<1/4 there is a corresponding constant 1 < R, <«
such that R, <lim inf ¢(u)/¢((1—e)u).

We begin the demonstration by establishing first the statements
relative to strict convexity.

LemMA 1. If f(a)e L, s a step function, then
Iflo=sup | I7lgdp
9(@>z0 JA

where g () dn <1 and where g(®) is also a step function with the
A

same regions of constancy as f(x) and g(x)=0 whenever f(x)=0.

Proof. Let |f(x)|l=f, on sets ¢, of measure p(e;)=4, >0 7=1, 2, +- -,
n. Let #(x) >0 be any function such that S ¥(hydp <1. Define:
A

9'(90)=1{1§ Wz)de=g, on e .

Since ¥(v) is the integral of a monotone nondecreasing function, it is a
convex funection so that by Jensen’s inequality [10]:

i v an=v(in| medn)=r@)
Gi /3i
and therefore:

| roan=Sren<t| vordn

=S w(h)dp <1.
A

On the other hand:

| \Plodn= Srga= S r (3| nau)

| 1rwap.

It is clear that we may take g(x)=0 where f(2)=0 since the
integral S I flgdp will remain unaltered in value while S T(g)dp can
A A
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only become smaller.
THEOREM 1. If ¥ (v) ¢s discontinuous, then Le 1s not strictly convezx.

Proof. Since ¥(v) is defined as the integral of a positive function,
the only type of discontinuity which can arise is of the form ¥ (V)< o
while ¥(V,+)=00 where 0 < V,< . (It is to be remarked that the
definition of the space L, excludes the case V,=0 as trivial). Let
A< min [p(4)/2, 1]2¥(V,)] be a finite number, A < 4, B< 4 be two sets
such that AN\ B=0 and p(4)=pB)=21. Define f'(x)=1/1V, on A and
0 elsewhere, f”(x)=1/2V, on B and 0 elsewhere. By Lemma 1, if ¢,
¢” represent positive numbers:

’

I/ le=sup ler ¢ where T(d)<< ;i

1 1
"e=su ¢’ where U(¢)<--.
I l=sup GEE

Since ¥(V,)<1/22 and ¥(v)=o for V,<v the largest value of ¢ or
¢’ that may be chosen is ¢/=c¢’=V,. Thus |fo=|f"].=1.

But L f'(x)+ f"(x)|=3f" (@) —f"(x))=1/21V, on A\JB and 0 else-
where, so that by Lemma 1:

“ S 1
2

= gup ————-24¢c
'320p ZI{VO

2

f’~f,’i|

@

where ¢ represents any positive number with #(c) <<1/22. As before,
it follows the largest value of ¢ it is possible to choose is: ¢=V, so that

7+ =3~ =1
THEOREM 2. If ¢(v) is discontinuous, then L, is not strictly convex.

Proof. Let v,— supv, V,= sup v. By Theorem 1 it may be assumed
¢(v)=0 Plv)<oo

that ¥'(v) is continuous in the extended sense, so that lim ¢(v)=co.

vV~

Two cases are distinguished according as ¢(v) is or is not continuous at
v=1,.

(A) v, is @ point of discontinuity for ¢(v). Let v, < B<V, be a
point of continuity for ¢(v) and choose j large enough so that the re-
lation ¥'(8)=1/4 defines 1< p(4)/2 and A< oo. It is then possible to
determine sets A< 4, BEZ 4 such that: p(A)=p(B)=2 and A\ B=0.
For each value of a parameter 0< p<{1 define a,=[1—pd(v,)v,]/5,
b,=pd(v,) and
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Y on A4,
A
K@=\ o B
0 on (AUB).

By Lemma 1, |f,].= §1>10p (a,6+b,7) where ¥(§)+¥(5)<1/2. Since ¥(v)
720
is the integral of a positive non-decreasing function not identically zero,
7'(v) increases continuously to infinity; hence, it is possible to replace
the condition Z(&)+¥(y) <1/2 by ¥(6)+¥(9)=1/2 with é¢=>v,, >, for
it &, » satisfy ¥(&)+¥(y,)<1/2 it is always possible to find & =>¢,
7,=7, so that ¥(&)+¥(,)=1/4 and & =wv, 7,=>wv, while a,6,+b,7, >
a5 +b,7.. Thus np=x(¢) is determined as a single-valued function with
v L& f. If I(§)=a,E+b,7(&) then || f)l.= sgpﬁ L(8). But I,(¢) assumes
v,sks

its maximum subject to v, < €< either for &=wv, £=pf or at points
for which d*I(¢)/dé and d-I,(¢)/dé simultaneously change their signs,
where d*/d¢, d-|/ds denote respectively upper and lower derivatives.
That is, the maximum must be assumed either at a boundary of the
interval »,<X € <{f or at a turning value or a cusp. But

d=y_—9(&)
as  ((8))
so that

CLE) _ oy 9O _1[1_ 5 FIGEAYS
de T E) ﬂ[ b M)(“’”W@(e))ﬂ

If p is any value 0 <'p <P where

0 << P<min [1, (¢(vo)v,+¢(F)B) ]

then d-I,(8)/de>0, v,< < f; and since [,(v,)< I,(P) it follows: |f,|,=
L(p)=1 for all such p. Choose 0 <9’ < p"” < P/2 and define

S'@)=rv@,  Fr@)=rf ().

Then (f'(@)+ f"(z))=%Sp+p(2) so that |fo=]/"lo=3f"+f"]s=1. On
the other hand |f'(x)— f"(x)| is different from zero on B and therefore
its norm is not zero. Thus L, fails to be strictly convex in this case.

(B) w, 4s a point of continuity for ¢(v). Let a be a point of dis-

continuity for ¢(v) so that ¢(a) < ¢(a)40. Also, let « < f<V, be a
point of continuity for ¢(v) and choose /# large enough so that the relation
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T(a)+ ¥ (B)=1/2 defines 2T p(4)/2 and 0< 1< oo, It is then possible
to determine sets A < 4, B< 4 such that p(A)=p(B)=2 and AN\ B=0.
Consider the equations

ada+b'f=1

@' $(B) ~b'P(a)=0

e+ b =1
gy —p P+ $a) ) _
arg() =y (1) 0.

Since ¢(F) = () >0 it follows that the determinants of these equations
do not vanish; therefore, the equations may be solved and it may be
observed that the wvalues of «', ¥, o, b’ are all greater than zero.
Define

¢ on A ® on A
A A
F@=1 _ p S@= g
A A
0 on (A\UBY 0 on (A\UBY

By Lemma 1, |f|,= sup (0’6 +bn) where T(E)+¥(n)<X1. As in (A)
120

above the condition ¥'(¢)+ ¥ () < 1/2 may be replaced with (&) + ¥ ()=1/2

and § >wv,, 1>, and these relationships determine £=£(») and 7=17(¢)

as single-valued functions with v, <{£é<é and v, <7< respectively

where ¥'(6)=1/2. If d*/d&, d-|d¢ denote respectively upper and lower

derivatives, it may be seen:

d*p __ ) dy__ o
dé (%)’ ¢ P(7(8)
d*¢ _ _ d() d¢_ _ 9
dy (@)’ dy P(E(m))

where ¥'(£)+ ¥ (y)=1.
If I'(¢)=a’e+b'7(§) then |f'],= SungI’(E). As in (A), I'(¢) assumes
its maximum subject to v, <¢€ g&o_ei_ther for &=w,, £=4 or at points

for which d+*I(§)/d¢ and d-I(¢)/d¢é simultaneously change their signs.
Now

lim [d‘é@]: ' + b’[ d%g*i) Lv; —a — %0)) b=a' >0

.\l—'—»vg'

since =¢ when £é=wv, and ¢(6) >0. Thus, I'(¢§) increases in the im-
mediate neighborhood of é=v, and é=v, cannot give a maximum. Also
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lim [d+l’(§)r}= a’ + b’[ fi+77(5)] =a' —b lim g(i)f: —
E->87 dé dE E58 5—»8; ¢(v)

N7,
since & > 0. Thus I'(¢) decreases in the immediate neighborhood of £=¢

to the value I'(d) and £€=4 cannot give a maximum.
Now

CTE_ gy 90 g GTE _y_y HE)
ds ) ds 908

Since a/'¢(B)—b'P(a)=0 and the condition ¥(&)+¥(7(£))=1/2 implies that
as £ increases, » cannot increase and conversely, a critical examination
of the expressions above establishes the following relations:

. d*I'(&) d- I’(E)
f th =2 AR <0, <0,
it &>« en g = iz

if €=a then ql:(%”f)~>0, @'gé(f): ,

if £<a then d+l’(5) >0, @:!:@,> 0.

Since that d+I'(¢)/de, d-I'(¢)/dé can change sign only once, it follows
that the value é=a, 7=4 gives unique maximum to I'(¢§). Thus |f],=
aa+b'p=1.

If I"(6)=a"6+0b"7(¢) then an analogous argument leads to the re-
lations

it £>a then FLE) o a7 ¢

de de
. a*1"(€) a-1"(g)
f =« then ¥4 &~ 6 2LK 0,
if 6=« en i > e <
if £<a then 9”1(5)> @“CIZ';(EBO,
so that |/ ,=a"a+b"F=1.
Consider
o' +a” on
22
S'@)+S"(@) _) 2
R AR

0 on (AUBY
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Let
a on A
g($)={ﬁ on B
0 on (AUBY
then
| 7@ ar—ir@+w@n-1
and
S+ r a+a’ VY
”42 2 EH Mt

D

Thus by the triangle inequality 3|/ + f"/|,=1

A consideration of the defining equation shows that 8’ £b”. There-
fore | f"(x)— £”(x)| is not zero on B and it may be concluded immediately
that |/~ f"].%0. Thus L, fails to be strictly convex in this case
also.

LEMMA 2. If ¢(v) is continuous in the extended sense and 0v <V,
0v <V, then T (V') =T () +¢(0)(0 —v).

Proof. If v=2" then the relation certainly holds. If »< v’ then
r@)=|" )5 = | $@ds + | 9@)a = 10) + 901w —0)
If »>" then

rw)={ 9@ s ={"9@)d5 - || g@ido = 1)+ )0 -0

THEOREM 3. If

(i) Tw) is continuous in the extended sense,

(ii) ¢(v) 9s continuous in the extended sense,

(i) Sf(x)e L, and |f(x)|=esssup|f(x)|=M <o on some set of posi-
tive measure and also, when 4 is of infinite measure, f(x) vanishes
outside a set of finite measure; then there is a constant 0<_C,; < co and

a function g;(x)>>0 such that |f ||Q,=SAf(x)gf(x)dp, where J(g,(x))=C,| f(x)|

and S v(g)dp=1.
A

Proof. We first establish the existence of a constant C; and a
function g,(x) which satisfy the last two relations of the theorem. Let
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E=E[|f()|>0] and let S=S[|f(z)|=M] with (S)=06-£0. Since

¥(v) is continuous in the extended sense and increases from zero to
infinity, there is a value v <V, such that 7'(v)=1/0. With C'=¢(')M-*
define g'(x)=v" for e S and ¢'(x)=¢(C’|f(x)]) for xe S’. Then ¢(¢'(x))
=C’|f(z)| and

1< | v < wE)o <o

Two cases will be distinguished according as

) KRGS
or
(®) [ recirman>1.

(A) For each value of the parameter 1 <k < o define

oCf(@))) for xzeS',

gk(w)z{min[kgp((]’!f(x)\), v] for wzeS.

The family of functions g¢.(x) is then a continuous one satisfying
I(gx(x))y=C'|f(x)] and increasing with & from g(x)=¢(C’|f(x)]) to ¢'(z).

The integral I(k)zS V(g,)dp increases continuously from value <1 to
A

values >1. There is then a value %, such thatg 7(gy,)dpr=1. The
A
function gy (#)=g,(x) and the constant C’'=C, are those of the theorem.

(B) Let C,=inf C where SAW(SP(C‘f(w)l))d#:Z 1. Since

lim ¢(C1f @))=¢(Col f(@)])

C»—)CJ‘

it follows by Lebesgue’s theorem that
| r@Cir@hin=1.
Again, let C’=sup C where
RGEHODLESE

By the continuity of ¢(v) it follows that C°=C; and since
lim ¢(Clf(@))=¢(Colf (@)

C—»CJ
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then by Lebesgue’s theorem g T(e(Colf(x)))dp <1. For each value of
A
the parameter 0 <% <1 define

9:(@) =1 =k)p(Cilf (@)]) + ke(Col f (2)))
then the family of functions g,(x) satisfies ¢(gx(x))=C,lf(2)| and increases
continuously with k& from ¢(C)|f(x)]) to ¢(Colf(x)]). The integral I(k)=

S V(g,)dp increases continuously from values <1 so that there is a
A

value k, such thatS ¥(gr,)dpr=1. The constant C,=C, and function
A

gx,(@)=g,(x) are those of the theorem.
It is easily seen in either case (A) or (B) that 0<C; for if C;,=0

then the corresponding function g,(x) < v, and hence S Y (9,)dp=0 which
A
is a contradiction of the proof already made that S U(g;)dr=1.
A
Finally, it follows from Lemma 2 that

I17b=|  lr@lgs dn

Let h(x) =0 be any function such that S Yh)dp <1. In Lemma 2 let
A

v=g,(x), ¥'=~h(x); then, integrating over 4 gives

[ rwan={ re)drrc| 1r@i0E-g@)dn

or

1— Sg(h)dy

[ r@losdn={ @@~ =5

Since C,>> 0 we obtain | f||q,=SAl F@)lg @) dr.

THEOREM 4. If
(1) the hypotheses of Theorem 3 are satisfied,

(i) |fll>0,
then

o(C\fDdp+1
FICE Dbatidaniti

7

where C, 1s the associated constant of Theorem 3.
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Proof. By Young’s inequality, for arbitrary 0 <wu, 0w,
uv < O(u)+¥(v)

with equality if and only if at least one of the relations v=¢(u) or
u=¢(v) is satisfied. Let u=C,|f(x)|, v=g/(x) then since ¢(g,(x))=
C,|f(x)| the inequality becomes an equality and

Colf (@) (@)=2(C,\f (@))) + ¥ (9,()) -

Since 0< C, < «, integration over 4 gives the stated result.

THEOREM 5. If

(i) ¥(v) is continuous in the extended sense,

(ii) ¢(v) ds continuocus in the extended sense,
then L is strictly convex.

Proof. Let f'(z), f”(z) be any pair of elements of L, such that
H+ =1, I le=1, |fle=1. Let f(x)=s"(2)+f"(x) and

S E§[If(ﬂ?)l= ess sup | f(2)l] .

If 1(S)=0 let

E=E] 5@ <min (v, (1= D esssup lr@l) | =12, -);
n x n

if p(S)>>0 let E=S" (n=1, 2, --+). Let 4, be a sequence of sets snch

that 4, < 4,., & 4, p(4,) <o, (4,—E;)>0 and lim4,=4. If p(S)=0

define

min [n, (1——%) ess sup |f(w)l:! on (4,—FE,),
F(z)=
@) | @) on (4,NE,),
0 on 4,

while if #(S)> 0 define

ess sup | f(x)| on (4,—E,)
F(@)= { |f ()] on (4.NEy)
0 on 4,

observing that since |f|l< oo then esssup|f(z)|< o in this case. It
follows easily from the definition of the norm in L, that |F,J,—|f + /" e.
The functions Fl,(x) have been constructed in such a way that they satisfy
postulate (iii) of Theorem 3 so that by this theorem and also Theorem
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4, there are constants 3 <<C,< o and functions g,(x) satisfying the

relations: ¢(g.(2))=C,F.(2), X Ylgn)dp=1 and |FJo= S Fn@)ga=) dp.

Since F,(x) < F,, (x) and S V(g,)dp=1, (n=1, 2, ete.) it follows that
A
the sequence C, decreases to a limit £ < C < . Since ¢(g,(x))=C, F.(x),
F.(x)<F,, () and g ¥(g,)dr=1 it follows by the monotone properties
A

of ¢(v) that for each arbitrarily chosen but fixed m, the sequence g,(x)
ultimately decreases on (4, N\ E,). When #«(S) >0 we see (4,N\E,)—
(4—S) and (4,—E,)— S so that in this event the sequence g, (x) de-
creases on S also. When #(S)=0 we see as before (4, N\ E,)— (4-S)
and (4,—FE,)—S. Thus the sequence g,(x) in both cases converges in
measure to its limit inferior which we denote by g(z).

By Theorem 3

= \Pulgndi = 177 £ lgad

<{ 1ot | 17 o UF N U
Since

1l =157+ o= 15" +1F"lo
it follows that

lim | 1flgudp=1fle and tim | 1lgdp=]ss

We show that there is a constant 0<D'< o such that J(g(z))=
D' f'(x)l almost everywhere. If this were not the case there is a con-
stant 0 < B < w and sets T;, T, of finite positive measure such that

$(9(@) > B|f(x)] on T}
0 ¢(g(@) <Blf(x)] on T,.

By Egoroff’s theorem we may extract subsets 77 & T3, T7 & T such
that the sequence g,(x) ultimately tends uniformly to g(x) on 77 and
T). From T7, T; we may extract subsets 7';", T, of positive measure
such that the sequence is not only bounded on 77" and T, but, since

g 7(g.)de <1 and g(x)=Iliminf g,(x), it is also bounded away from
A

V. We may again find subsets 7. < 7, and T,< T,  such that for
suitably small constants 0<{¢< o, 0<{a <

(1) Hgu(@)—t) > B(lf (@) +a) , wel, 0 t'<t,
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0 <d(gn(x)+t") < B(f(@)]) , zel,, 0<t"<t,
for all n sufficiently large.

Sinceg |/ gndp = || fle, for each 0<e there is an =, such such

A

that if m, <7 then: S \FVh dpe— SAlf’lgnd,u<s where A(z)>>0 is any
A

function with S U(h)dpr 1. Also, since g(x) is bounded away from V,
A

and the sequence g,(r) converges uniformly on T, to g(wx), there is a
constant 0 <'f2< o such that for sufficiently large n

(2) [, so@nan<| v rpan<e.

Let

t|, vE@)dp
0 <e<<ap(T,) min [t, /a”—]
, H@)+B)dp
and choose n>n. so that (2) holds. Then, if
(3) |, Poadu+ | r@)dn=b
1 2
and if 0<t, <o, 0<t,< o also satisfy
(4) |, P.@—t)an+ | T+ t)dn=b
we have by the mean value theorem, for some 0<C ¢, <1, 0<46,<1,
(5) b vo@-0t)dnrt | o@+0t)dn=0.
Thus, if
| slo@ndn }

t,= min {t, Sl
[, #o(@)+A)dn

then ¢, <{¢t. Now by (1)

—t, $0@—0t)dn< B[ \Fldp—Bran®)
1 1

|, 9(0.@) + 0)ap < Be| \Fldu,
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so that by (5)

6 1rldnet| 1f1ap=banT) >
But if

gu(@)—t, on T
h,(x): { gn(x) +t, on Tz
9n() on (I,UT,)y

then by (3) and (4) SAW(h)d/J=SAQT(gn)d,u=1 while

| rman= 1£1an =t \p1dpst 171dn
= 1Plgndpere,

which contradicts the demonstration already made that S |\ f\hdp—
A

SA | fg.dpe<e. Thus, there is a constant 0 <D’ < e such that ¢(g(x))=

D'|f'(x)|. Similarly, there is a constant 0 < D" < = such that ¢(g(z))=
D" ()l

Since |f'(x)|=¢(g(x))/D’ and |f"(x)|=¢(g(x))/D" we see |f'(x)| and
|f"(z)| differ at most by a constant factor. But |fo=|f")s=1 so that
this factor is unity. Thus, f'(z) and f”(x) differ at most in sign. But
Hg(@)=C|f'(@)+ f"(x)] so that if f'(x)=—f"(x) at any point, then
d(g(x))=D'\f'(x)|=D"|f"(x)|=0 at this same point. Hence f'(z)=["(x)
almost everywhere and [ f'— f"|,=0.

Theorems 1, 2 and 5 together have established the necessary and
sufficient conditions for the strict convexity of the spaces L,. In order
to proceed with the more difficult demonstrations for uniform convexity
we shall require the following important proposition relating to the
norm of an element in L,.

THEOREM 6. If
(i) ¢(v) is continuous in the extended sense,
(ii) ¥(v) is continuous in the extended sense,
(ili) (a) there is a constant 0<N< oo such that @(2u)/@(u) <N,
(0 <u), when 4 is of infinite measure,
(b) lim sup @(2u)/@(u) < + oo when 4 is of finite measure, then

Jor each f € L, different from zero there is a constant C, and a function
g,(@) =0 such that



CONVEXITY OF ORLICZ SPACES 1465
7= If1de,
$(g,@)=C,|F (@) and SAW(Qf)d#'—“l-

Proof. Let
S=§[lf(x)l= ess sup [f(@)I] .

If #(S)=0, let
E=E||f@)| <min(n, (1= esssw @) |, @=1,2 -);

if 4(S)>01let E=S’, (n=1, 2, ---). Let 4, be a sequence of sets such that
4, < 4, < 4, p(4,)< oo, p(4,—E,) >0and lim 4,=4. If x(S)=0, define

min [n, (1 _1 > ess sup lf(w)\:l on (4,—FE,),

n
If@I on (4,NE,),
0 on 4,

while if #(S)>>0, define

esssup|f(z)] on (4,—E,),
Fyx)=¢ |f(@)] on (4,NE,),
0 on 4,

observing that in this case ess sup |f(x)] < oo since |f|, <. The func-
tions F,(«) satisfy the postulates of Theorems 3 and 4 so that there are
constants |F,|;' < C,,< e and functions g,(«) == 0 such that |F|;' < C,, <o

and functions g¢,(x)>>0 such that HFnI[q,:SAanndy where ¢(g,(x))=

C,-Fy(z) and SAT(gn)dy=1. Since Fi(x) <F,..(z) < |f(@)| it follows

from the condition S ¥(g9,)dr=1 that the sequence C, cannot increase
A
and since |flo=>|F,J. it has a limit |f;'<XC <. Since ¢(g,(x))=
C. F(x), Fx)<F,.(zr) and S V(g,)dp=1 it follows by the monotone
A
properties of ¢(v) that for each arbitrarily chosen but fixed m the
sequence g,(r) ultimately decreases on (4, N\E,). When x(S)>0 we
see (4, N\ E,)—>(4—S) and (4,—F,)— S, so that in this event the sequence

g.(x) decreases on S also. When (S)=0 we see (4,N\E,) —(4—S) and
(4,—E,)—S. Thus, the sequence g,(r) in both cases converges in
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measure to its limit inferior, which we denote by g(x).

(a) Assume that postulate (iii) (a) holds. In this case there is a
constant 0<M < such that ¢(2u) < Mew) for 0<w. Thus, if
O(2u) < No(u) for 0<u then @(4u) < N*@(u). Suppose there were a
sequence 0 < u, such that for each natural number ¢(2u,) > ne(u,),
then

D) = | @) 0T 2 20,82u,) > 2t () = 200(u,)

7

since u,¢(u,) = ?(u,). Now

[, rwecirnde < m| 1l de < misks
since
[ recirmap=| timint r@)dp <timint | v)dp-1

by Fatou’s lemma. By Young’s inequality

| r@ecirna—2c| | 5gecirhin- | o@ciridp

ngCM"f”(p S

But for all n sufficiently large ¢(2C|f(x)|) 2= g.(x) = g(x) therefore by
the monotone property of ¥(v) and Lebesgue’s theorem

1=1iminfg W(gn)d/l=s Fim int ?If(gn)d;zzs T(g)dp .
A A A

Let 2(z) >0 be any function such that g P(h)dp 1. In Lemma 2
A

let v=g(x), v"="nh(z); then integrating over 4 gives

|, rean=\ r@aprcl 1r-g)dn

or

1—~S Y(h)dp
gAlf!gd/IZ SA | flhdp+ V,;LE O
Since C>-0 we have |/ "@:SAIJ" (@)lg(#)dp. The function g(x) and the

constant C are those of the theorem.
(b) Assume that postulate (iii) (b) holds. Since lim sup @(2u)/@(u)

=N, there is a #’ such that for » <<u, @(2u)/@(u)=<2N. Then for
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w <u, ®(4u) < (2N)@(u). With appropriate modifications of the corre-
sponding demonstration in (a) above we easily show that there is a
constant 0 < M < co and a value u, such that for u, <wu, ¢(u)/e(w) < M.
Recalling that 4 is of finite measure, let », >0 be a value such that
(1) <1/p(4), then

| rwecinan < 1@ dneu 1riecira
7w
SRy

since ¢(Clf(x))) < g(x) and by Fatou’s lemma

SAIF(g)d,u=SA lim inf ¥ (g,)dp < lim inf SA w(g,)dp=1 .
By Young’s inequality
|, r@ecirman—2c| 1reecishae- | oecishar
<20{ Iipecifhdnp=2c] P o Jisf < o

But ¢(2C|f(2)]) = 9.(x) =g(x) for all = sufficiently large, so that by
Lebesgue’s theorem and the monotone property of ¥(v)

SA ?F(g)d,u———SAlim inf ¥(g,)dp—=lim inf SAT(gn)d/url :

The remainder of the proof is as in (a) above. The constant C and
the function g(x) are those of the theorem.

The above theorem may be generalized in several ways. The author
has secceeded in obtaining a number of analogous conclusions [8] when
the function ¢(v) is discontinuous and when the hypotheses relative to
the function @(x) do not hold. It is interesting to observe that for
spaces in which conditions (iii) (a) or (iii) (b) do not apply, there is al-
ways an element f of the space for which the norm is not attained;

that is to say, there is no function A(z) >0 such that |If|[4,=SAlflhdy

with S V(h)dp=1. In this case, however, there is a constant 0<C
A
such that

| r@cirnap=1-a,

where 0<a <1 is a constant; for any larger constant D > C the inte-
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gral S ¥(¢(D|f|)dp is infinite. It is further remarkable that in this
A

case

7= _|FBCIDdu+ac .

The proofs and complete statements of these propositions will not be
presented since they are not essential to the discussions relating to
convexity. Theorem 4 admits an obvious generalization not only to
spaces which satisfy the postulates of Theorem 6, but to the more
general case when only the first of these conditions holds. The problem
of determining the constant C which appears in all of these theorems
in terms of elementary properties of f(x) has hot met with a suitable
and satisfying solution despite the author’s attempts to find one.

We proceed now to a consideration of the necessary and sufficient
conditions for uniform convexity of Orlicz spaces. It was remarked in
the introduction that every uniformly convex space is strictly convex
but that the converse statement need not be true; therefore, it is clear
that any necessary condition for strict convexity must be also a necessary
condition for uniform convexity. Thus by Theorems 1 and 2 we must
assume at least that ¥(v) is continuous in the extended sense and ¢(v)
1s continuous in the extended sense. For a similar reason, the following
theorems furnish us with further necessary conditions.

THEOREM 7. [5] Ewvery uniformly convex space is reflexive.

THEOREM 8. [6] Necessary and sufficient conditions that an Orlicz
space be reflexive are that there exist a constant 0< N < oo, such that

(a) 2u)/d(w)< N and T2v)T@W)N, (0<u, 0<v) when 4 s
of infinite measure;

(b) lim sup @(2u)/@(u) < N and lim sup 7' (20)/¥(v) < N when 4 s of

Jinite measure.

The conditions implied in Theorems 1, 2 and 8 must be supplemented
with an additional necessary condition in order to insure uniform con-
vexity. This is expressed in the next theorem.

THEOREM 9. A mnecessary condition that Le should be wuniformly
convex 18 that for every constant 0<_a< oo there is a constant 1< K,< o
such that (a) when 4 18 of infinite measure then o(u+au)/e(u) > K,,
(0<wu); and (b) when 4 is of finite measure then lim inf ¢(u+ au)/e(u)

>K,.

Proof. By Theorems 1, 2 and 8 and our above remarks we may
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and shall assume that ¥(v) and ¢(v) are continuous in the extended
sense and that lim sup @(2u)/@(x) < N and lim sup 7(20)/¥(v) < N for

U0 v

some constant 0< N< . We see then that ¢(v)— o for if sup ¢(v) <L A4,
0< A< o then ¢(u)=co, A<u so that G(2u)— S2“¢(a)dﬁ= oo for Aj2<u
which contradicts lim sup @(2u)/@(u) < N. S;milarly the condition
1i1’£1 sup ¥(20)/¥(v) < Nu;r:lplies that ¢(v)— o,

—>00

Suppose there were a value 0 < a < o and a sequence u, such that
alternatively according to the respective hypotheses

(a) Sp(un :{_ au") -1
P(1,)
(b) lim inf $(nt %) _ 1
U ¢ (Un)

There is then a sequence of pairs: {v,=¢(u,), V,=¢(u,+au,)} such that
Vpfvn—1. Let 1,=1/%(»,)+¥(¥,)) and define w, by 2¥(w,)=1/4,; then
Vy =W, = v, and v,/w,—1, v,/w,—1. We remark that in the second
case u, ~—> o 80 that v, - o and ultimately 1, < u(4)/2. Determine sets:
A,, B, of positive measure such that A,N\B,=0, p(A,)=p(B,)=¢t,
=min [x(4)/2, 2,]; and define functions f,(z), f. (x) respectively as

(1+a)

d on A4,,
[A+a)v,+ v,
fley=: ,\_177;- on B,,
[+ a)v, + v, 1.
0 on (A4,UB,)
1
I - A,
[+ a)v, +v,]¢ o
= (+a) e
[(L+a)v,+v,]x,
0 on (An U Bn)’ .

With C,=C,=[1+a)v,+v,]pmmu, we see: ¢(9,)=C, fn, #(9.)=C,f, where

I v, on A, v, on A,
g(x)=:{v, on B, gn(@)={7v, on B,
l 0 on (4,UB,) 0 on (4,UB,)

and for all »n sufficiently large so that 4,=pg, we have
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S (g dpr= (T (0,) + T (F)=1
A

SAQT(g;')d,u=]n(?F(vn)+ V(5,))=1 .
Thus, by Theorem 6

w0 1+a)yv,+v, ¢
Tom\ Frgdp—AH OOtV e g
ko= Figidr ottt

” - 1+a)w,+v,_ ¢
= 0l d, :,,(;Mz_lzl .
15T SAf G 11 A+a)v,+v, p,

Now

, (1+a/2)
Sl @)+ @) | [(L+ ), +v.]

0 on (A4,\UB,)

on A4,\UB,

so that by Lemma 1 and Theorem 6

”f,; + f A+a/2yw, 22
2

51

A+ @) tv.] A

(]

since v,/w, — 1 and v,/w,— 1. Again

e .1 o 4,UB,
| fi@)— f (@)= [A+a)v,+o.] 2,
0 on (A,UB,)
so that
R 2 T f';' —,F;f 7;, — _a
1= Al A+a2)] 2 |, 1+a/2>0

and L, is not uniformly convex.

LEMMA 8. Let 0<e<(1/4 and 1< K,<T< oo, 0<b be constants
such that alternatively

- e((1—e)u) ’ 0 ’
() K (1 —e)) <1 (0Tw)
b K., < ¢((1=e)u) —mp , b ,
() g < ®<w)

then there is a constant 0 < L. such that
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V() = ¥(0)+ )0 =)+ LD (1w —ul)

when respectively

i (2e—¢)
(a) ' —u| > (1—e) u >0
- (2e—¢°)
(b) [’ —u| > max [b, (1—e) u]

where (u, v), (W, V') are related by either v=¢(u) or u=¢(v) and v'=¢(u')
or w' =¢(v').

Proof. Assume w >>u and consider the first diagram

P
r s o C//

-

N

&

b u (~e¥u’  (/I-ew’ u

We note first
(@) (I—efu' Zu>0; (b) A—eu' =Zu=0b

according to the respective hypotheses. Since ¢(u) is a monotone non-
decreasing function we find from the definition of ¥'(v)

V(v')—¥(v)=Area (OCT)— Area (OBA)
= Area (ABST)+ Area (PQRS)
so that:
V(') = W (v) + ()0~ )+ QP-PR .

Observing that respectively

(a) (1{€)> w =u >0,
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(b) (]u_/e)>u’,_:>:u>b,

by corresponding hypotheses with #'/(1—¢) instead of u, we see that
(1—eu') < (1/K:)p(w'). Thus

QP—¢(w)— (1 —epu) = (1= | Jolw) .

Also
PR=(1—ew —u>[(1—e)—(1—e)fu'=e(1—e)u .

Hence

QP-PR > (1—; )s(l—s)u’go(u’)

g

> (1— Ii )8(1—5)(p(u') > (1— ; )5(1—5)@(|u'—un .

Thus with P,=(1—1/K,)¢(1—¢) >0 we have
P() =¥ )+ @) —v)+ Pd(lu' —ul) .

Assume % < u and consider the second diagram.,

v e
(G)

1’4 A 8

P R

N
AT C
v / I .
— 1 l g

0 u' (I-€2u (Fu b u

We note first that

n— > ZEmEN — (0. oyy
(1—e)y

so that (1—e¢)u == u'. Since ¢(u) is monotone nondecreasing, from the
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definition of #'(v) we find:

V(v)—¥(v')= Area (OBA)—Area (OCT)

< Area (ABDT)—Area (PQRS)

so that

(V') > T (v)—Area (ABDT)+ Area (PQRS)

=¥ (v)+ () v ~v)+PQ-RP .

But

PQ = ¢((L—eju)—¢((1—eyu)

= (1 Jra=om = (1= 1) o)

where, if we are considering the second set of hypotheses, we make

use of the fact that b<<w. Also EP==cu; therefore

W) = W (0)+ J0) (v —v) + (1 - 11{ ) - ()

=T+ ) =)+ (1- 11( ) 0t

> T )+ () —v)+ Q.0(lu —ul)
where Q.—=(1—1/K)(e/T) > 0.
Taking L.=min (P,, €,) we have the stated result.

THEOREM 10. Let ¢(v) be continuous, u=Jv) and w'=¢@’) and let
0<e<(1/4, 1< R, << N<_co be constants such that alternatively

(a) (i) f;((fj;)ézv, (0" u)
(i) R ¢ 0 <)

T Ue((—eu)

(i) Ju'—u> @y~ 0

(1—ey
or

. . OQu) _-
() (i) hTiuD (1) <N,
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TR ¢(u)
(ii) hr}}jﬁup (=) >R,

then there is a constant L, > 0 such that

V() =¥ )+ P0)0 —0) + LD —ul) .

Proof. (a) By the same reasoning employed in Theorem 6, we
may use hypothesis (a) (i) to show that there is a constant 0<M < oo
such that ¢(2u)/e(u) <X M, 0<u. Writing (1—e)*u for » and noting that
0(2(1—eyu) = (1 —c)u), 0<e<1/4 we have

pr H2=0) - (=) .
= 1= ell= o) O=n

Again writing (1—e¢)u for » in (ii) we have

1—e)u)
R (0<u).
P((L—e)u)
With M=T, R.=K, we may apply Lemma 3 to obtain the stated result.
(b) As in the proofs of Theorem 6 we may use (b) (i) to show that
there is a constant 0< M < o such that 1im sup ¢(2u)/e(u) < M ; this
implies that for each 0< e<(1/4 there is a value u,< o such that if
(1—e)u, <u then ¢(2u)/e(u) < 2M.
Writing (1—¢)*u for u we see

P(1—eju) @(2(1=e) - opr  <u).
P(L=efu) ~g(L—e)u) ~ -

Since ¢(v) is continuous, it follows that if 0<'b is any constant then
o((1—¢€)d) > 0; since ¢(2u)/e(u) L 2M when (1—e)u, < u it follows that
¢(2u,) < o ; therefore

G(A—ey) —  oRuw) )
e(L—e)u) — @((1—e)) < (b=u=<wu).

Thus with

T=1+max [2M, - 50(2”1),7,’]
¢((1—e)*b).]

we have
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w((I—eju) —p ,
P((1—e)u) b=<u).

The second hypothesis implies that there is a u, < o such that

(A=eu)  R.+1
(1 —e)u) - 2 >1 , <u).

Let 7=(2¢e—¢*)/(1—e¢)?, then 7 > 0. Let

S— inf #d—ep)

v<n<uy o((1—efu)

Suppose S=1, then there would exist a sequence » < u, < wu, such that
e((1—e)u,)/¢((1—e)u,) —>1. From this sequence a subsequence u,, could
be extracted which either increases or decreases to a limit » <w < wu,.
If wu, increases to wu’, then the left continuity of ¢(u) implies that
o((1—e)u')e((1—e)u')=1; while if w,, decreases to »’ then the right
continuity of ¢(u) implies that @((1 —e)u’)/@((1 —e)u')=1. In either event
this would imply that ¢(v) had a discontinuity at alternatively v=
¢((1—eyu’) or v=((L—e)u’), since ¢(v) < (1—efu’ < (1—e)u’ < P(v). Since
¢(v) is continuous by hypothesis, we conclude: S>1. If we let
K,=min [S, (R.+1)/2], b=(2e—¢*)/(1—¢)* and T as above, we see that
the hypotheses of Lemma 3 are satisfied and we have established the
proposition.

We shall suppress the proofs of the two following lemmas since
they may be found readily in the reference cited.

LEMMA 4. [10] If f(x)e Lo, and f(x)=~ 0 on a set of positive measure,
then

Sg('ﬁf')dy <1.

LEMMA 5. [10] If f(x)e Ly and 4f there is “a constant 0< N <o
such that (a) @2u)/@(u) < N, 0<u when 4 is of infinite measure; or
(b) lim sup @(2u)/@(u) < N when 4 is of finite measure, then

[, otr@hdp <o .

LEMMA 6. If {f.(x)} s a sequence of elements of Lo such that
SA@(lfn(x)l)dﬂ%O and if there is a constant 0 < N< oo such that
either (a) OQu)/O(u)< N, 0<u when 4 1is of infinite measure; or
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(b) lim sup @(2u)/0(u) < N and also {(v) is continuous, when 4 is of finite
measure, then |fl.— 0.

Proof. (a) let p>1 be any positive integer and choose n, suffi-
ciently small so that S (| fr@))dp < 1/N» for all n,<<n. Then
A

P ==

[ o@nhdn < n| otsa =

so that if g,.(») >0 and S V(g,)dpe <1 by Young’s inequality
A

[ 2lnlgar < o@phan{ r)de <2

so that |fls < 2/27, (n, < n). Since p may be chosen arbitrarily large,
the proposition is demonstrated.

(b) Since lim sup @(2u)/@(u) < N it follows that there is a u' <

such that: @2u)/o(u) < 2N, v’ <u and @(2u')< . Since ¢(v) is con-
tinuous and ¢(0)==0, it follows that ¢(u)>>0, 0< u and hence @(u) >0,
0<wu; therefore, if 0<u”"<u be any number we see @(2u)/@(u) <
@Q2u) Oy < oo when u” <u <u' so that if N, =max [2N, @(2u')/o(uw")]
we have 02u)/@(u)< N, < o, ' < u. Let p>1 be any number
and choose 0<w” <<1/2"; let S,=FE[|f.(x)|=u"]. If g¢,(x)=0 and

S T(g.)dp <1 then by Young’s inequality
A

|, 21t = | o@rhan+ | r@)ap

<, e@innans | o@inhane

S| oL )+ 1

n

By choosing n sufficiently large, we have V O(f ) dp<(Ny-)-* so that
Sy

I < 2T

Taking p sufficiently large we see that || f,Jo — 0 since p(4) <.

LeMMA 7. If «a, f are real, then
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la—fl=lal+ |8~ la+ Bl +llal— 18]l .

Proof. 1f a>>[3>>0 then |a—p|=|lal—|l] and |a|+|Bl=la+p]. If
a>> 02 then la|+|fl=lae—f] and |a+f|=|la]—|All. If 0>a=pf then
la)+|8l=la+ Bl and |a—pf|=|la|—|Bl]. The remaining cases in which
7 =« hold by symmetry.

LEMMA 8. If 7 <1 then O(u) 10u) and if =1 then O(pu)=>
70 (u).

Proof. Since ¢(u) is monotone nondecreasing if 7 <<1 we have

o) =" ¢@)d7 < 1| @ di—yow) .

If 7221 and &é=1/7 <1 then @(éu’) < &D(w'); so that, if fu'=u, we have
70(u) < O(qu).

LeMMA 9. (a) If there is a constant 0 < N < oo such that @(2u)/@(u)
< N then

O, +u) < N[@(w)+P(w,)]

Sor arbitrary 0 < u,, 0 wu,;
(b) 4f for each 0<u” there is a constant 0 < N, < o such that
QQRu)O(u)y < N, v’ < u, then

O(u,+u,) << OC2u")+ N, [O(u,) + O(u,)]

Jor arbitrary 0 <u,, 0 u,.

Proof. (a) Let w,=max[u,, u,] so that u,+u,=<2u,. Then
O(u+u,) < @2uy) < NO(us) < N[O(u,) + D (uy)] .
(b) Let u;=max[u,, u,]. If u;=Cu”, then
O(u, +u,) < @Q2u,) < d(2u”) .
If u; >u" then
O(u,+u,) < 0(2u;) < N,O(us) << N, [O(u)+ O(u,)] .
THEOREM 10. Let ¥'(v) and ¢(v) continuous and let 0<e<1/4,

1< R, < N< o be constants such that alternatively
(a) when 4 is of infinite measure
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(1) @2u)jo(u) < N, (0<Cuw),
i — v “u)
(11) RE ~ (f((]. . E)ZL) ’ (0 < ZL) ’

or
(b) when 4 is of finite measure

(i) lim sup @(2u)/d(u) < N ,

TRT ¢(n)
(ii) hrzliup (1 :e)u')>RE

then Ly is uniformly convezx.

Proof. We first assume that fo(z) 2> 0, f» () 220, that | file=|/slle=1
and that 4 f,+ fr]o —1; and we shall prove that |f,—f.]s— 0.
Let »=(2e—¢")/(1—¢)*; we observe that lim#n=0. By Theorem 9

g0
there is a constant 0 <L, < o such that, corresponding to the alterna-
tive hypotheses, when

(a) ' —u| = >0,

(b) ' —u| = max (7, 7u) ,

then

(*) P (') = W)+ ) ) + L,0(1u —u))

where u=¢(v) and v'=¢(v'). By Theorem 6, let 1< D, < o0, 1<C,<
be constants, g,(x) >0, A'(x) =0 be functions such that

Jgu@)=D,(HTED Y g ap—1

P ) =C ful) | SAW(h,;)d;z=1 .

Let alternatively

@ B =] [Cs@= " )+ )| = aci e |

0 E) =B |Csiw= T (i) + £i@)| = max [y, 7CiA@) |

Write v =g,(x), v=nh,(x) in (*) above and integrate over Ik, (7) to obtain
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S,‘ <n>1’”(gﬂ)df‘2fg e+ CLEE @ = hi@) g

I #,( CY

+ng (D(
B, 0

But, by Lemma 2, (') =¥ @)+ @) —v); so that making the same
substlitutions as before and integrating over E,(7) we may assert

G i) = 0 (i) + f,;'(x»D dn .

|, padr={  weae+|  CifieNo -h@dr .
B, () 7, (1) )

E?L(n E?’L

Hence

| readr = | vhap+ i Ciriooe)~niw)ds

+L,|, o(lcist@ - (i + @) dr

%

g0 that

G\ fi@n@ ~aiende =L, o

o n

N/ ’ ]) 7 44

)d/x.

By Lemma 8, since 1< C; < o we have

()| S —a@dp =1, o5 G|

2C,
Now
12 P (@) + 5 @t dn
| At@@ar | F@oa dn 1515
But
|, F@u@dn <\ ian@dr <151,
and
SA fi@)gu(@)dp =)l
and also

Lo+ Fle = 1l +1 5 e
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so that:
| i)~ g 0.

Thus by (+) since 0 <1, < oo,

/1

on K,(y) alternatively

@) ‘fn(ﬂ«)— P i) + F @) < g fi@)

2C,

0 | o= 2 o+ | max] [ s | maxn, v

so that, since 7 <1, by Lemma 4 and 8 we have alternatively as e—>0

, (e D, _ ,
(@) [ (i g e s an |, owsan
S DA S| A=y =0
.15”(’]) A
) o(| = g it 20| o) ar
En(’) 7, (1)

i\ ot rdn oy +{ o6 r)dn

I+ DA S OO 470

since p(4) is finite. Combining these results with (++) we see that

Lo #i= g a2 0.
Thus by Lemma 6
7= P e
2C, o
and this implies in turn that
| i+ 17 ,
e R
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But 3 fo+ file = 1=|fs so that D,/C, —1. It then follows that

£ (f; +2 fi{f)

— 0

)

from which we have immediately that

o= Sl =0 .

We now prove the theorem for the general case when the functions
Sa@), fr (x) are not necessarily positive. We use the equivalent definition
of uniform convexity which has been noted in the introduction. Let
Ifde=1f"le=1 and suppose |fr+ fil. — 2. We define

)= {lfyl(w)l if (fa@)+f.(2)) has the sign of f'(x)
(@)= 0 otherwise ;
F ()= [fo @) if (fu(x)+f. () has the sign of f(z),

? x)—{ 0 otherwise .

Clearly
0 < Fi(z) < |fu(@)] , 0 < Fr(z) < | (@),
Fy@)+ F,/(x) = | ful@)+ f ()|

and

2P (@)= Fy (@) = | ful@)— [ (@)]
so that |Fio<<1, |Fyle<1, Lminf|F,+F,|,>>2 and |f;—f/<

2|F,—F,|s. Our result for positive functions applied to F,(x) and F), ()
now gives || fn— /2o — 0 and L, is uniformly convex.

THEOREM 11. Necessary and sufficient conditions that Le be uniformly
convex are
(a) in case 4 is of infinite measure
(i) ¥(v) is continuous,
(ii) ¢(v) 1s continuons,
(iii) there is a constant 0 <N < oo such that @(2u)/®(u) < N,
F(2)/¥F(v) <N, (0<u, 0<v).
(iv) for cach constant 0 < e<1/4 there is a constant 1 < R, < oo
such that ¢(u)/e((1—eu) >R, (0<u);
7.
(b) n case 4 is of finite measure
(i) ¥(w) is continuons,
(ii) ¢(v) s continuous,
(ili) there is a constant 0 < N < oo such that
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lim sup @(2u)/@(w) << N, and limsup ¥(2v)/¥(w) <N

(iv) for each constant 0 < e<C1/4 there is a constant 1 < R, <
such that lim inf ¢(u)/e((1—e)u) > R, .

Proof. The theorem is simply a summary of the results of Theorems
1, 2, 7, 8 and 9 and of Theorem 10.

It is interesting to remark (a) that the condition ¢((1+ e)u)/e(n) >
R.>1 implies that ¥'(2v)/%(v) << N for some constant 0 < N< oo, and
(b) that the condition lim inf ¢((1+e)u)/¢(u) > R.>1 implies that
lim sup ¥'(2v)/¥ (v) < N for some constant 0 < N < «; but the implica-

tions converse to (a) and (b) are untrue. To prove the direct statement
we choose an integer 0 < p such that ((B.+1)/2)” >2. Now, respectively
(a) for all 0 <u,

o((1+e)u) R, +1\ .
Mo = (550

and (b) there is a value 0<Tu, such that if u, <wu, then

o((14e)u) E.+1
Coew) ( 2 )

Then if (a) 0 <u, (b) u.<u, we see that
e+ = (T Y o) = 20(w) .
2
Letting v=¢(u) we have (1+¢)’¢(v) > ¢(2v) when alternatively:

(a) 0w,
(b) wv.< v where v,=¢(u,). But then

(a) (L) T() =1+ | 9w)ds = [[9@yav = )
where 0< v,
(b) (14T ()= (1 + e)l’Sv J(@) A5+ (1+€)F (v,)

> S (@) 5+ (1+ )W () > 3T (20) — 30 (20,)

where v, <<{w», and since ¥(2v,)< o and ¥(w)— o we see that
lim sup F(20)/¥ (v) L 2(1+¢)" < oo, To prove the converse construct the
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following function. Let u,=0, v =0, u,=2", v,=2" u,=(1+¢e)u,, v,=
(2*+3%); n=2, 3, ---). Join the points (u,v,) to (uw,); (ww,) to (u,v,);
(thny V2) 1O (Upsr, Uye;) €ach by straight line segments and let this function
be ¢(u). Then

o(L+eou,) _o(u,) _ v, _2"+3% 51
e(u,) o(u,) v, 20

while ¢(2v) < 4¢(v), (0<v) and therefore ¥ (2v)/¥(v) <8, (0<v). It is
also clear that condition (i) is implied by the condition lim sup 7' (2v)/¥ (v)

< N and consequently by (iv). Thus, if we wished to do so, we might
delete any statement relative to the function ¥(v) from Theorem 11.
It is true, however, that the remaining conditions are independent for
none of them is implied by any combination of the other hypotheses.
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INTERIOR VARIATIONS AND SOME EXTREMAL
PROBLEMS FOR CERTAIN CLASSES OF
UNIVALENT FUNCTIONS

VIKRAMADITYA SINGH

1. Introduction. The theory of regular univalent functions in the
unit cirele U, has been developed for various subeclasses, for example,
the class of real univalent funections which leads to symmetric domains,
the class of bounded univalent functions whose image domain lies with
in the unit circle and the functions for which the image domains are
convex or star-like. The approach through the calculus of wvariations
has been used very successfully towards the solution of extremal problems
belonging to the various classes and also towards the determination of
the extremal domains. The purpose of the present paper is to show
how the method of interior variations due to Schiffer [1] can be adapt-
ed for the following subclasses:

(i) The class V of symmetric regular univalent-functions f(z) in

U, which have the form f(z)=z+§] w,2" with real a,. In particular we
Nn=2

show that if ¢(a, ay, -+-, au; @y, @, -+, @,) is a real valued function
which is symmetric and analytic in a, and a, (+=2, 3, ---, ») and where
{a,} are the coefficients in the power series expansion of the more
general class V, of regular univalent funections then, under the assump-
tion that the function f(z) whose coefficients {«¢,} maximize ¢(a,, +--, a,,
@, »-+, a,) is symmetric, the functional differential equation satisfied by
f(z) in the general class V7, is the same as the functicnal differential
equation satisfied by f(2) in the class V.

(ii) The class S of bounded univalent funections f(z) in U, which
are normalized so that f(0)=0, |/(z)] <<1 and at a fixed point ¢eU,,
J(©)=w. In particular we find the functions which maximize or minimize
L@l

(iii) The class & of bounded univalent functions f(z) in U, which
are real on the real axis and are normalized so that f(0)=0, [f(z)|<1
and at a fixed point ¢ on the real axis f(¢)=w. In particular we find
the functions which maximize or minimize f(7) for real e U,.

We observe that the existence and uniqueness of the solutions of
these problems is assured because the families of functions belonging
to the classes V, S and X are normal and compact.

2. Real univalent functions. Let D be the image in the W-plane

mlgf;crfreivedw October 15, 1956, Prepared under Contract Nonr-225 (11) (NR-041-086) Office
of Naval Research,
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W=f(z)e V of |2 <1 and let us consider the Schiffer variation

5 LW . W
1 Wi=W+ap +a0* . o
(1) Cwew—wy T wow—w,

where W, is an interior point of D. It is easily seen that for small
enough p say p, <<p, |W—W,=p, and |W—W,=p, lie entirely in D
and W is univalent on the boundary C of D and maps it univalently
on to the boundary C* of the new domain D*. Further, we see that
Wi¥=0 for W=0 and that W7} is real for real values of W. Thus if
W is a symmetric univalent function which vanishes at the origin we
have obtained another neighbouring function which also has the same
properties. In order to be able to add some side conditions to the
function W we consider the variation

x_ a, W a,w
(2) W =W +p? z{(W W)W+(W—'WV)W.,}’
where p is an integer >>1. This variation is of the same type as (1)
and has the independent constants («,)” which can be used to satisfy
the side conditions, if any.

The technique of getting the variation formula for f(2) under the
variation (2) is similar to that used in [2] in getting the variation
formula for f(z) under the variation W*=W+ap*/(W—-W,). For the
sake of completeness we mention that we first find the variation formula
for the Green’s function G(W, 0) of D under the variation (2). We
thus have [3]

(3) o6, 0= | 1, 0w, Wisryay |+ 06,
Ty J T

where

u a, W a, W

(4) 0= v Sy, + oSy, |

and p(W, 7) is the analytic function whose real part is the Green’s
function G(W, 7) and I' is a curve system in D which is homotopic to
C and such that ¢(W) is analytic in the ring system bounded by C and
I'. If now z=¢(W) is the inverse function of W=f(z) then the rela-
tionship of the Green’s function G(W, ») to the function ¢(W) is given
by

(W) —g¢()

5 G(W, w)=-—1
(>) i g(pe(w)

and in particular
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- 1 —
le (W)
Proceeding in this way we find that the variation formula for f{(z)
is given by

G(W, 0)=log

K _ < 2 72‘: f /(z) zf /(z) ,,”71777-
(6) SO0+ Lar], © iy ey g

Lo J&
f2)(f(2)— f(2))

B @) 1 _O(*
TR )@ —1(E) [0,

1-22, 3,7 %()  .f°(t) t,—2

:|+2&,p2[,22 f)  2f'() 1

where

ly= /"r( Wv) or f(fv) :f(év) .

Let f(z) have the {following power series expansion

(7) D=2+ X a8,

n=2

where the a, are real. Then denoting by af the coefficient of 2" in
S*(2) and substituting these expansions in (6) and equating the coeffici-
ents of 2" on both sides we get

K » n—1
(8) a’j; =a, + 257{{,0"’ > m[Av SEP T (n— M), Ny, 22!
ay =1 me=1

£ T () o),

where

AV: o /Alf
2, f(2)

and 7,(f(2)) are given by the formula

£@) -
9 S = T.(f(t,)) .
(9) fit)e) -ty = T

We remark that (8) is the variation formula for the coefficient a,
given by (7) and for »=1 it agrees with the variation formula obtained
by Schiffer |2] for |a,|] when a, are complex. TFurther, if we put da,
=a;/a]—a, then da,=da,+0(p’) and we find that Ja, in the present
case is twice da, in the general case a,=«a,+i3,.
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Now let us consider a function ¢(a,, -+, @,, @, -+, a,) which is
symmetric and analytic in @, and @, and has real coefficients. Then,
because a,=a,+1f,, we can write F(a,, «++, @y B, <+, fo)=9¢(a,, -+, y;

d,, *+*+, d,), and the function F will contaln only even powers of f,’s
and

(10) OF _ it B ove =80 .
o,

Further, the condition for the extremum of F' in the general case when
a, are complex is

i[aFda-l—aFdBJ 0,
= 0a op

v

which in the limit when p— 0 can be written as

(11) _>4 OF 5. +0F33] 0.
o, 3,

If a, are real then in view of (10), (11) reduces to

(12) S gF e, =0 .
y=2

v

We will obtain the same equation if we look for the solution of the
extremumproblem in the particular class V of real functions. Thus
under the assumption that the extremum function is real the functional
differential equation in the general case will coincide with the differential
equation in the symmetric case. We know from compactness arguments
that the problem ¢=max has a solution in V. We also know that the
same problem has a solution in the general class V,. What we have
shown is that both extremum functions satisfy the same functional dif-
ferential equation. This implies that either there are many solutions of
the problem in the class V, or that the solution lies in the class V.
Thus in particular the coefficient problem a,0,=max leads to the same
functional differential equation for real univalent functions as for the
general class.

3. Bounded univalent functions. We now consider a variation
which transforms a function of the class S into another function of the
class S. We will first obtain a variation which keeps the origin fixed
and also keeps the unit circumference fixed. We will then add the side
condition that for a fixed &, f(¢)=w. Let
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(13) we=werap W~ OV o,

where O(p') can be suitably chosen and W, is an interior point of the
image domain of 2| <{1 by f(z). For small enough p, W7 is a univa-
lent funetion of W outside |W— W |=p, < p such that W=0 for W=0
and keeps the unit circumference |W|=1 fixed. In fact, to prove the
latter, we observe that when

1
Wi=1, W="
Wi w

and

s =1+ a3, 4 F ] +oun.

So to the order p* the unit circumference is kept fixed. By adding
to (13) term of the order of o' one could make the unit circumference
fixed. To see this let us denote by D* the boundary of the domain to
which W maps the unit circumference |W|=1. Now by the Riemann
mapping theorem there exists an analytic function S(W35) which vanishes
at the origin and maps D* univalently on the unit circumference [S(W )]
=1, WfeD* From the boundary behavior (14) of W5 when W e D*
we then conclude that

S(W)

15
(15) Wi

‘,’:{1+O(p4).

Since log |S(W¥)/W }| is harmonic in |W | <1, we conclude, by the
maximum prineciple that (15) holds everywhere inside the unit circle.
Thus

S(W)=S*(W)=Wi+0(p")

for |W|=1. We have thus obtained a funection $*(W) which maps the
unit circumference |W|=1 onto itself and differs from W3 by O(p?). .

A more general type of variation which can take care of some ex-
tra side conditions can be written in the form

16 W =W+ S [“»P?W,,_,,@L@WZ ]+o 9.
(16) Sw—w, 1 w,wl o)

Taking n=1 we get according to the procedure outlined in §2 the
following variation formula

(17 (W)= (W) —a,? AW, W,)+apB( w, WU)
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— AW, W)+aeB(W, W) +0(p")

where

(18) AW, wy="ev) W (Wo)e(W)
W—W, ¢WNe(W)—¢(W))

and

(19) B(W, Wu)z,?KZS‘L'(W)f _ eVYW (W)

1-WW,  ¢(W)1—p(W)e(W))

Since we require that for all f(z)e S and fixed ¢, f(()=w, we must
have ¢*(w)=¢(w)=¢. Thus we obtain the determining relation between
a, and a,

(20) - a'OA(‘“; Wu) + EOB(‘“a Wa) —-(LIA((D, W]) + dlB(wr Wl) + O(PZ)ZO .

We shall see that in general we can prescribe W,, W, and «a, arbi-
trarily and adjust @, such that (20) holds.

Again, as ¢'(W)=1/f'(z) we see that the minimum and maximum
of |(¢)l would be given by the maximum and minimum of |¢'(w)l.
Thus the necessary condition for the extremum of |f'(¢)| is

W, W) - Blo, Wy . A, W) - Blw, W)

21 E)’{ ) PR Wy - Ty 1 T T T 1 VR "

ey 9a @) " ) T ) T )
+0(p")=0,

where A'(w, W;) and B'(e, W,) are, respectively, the derivatives of

A(w, W) and B(w, W,) with respect to the first argument.
The extremum condition (21) can also be written in the form

22)  a,Clw, Wy)—a,Clo, W) +a,Clw, W,)—a,Clw, W;)+0(p)=0,
where

Allw, W) _ B0, W)

Clw, W)= @, ¥
( ) ¢'(w) ¢'(w)

From (20) it is clear that for a fixed value of a, @, is a linear
function of @, and @, and can be written as

a =Q()(§0Bm - A[)Zl) + a{o(BoA: - A—GBI)

23
( ) lB]lz_lA]iz

+0(pY),

if
(24) \B.[ # AP,
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where we have put Ay=A(w, W,), 4,=A(w, W), and similarly for B,
and B,. We will show later that (24) can always be taken to be valid.
Taking the case when (24) holds, we get on substituting this value of
a, in (22) that

(25)  alClw, W)+ 2B,— 214,]+ G [Clo, Wi+ 2B,—24,]+0(p)=0,

where

_B.C(w, W)+A,C(w, W)

A .
|B1|Z - lALiz

This holds for all sufficiently small values of p; hence because a,
is arbitrary, in the limit p — 0 the extremum function satisfies the
equation

(26) Clw, Wy)=24(w, Wo)—1 Blw, W),

where 1 is independent of W,. Again, because W, is an arbitrary point
from (26), the equation satisfied by the extremum function can be
written in the form

0 (0= W) 1—aWy oW 1—aWw
L We( W)[ _ o) _g(o)2—g(0)p(W))
e(W) L™ (W)= e@)y A—elw)p(W))

/250((1)) + ,,im), j.
e(W)=¢(w) 1—g(o)p(W) S

where
a=wg" ()¢ (w)=—E)F") .

We now prove the following.

LEMMA. For the extremum functions of the class S which satisfy
the equation (27), we have

(28) S+ 0" () ¢'(w) — lwg'(w)} =0
and
(29) I(Ap(w))=0 .

Proof. Let us consider the variation
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30 W*—W + a0 W a0 W+ n amp'Wo a W
(30) W—Ww, 1-W,W W-W, 1-W,W

+eTp*W+0O(p") ,

where T is real. It is easily seen that this variation keeps the origin
and the unit circumference fixed and, for small enough p, is univalent
on the boundary. So this is an acceptable variation. Under this variation
the variation formula (17) will have the additional term «Tp*We¢' (W) on
the right-hand side. This will give rise to an additional term i7Tv’w¢’(w)
in (19), and to ¢7'{1+w¢"(w)/¢'(w)} in (21). Then, because (26) holds,
the equation corresponding to (26) in this case will give rise to (28).
To prove (29) we observe that the derivation of the variational
equation (17) leaves an arbitrariness which permits us to add a term
ike(W), for k real, to the right hand side of (17). The addition of this
term does affect the extremum condition (21), but it does appear as
ikp(w) in the equation (20). The equation corresponding to (26) will

then have an extra term ¢k(1¢(w)—A¢(w), which must vanish since (26)
has been proved to be the equation for the extremum function.

Transforming (27) in terms of f(z) and using (28) and (29) we find
that the extremum function statisfies the differential equation

3D TR —a) @)= ) _ p (—F)e—F)
AR oYL =af@)y  2te—r(1—Cop

where the constants «,, «,, D, 5, and f5, are obtained from (27) in the
following form:

39 D— =20k + e -1)
2 o(f1=loP) =1 +lof) ’

o f(z) dob+H(—=1+]ol) | o
33 + LU a, a,
(33) ( ) o ﬁ(l e ) (1 lool? ) _[ = (f(z)— Y f(z)—ay),

T B IR < <) W NP
Gy el T ey =G RE=f),

and
B=1+w¢"(w)]¢'(w)— log'(vw) .

One further finds from (33) and (34) that |aal=1 and |353,|=1.
In order to fix 2 which remains arbitrary, as yet, we need the geometry
of the extremum domain. In particular we prove the following.

THEOREM. If f(2) is a function of the class S for which |f/(€)| is
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either o maximum or o minimum, then f(z) mops the unit circle 2| <1
onto a shit domain.

Proof. If the theorem were not true, then there would exist a
point W,, |W, <1 such that a neighborhood of W, is contained in
|W] <1 and does not belong to the image domain. In the variation
(16) taking W, and W, to be two such points we get the following
variation formula for f(z):

*(2)— e[ afle) a4 @) ;
@ re=reg] S0 Sl -

The requirement that for all f(z), f{)=/()=w, yields that

& L R Y )=
(36) g[wﬂz» 1—wf(z,):]+O(P =0,

and the condition for the extremum of |f/(¢)| leads to

o —afz) _a2-of(z))] )=
e M ity tagep Frow=o.

Thus, because

il - 2> o P ,
w _f(zv) 1 _(Uf(zv)
we see that the extremal function satisfies the equation
(38) @) | #2=af@) _ o Ao

(0—f@)F (1—af@) o-fG) (-af@)

But this is impossible since the left hand side has a second order
pole at z=¢, where as the right hand side has only a first order pole,

As a consequence of this theorem it follows that (24) can always
be assumed to hold. Indeed, if it were not so, we could find no point
z in |zl <1 such that |4,] == |B,|. Hence, because A4, and B, are analy-
tic functions of z, and as equality is to hold for all z, we have

(39) A(w, f(@)=¢B(w, f2)), lul=1.
(39) gives the following differential equation for f(z):

40y LRI = 3 FO) — (0l Q) = paf ()]
FAOAOFR @) —w)1=3f(2)

_ LA —py—2(CP—p)

2(z—0)(1—L7)
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But the function given by the differential equation (40) does not
map the unit circle onto a slit domain, because at one end of the slit
J'(z) will have a first order zero. Hence the right hand side of (40)
should have a second order zero on the unit circumference. Since this
is obviously not so, we have shown that (24) can always be taken to
be valid.

We have thus shown that all extremal functions f{z) which belong
to S, and for which |f(¢)| is a maximum or minimum, satisfy the dif-
ferential equation (31). As the extremal funetion f(z) maps |2| <{1 onto
a slit domain, at one end of the slit f'(z) will have a first order zero.
To this zero of f'(z) there need to be a corresponding zero on the right-
hand side of (31), and as it is on the unit circumference |z|=1, we
must have j3,=f,=¢" in (81). Further, because the slit will make an
angle 0 with the unit circle such that 6] <z, we get from simple
geometric considerations and the fact that the right hand side of (31)
has no pole at any point on the unit circumference that a,=a,=¢".
Geometrically this means that the slit starts from the unit circumference
|[Wi=1, making an angle n/2 with it.

As a result of the equality of «, a, and B, f5, we have from (33)
and (34) that

41 ©) FE _zf,,(,@,z - 2ol _ ,
(41) FOF@=igl == 70,
and

9 o1 2l
(45) Ag—l—Fl _ lCl“’ .

Eliminating 1 from both these equations one finds that, at the fixed
point ¢, the extremum function satisfies the equation

ey ey — (1. 260 NSO g, 200
4y croro-(ir 2 )-8 [ -1a 2T ]

The differential equation (31) now reduces to

(44) I@Af@axloly  AFloly _(AFE) @)

FRR =Pl -0 fR) @ { z-01-t2)
where on each side either the upper or the lower sign is to be taken
at one time.
From (44) one can get the information regarding the nature of the
extremum domain. On account of the slit character of the extremum

domain, the unit circumference |W|=|/(2)|=1 is definitely a part of the
boundary. Further, if z=¢* we get from (44) that



INTERIOR VARIATIONS AND SOME EXTREMAL PROBLEMS 1495

AR Ro ) (1F |ol)

SRR —wyQ-—of@) @

is real. Hence, writing W(t)=/(z) and making a proper choice of the
parameter t, we can put it in the form

(45) we - (Woxlol) (A%l
W (W—-w)l—aW) o
C being some real constant. We now observe that this is an ordinary
differential equation of the first order and hence has only one solution.
Further, the straight line W=v|w|/®, where ~ is a real parameter, does
satisfy the differential equation. Since there is only one slit, this line
corresponds to the slit and we conclude that the boundary of the image
domain consists of the unit circumference and a radial slit pointing in-
wards at the points -+ |wl|/®.
Taking the square root and integrating (44) we obtain

VAR =V o 1+ Vo f(2)
46 + VW TV @
(46) [,L log VDY o +10g1 _ l/Z)f(z)jl+ const.
_ Ve =vV'¢ 1+V¢ee
i[i g/, Zygt los 11/52]'

The various possibilities arising from different combinations of signs
on the two sides of (46) are to be taken in such a way that the singulari-
ties at f(z)=w and z=¢ on the two sides of (46) balance each other.
We are thus left with only four possible combinations which after some
simple algebra give rise to the following equations for the extremal
functions:

(47) (1 —|(1)13)<'1)_f(z): (1$|CD22§7 ,
(w—lol f2)}  (CFICR)

and

(48) 1+ Iw\)sz(z) :(1 =4 lCl)ZZ(H )

(o+lol f2)  (C£|Cl)

Equations (47) and (48), respectively, give rise to the following
values of f7(¢):

ey=@ 1EI0 1=lol
(49) f(C)_C 1716l 14 o]’

and
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/ w 1FE] 1+ o
50 — LN ol
%0) Fe ¢ 1£[g] 1—lol

As |o] < |¢], one easily sees that the maximum value of |f/(¢)| is
given by

o 1+1] 1+o]

51 "(&)=- .
(51) FO=y T

and that the function f(2) corresponding to it is given by

(52) ‘ (1+|olfof() _ (1=l
@+l @) €=y

Also, the minimum of |f’(¢)| is given by

5 (Y= @ 1=K 1—|o]
(53) J(©) C 1l 1tlel

and the function corresponding to it is given by

(54) (1= |w])w flz) _ (1 +[¢])2L '

(0—lo| f2))*  (C+IClk)

We have thus proven the following.

THEOREM. Let S denote the family of regular univalent functions
f(z) defined in the unit circle |z| <1 such that |f(z)| <1, f(0)=0 and,
for some fived point ¢ in |2l <1, f()=w. Then the maximum and
mansmum values of | f(©)| are given by

y w 1+ ]Cl 1+ l(l)[
55 _ Lt o]
(53) S0 ¢ 17 1% o

and the corresponding maximizing and minimizing functions are, respec-
tively, given by the equation

(56) 1+ lol)o flz) _ 1 FK)C

(0]l f@)  (CFl)

where the upper signs on both sides give the maximal function and the
lower signs on both sides given the minimal function. The boundaries of
the maximal and the minimal domains consist of the unit circumference
together with radial slits starting, respectively, at the points +|o|/o, the

end points of the slits being the images of the points F|C|jC by the cor-
responding functions given by (56).
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We now remark that we could as well have tried to solve the fol-
lowing problem:

In the class S of regular univalent functions f(z) in |z| << 1 statisfy-
ing the normalization f(0)=0, |f(&)! <1 and, f({)=w at some fixed point
¢ in |21 <1, to find the function which maximizes |f(7)| at some 7=4¢
in |z| <71.

The existence and uniqueness of the solution is easily proven. It
can also be readily shown that the extremal domain will be a slit
damain. The variational equation for the extremum -as obtained from
(17) can be written as

(57) 3{{[0«)14((% » fz) _ dl)B(U?l , f(z)) + qqflﬂ(?’)u f(zl)z

, W, w,;

_ @ B(w, ﬂ?l):)}}=0 )

(1

where «,=f(7), and we have replaced ¢(w) by ¢ and W, by f(z),
o(W)=2z,, ¢'(W,) by 1/f(z,), and similarly for W,.

By arguments similar to those which lead to the equation (26) we
can again assert that if

(58) C():‘i(‘f’lz M=) _4(‘;33*40(&0))_ ,

oN W,

then the extremum function will satisfy the equation

(59) C=pAlw, f2))—FBo, (&),
where p is independent of f(z,).

As in the lemma we can again show that pf(¢)f(Z) and pZ are
real. The differential equation for the extremum function can now be

written as

(60) ) . FR)(f2)—c)(f(R)— dl) o
FR)(f(2) = 0)(f(2) — )1 — 0 f(2))(1 — .f(2))
(z—e)(z—e.)

=) — A ~C)(1—72)

where le,d|=1, and |ee,|=1 and ¢, d,, ¢, e, and K can be determined
by a comparison with (59).

From geometric considerations and the fact that the extremal domain
will be a slight domain, one easily deduces that ¢,=d,=¢€” and e¢,=e¢,=¢".
These conditions lead to
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(61) [A—loP)A+of) =11 =o)L + o= 41— o )o = m(1 — o)l
and

(62) [A=PP)A+ICF)a—pl A=)+ ) P=4l1 - ) a — pEp(1 =P,
where

m=p fOIF(©)

and
a,=7 f'()/f(7) .
Eliminating ¢ from (61) and (62), we get

(63) <fj(C) U(U ——"(’)ll +]1— (_UUHI]WZH 77f/(77) [lC,— 77‘ + 114 —57/” .

0 A—=loP)A=lof)  f&) A=kBHA—7P)

From the slit character of the extremal domain and geometric con-
siderations we prove that the boundary of the extremal domain consists
of the unit circumference with a slit that starts at right angles to the
circumference. But we can no longer claim that this slit is radial.
Also, because the integration of (60) involves hyperelliptic integrals it
is not possible to get analytically any further information about the
nature of the image domain. However, if one could show that the
image domain is symmetric one could obtain an explicit result at least
when ¢ and 7 are real. We are thus lead to reformulate the problem
for bounded symmetric univalent functions.

4. Symmetrtc bounded univalent functions. We now want to con-
struct a variation which keeps the unit circumference and the real axis
fixed and which maps the origin into the origin. Evidently such a
variation will be a combination of the variations considered in §§ 2 and
3. One easily deduces that any such variation will be of the form

64) Wri—ws WPW _apW: o apW o ap W o0
(64) wow eww wew, i waw )

where O(p') can be suitably chosen.

In order to be able to get a variation which can take account of
some side conditions we need to take a linear combination of the vari-
ational terms in (64) with different @, and W,. Thus, we get the
variation

5 * S erWwad-w2 o et WA-W) L gy
(65) Wr=W+ ““[(W—W,)(l—WvW)+(W—Wy)(l—WJV)J+ @)

V=0



INTERIOR VARIATIONS AND SOME EXTREMAL PROBLEMS 1499

The variation formula for f(z) in this case is

B a,f(R)(1—f"(z))
(66) [H(2)=fla)+¢* L[( A2)— )1 —f(2)f(z,)

G fRA=(2) | af'(@)21-2) [f(z)
(&)~ @)1 — @) @—2)(1—22)2F%2)

L0 (@1-2) [fz) ]+()(p‘).

(1—2 Z)(Z.,—Z)ny/ ( v)

If we require f*(©)=f()=w, ¢ real, we get, using that f(z) is
symmetrie,

| (1= a?) (=110 flz) "
67) R o _A=00) J=) A Logy=0.
7 [Z“{w—f(z»)(l 0 f(z)  (C=a)1— Cz)afiz) H+ ()

Algo, if 7 is real, then the condition for the extremum of f(y)=w,
is

Vru‘(l (ul) ] 7(1—77)f(7) f(zv) O(0%) =0
) W el ot et Jrowr=o.

Thus the extremum function satisfies the equations (67) and (68).
By Lagrange’s method of multipliers we see that the equation satisfied

by the extremum function is

(69) z?(z()z ) [((uléf(i;)(l(i)(l)l 7)) (w—f(xz()l)(li()uf(z))]
—oal=y) | al(1-0)
(-21=72)  (C—21-C)
where
a=nf"()/7)
and

=LY AQ).

It is easily proven in this case that the image domain is a slit
domain. Thus, as in § 3, from geometric considerations and the fact
that the image domain is a slit domain we conclude that numerators on
both the sides of (69) should be perfect squares. We thus have that
either

(70) a(l+7)(1—-0=a(1+0)(1-7),
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or
(71) a1 =)L+ =a HL=)L+7);
and either
(72) 1+o)(l—w)=i(1+o)l—wv)
or
(73) 1-o)(1+o)=1(1-w)1+w).
The differential equation finally reduces to the form
ay o (Ee)e—o)l-ww) AT

(1 F o f@) (0 =A2) 0, —f(2) 1 — o [N — v, f(2)

a1+ ) =A==z F 1)

(L F (=) —2)(1 =)l —72)

where the upper or the lower sign on each side is to be taken at one
time.

The alternative in (70), (71) and (72), (73) arises on account of the
ambiguity of sign of the root in (74).

In the left hand side of (74) let us make the transformation

N = WHT
(75) TE=F o 1

according as we take the upper or the lower sign in (74). Then the
left hand side transforms either to

16 W W1+ o wo— o)1 — - wa)

(75) ,
(1+(u)(1+w1)(W —1I(W2= ) (W= )

or

") Wi l-e)o—w)l-we)

(L= @) (L— (W —1)(W* =B (W = fi) |

respectively, where g, =(1+w)/(1—w) and B,=>1+w)/(1—w).
Similarly, making the transformation

(78) S A
y—1

’

according as we take the upper or the lower sign in the right hand
side of (74), we get either
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(79) _ 16ay™y(1+9)(1—-L7)(C—7) ,
(' =)y =Ny —r)(1—7)

or

(80) _ 16ay”y’(A—7)(1—C)(C—7)

=D =) =11 +7)

respectively, where y,=(1+¢)/(1—¢) and y,=(1+7)/(1—7). We note that
(77) is obtained from (76) by changing the signs of » and o, and
similarly (80) is obtained from (79) by changing the signs of ¢ and 7.
Thus it is enough to consider the cases

w'w Yy

81 I T = == T VI T
Bl o VI(WH—=1)(W*— ) (W*— j2) e V(@ =D =)@ —13)
where

o] L= 1) T

’ 1—=9)A+)A+7)y '
and

N :[(1 + o )w - w)(1 —.’(0(1)1)}”2 .

1+ w)(1+w)?
Putting
W= W S (i )

and

X=y2—%(1+r?+r§),

we have from (81), on integration,
c,v=c,u + const. ,

where p(v)=W, and p*(u)=X, p and p* being the Weierstrass’s p-
functions.

Since f(0)=0, f(()=w and f(y)=w,, we get, using the periodicity
and homogeneity property of the p-functions,

(82) W,—4x.

C

Transforming back to z and f(z), we can write (82) in the form
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(83) [f(z)——l:\“'___ 1 j] +<1"“(l) >!_{_ <]"‘(l)|)21
S2)+1 3 1bw 1+w/ )
S [ R G R G O]
cliz+1 3 1+ 1+9/11
Since f(0)=0 we have from (83) that
1 1—wl\, (1—o)) _ ¢ 1 12V, (1—7V
R e e e ) B IS e e e
&) 3 * 1+ w 1+ w, ¢ 3 1+:> 1+

This gives us w,, but it involves « which is not yet known in terms
of ¢, w and 7. Towards this we observe that on subtracting (84) from
(83) we have

4fk) e 4z
(flz) + 1y & (1+2)p’

and because f({)=w we have

w . C‘rf 74: )
(85) 1+ ¢1+e)’
and finally
) S0y _ 10y

o(1+fR) (1+2)¢ °
Now, putting z=7 and f(y)=w, we get for «, the required equation

(87) Atofe 7 A+
(1)(1 + (1),)2 (1 +'0)“ C

Observing that all the possible extremal functions could be obtain-
ed by changing the signs of w, w,, ¢ and » and taking all the combi-
nations, we see that

(88) ALty f) _

oz (A+ey

o (A+fRY — Q+e ¢

gives all the extremal functions and

(89) Atofo_, 7 -
o(ltw) — 1+ ¢

the corresponding values of w,, where at one time either the upper or
the lower sign is to be taken on each side of (88) and (89).
Further, on account of the continuity and univalence of f(2) on the
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real axis, f(z) will have the same sign or different sign as 2z according
as o has the same or different sign as ¢. Thus (88) and (89), respec-
tively, reduce to

(90) (te)y fz) _ 2z (1)
o (A+flz) (A+zpr ¢

and

(91) (1 ﬂ’_ﬂ)ﬁg o, p (1xy )

o Uroy Gy ¢

The following different cases need to be considered: (i) o >0,
¢>0and >0 (ii) >0, £ >0and » <0 (ili) @ >0, £<0 and >0
and (iv) v >0, £ <0 and »< 0. We observe that (ii) can be easily
deduced from (i) for in this case o, < 0, and the maximum and the
minimum of w, in this case will be the same as the minimum and maxi-
mum of @, in (i). A similar relationship exists between (iii) and (iv).
So we need to consider only the two cases (i) and (iii).

We now observe that if (x| <1 and z is real then z+1/x is a
monotonic decreasing function of x, and also that
(92) n+1p—2 7+ 1/np+2

c+1/e—2  c+1/c+2]

according as 7= ¢ > 0.
With these considerations we can prove the following.

THEOREM. Let 2 be the class of bounded, symmetric univalent func-
tions f(z) which are normalized so that |f(2)] <1, |21, f(0)=0 and
f@O)=w where ¢ is a fived real point in |zi<1. Further let o >0,
£ >0 and for some real point 7 let f(y)=w,. Then the maximum and
the minimum values of w,, when n >, are given by
(93) o +1w+2_7p+1]pF2

w+llo+2 +1/c52°

and the corresponding maximizing and minimizing functions are trespec-
tively given by
(94) (1-ia))‘ j(z) oz (1:Ff)

w ("1 —J:f(z))) (1 +2)

where the wpper signs on both sides give the maximum and the lower
signs the manimum. However, if 7 < then the maximum and minimum
values given by (93) and the corresponding function given by (94) are
snterchanged,

s
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If @ <0, <0 and >0 then the maximum and the minimum
values of w, are given by

(95) a)li—l—l/wliz 77—!—1 77j:2

wt+llot2 C+1/0+2°

and the corresponding maximizing and mintmizing functions are given
by
(96) (1+w)y fley _ =z (1xop

o (A+fR)y Q+zr ¢ '

where, as before, the upper sign on both sides gives the maximum and
the lower sign gives the minimum.

The boundary of the extremal domain in each case consists of the
unit circumference with a radial slit starting either at W=1 or W= —1.
The length of the slit differs in various cases.

My thanks are due to Professor M. Schiffer for his interest and
help in the progress and completion of the paper.
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ON GENERALIZED EUCLIDEAN AND
NON-EUCLIDEAN SPACES

W. L. STAMEY

Introduction. The present paper develops necessary and sufficient
conditions that a complete, convex, metric space with extendible seg-
ments shall be generalized euclidean, »-hyperbolic, r-spherical, or -
elliptic. Blumenthal and others have given four-point conditions which
characterize these generalized spaces among certain classes of spaces,
and the results of this paper follow the general plan of these earlier
works.

1. Definitions, notation and previous results. Unless otherwise
noted all terms used have the same meanings as those given in [1].
The distance between two points » and ¢ of a semi-metric space is de-
noted by pg, a point s distinet from p and from q is between p and g,
denoted by psq, provided ps+sg=pq, and a triple of points (not neces-
sarily distinet) is a mid-point triple, denoted by (psq), provided ps=sq=
pq/2. A metric space is said to be generalized {euclidean, r-hyperbolic,
r-spherical, #-elliptic} provided each of its n-dimensional subspaces is
congruent with {¥,, H,,, S,.,, ¢,.}, where these four symbols represent
n-dimensional euclidean, hyperbolic, spherical, elliptic space respectively,
the last three of space constant »>0. A metric space is said to have
the weak {euclidean, r-hyperbolie, r-spherical, r-elliptic} four-point pro-
perty provided each of its quadruples containing a triple of points con-
gruent to three points of {F,, H,,, S,,, %.,} is itself congruent to four
points of {K,, H,,, S,. %.}. A space has the feeble {euclidean, r-
hyperbolic, r-spherical, r-elliptic} four-point property provided each
quadruple containing a mid-point triple is congruently imbeddable in
{E,, H,,, S,,, &,.}. The weak property obviously implies the feeble
property.

THEOREM 1 (Blumenthal [2]). A complete, convex, externally convex
metric space is generalized euclidean iof and only of it has the feeble euclid-
ean four-point property.

Defining a conjugate space as one with finite metric diameter 6 >0
and having the further property that corresponding to each pair of
points p, ¢ of the space with 0<'pg< ¢J there exist points p™, ¢* of the
space with pgp*, qpg*, and pp*=q¢*=¢J all holding, Hankins [4] has
shown the following.

Recelved June 15, 1956. Presented to the American Mathematical Society April 13, 1956.
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THEOREM 2. If a complete, convex, conjugate, metric space M has
diameter =r/2, r >0, and if M possesses the feeble r-elliptic four-point
property, then M is generalized r-elliptic.

2. Metric characterizations. Throughout the remainder of the
paper 2 will denote a space which satisfies:

(i) 2% is metric,

(ii) 2 is complete,

(iii) 2 is metrically convex,

(iv) if T, , is a segment with end points p, ¢, there exists 4(p) >0
such that if seT,, with 0< ps< 4, then there exists a point ¢ e X with
(spt) holding.

LeMMA 1. If Y has the feeble euclidean, r-hyperbolic, r-elliptic, or
r-spherical four point property, and if (pgs), (pqt), gs=qt, then s==t.

Proof. Let R represent any one of the spaces E.,, H,,, S,,, & ..
Then p, ¢, s, t=p, q,, 8, e R and (p.g:s), (1qt), @si=qt, imply that
s,=t;, so that s=t¢,

REMARK. If in condition (iv) on X the quantity é(p) is unbounded
for all pe 2, then Y is externally convex.

THEOREM 1. If X is externally convex then each two points of X lie
on a unique metric line of and only if pgs, pgt, and ps=pt imply s=t.

Proof. The necessity is obvious. The sufficiency is proved by no-
ting that each two points are joined by at least one metric line. Then
if there are two distinct segments joining p and ¢, each may be pro-
longed beyond ¢ along the same segment 7', to a point s, but this
implies that T',, may be prolonged in two distinct ways beyond ¢ to p,
contrary to hypotheses. Thus p and ¢ must determine a unique seg-
ment, and this segment can be prolonged to a metric line in exactly
one way.

THEOREM 2. If X has the feeble euclidean or feeble r-hyperbolic four-
point property then X is externally convezx.

Proof. Let p, ge ¥ with p%q. Then on a segment 7',, joining p
and ¢ choose a point s with ¢s>>0 and such that there exists a point ¢
with (sqt). Then denoting either E, or H,, by R, the hypotheses
guarantee that p, q, s, t &R,. This together with psq and (s¢t) implies
that pgt holds.

THEOREM 3. If X has the feeble {euclidean, r-hyperbolic} four-point
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property, then % is generalized {euclidean, r-hyperbolic}.

Proof. By Theorem 2 2 is externally convex and by Lemma 1
(along with the completeness and convexity of 3) pgs, pgt, gs=qt imply
that s=¢. Thus (Theorem 1) each two points of X lie on a unique
metric line. Then the theorem in the euclidean case is identical with
theorem 4.1 in [2]. The r-hyperbolic case is handled in the same man-
ner as the euclidean case.

THEOREM 4. If X has the feeble r-spherical fouwr-point property, then
3 18 a conjugate metric space with metric diameter equal to nr, and each
point p € Y determines a unique point p* such that pp*=nr.

Proof. Since X has the feeble r-spherical four-point property, the
metric diameter of Y is at most nr. If p, ge ¥ with 0<pg<nr there
exist points ¢, ve Y such that ptg and (fgv) hold and pt+tq+ quv<nr.
The feeble »-spherical four-point property then implies that v, ¢, ¢, v &
S.., and this can be strengthened to p, ¢, ¢, v&S, , because pt¢ and tqv
hold.

The feeble r-spherical four-point property implies that each pair of
points of 3 with distance less than nr have a unique mid point. This
then implies that each two such points are joined by a unique segment.
Let T, , be the segment joining p and ¢, and let E be the set of points
2z of X such that pgx holds. All xe E such that px< zr lie on a unique
segment since repeated application of Lemma 1 will show that if pgzx,
X, PX,=px,, then x,=x,. If for xe E, a=lub px, then there exists a
point Ze E such that pz=a. If px< zr there exists a point y e E such
that py >, so pr=rmr.

If there exist two points p*, p** in Y with pp*=pp™*=ar, let q be
a mid-point of p* and p**. Then p, p*, p**, ¢=~p, ¥, pi*, ¢.€S,, and
pp¥ =ppi " =ar gives pf=pi* so that p*=p**.

THEOREM 5. If X has the feeble r-spherical four-point property, then
Y has the weak r-spherical fouwr-point property.

Proof. Let p, q, s, t be four points of X with p, ¢, s&S,,, to show
that p, g, s, t&8S,,. If two of the points p, ¢, s coincide, then p, q, s, ¢
&3S.,,, so let it be assumed that p, q, s are pairwise distinct. Then
because of the feeble r-spherical four-point property some pair, say p
and ¢, have distance less than nr and determine a unique segment T, ,.
Let », q, s=~p,, ¢, s,€S,, and let S, .(p,, ¢)) be the unique S, , determin-
ed by p, and ¢,. If v and v, are the unique mid-points of p, ¢ and p,,
g, respectively, the congruence p, ¢, v, t =~ v, ¢, v;, t, can be extended
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to t+71, ~t,+T, . 1If seT,, p,q 8 t=S,,. If not, suppose the
labelling is such that ¢s<Cps, and consider the congruence ¢, w, s, ¢* =~
G, Wi, 85, 47, where w is the mid-point of the unique segment T, . join-
ing ¢, ¢* and containing s. This congruence follows from the feeble #-
spherical four-point property and the free movability of S,,. Then this

congruence can be extended to t+ Ty a~t,+7, .+ and p, q, 8, tES,,,.

THEOREM 6. If X has the feeble r-elliptic four-point property, then
2 has metric diameter =r|2 and Y is a conjugate space.

Proof. Because of the feeble r-elliptic four-point property X has
diameter at most nr/2. Let p, e with pg<ar/2. Then there exist
points ¢, ve 3 with ptq, (tqv) holding and pt+tg+qv<ar/2. By the
feeble r-elliptic four-point property p, ¢, ¢, v & &,, and this can be
strengthened to p, ¢, ¢, v& &, because of pig and ({qv).

Let p, t, q, v=p, t, ¢, v,€ &, and let z5%v and w be points of X
with pwq and (wqx) holding and px<_mr. Then p, w, q, 2 = 0, W,y Gy
x,€ &, , and p,, w, ¢, «, lie on an &, ,. Then there exists a motion of
%, sending p,, ¢, into p,, ¢, respectively and sending w, and x, into
uniquely determined points w, and x, on the &, determined by p, and
¢,. Thus if M is the set of xeY with pgxr and px < zr holding, the
unique segment 7', , can be uniquely extended to 7,,U7T,.=T, . for
xe M,

Let now a=lub px for xe M and let {x;} be a sequence of points
of M such that lim pe=«a and if <74, px,x, holds. Then since p and
all of the x; lie on the same metric segment, as 4, j— o, x2;,—~0. The
completeness of Y then implies the existence of a point y such that
y=Ilim @, and py=a <=r/2. Furthermore, since pgz; holds for =1, 2,

- and Y is metric, pgy holds. If py< ar/2, then ye M and there exists
ye 2 such that py >py=«, and this is impossible.

Finally the uniqueness of extensions of segments insures that if
pp*=pp**=7r/2 and pep*, pgp** hold, then p*=p™*.

THEOREM 7. If Y has the feeble {r-spherical, r-elliptic} four-point
property, then X is generalized {r-spherical, r-elliplic}.

Proof. 'The theorem follows in the spherical case from Theorem 5
upon application of Theorem 66.5 of [1] and in the elliptic case from
Theorem 6 and Theorem 4.4 of [3].

M. M. Day* [3] has defined another four-point property which he
calls the “queasy euclidean four-point property” and has shown that a

I The author is indebted to the referee for calling his attention to Day’s work and for
suggesting the possibility of the extension of Day’s work.
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complete, externally convex semimetric space possessing this property is
generalized euclidean. The remainder of this paper is devoted to ex-
tending Day’s work.

A semimetric space M will be said to have the queasy {euclidean,
r-hyperbolic, r-spherical} four-point property provided that corresponding
to each pair of points p, se M there exists ¢e M such that pgs holds
and for each te M, the quadruple p, ¢, s, t&{E,, H,,, S, ,}.

LEMMA 2. If X has the {euclidean, r-hyperbolic} four-point property,
then each two distinct points of X are joined by a unique metric segment.

Proof. Since 2 is complete, convex and metric each two points are
joined by at least one segment. It will be sufficient then to show that
each pair of points of 2 have just one mid-point. Let p, ¢, ¢, s€2
with (pg:s), (pg.s) and pz~£s holding, and let R represent either of the
spaces FE, or H,,. If there exists a sequence of points ¢,¢ 2, i=1, 2,

-+, with lim t,=q,, pt;q;, pl;q, holding, then lim ¢,=¢, and ¢,=q,.

If g,%4¢q,, then there exists a positive number p, such that if pt+
tg,=pq, and pt+itg,=pq, then tq,=tq, >p,. Also there exists p,>0 such
that if q¢t+ts=qs and ¢t +ts=q,s, then tg,;=%tq, _>p,. Let p, be the least
upper bound of the numbers p; and p, that of the numbers p,. Let
and p* be points of X with pp+pq,=pgq, pp*+ p*¢.=pq. and pg,=p*¢.=
.. Then either p=p™ or there is a sequence p;, with pp,q,, pp,q. hold-
ing and lim p,=p, lim p,=»™* so that p=p*. Thus there exist two points
of Y with ¢, and ¢. each metrically between these points but such that
any segment joining the points and containing ¢, has only end points in
common with a segment joining these points and containing ¢.. There
will be no loss of generality if these points are taken to be p and s
and if ¢, and ¢, are assumed to be distinct middle points of p and s.

The queasy four-point property of 2 implies that there exist xe 2,
P, T, 0, 3, p*, ¥, ¢*, s* e R with pxs holding and

0, %, q,8=<p,&7,s
D, , ., s= p*, ¥, ¢*, s*.

Then since p*x*s* and p*g*s* hold, there is a motion sending the
“gstarred” points into the corresponding “ barred” ones, and p, &, G, §
all lie on one metric segment of R. Thus either z=¢ and x=gq,=¢, or
there is a metric segment joining p, ¢,, s and one joining p, ¢, s with
these two segments having interior point  in common. This contradic-
tion completes the proof.

LEMMA 3. If Y has the queasy r-spherical four-point property, then
each two distinct points having distance less than =r are joined by a
unique segment.
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Proof. The proof is identical with that of the preceeding lemma if
distance ps is restricted to be less than ar.

THEOREM 8. If X has the queasy {euclidean, r-hyperbolic, r-spheri-

cal} four point property, then X is generalized {euclidean, r-hyperbolic,
r-spherical} .

Proof. It will be sufficient to show that if p, ¢, s, te Y with (pgs)
holding, then p, ¢, s, t & R, where R represents any one of the spaces
E., H, ., S,,. Assume for the present that if R is spherical, ps<lmr.
Then let xe R with pxs holding and

P, q,s~p, T J, s8R
P, x, 8, t =~ p*, x¥, s* t*e R

Then there exists a motion of R sending p*, s™ into P, § respectively
and ¢* into a point ¢. If ¢t=qt, then p, q, s, t =7, q, §, t.

If qt=~qt, let a congruence f between the segments T,, and T%;
be established so that f(p)=p, f(s)=s. Let @ represent the set of
points xe T, such that tw=tf(x). Then the continuity of the metric
in Y implies that in traversing 7', from p to ¢ there is a last point of
Q@ encountered. Let this point be u, and let w be the last point of @
encountered in traversing 7', , from s toward ¢g. Denote #=f(u), w=
S(w).

Then there exists by the queasy property a point ye 2 with uyw
holding and u, y, w, t =u/, ¥, w,t € B. A motion of B sends u’, w, ¢
into %, w, t and ¥ into a unique point 7 with #gw holding and yt=y't’
=yt. This contradicts the property used to pick out » and w so that
gt=qt and p, q, s, t ~ R.

Finally if R represents S, . and ps=rmr, there is a point xe 2 with
pxs holding and

D, T, 8, =P, %8 JES,,

D, &, 8, t = p*, x¥, ¢*, t7eS,, .

Let a motion be performed sending p*, s* into p, s respectively and t*

into a point ¢. Consider the set of distances zx where z belongs to the
S, , at distance 7r/2 from p. This set of numbers has a minimum m
and a maximum M. Let the labelling be taken so that pt=r/2. Then
it is necessary that m<{t¢<<M. For if t¢<'m, then pt+m=nr/2 and
pt+tqg<mri2=pq. Also if tq > M, tq>tp+pq.

Now on the S,, at distance 7r/2 from p there is a point ¢ so that

tq=tq. Then p, q,s, t=~p,q, s, ¢, and this completes the proof.
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Of course the proof of Theorem 8 is not valid for &, because of
the strong use made of free movability. It should also be noted that
when the queasy four-point property is assumed for a semi-metric space,
it is unnecessary to assume convexity and metricity since the queasy
property implies these.
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RETRACTIONS IN SEMIGROUPS

A. D. WALLACE

Let S be a semigroup (that is, a Hausdorff space together with a
continuous associative multiplication) and let E denote the set of idem-
potents of S. If ze S let

L,={yly\U Sy=a\J Sa}
and
R.={yly\JyS=a\JaS} .
Put H.=L,N\ R, and for ¢c E let
H=\J{H/eeFE},
M,={zlexe H and zec H} ,
Z,—H,x(R,NE)Yx(L.N\E)
and

K=WL,NE)-H-(R,NE) .

Under the assumption that S is compact we shall prove that K, is a
retract of M, and that K, and Z, are equivalent, both algebraically and
topologically. This latter fact sharpens a result announced in [6] and
the former settles several questions raised in [7].

I am grateful to A. H. Clifford and to R. J. Koch for their several
comments. This work was supported by the National Science Foundation.

LEMMA 1. Let Z=SxS8Sx8S and define a multiplication in Z by

(t, z, y)-(t', o, y)=(ay't', 2, y) ;

then Z 43 « semigroup and, with this wmultiplication, the function f:
Z — S defined by f(t, x, y)=ytx is a continucus homemorphism.

The proof of this is immediate. We use only the above defined
multiplication in Z and not coordinatewise multiplication. It is clear
that f(Z,)=K,.

Since the sets H,, ¢€ E, are pairwise disjoint groups [1] it is legiti-
mate to define functions

y: H-FE 0: H—>H

Received August 10, 1956.
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by “#(x) is the unit of the group H, which contains z” and “&(x) is
the inverse of = in the group H, which contains z”. If xe M, then
ex, vee H so that 7(ex), 7(xe) are defined. Define g: M, — Z by

g(x)=(exe, 7(ex), 7(xe))

and note that the continuity of #» implies the continuity of ¢. For
xe M, let

p(@)=17(xe)xn(ex)

so that p is continuous if 7 is continuous.

LEMMA 2. For any x€ K, we have fg(ay=x=p(x) and g(K,)=Z,.
The function f|Z, takes Z, onto K, in a one-to-one way and is a homeo-

morphism if 7 is continuous. If 7 is continuous then p retracts M, onto
K,.

Proof. Let tel,,e,e R, \E and e,e L,\E. Since L,=1L, it is
immediate that ee,=e¢ and since { is an element of the group H, whose
unit is e (Green [3]) we also have ¢t=t=te. Similarly we see that
ee=e. It is important to observe that the sets {L,Jxe S}, {R|xeS}
and {H reS} are disjointed covers of S so that, for example L, N\ L,7# O
implies L,=L,. We see that eejfe,=te, and ejfce=et so that eetee=t.
We note next that te, € H, and thus 7(te))=e,. For eeRe(\LezRelﬂl/t
and ¢’=e, give te,e R, N\ L, in view of Theorem 8 of [2]. But

R, [\L01=RH f\Lel=Re1 N L61=Hp

‘1

and H, being a group with unit ¢, we have, from the definition of 7,
7(te,)=¢,. In a similar fashion we show that 7(et)=e.. If xze K, then
we have x=e,le, with the above notation and

SF9(@)=f(ewe, 7(ex), 7(xe))=7(xe)eme 7(ex)
=y(et)t n(te)=ete,=2x .

It will suffice to show in addition that gf(2)=z2 for ze Z since fg(a)==z
gives a=p(x). Now let z=(¢, ¢, ¢,) € Z, so that f(z)=ete, € K, and

9(f (@) =(ef (De, 7(ef (), 7(f(2)e))=(t, e, €.)

in virtue of the computation given earlier.
It remains to prove the continuity of 7 when S is compact. This
was announced in [7] but no proof of this fact has been published. Let

L={(x, y)|L,=L,} , F ={(z, y)|R,=R,}

and let 2F=2" N2,
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LeEMMA 8. Jf S 4s compact then 77, < and % are closed.

Proof. Let
L'={(x, y)|Sz T Sy}

and assume that (a,b)eSxS\ ¥’. Then ShC S\ a and hence
SbSNU* for some open set U about a« since Sb is closed and S is
regular. Again from the compactness of S we can find an open set V
about b such that SV SN\ U*. Hence (Ux V)N .&<"=[ and we may
infer that & is closed. There is no loss of generality in assuming
that S has a unit [3]. Hence if 2: SxS—>SxS is defined by Az, ¥)
=(y, ) then A(<") is closed and thus =" N\ W.<")is closed. Ina
similar way it may be shown that . is closed. Moreover, 57~ is
closed because &7=. N\ .F#.

THEOREM 1 [7]. If S is compact then H is closed, n: H-->E 48 o
retraction and 0: H—H is a homeomorphism.

Proof. Define p: SxS—S by p(z, y)=2. Then
H=\J {H,|lee E}=p(Z" N (SXE))

is closed since &#” and E are closed. We show next that @ is continuous
and to this end it is enough to prove that G={(«, 0(x))|lxe H} in virtue
of the fact that H is compact Hausdorff. If m: SxS— S is defined
by m{zx, y)=zy then ZZ”N(Hx H) N\m~'(E) is closed and we will show
that this set is the same as G. For (z, f(x)) in G implies m(x, 6(z))=
xf(x) e £ in virtue of the definition of #. Since x and 6(x) are in the
same set H,, ec F, it is clear that (z, 6(x))e Hx H and it is easily seen
from the definition of H,=L,N\R,, and 27"=<""N\ % that also (z, 0(z))
€ 2. Now take «,y such that xzy=eeFE, z, yeH and (zx, y)e 5"
The last fact shows that H,=H, and the penultimate condition, together
with this shows that x, ye H, for some e, ¢ E. But e=zye H, and the
fact that H, is a group implies that e=e,. Now the uniqueness of
inversion in the group H, shows that y=60(x). Hence 6 is continuous
and 7 is continuous because 7(x)=wf(x) from the definition of » and 4.

G. B. Preston raised the question as to the continuity of a certain
generalized “inversion ”—Suppose that there is a unique function «:
S — S such that za(z)r=2 and a(z)ra(z)=a(x) for each xeS. If S is
compact then « is continuous. To see this let .7 " be the set of all
(x, y) € Sx S such that zyzr=2 and yxry=y and define ¢: SxS—>Sx8S
by ¢(z, y)=(axyx, ). If D is the diagonal of Sx S then ¢-'(D) is closed.
Similarly ¢-'(D) is closed where ¢(z, y)=(y, yxy) and A" =¢ (D) N ¢~(D)
is therefore closed. The uniqueness of a implies that {(z, a(x))|lxe S} =4
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so that « is continuous if S is compact. For a discussion of the ex-
istence and uniqueness of such functions as «, see [2, pp. 273-274] as
well as references therein to Liber, Munn and Penrose, Thierrin, Vagner
and the papers of Preston in London Math. Soc., 1954.

From Theorem 1 and Lemma 2 we obtain at once

THEOREM 3. Let S be compact and let ec E ; then K, is topologically
1somorphic with

Ze'__'}IeX(LcﬂE)X(Re f\E)

and K, is a retract of M,.

It is not asserted that K, is a subsemigroup of S. The first corol-
lary is a topologized form of the Rees-Suschkewitsch theorem, see [6],
[7] and [2] for a bibliography of relevant algebraic results.

COROLLARY 1. If S 4s compact, if K is the minimal ideal of S and
if ee KN\ K then K is topologically isomorphic with eSex (Se(\E)x(es\ E)
and K and each “factor” of K 4s a retract of S.

Proof. We rely, without explicit citation, on the results of [1].
It is immediate that M,=S. Now L,=Se, Re=eS and H,=eSe so that
(by definition and [1]) K,=Se-eSe-eS C K and, being an ideal, K,=K.
Clearly «—>exe retracts S onto eSe. Now SeC KT H and 7|Se re-
tracts Se onto Se N\ K.

It is clear, when S is compact, that K enjoys all the retraction
invariants of S, for example, if S is locally connected so is K. We do
not list these nor do we give here the applications of Corollary 1 that
were mentioned in [6].

COROLLARY 2. If S is a clan 7], if K E and if H(S)z%0 for
some n >0 and some coefficient group, then dim K > 2.

Proof. If KCFE then H,={e¢} and K is thus topologically the
product SexeS since Se, eS C K. Now H"(Se) =~ H™(S)~ H"(eS) [9] and
hence Se, ¢S are non-degenerate continua. It follows that dim K> 2.

It is possible to put some of the above in a more general frame-
work. Let T be a closed subsemigroup of S and let

L,={ylz\J To=y\J Ty} ,

with similar definitions for R, and H,. If ec E then H, is a semigroup
and H, isa group if eT'\UTe CT. If 27 ;] % are defined analogously
then 70 .27 =0, Moreover we have /o .27 — s where
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=, e\ Te\JaT\J TaT=y\J Ty\JyT U TyT} ,

when S is compact [5]. In this case o7 & % <. and _F are
closed. It is easy to see that many of the results of [3] and [2] are
valid in this setting. If we define a left 7-ideal as a non-void set A
such that TA C A, then the basic propositions about ideals are also
available. Many of these results follow from general theorems on
structs [8].
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MONOTONE MAPPINGS OF MANIFOLDS
R. L. WILDER

1. Introduction. Mappings of the 2-sphere, and more generally of
the 2-manifolds, have been studied by various authors. (See, for instance,
9] and references therein, [7].) Generally, these mappings have been
subjected to certain “ monotoneity ” conditions on the counter-images of
points. Thus, in Moore’s first paper [8] on the 2-sphere, it was required
not only that counter-images be connected, but that they not separate
the sphere. In terms of homology, then, he required of a counter-image
C that p(C)=0 for r=0,1. Later studies of Moore and others usually
omitted the requirement that p'(C)=0, thus increasing the possible
number of topological types of images. With the condition 2'(C)=0
imposed, the image of the 2-sphere is a 2-sphere, and of a 2-manifold
is a 2-manifold of the same type. Without this condition, the various
types of “cactoids” are obtained.

In the present paper we consider some higher dimensional cases.
As might be expected, we impose higher dimensional “monotoneity”
conditions.

DEFINITION 1. A mapping f: A—B is called n-monotone if
H(f-'(0))=0 for all be B and r<<n. (See [10; p. 904].)

ExaMPLE. Let us consider the mapping induced by decomposing
the 3-sphere into disjoint closed sets each of which is a point, except
that all points on some suitable “wild ” arc [5; Ex. 1.1] A are identified.
This mapping is r-monotone for all », but the image-space is no longer
a 3-sphere; indeed, it is not a 3-manifold in the classical sense at all,
since the point corresponding to A does not have a 3-cell neighborhood.

This example makes it at first appear that because of such “homotopy”
difficulties, it may be useless to look for any well-defined class of con-
figurations in higher dimensions. However, as we show below, the class
of configurations obtained is precisely that of the generalized manifolds.
Moreover, we need not restrict the mappings to the mappings of 3-
manifolds in the classical sense, since the generalized manifolds turn
out to form a class which is closed relative to the mappings considered.
This result forms, then, a new justification for the study of generalized
manifolds.

2. Preliminary theorems and lemmas. In general, spaces are

Received January 28, 1957. Presented to the American Mathematical Society September
9, 1948,
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Hausdorff, but no conditions of metrizibility or separability are assumed.

Except where noted to the contrary, we use augmented Cech homology
with an algebraic field as coefficient domain. We recall the following
definition [11; p. 237].

DEFINITION 2. If S is a locally compact space, such that for every
pair of open sets P,Q for which P> @ and @ is compact, the group

H*S:Q, 0; P,0) (cf. [11; 166, Def. 18.28]) is of finite dimension, then
S is said to have property (P, Q).

REMARK. Since the space is assumed locally compact, the above
definition can be stated in a number of different but equivalent forms.
Thus, @ may be replaced in the definition by any compact set M; that
ig, S has property (P, Q)" if for every pair of sets P, M such that P is
open, M is compact, and PO M, then H"*(S: M, 0;P,0) is of finite di-
mension. Another variant, but equivalent form of the definition, is
obtained if in either of the above definitions it be required only that

there exist at most a finite number of n-cycles on Q(M) which are lirh
on compact subsets of P (that is, in P).

Another variant would be to require that there exist at most a
finite number of cycles on compact subsets of @ (that is, in Q) that are
lith on P (or, that are lirh in P). Each of the equivalent forms of the
definition may be found particularly adapted to a given situation.

We express the fact that S has property (P, Q)" for r=0,1,---,n
by stating that S has property (P, Q).

THEOREM 1. If S 4s a compact space having property (P, Q)", and
f:8->8 s a continuous (n—1)-monotone mapping of S onto a Hausdorff
space S, then S’ has property (P, Q)".

Proof. Let U’, V' be open subsets of & such that U’ >V’ and V'
is compact. The sets U=f-'(U"), V*=F-(V") are open and closed sub-
sets, respectively, of S, such that U V*,

In the mapping f(V*)=V’, counter-images of points are all r-acyclic

for r=0,1, -+, n—1. Hence [3] for any cycle 7* on V7, there exists a
cycle Z® on V* suech that

(1) fZ"N~y" on V.

Since S has property (P, @)", there exist cycles Z7, ¢=1, -+, m of
V* such that if Z* is any cycle of V*, then
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(2) zr~$aztin U
Consequently, since (2) implies
(3) FE~ S (@) in U
we have, combining (1) and (3), that

i~ LGS i U
=1

It follows that at most m cycles on V' are lirh in U and hence that S’
has property (P, @)".

REMARK. It is worthwhile noting that the above proof gives the
following : If f:S—S is a continuous (rn—1)-monotone proper mapping
of a locally compact space S onto a Hausdorff space S’, and P’, I’ are
open and compact subsets of S’, respectively, such that P’ D F", then

fIP,HYS: F, P)—~H"S": F', P)

is a homomorphism onto, where F'=f-YF"), P=f"(F), and H*S: F, P)
denotes the group of n-cycles on F' reduced modulo the subgroup of
n-cycles that bound ¢» P. A similar argument shows that f|P,:
H"(S: F, P)— H"(S': F", P') is an isomorphism onto. These are general-
izations of the Vietoris mapping theorem [2], [3].

THEOREM 2. If S is an Ilc® compact space, n >0, and f:S—S" s
a continuous (n—1)-monotone mapping of S onto a Hausdorff space S',
then S is lc”.

Proof, By [11;p. 70, Th. 1.6], S’ is 0-lc. And since S’ is a compact
0-lc space, it has property (P, Q). (See [11; p. 106, 3.7]). That S’ has
property (P, Q) for r=1,2, ..., n follows from Theorem 1. Since, for
compact spaces, l¢" and (P, Q) are equivalent, we conclude that S is
le" (see 11; p. 238, 7.17]).

LeMMA 1. In a locally compact space S, let P and Q be open sets

such that P is compact and PDQ; tm‘d let M be o closed subset of @
such that for any open set Q, for which M Q,CQ, the dimension of

H(S:8,S—P;8S,S—Q,) [11; 166, Def. 18.29] is the same finite number
k. If Z%, -« ZF form a base for r-cocycles mod S—P relative to co-
howmologies mod S—Q, then for every open set Q, such that M CQ,CQ,
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the cocycles Z form a base for r-cocycles mod S— P relative to cohomologies
mod S—@Q,.

Proof. Let 7L, ---,7* be a base for cocycles mod S—P relative to
cohomologies mod S—@Q, . Then there exist cohomologies:

k I
(1) i~ Nl Zimod S—Q, =1, k.
i=1

Relations (1) hold a fortiori mod S—@, .
The matrix |¢/|| is of rank %, since otherwise there would exist a
cohomology relation between the 7{’s, mod S—@Q, .

Suppose the Z!’s are not lircoh mod S—@,. Then there exists a
relation

S a,Zi~0 mod S—Q, .
But the system of equations
iyt tela, e lm=a,, i=1, -~ k

has a non-trivial solution in the x,s. Hence, multiplying the relations
1) by «,, -, x,, respectively, we get

Sayi~S a,Zi~0 mod S—@Q, .

Thus, the assumption that the Z. are not liroch mod S—@Q, leads to
contradiction ; and since the dimension of H/(S:S,S—P;S,S—Q,)=k,

we conclude that the Z’s form a base for cohomologies mod S—@,.

LEMMA 2. In a locally compact space S, let M be a compact set
such that H(M)=0; and suppose that there exist open sets P, Q such

that M CQ C P and such that H'(S:Q, 0; P, 0) has finite dimension. Then
there exists an open set Q, such that M CQ,CQ and H'(S: @, , 0; P, 0)=0.

Proof. Suppose, on the contrary, that for all such @, , H'(S: Q,, 0; P, 0)
#0. Since H’(S:Q, 0; P, 0) is of finite dimension, we may assume @
shrunk so that all dimensions of groups H'(S:@Q,, 0; P, 0) are equal to
the same positive integer & for all @, such that M CQ,CQ .

Since

H(S:8,S—P; 8, S—Q,)~H"(S:Q,,0; P, 0)

[11; 166, 18.30], there exist, by Lemma 2, cocycles Z., ¢=1, --- k,
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mod S—P, that form a base for cocycles mod S— P relative to cohomologies
mod S—@, for all @, such that M —Q, Q. Consider Z!, and U a fcos
of P such that Z(11) exists. Let B>>1 be a normal refinement of 11
rel. M [11; 140], and let @, be such that if a simplex of ¥ meets Q,,
then it meets M. Since Z!~0mod S—@,, there exists on @, a cycle Z”
such that Z}-Z"=1. And by the choice of B, the coordinate Z"(L) is
on M. Hence 7, Z"(¥) is the coordinate on M of a Cech cycle 1.

But H"(M)=0 and consequently 7" ~0 on M, and a fortiori, y"(1)~0
on Q; and since Z"(1) ~myuZ7(B) on @, it follows that Z'(1l)~0 on Q.
But then Z'(11):-Z)(11)=0, in contradiction to the choice of Z"(11). We
conclude, then, that for some @,, H"(S: @,, 0; P, 0)=0.

THEOREM 3. A necessary and sufficient condition that a locally com-
pact space S be lc® is that if M s any compact subset of S such that
H'(M)=0, for some rmn, then for any open set P containing M there exist

an open set Q such that M CQ CQC P and such that H'(S: @, 0; P, 0)=0.
Proof of sufficiency. Trivial. (See [11; 193, 6.14]).

Proof of necessity. With M and P as in the hypothesis, and any
open set @ such that @ is compact and M CQCQCP, the dimension

of H'(S:Q, 0; P, 0) is finite [11; 193, 6.16]. Lemma 2 now gives the
desired result.

LEMMA 3. If S is an orientable n-gm and M a compact subset of S
which is r- and (n—r—1)-acyclic for some r such that r<n—2, then
Jor any open set P containing M, there ewxists an open set Q such that
MCQCQCP and such that all compact r-cycles in Q— M bound in P— M.

Proof. Since S is ¢ [11; 244], there exists by Theorem 3 an open

set @ containing M such that @ C P and such that all »- and (n—r—1)-
cycles in @ bound in P. Suppose there exists a cycle Z” in @ —M that
does not bound in P— M.

By Lemma VIII 5.4 of [11; 255] there exists a cocycle Z,_,=7*Z"
in @ —M such that Z,_, _/""~Z" in @— M, where /™ is the fundamental
n-cycle of S. And since Z"~0 in P, we may assume that Z, .~0 in
P. There exists a covering 11 and a relation.

( 1 ) 6072—)‘—1(11)=Zn—7'(11) in P.

The chain C,_,_,(1) is clearly a cocycle mod P—M=S—[(Ext P)\U M].
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And if C,_,.,~+ 0 mod S—[(Ext P)\JM], then by [11; 164, 18.19] there
exists a cycle Z""! on (Ext P)\UM such that C,_,_,-Z*""'=1. Since
Zrrt=Z 4+ 7, , where Z; is on Ext P and Z, on M, we may neglect Z,
(as C,_,-,(1) is in P) and write C,_,.,-Z,=1. But Z,~0 on M since
M is (n—r-—1)-acyclic, implying C,_,_,-Z,=0. We conclude, then, that
Cyepei~0 mod P—M. There exists, therefore, a covering B> and a
relation

( 2 ) 3011—7'—2(%):n*u%cn—r-l(u)'—Lnﬂr—l(%) ’

where L,_,_(Q) is in P—M.
Applying & to (2) and utilizing (1), we get

aLn —T—I(SB) = ﬂ*u%Zn—-r(u) .

That is, Z,-,~0 in P—M. But this implies Z’~0 in P—M, contrary
to supposition.

REMARK. In the hypothesis of Lemma 3 it was assumed that
r<n—2, that is, n—»r—22>0. The necessity for this is shown by the
following example: Let S be the 2-sphere, S* and in S let M be a
circular disk, and U and V open circular disks concentric with M and

such that MCVCVCU. Then in V—M an S* which encloses M car-
ries a Z' which fails to bound in U—M.

Note also that if M is an S* in S*, then M is 2-acyclic but in any
open set P containing M there exist 2-dimensional cycles linking M.
This shows the necessity for the assumption that M be (n—r—1)-acyclic
in the hypothesis.

LEMMA 4, Let Z" ' be o cycle carried by a closed subset K of an
orientable n-gem S, and M a connected subset of S—K. If Z""'~0 on
S, then must Z"'~0 on a compact subset of S—M.

Proof. This is analogous to that of Lemma XII 3.12, p. 375 of [11].

For the purposes of the proof of the next theorem, let us recall
the following form of the definition of an orientable n-gem: An n-
dimensional compact space S such that (1) p"(S)=1 and all n-cycles on
closed proper subsets of S bound on S; (2) S is semi-r-connected for all
r such that 1<r<n—1: (8) S is completely r-avoidable at all points
for all »r<<n—2; (4) S is n-extendible at all points. (This is IX 3.6, p.
273, of [11]). (By Lemmas VII 5.2, 5.3, p. 224 of [11], condition (4)
may be replaced by the requirement that S is locally (n—1)-avoidable
at all points; this fact will be utilized in the proof of Main Theorem A
below.)
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3. Main theorems.

MAIN THEOREM A. Let S be an orientable n-gem and f:S—S" an
(n—1)-monotone continuous mapping of S onto an at most n-dimensional
nondegenerate Hausdorff space S'. Then S’ is an orientable n-gem of the
same homology type as S.

Proof. Since S is nondegenerate, f is n-monotone and therefore
by the Vietoris-Begle Theorem [2], p"(S")=p"(S)=1. And since p"(S") >0,
S’ is at least n-dimensional, and therefore, by the dimensionality as-
sumption of the hypothesis, is exactly #n-dimensional. And if F’ is a
proper closed subset of §’, and Z" a cycle on F", there exists on the
set F'=f~'(F") a cycle y* such that f(G")~Z" on F” (see [2; §5]). As
F' is a proper closed subset of S,7"~0 on S and therefore f(3")~0 on
S’—implying that Z"~0 on §’. Thus & satisfies condition (1) above.

That condition (2) is satisfied, follows from the fact that S’ is ¢
by Theorem 2.

Let e 8’, and U’ an open set containing »’. Then U=f-(U') is
an open set containing the set M= f"'(p’). Let r be any integer such
that 1<r<n—2. Since H'(M)=H"""""(M)=0, there exists by Lemma
3 an open set P such that M PCPCU and such that all r-cycles in
P—M bound in U—M. Let W’ be an open set such that p’e W W C U,
and such that f~(W')CP. Let @ be an open set such that p' e @ C
Q CW. As S is lc", there exists a finite base Z;, ---, Z; of r-cycles
of F(W’) relative to homologies in U'—Q'. Let W=7 (W), Q= F-(Q),
and consider any cycle Z7. There exists a cycle y; on f~'(F(W’)) such
that fGi)~Z; on F(W). And as y;~0in U—M, Z; must bound in
U —P'. Finally, since there are only a finite number of the r-cycles
Z7, there must exist an open set R’ such that ' e R’ C R CQ and such
that all eyeles on F(W’) bound in U'—R’. Thus S satisfies condition
(3).

To show that S’ satisfies condition (4), let ', U, U and M be as
before. Since by hypothesis p" '(M)=0, there exists by Theorem 3 an
open set V such that M CVCVCU such that all (n—1)-cycles of V
bound on U. Let P’ be an open set such that p’e P’ P C U’ and such
that if F"=F(P’), then the set F'=f-Y(F") lies in V. Let @ be an open
set such that p e @ CQ CP. As above, there exist cycles Zr,
=1, -+«, k, of F' forming a base for (n—1)-cycles of F" relative to
homologies in S'—@Q'. And for each Z* ' there exists a cycle y7~! on F'
such that f(7")~Z "' on F'. But since 77"'~0 on U, hence on S, it
follows from Lemma 4 that y7"'~0 in S—M. Therefore each Z?'~0



1526 R. L. WILDER

in S'—9¢’, and it follows that, as above, an open set R’ exists such that

p e R CQ and all Z;' bound in '—R'. Thus & is locally (n—1)-
avoidable.

The necessity for assuming that S’ is at most n-dimensional above
may be avoided if the monotoneity condition on f is strengthened. We
recall that for the Vietoris Mapping Theorem to hold when the coef-
ficient group is not a field or an elementary compact topological group,
it is necessary to phrase the monotoneity condition in terms of the in-
dividual coordinates of cycles (just as, for example, may be done with
the r-le condition; compare [11; 176, Defs. 1.1, 1.2]). In terms of the
generalized Vietoris cycles such as Begle employed [2], the condition is
defined as follows:

DEFINITION 3. A mapping f of a space X onto a space Y is a
Vietoris mapping of order m if for each covering 11 of X and yeY
there exists a refinement L=LV(11, y) of U such that every r-cycle of
XA Fy) [11; 181], r<n, bounds on XA f-'(y). By X)) is
denoted the complex consisting of all simplexes o such that the vertices
of & are points of X and diameter of »<11.)

When the coefficient group is a field or elementary compact group,
this definition is equivalent to that of #-monotone. It will be convenient,
then, to retain the term ¢ n-monotone” with, however, a qualification

regarding the coefficient group employed. Also, for working with Cech
cycles, the definition is more suitable in the following form:

DEFINITION 3. A mapping f of a space X onto a space Y is n-
monotone over (an abelian group) G if for each covering Ul of X, ye Y
and M=f"'(y), there exists a refinement L of 11 such that for every
r-cycle Z7(B) over G, r<<n, on VL A M the projection muZ"(¥) bounds
on 1 AM.

A routine argument shows that the two Definitions 3 and 8’ are
equivalent.

LEMMA 4. If f 4s an n-monotone wmapping over the additive group
I of integers of a compact space S onto a Hausdorf] space S, then f s
n-monotone over every abelian group G.

(Remark. As will be seen from the proof below, it is sufficient to
assume the condition of the Definition 3’ only for r=n and n—1.)

Proof. TFor n=0 the lemma follows at once since, as is easily
shown, 0-monotone over any group GG is equivalent to the connectedness
of f'(x) for all e S,
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For »n>0 we proceed as follows (see Cech [4; 11-13], where a
similar type of argument is employed for quite different purposes):
Given a covering 1, of S and xeS’, M— f~*(x), we choose 1I,”>1, such
that for every n-cycle Z*(1l,) over I on 1, A M, the projection =,Z*(11,)
thereof from 1, to U, bounds on U, A M; and U, >1U, such that for every
(n—1)-cycle Z"(1;) over I on W A M, the projection m,Z"-'(11,) thereof
bounds on 11, A M.

There exists a base for m-chains over I for the complex I, A M
consisting of chains Cr(l,), 4=1, ---, «,, such that

ac?(US)zvle:z—l(l’IS) ’ 72:1! ct dgn ’
aCLn(lls)zo ’ @:/gn+ly e, &y,

where 0<{f, <min («,, a,.,).
Consider any cycle Z*(1l,) over G of U, A M. Then

2/ =3 g,C1(W) g.eG.

And since Z"(11,) is a cycle,

™

0

Z‘lgzvllcf”](11:s)=0 ’
implying that
(1) 9:7r=0 for 1< <4, .

Also, since for §,+1<i<«, the chain Cy(1l,) is a cycle, there exist
chains H!*'(11,) over I of 1, A M such that

(2) OH ' (Uy)=m,msCP(U) frtl<i<a,.
Furthermore there exist chains D}(1,) over I of 11, A M such that
oD} (,) =m,CP~' (1) , 1<0<4, .

And since the chains =,,Cr(11,)—%:Dy(1,) are cycles over I, we also have
relations

( 3) aH?H(nL):ﬂ]zﬂz:sC?(uQ—7"'1277? ?(11_,) ’ 1§%§ﬁn
on W, AM. From (1), (2), and (3) we get

0 Z}ng;lH(ul): Z;l nlz”zSQiC?(lIZi)

=17 2" (1)
~z, Z" () .
on U, A M.
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MAIN THEOREM B. Let S be an orientable n-gem and f: S—S «
continuous moapping of S, (n—1)-monotone over the integers, onto a finite-
dimensional nondegenerate Hausdorff space S'. Then S’ is an orientable
n-gem of the some homology type as S.

Proof. The defining properties of an orientable n-gem S utilize
an algebraic field & as coefficient domain, and in particular specify
that if F' is a proper closed subset of S, then H*(F'; &% )=0. It follows
that sinee S’ is nondegenerate, f is n-monotone as defined in Definition
1, and consequently [2; 542-3] is n-monotone over . as defined in
Definition 3’. Furthermore, f is n-monotone over I. For it is trivial
that n-monotoneity over a cofinal system of coverings of a space is
sufficient for n-monotoneity, and S has a cofinal system Y of coverings
of dimension »; and since a cycle Z*(8), B e, over I is a fortiori a
cycle over &, for a projection m;3Z"("B), Ue 2, to bound implies
s (B)=0. We conclude then that f is n-monotone over I.

Now suppose the dimension, dim S’,”>n. Then ([6]; [1]) there
exists a closed set C S and cycle Z” over R, (the additive group of
the reals mod 1) such that Z"~0 on S but Z"~0 on C. As f is n-
monotone over R, by Lemma 4, there exists [2; § 5] a eycle " on f-Y(C)
such that f(;")~Z" on C. But since Z"~0 on §', it follows [2; 542]
that 7"~0 on S. As S is n-dimensional, this implies 7"=0 and a
fortiori that 7"~0 on C and consequently f(3")~0 on C, implying Z,~0
on C, contrary to the choice of Z".

The theorem now follows from Main Theorem A, since by Lemma
4, v is (n—1)-monotone over .5 .
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