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MULTIPLICATIVE NORMS FOR METRIC RINGS

SILVIO AURORA

l Introduction. In his paper [19], S. Mazur stated two results
concerning real normed algebras. The first of these, which asserted
that the only normed division algebras over the real field were the real
field, the complex field, and the division ring of real quaternions, was
essentially proved by Gelfand in [10] and by Lorch in [17]. Elementary
proofs of that result have also been given by Kametani [13] and Torn-
heim [26], while generalizations in various directions have been given
by Kaplansky [16], Arens [4] and Ramaswami [23].

The second of the results given by Mazur was that a real normed
algebra such that ||a2/|| = ||a?|| \\y\\ for all x and y mnst again be isomor-
phic to the real field, the complex field, or the division ring of real
quaternions. This result was generalized in [8] by R.E. Edwards, who
showed that the same conclusion holds for a Banach algebra under the
weaker hypothesis that \\x\\ Har^lHl for all elements x which have in-
verses x'1. A. A. Albert has also obtained results in [1], [2] and [3]
similar to the second of Mazur's results.

In this paper, the second result of Mazur is generalized for certain
types of metric rings. It is shown in section 6 that such rings must
be division rings if the condition ||#2/|| = |M| I Ml for all x and y holds.
Similar results hold under the weaker assumption that ||a?|| Har^Hl for
every element x which has an inverse x"\ Under suitable additional
conditions on the metric rings under discussion, it is shown in § 7 that
the results just mentioned may be strengthened to assert that the ring
is not only a division ring but is isomorphic to the real field, the com-
plex field, or the division ring of real quaternions. Finally, the results
on metric rings are applied to real normed algebras to obtain the results
of Mazur and Edwards under weaker assumptions.

The author is deeply indebted to Professor E. R. Lorch of Columbia
University for his invaluable guidance in the preparation of this paper;
heartfelt thanks are also due to Professor Lorch and to Professor Leo
Zippin of Queens College for their kindness in reading and criticizing
the manuscript.

2. Topological rings, metric rings, regular and singular elements*
We shall first introduce some pertinent definitions and recall some ele-
mentary results concerning topological rings and metric rings. By a
topological ring is meant a structure R which is at once a Hausdorff

Received July 27, 1955 and in revised form October 1, 1956. Portions of this paper
were written while the author held an Atomic Energy Commission Fellowship.
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1280 SILVIO AURORA

space and a ring1 such that the applications (a, δ)->α-fδ and (a, b)~>ab
of RxR into R are continuous.

If R is any ring, then a real-valued function \\x\\ defined on R is
called a worm for R if it satisfies the following conditions:

( i ) ||0||—0 and | |α | |>0 for α^O,
(ii) ||α + 6 | |^ | |α | | + ||6|| for all a, δ e # ,
(iii) | | - α | | = |MI for all aeR,
(iv) ||α&||<*||α|| ||δ|| for all a,bsR. A norm for R is called an

absolute value for R if it satisfies the following condition, which is
clearly stronger than (iv):

(iv') ||αδ|HI|α|| ||δ|| for all a, beR.
By a metric ring (ring with absolute value) is meant a ring iϋ together
with a norm (absolute value) for R. In any metric ring R the function
eZ(#, 2/) = I |a?—2/H is a metric for i? and induces in the usual way a topo-
logy for R relative to which R becomes a topological ring. Every ring
admits as a norm the trivial function which takes the value 0 for the
zero element of the ring and the value 1 for all other elements in this
case the induced topology is of course the discrete topology. The trivial
norm is easily seen to be an absolute value for a ring if and only if
the ring contains no proper zero-divisors.

For a finite ring which contains at least two elements it may be
observed that the existence of an absolute value is possible only if the
ring is a field and the absolute value is the trivial norm. In general,
one might expect that the existence of an absolute value for a ring will
require rather special properties of that ring. In the case of real
normed algebras, for instance, S. Mazur stated in [19, second theorem]
that when the norm is an absolute value the algebra must be isomorphic
to the field of real numbers, the field of complex numbers, or the divi-
sion ring of real quaternions. We shall consider below metric rings
which satisfy various multiplicative restrictions on the norm such as
(iv'), and we shall show that the class of such rings is strongly limited.

By an isometry of a metric ring R into a metric ring Rλ is meant
a ring homorphism σ of R into Rλ such that ||<J#|| = |MI for all xeR;
clearly, σ is necessarily an isomorphism of R into Rx. A metric ring
Rλ is said to be an extension of the metric ring R provided that there
exist an isometry of R into RL. The notions of limit, convergent sequ-
ences, fundamental sequences, complete metric ring, and the completion
of a metric ring are introduced in the standard way and the usual pro-
perties of these notions are easily verified.

We now exhibit some metric rings, in each case taking the obvious
definitions for the operations of addition and multiplication when these
are not specified, and with the ordinary absolute value as the norm in

1 The rings in this paper are assumed to be associative and to possess a unit element, e,
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examples (l)-(5):
(1) The ring of rational integers.
(2) The field of rational numbers.
(3) The field 3ΐ of real numbers.
(4) The field & of complex numbers.
(5) The division ring d of real quaternions.
(6) The ring C{X) of all continuous complex-valued functions defin-

ed on the compact Hausdorff space X, with the norm given by
11/11 = sup \f{%)\, where the supremum is extended over allxe X.

(7) The ring & of all complex-valued functions which are defined
and continuous on the unit disc {ζ\ ICI^I} of the complex
plane and analytic over the interior, {CllCKl}> of that disc.
The norm is given by | |/ | | = sup |/(C)I> where the supremum
is taken for all ζ such that |Cl = l.

(8) The field Qp of rational numbers (where p is a fixed prime
number) with the norm defined by \\q\\=p~r, where r is the
uniquely determined integer such that q has a representation
q=pr{mln) with m and n integers prime to p.

(9) The field Pp of p-adic numbers, which is obtained as the com-
pletion of Qp of example (8).

(10) The ring C(?o of all real-valued functions which are defined on
the closed unit interval and for which the first n derivatives
exist and are continuous. In this case the norm is defined to be

where each supremum is extended over all x in the closed unit interval.
All of these rings except those of examples (2) and (8) are complete

metric rings; the norm is also an absolute value in all of these rings
except those of examples (6) when X contains at least two points, (7)
and (10).

The notions of {left, right) inverse of an element, {left, right)

regular elements, {left, right) singular elements, and the sets S\ Sr, S,

G\ Gr and G are introduced as in [24]. Clearly, G{G\ Gr) is the com-

plement of S{S\ Sr). It is easily verified that S=Sι \J Sr and G=Gτ Γ\ &'-

Also, Gι and Gr are multiplicative semigroups3 and G is a multiplicative

group with e as its identity element.
In many examples the distinction between left regular elements

and right regular elements disappears. For example, for a ring R
which has no proper idempotents it is true that Gι = Gr. For, if aeG1

2 A semi-group is understood to be a non-empty system which is closed relative to an
associative binary operation.
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and a'a=e, then aa' is an idempotent distinct from 0, so aa'=e and this

means that aeGr. Similarly, in a ring without proper nilpotents, Gι =
Gr. For, in such a ring all idempotents are central by Lemma 1 of [9],

so if aeG1 where a'a=e, then aa' is an idempotent and therefore
central. Thus,

aa'=a'a(aa')=a'(aa')a=(a'a){a'a)=e ,

so αeG r , whence GΊ=Gr.
If R is a topological ring, its group G of regular elements is the

union of a family of disjoint, maximal connected subsets,—the compo-
nents of G. The principal component, Gu is the component which con-
tains the unit element e. It may be shown that Gτ is an invariant
subgroup of G such that the cosets modulo Gι are the components of G.

Following Kaplansky [14] we call a topological ring a Q-ring if the
set G of its regular elements is an open set3. For a complete metric

ring it is well known that Gι, Gr and G are open sets so that Sι, Sr

and S are closed sets. This is shown in [18], [20] or [24] for the case
of Banach algebras, and the present result, which utilizes essentially
the same proof, may be found in [14]. Thus, every complete metric
ring is a Q-ring.

3 Generalized divisors of zero. In [25], G. Silov introduced the
concept of a generalized divisor of zero in a Banach algebra. A more
detailed study of this concept was presented by Rickart in [24] the
present development of a theory of generalized divisors of zero in a
metric ring follows closely the development presented in the latter paper,
although the possibility of multiplication by complex scalars permits

stronger results in the case of a Banach algebra. Silov's results demon-
strated the existence of generalized divisors of zero in any non-trivial
Banach algebra as a corollary he obtained the result of Mazur mentioned
above on Banach algebras with a norm which is an absolute value. Our
study of generalized divisors of zero leads in a similar way to a gener-
alization of Mazur's result to the case of certain types of metric rings.

DEFINITION. If a is any element of a metric ring we define Ί(a)=
inf (||αa?||/||a?||) and r(α)=inf (||ακι||/||a7||), where in each case the infimum
is taken as x ranges over the non-zero elements of the ring.

The results which follow are easily proven and in many cases follow
as in Rickart's paper.

3 Kaplansky,s definition is in terms of quasiregular elements, but is easily seen to be
equivalent to the present one in rings with unit element.
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LEMMA 1. (i) 0<J(α)<: | |α | | for any α; (ii) Ί(a)ϊ(b)<LΊ(ab)<\\a\\-ϊ{b)

for any a and b; (iii) \ϊ(a)~Ί(b)\<L\\a — b\\ for any a and δ.

COROLLARY. Ϊ(X) is a continuous function of x.

DEFINITION. ZΓ={α|ϊ(α)=0}, Zτ= {a\r(a) = 0} Z=ZΊ\JZr;

Hτ={a\l(a)>0}, Hr= {α|r(α)>0}; H=HTΓ\Hr.

It is easily observed that Z\Z\ Z) is the complement of Hι{Hr, H).

Since the corollary implies that Zι (and also Zr) is closed it follows that

Z=Zι\JZr is closed. Consequently, Hι, Hr and H are open.

An element of Zι(Zr, Z) is called a generalized left-divisor (right-
divisor, divisor) of zero. Clearly, a (left, right) zero-divisor is always a
generalized (left, right) divisor of zero. The converse, however, is not
always true. For example, let R1 be the metric ring consisting of the
same elements as the ring of example (7), but where the norm of an
element distinct from zero is taken as the maximum of 1 and the norm
as given in example (7). The topology of R1 is then the discrete topo-
logy. There are no proper zero-divisors in Rlf but the function /(£) =
C - l is a generalized left-divisor of zero in Rlf for if /W(C)=C" + CW~1 +
•••+1, then | | / n | | = rc + l, while | | // n | | = 2 since

( C - l X C + C 1 " 1 * + l ) = C ϊ + 1 - l

thus, | |// n | | / | |/ n | | = 2/(rc + l) for n = l, 2, ••-, so that ΪΓ(/) = 0 and / is a
generalized left-divisor of zero.

In [24] Rickart defines a left generalized null divisor to be an ele-
ment s such that there exists a sequence {zn} such that ||£n|[ = l for all
n, and such that szn -> 0. However, he notes that s is a left generalized
null divisor if and only if Z(s) = O. In a metric ring, it is clear that a
left generalized null divisor in the sense of Rickart satisfies the condi-
tion ϊ(s)=0 and is thus a generalized left-divisor of zero in the sense of
this paper. However, a generalized left-divisor of zero in the sense of
this paper need not be a left generalized null divisor in the sense of
Rickart; for example, the element / in the preceding paragraph is a
generalized left-divisor of zero in Rl9 but if there were a sequence {gn}
of Rλ with ||sU| = l for all n and with fgn -> 0, then for n large fgn

would be zero since Ri is discrete, and, since Rγ has no proper zero-
divisors, either / or gn would be zero, and this is clearly impossible, so
/ can not be a left generalized null divisor in the sense of Rickart's
definition.

It is nevertheless true that for many metric rings the concepts of
4 For brevity, right-sided results are often omitted.
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left generalized null divisor as defined by Rickart and that of generalized
left-divisor of zero as employed in this paper coincide. One can easily
show, for instance, that this is the case in a metric ring R such that
for any element a distinct from zero there is an element b of s&(R)
(this set is introduced later in §5) such that ||α|| ||δ|| = l. It follows
also that the concepts coincide in a metric ring R such that for every
positive real number r there is an element b of &(R) such that ||δ|| = r.
In particular, this condition holds in any Banach algebra, so that the
two concepts coincide in any Banach algebra, as Rickart showed.

If Rz is the ring of elements of Rλ but with the norm taken such
that IMI = 1 for any g distinct from zero, then R2 is also discrete, so
that the topological rings which underlie Rι and Rλ are identical. How-
ever, the element / defined above is a generalized left-divisor of zero
in Ru but not in Rz, for the norm of Rz is an absolute value, whence

||αa?||/||#||==||(i|| for all non-zero x in Rλy so Γ(α)= ||α|| for any a in Rz, and
consequently Rz can not contain any generalized left-divisors of zero
different from zero. This shows that the notion of generalized left-
divisors of zero is not a purely topological notion. In particular, this
concept differs from that of a topological zero-divisor as defined, for
example, in [15]. For, while it is easily shown that a topological left
zero-divisor in a metric ring is necessarily a generalized left-divisor of
zero, the converse is not true since otherwise the element / of Rx would
be a topological left zero-divisor in Rι and hence in Rz and hence a
generalized left-divisor of zero in Rlt

LEMMA 2. (i) // beZτ, then abeZτ for any a. (ii) IfabeZT,

then aeZT or beZ\

LEMMA 3. ZTCSΓ, ZrC.Sr, ZC.S, GτC.H\ GrC.Hr and GC.H.

Lemma 3 shows that the sets Hι, Hr and H are not empty and
contain in fact all regular elements. It is also clear that the zero ele-
ment belongs to the sets Zι, Zr and Z\ but in many instances these sets
contain no element other than zero. For example, the metric rings of
examples (l)-(5) possess no generalized divisors of zero other than the
zero-element. However, for a complex Banach algebra distinct from K,

G. Silov showed in [25, lemma] that there always exist generalized
divisors of zero distinct from the zero-element.5 The results which fol-
low give conditions under which certain types of metric rings contain
nonzero generalized divisors of zero.

LEMMA 4. For any metric Q-ring, H is the union of the disjoint
open sets G and Sf}H.

5 See also the remark by Lorch in [17].
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LEMMA 5. Let R be a metric Q-ring. Let {an} be a sequence of
regular elements of R which converges to an element a in R. If the
sequence {an~

λ} is bounded,6 then a is a regular element.

THEOREM 1. If R is a metric Q-ring, then1 [G] Γ\SC.ZTΓ\ Zr. If in
addition, R(~ΰ) is connected* then either R is a division ring or Z contains
an element distinct from zero.

Proof. The first statement follows as in Rickart's paper.
If R is not a division ring, then the closed set S meets R(o). Also,

the closed set [G] meets β ( ϋ ), and R(^CZ[G]US. If # ( ϋ ) is connected,
then R(o) Γ\[G]f^S is not empty, so [G] Γ\ S contains an element distinct

from zero. It follows that Zι (\ Zr contains a nonzero element, so Z also
contains a nonzero element.

4. Proper rings. Lemma 3 asserts that the inclusion ZCZS always
holds. Thus, every generalized divisor of zero is a singular element,
although, as we see below, a singular element need not be a generalized
divisor of zero. Indeed, the generalized divisors of zero possess the
special property of permanent singularity; that is, a generalized divisor
of zero does not acquire an inverse in any extension of the given ring
since it is still a generalized divisor of zero and hence singular in that
extension. In the ring 2$ of example (7), the function /(£)==£ is a
singular element, but the ring C(X), where X is the unit circle of the
complex plane, is readily seen to be an extension of & in which / is
a regular element.8 Thus, / is not a permanently singular element of
& and so / is not a generalized divisor of zero in ^ even though /
is a singular element of &. Thus, the inclusion ZCZS may be a proper
inclusion.

DEFINITION. A metric ring R is said to be proper provided that
Z=S, or, equivalently, that H=G.

The preceding discussion shows that even a complete metric ring
which is connected and locally connected need not be proper; for ex-
ample, £2? is not proper. However, many metric rings are proper, in-
cluding any ring C(X) of example (6). We see that a proper ring is a
division ring if and only if there are no generalized divisors of zero
other than zero. In particular, a proper ring with absolute value can
have no generalized divisors of zero except zero and is therefore a divi-

6 A set A is said to be bounded if there is a number Msuch that ||α|j<^ikf for all a in A.
7 If A is any set, the symbols [A\ and A^o) denote the topological closure of A and

the set of non zero elements of A, respectively.
8 Compare [24].
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sion ring. We shall give below some sufficient conditions for a metric
ring to be proper; these conditions, in combination with the existence
of an absolute value or with some other multiplicative restriction on the
norm, will imply that the ring must be a division ring.

THEOREM 2. If R is a metric Q-ring such that H is connected, then
R is proper.

THEOREM 3. If R is a metric Q-ring (complete metric ring) such
that S is nowhere dense (of first category), then R is proper.

Proof. Either hypothesis of Theorem 3 insures that S is a closed
set. Also, either hypothesis implies that S is nowhere dense, for if S
is assumed to be of first category in a complete metric ring, then S is
nowhere dense since a closed set of a complete metric space is of first
category if and only if it is nowhere dense. The proofs of these two
theorems then follow as in [24].

It must be noted that the hypothesis of completeness is needed
where it occurs in Theorem 3. For, let R be the set of all functions /
which belong to the ring & of example (7) and for which /(0) is a
rational number. It is easily seen that R is a metric Q-ring but is not
complete. Also, R is of first category, so the set S for R is also of
first category. However, R is not proper, for it contains the singular
element /(£)=£, which is not a generalized divisor of zero, as was
noted at the beginning of this section.

DEFINITION. If R is any ring, then by an involution of R is meant
a mapping a —• α* of R into itself such that:

( i) (α + δ)ie = α* + 6* for all a,beR,
(ii) (α&)*=6*α* for all α, beR,
(iii) (α*)*=α for all aeR.

That is, an involution of R is an anti-automorphism of period two. For
a given involution of R, an element a is said to be self-adjoint provided
that α* = α.

For (£, for instance, the mapping which associates with each com-
plex number its complex conjugate is an involution. Similarly, the
mapping which associates with each quaternion its conjugate is an in-
volution of Π. In both cases the self-adjoint elements are simply the
real numbers. In the case of the ring of all bounded linear operators
on a Hubert space, the mapping which associates with each operator its
adjoint is an involution, and the self-adjoint elements are of course the
self-adjoint operators. Thus, many rings admit at least one involution.
For metric rings, one is naturally interested in the involutions which
are closely related to the metric or topological structure of the ring.
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DEFINITION. An involution α-^α* of a metric ring R is said to be
bounded provided that there is a positive constant β such that ||α*||<I
β\\a\\ for all a. An involution a->a* of a metric ring R is said to be
real if no self-adjoint element is an interior point of the set of singular
elements.

The involutions described above are all bounded and real, if in the
case of the ring of all bounded linear operators on a Hubert space we
take as the norm of an element its bound as an operator.

These definitions differ from the corresponding definitions of Rickart
in [24] by the omission of the mention of scalars in the present defini-
tions. Thus, the identity mapping of the field K onto itself is a real
and bounded involution in the present sense but is not even an involu-
tion in the sense of Rickart, since the image of i l, where i is a scalar,
should be ( — i)l but is i l.

For a complex Banach algebra, an involution which is real in the
sense of Rickart is also real in the present sense. For, let an involu-
tion be real in the sense of Rickart. Then, for any self-adjoint element
a the spectrum of a is real. If {λn} is a sequence of non-real complex
numbers which converges to zero, then {a — λn-e} is a sequence which
converges to α. Since the λn are not in the spectrum of a, it follows
that a — λn e is regular for all n. This shows that a is the limit of a
sequence of regular elements and hence is not in the interior of S.
Thus, the involution is real in the present sense.

The identity mapping of the ring & of example (7) is clearly a
bounded involution relative to which all elements are self-adjoint. But
the function f(ζ)=Ξζ is a singular element of &, and Rouche's Theorem
implies that any element of £?r whose distance from / is less than 1
is also a singular element; thus, the set of singular elements of 22 has
a nonempty interior and contains the self-adjoint element /. The in-
volution in question is consequently not real even though it is bounded.

There are also real involutions which are not bounded. For example,
let R be the field obtained by adjoining x and y to a given field F, so
that R consists of rational expressions in x and y with coefficients in F.
If P{x, y) is any irreducible polynomial belonging to F[x, y], then each
element of R may be represented in the form φ=Pμ -M!N, where M
and N are elements of F\x, y\ which are not divisible by P, and where
μ is a uniquely determined integer which depends only upon φ and P.
If ||^|| = 2~μ where μ is the integer which corresponds to φ, then R be-
comes a metric ring relative to this norm. The involution of R which
maps an expression f(x, y) onto f(y, x) is clearly real since R is not
discrete and the only singular element of R is 0. In case P(x, y) does
not divide P(y, x), let Q{x, y)=P(y, x), so for any natural number n
we have ||PΛ|[ = 2-n, while ||Qre|| = l. But Qn is the image of Pn relative
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to the involution, and ||Qn | |/||i3n |)=2w, so that the involution is not
bounded, although it is real.

For an involution to be both real and bounded, the metric ring in
question must be proper, as the theorem which follows shows.

LEMMA 6. If a -+ a* is a bounded involution of the metric ring R,

then (Zψ=Zr and (Zr)* = ZΓ.»

Proof. If | |α*||^j9||α|| for all α e # , then ||α|| = | |α** | | ^^ | |α* | | for
all α, so that

for all nonzero x. Thus, l(a)<LfPr(a*), so α* e Zr implies ae Zι. That is,

(ZψCZτ, while, similarly, (ZψC.Zr. Taking images relative to the

involution, we obtain ZrCZ(Zψ and Zι(Z(Zr)*. By combining the four
inclusions, we obtain the desired results.

THEOREM 4. If R is a metric Q-ring which admits a real, bounded
involution, then R is proper.

Proof. Let a -> α* be a real, bounded involution of R. If ae Sι,

then a* aeSι and α* α is self-ad joint. Since the involution is real,

α* oe[G], Thus, α* ae [G] f\S. Theorem 1 implies that α* αeZΓΓ\Zr.

Since α* αeί/ ί, we may conclude from Lemma 2 that a* e ZΊ or aeZ1.

That is, ae(ZΓ)*=Zr or aeZ\ so aeZ=Zr{JZr. This shows that S 7 C

Z. Similarly, SrC.Z, whence S=SΊ\JSrc:Z. But ZC.S by Lemma 3,

so Z=S, and iϋ is thus proper.

5, The sets -S^(R), ^ ( R ) , ^ and 2^\ We shall now introduce
some sets which measure to some extent how closely the norm of a
given metric ring resembles an absolute value.

DEFINITION. The norm of a metric ring is said to be multiplicative
on a set A if ||α&|| = ||α|| ||6|| for all α, be A. (Thus, an absolute value
is simply a norm which is multiplicative on the entire ring.) By a μ-
group is meant a multiplicative group contained in a metric ring and on
which the norm of the ring is multiplicative.

DEFINITION. If R is a metric ring, J5f(R)={a\aeR, \\ax\\=\\a\\\\x\\
9 If A is a set in a ring with involution a -> α*, then the set of all α*, where α is in

A, is denoted by ^4*. Note that the statement of the corresponding lemma in [24J assumes,
but does not use, a real involution.
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for all xeR} and &(R)={a\a e R, \\xa\\ = \\x\\\\a\\ for all xeR}.

LEMMA 7. If R is a metric ring, then:

( i ) α e J2^(R) if and only if Γ(α) = | |α| | ;
( i i ) Oe^(R);
(iii) if ^7(R)Φ {0} then ||e|| = l ;
(iv) es ^ζf(R) if and only if ||e|| = l ;
(v) J2^(R) is a closed set and a multiplicative semigroup;
(vi) if a, abe^f(R) where α^O, then be^f(R).

Proof. If aeS^(R), then ||αa?||/||a?|| = ||α|| for all x^O, so ϊ(a) = \\a\\.

Conversely, if ί(α)=||α|| then ||α||-=Z(α)<;|iαx||/||^|| for any x^O, so

IMI IMIί>J|β#ll f° r a n y χ> whence aeS^{R).

Clearly, 0eJ2^(R). Also, ί(e) = l, and since eeJy (R) if and only if

Γ(e)=||e||, it follows that ee 2^(R) if and only if ||e|| = l. If S2\R) con-

tains an element α^O, then ||α|| = ||αe|| = ||α|| ||β||, whence ||e|| = l.
ί/P(R) is the set where the continuous function \\x\\ — l(x) vanishes,

so ^(R) is a closed set. If a, be J2f{R) then

This showsby Lemma 1 (i) and (ii), so \\ab\\=l{ab)} whence abe J
that /{R) is a multiplicative semigroup.

Finally, if a and ab belong to ^(R) and α^O, then

so ||δ|| |MHIIMI for any x, whence b
The sets J^f(R) and &(R) measure the extent to which the norm

resembles an absolute value. Indeed, it is easily seen that the norm of
R is an absolute value if and only if ^P(R)=R. For the ring C(X) of
example (6) the sets J2^(R) and &(R) coincide and consist of all func-
tions whose absolute value is a constant function. The elements of
J2(R) in this case are then regular or equal to zero. In general, it
will be useful to consider the set of regular elements of

DEFINITION. In a metric ring for which ||e|| = l, let

and

DEFINITION. If A is any subset of a metric ring R, let
{\\a\\ I aeA}, u(a)=\\a\\ for any aeR.
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THEOREM 5. Let R be a metric ring such that | | e | | = l . Then
<& = &(R)f\G. Also, c& is closed in G and is a subgroup
of G. Furthermore, Z/ is a maximal μ-group.

Proof. lίae^f{R)Γ\G, then IMHIα^l lHlαα^lHl, s o α e K Con-
versely, if ae 2f, then

for any x, so aeSf(R), whence ae ^f(R) Γ\G. Since J5f(R) is closed,
Z? = £?(R)Γ\Gi& closed in G. The proof that &(R)Γ\G= c& is similar

to the above.
Since £f(R) and G are semigroups, 27 is also a semigroup. Also,

e is in 2^ and 2^ contains the inverses of all of its elements, so 2^ is
a group. The norm is multiplicative on Sf{R) and hence on 2^C ^{R),
so 2? is a μ-group. The definition of 27 clearly implies that 2^ is the
largest //-group which is contained in G. But any //-group which con-
tains 27 must be contained in G since G is a maximal multiplicative
group, so 2^ coincides with such a //-group and is hence a maximal μ-
group.

THEOREM 6. Le£ R be a metric ring with | |e| | = l . Then the restric-
tion of v to & is a homomorphism of 27 onto the multiplicative group
^V{ SO and has 5?' as its kernel. Z7f is the largest multiplicative
group on the unit sphere U={x\ ||a?|| = l } . If R is also a Q-ring, then
S^' and Zs\J {0} are closed sets and Z7 is closed if and only if S7= %?'.

Proof. The restriction of v to & is clearly a homomorphism of S^
onto <yK(27), and the kernel of this homomorphism is ^f\Z7=Sf / .
It is also clear that 2 ^ is the largest multiplicative group on U.

Since ^ = ^f{R)f\G by the preceding theorem, we have [ 2 ^ ] C
^{R) Γ\ [G] because J*f(R) is closed according to Lemma 7(v). If R is
a Q-ring, then

[ 2Π Π S C -2^(Λ) Π [G] Π S C Z(R) Γ\ Zτ Γ\ Zr

by Theorem 1. But, if aeJ^(R) then ΐ(α)=| |α| | by Lemma 7(i), while

if aeZΊ,ϊ(a)=Q. Thus, if ae £?{R)[\ZΊ(\Zr we have ~l(a) = \\a\\ and

Z"(α)=0, so α=0. It follows that ^(22) Π ^ Π ^ r = { 0 } , so[^]Π*SC{0}.
But [2?]r\GCJ*f(R)ί\G= S? by Theorem 5, so [2^]C S?\J{0}. Then

so 5s \J {0} is closed. &' is the intersection of the closed sets U and
{0} and is consequently closed.
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Finally, if if = 97)f then 97 is closed since 97' is closed in a Q-ring
by the preceding paragraph. Conversely, suppose 9* is closed and con-
tains an element a not in 97'. Then theelement s an for n= ±1, ±2,
belong to 97, and since IMIT^I and ||αw | | = IMIn> it follows that there
are elements an in every neighborhood of 0. Since 57 is closed, Oe 97.
This is a contradiction. Thus, Sf = 27' if ^ is closed.

6. Multiplicative conditions on the norm. We shall now consider
several related conditions on the norm of a metric ring. In the sequel
it will be assumed that ||e|| = l in the metric rings under discussion.

Ml. The norm of R is an absolute value. (Equivalently, £f(R)=R.)
M2. 9? = G; that is, the norm is multiplicative on G.
M3. 27 is open.
M4. 97 fails to be nowhere dense in R.
M5. .97 (R) fails to be nowhere dense in R.
In the case of M5, Lemma 7(iii) indicates that, for a non-discrete

ring, this condition can hold only if ||e|| = l. However, 97 has been
defined only for metric rings for which ||e|| = l, so that M2, M3 and M4
are meaningless unless ||e|| = l ; for that reason we have assumed that
IMI=i.

It is easily seen that for any metric ring Ml implies M2, M3 implies
M4, and M4 implies M5. For a metric Q-ring it is also true that M2
implies M3. Thus, for any metric Q-ring if one of the conditions Ml-
M5 holds then all of the later ones also hold. Under certain circum-
stances, two or more of the conditions M1-M5 may be equivalent.

LEMMA 8. If R is a metric Q-ring, then conditions M3, M4 and M5
are equivalent in R.

Proof. By the previous remarks it will suffice to show that when
M5 holds then M3 holds. We may assume that R is not discrete, for
if R is discrete then M3, M4 and M5 all hold. Now, if M5 holds in R,
the closed set ,Sf(R) contains an open sphere Σ which has center aφO
and radius r > 0 , so

Σ={x\\\x-a\\<r} .

If

Σ'={x\\\x-e\\<rl\\a\\}

is the open sphere with center e and radius r/||α||, then yeΣ' implies
| |2/-e||<r/| |α|i, so | |α2/-α| |=| |α| |- | |2/-e| |<r, whence ayeΣcZ^(R).
Lemma 7(vi) implies that ye 9f{R); this shows that Σ'(Zj£f(R), so e is
an interior point of $7(R). Since R is a Q-ring, e is an interior point
of G, so e is an interior point of 77 (R) f\ G= 97, Since ^ is a topolog-



1292 SILVIO AURORA

ical group and is therefore homogeneous, V must be open,10 so M3
holds for R. This proves the lemma.

LEMMA 9. // R is a metric Q-ring such that %? meets every com-
ponent of G, then M2 and M3 are equivalent in R.

Proof. If M3 holds, 2^ is open. By Theorem 5, S^ is closed in
G, so Ŝ  is open and closed in G. Thus, 2^ contains every component
of G which it meets, so if %? meets every component it follows that
&=G; that is, M2 holds. Conversely, it has already been pointed out

that if M2 holds for a metric Q-ring then M3 also holds.

COROLLARY. If R is a metric Q-ring such that G is connected, then
M2 and M3 are equivalent in R.

LEMMA 10. // R is a metric ring such that G is dense in R, then
Ml is equivalent to M2 in R. In particular, if R is a metric Q-ring
(complete metric ring) such that S is nowhere dense (of first category),
then Ml is equivalent to M2 for R.

Proof If R is a metric ring in which G is dense, then if M2 holds

we have Λ=[G] = [g?]OSf(i2), s o M 1 h o l d s T h u s > M 1 ί s equivalent
to M2.

If R is a metric Q-ring and the closed set S is nowhere dense, then
G is dense, so that Ml is equivalent to M2 for R. For R a complete
metric ring and £ of first category, it follows that R is a metric Q-ring
and S is nowhere dense since it is a closed first category set of a com-
plete metric space. By the preceding result, Ml is equivalent to M2.

Note. In the presence of condition Ml, a metric ring R can have
no zero-divisors other than 0, for if ab=0, then ||α|| ||6|| = ||αδ|| = 0,
whence α=0 or 6=0. Thus, the ring contains no proper nilpotents or

idempotents, and the remarks of § 2 imply that Gι=Gr=G, so inverses
are always two-sided and unique for such a ring.

The conditions M1-M5 are strong restrictions on the algebraic struc-
ture of a metric ring, as this remark on Gι and Gr indicates. Indeed,
under suitable conditions they will insure that the given ring is a divi-
sion ring. Some results in this direction follow.

LEMMA 11. Let R be a metric ring for which Ml holds. Then R is
proper if and only if it is a division ring.

i° See [6].
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Proof. If Ml holds for Ry then Z(α)==||α||=r(α) for all a in R, by
Lemma 7 (i). Thus, Z= {0} for this ring. Then Z=S is equivalent to
S= {0} that is, R is proper if and only if it is a division ring.

THEOREM 7. Let R be a metric Q-ring such that S is nowhere dense.
If Ml or M2 holds for R, then R is a division ring and its norm, is an
absolute value.

Proof. S is nowhere dense, so G is dense, whence Ml is equivalent
to M2 by Lemma 10. Also, Theorem 3 implies that R is proper, and it
follows from the preceding lemma that R is a division ring. Since Ml
must hold in R if Ml or M2 is assumed to hold, it follows that the
norm of R is an absolute value.

COROLLARY. Let R be a comφlete metric ring such that S is of first
category. If Ml or M2 holds for R, then R is a division ring and its
norm is an absolute value.

THEOREM 8. Let R be a metric Q-ring such that H is connected. If
Ml holds for R, then R is a division ring.

Proof. By Theorem 2, R is proper, so Lemma 11 implies that R is
a division ring.

If H is connected and also dense, then R is proper and G, which
therefore coincides with II, is connected and dense. Lemmas 8 and 10
and the corollary to Lemma 9 imply that M1-M5 are equivalent, so that
if one of the conditions M1-M5 is assumed, then Ml holds, and the
theorem just established shows that R is a division ring. This estab-
lishes the following corollary.

COROLLARY. Let R be a metric Q-ring such that H is connected and
dense. If one of the conditions M1-M5 holds for R, then R is a division
ring and its norm is an absolute value.

THEOREM 9. Let Rbe a metric Q-ring which admits a real, bounded
involution and for which Ml holds. Then R is a division ring.

Proof. By Theorem 4, R is proper, so Lemma 11 implies that R is
a division ring.

LEMMA 12. Let R be a metric Q-ring which satisfies one of the con-
ditions M1-M5. // A is a connected subset of R which does not contain
0, then either ACZZ? or A is disjoint from, S?Ί
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Proof. Because of the relations among* M1-M5, M5 holds, so Lem-
ma 8 implies that M3 holds, whence '// is open. But V is closed in
iϋ ( 0 ) since 2^U{0} is closed by Theorem 6. Then c// is open and closed
in iϋ ( 0 ), so any connected subset A of JR

(0) must be contained in 27 or
disjoint from K

COROLLARY. If R is a metric Q-ring which satisfies one of the con-
ditions M1-M5, then each connected component of 27 coincides with a
component of G, and, in particular,

THEOREM 10. Let Rbe a metric Q-ring such that iϋco) is a connected
set. If one of the conditions M1-M5 holds for Rf then R is a division
ring with absolute value.

Proof. Lemma 12 implies that 27 contains the connected set i2(ΰ).
Thus, R= S^\J{0}, so R is a division ring with absolute value.

If it is assumed that S is nowhere dense and G is connected in a
metric Q-ring in which one of the conditions M1-M5 holds, then Lemma
12 implies that S^ = G, while G is dense since S is nowhere dense.
Thus, R=[G], and i2C0) is connected since G is connected. The theorem
implies that R is a division ring with absolute value in this case. The
assumption of completeness again permits the requirement that S be
nowhere dense to be replaced by the requirement that S be of first
category.

COROLLARY 1. Let R be a metric Q-ring (complete metric ring) for
which S is nowhere dense (of first category) and G is connected. If one
of the conditions M1-M5 holds for R, then R is a division ring with
absolute value.

COROLLARY 2. If R is a metric Q-ring such that i2(ϋ) is connected,
then precisely one of the following statements is valid :

(oί) Jzf(R) is nowhere dense in Rί.
(β) R is a division ring with absolute value.

COROLLARY 3. If R is a metric Q-ring (complete metric ring) for
which G is a connected set and S is nowhere dense (of first category),
then precisely one of the following statements is valid:

(a) Jί^(R) is nowhere dense in R.
(β) R is a division ring with absolute value.
Corollaries 2 and 3 follow immediately from the theorem and Corol-

lary 1, respectively, since if (a) does not hold then M5 holds and there-
fore (β), which is the conclusion of the theorem and of Corollary 1,
must hold,
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Corollaries 2 and 3 clearly continue to hold if (a) is replaced by:
(ar) yy is nowhere dense in R. In Corollaries 1 and 3 the hypothesis
that G be connected may be replaced by the hypothesis that &" meet
every component of G. Another alternative for these two corollaries is
to replace all conditions on G and S by the hypothesis that 2Γ meet
every component of /2(0).

1, Division rings with absolute value* In [21] A. Ostrowski clas-
sified the fields which admit an absolute value. However, the property
of commutativity played only a minor role in Ostrowski's discussion. We
outline below the classification of division rings with absolute value. By
combining these results with the results of the preceding section we
obtain stronger statements of those results.

DEFINITION. If R is a metric ring such that ||α + δ| |<Iinax(| |α| |, ||δ||)
for all a and b in R, then R is called a non-archimedean ring, and the
norm for R is said to be non-archimedean. In the contrary case, R is
called an archίπiedean ring and the norm of R is said to be archimedean.

For any division ring K there is a unique field P, the prime field
of K, which is the smallest field contained in K. Then P is either iso-
morphic to the field of rational numbers, and K is said to have charac-
teristic zero, or P is isomorphic to the field of integers modulo p, where
p is a prime number, in which case K is said to have characteristic p.
If K is a division ring with absolute value, then the restriction to P of
the absolute value of K is an absolute value for P. The classification
of the absolute value of K as non-archimedean or archimedean depends
only upon its behavior on the prime field of K and, indeed, only upon its
behavior on the set of elements of the form ne, where n is a natural num-
ber. (If n is a natural number, na denotes the %-fold sum α+ + α
(n summands). If n is a negative integer, na is defined as —\_( — ri)ά\,
while Oa denotes 0.) This result, given by Ostrowski in [21], appears in
Lemma 13, while a stronger result occurs in Lemma 14.

LEMMA 13. A division ring K with absolute value is non-archimedean
if and only if \\ne\\<Ll for every natural number n.

LEMMA 14. A division ring K with absolute value is non-archimedean
if and only if | |2e | |<Il.

Note. Lemmas 13 and 14 remain valid if we replace the hypothesis
that K is a division ring with absolute value by the hypothesis that K
is a commutative metric ring such that | |α2 | | = ||α]|3 for all a in K. Al-
though many metric rings have the property that | |α2 | | = |iα||J for all α,
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the rings of example (10), with n positive, do not have this property.
Lemma 14 also holds if 2 is replaced by any other integer greater than 1.

THEOREM 11. If K is an archimedean division ring with absolute
value, and K is complete, then K is algebraically and topologically iso-
morphic to 5R, to E, or to Q. Furthermore, the norm in K corresponds
to the pth power of the ordinary absolute value, for some p such that

This theorem and Lemmas 13 and 14 are easily proved. The theo-
rem appears in essence in [21].

COROLLARY. If K is a complete division ring with absolute value such
that | | 2 e | | > l , then K is algebraically and topologically isomorphic to 9ΐ,
to K, or to £}. The norm of K corresponds to the pth power of the
ordinary absolute value, for some p such that 0<Cp<Ll.

If we note that the completion of an archimedean division ring
with absolute value is again an archimedean division ring with absolute
value, the theorem implies that any archimedean division ring with
absolute value is algebraically and topologically isomorphic to a dense
subring of 31, of (£, or of &.

The non-archimedean division rings with absolute value constitute a
far more varied and extensive class, however. For example, even the
locally compact examples are fairly numerous, as may be seen by the
list given by Otobe in [22] all of those examples are of course complete
since they are locally compact. We therefore combine the results of § 6
with the preceding results on archimedean division rings for the sake
of simplicity.

LEMMA 15. If K is a non-archimedean division ring with absolute
value, then K is totally disconnected.

COROLLARY 1. If K is a complete division ring with absolute value,
then K is non-archimedean if and only if it is totally disconnected.

COROLLARY 2. // K is a complete division ring with absolute value,
then K contains a connected set having more than one point if and only
if K is algebraically and topologically isomorphic to 3t, to (£, or to O.

The field of rational numbers with the ordinary absolute value is
archimedean and totally disconnected; this shows the necessity of as-
suming completeness in Corollary 1. In [7], Dieudonne constructed a
connected and locally connected subfield of K which is a pure trans-
cendental extension of the field of rational numbers. The field of
Dieudonne, with the ordinary absolute value, is then an example of a
field which is not complete and which is connected although it is not
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isomorphic to 3i, to (£, or to £}. This shows that Corollary 2 requires
the assumption of completeness.

By combining the results just outlined with those of the preceding
section, we obtain the results which follow.

THEOREM 12. Let R be a complete archimedean metric ring such
that S is a first category set. If Ml or M2 holds for R, then R is
algebraically and topologically isomorphic to 3ΐ, to K, or to O.

COROLLARY. Let R be an archimedean metric Q-ring such that S is
notvhere dense. If Ml or M2 holds for R, then R is algebraically and
topologically isomorphic to a dense division subring of 9ΐ, of ©, or of Q.

THEOREM 13. Let R be a complete metric ring such that H is con-
nected. If Ml holds for R, then R is algebraically and topologically iso-
morphic to &, to O, or to the field % of order 2 with the trivial absolute
value.

TEOREM 14. Let R be a complete metric ring in which H is con-
nected and dense. If one of the conditions M1-M5 holds for R, then R
is algebraically and topologically isomorphic to (S or to O.

THEOREM 15. Let R be a complete archimedean metric ring which
admits a real, bounded involution. If Ml holds for R, then R is alge-
braically and topologically isomorphic to 9ί, to (S, or to Q.

THEOREM 16. Let R be a complete metric ring such that i2(0) is con-
nected. If one of the conditions M1-M5 holds for R, then R is algebrai-
cally and topologically isomorphic to (£, to G, or to $.

THEOREM 17. Let R be a complete metric ring for which S is of
first category and G is connected. If one of the conditions M1-M5 holds
for R, then R is algebraically and topologically isomorphic to G or to D.

COROLLARY. Let R be a metric Q-ring for which G is connected
and S is nowhere dense. If one of the conditions M1-M5 holds for R,
then R is algebraically and topologically isomorphic to a dense division
subring of & or of G.

If the requirement of completeness for R in Theorems 13-16 is re-
placed by the weaker requirement that R be a metric Q-ring, then the
conclusion becomes that R is algebraically and topologically isomorphic
to a dense division subring of one of the division rings mentioned in
the conclusion of that particular theorem. In Theorem 12 and its corol-
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lary, and in Theorem 15, the assumption that R is archimedean may be
replaced by the assumption that | | 2 β | | > l or the assumption that R con-
tains a connected set with more than one point.

It is easily seen that completeness is required in these theorems.
For, let K be the subfield of (£ constructed in [7] by Dieudonne. Then
K is connected and locally connected, K is a dense, proper subfield of
E, and K is a pure transcendental extension of the field of rational
numbers. Clearly, K is not isomorphic to 5R, to (£, to O, or to g. But
the set S= {0} is nowhere dense in K, while G, H and K(o) coincide
and are easily seen to be connected. The identity mapping of K into
itself is a real, bounded involution, and Ml holds for K, so that K
satisfies all of the hypotheses of these theorems except for completeness
Since K does not satisfy the conclusions, completeness is needed.

8 Homogeneous metric rings and rings of quotients. In this
section we consider certain types of metric rings which may be embed-
ded in various algebras.

DEFINITION. A metric ring R is said to be homogeneous if
N (|α|| whenever n is an integer and a is in R. A metric ring R is
said to be weakly homogeneous if INα|| = ||we|| | |α| | whenever n is an
integer and a is in R.

For a homogeneous ring we have ||we|| = |rc|, so every homogeneous
ring is also weakly homogeneous. However, a weakly homogeneous ring
need not be homogeneous; for example, the rings of examples (8) and
(9) are weakly homogeneous but are not homogeneous. The rings given
in the other examples are all homogeneous. It is clear that a metric
ring in which Ml holds must be weakly homogeneous. We can also
obtain a sufficient condition for a metric ring to be homogeneous.

LEMMA 16. // R is a metric ring such that ||2α|| = 2||α|| for every a
in R, then R is homogeneous.

Proof. For any natural number r and for aeR we have ||2 rα|| =
2 r | |α||. Thus, for n a natural number, we have

rc||α|| + (2n-w)| |α| | = 2 ^

so that w||α|| = ||wα|| for any natural number n and any a in R. It fol-
lows easily that ||raα|| = M |MI for any integer n and any a in R.

If R is any metric ring, and D is a nonempty multiplicative semi-
group in R which does not contain 0, which lies in the center of R,
and such that DC .Sf(R), then the relation (α, d)^(a\ df) (if and only
if adf=a'd) is an equivalence relation in the set RxD of ordered pairs
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(a, d)> where a is in R and d is in D. Let RD be the set of equiva-
lence classes [ajd] modulo this equivalence relation, with

= [αδ/d/], and ||[α/d]l! = INI/||d|| as the definitions for addition,
multiplication and the norm. It is clear that these definitions depend
only on the equivalence classes involved and not on the representatives
chosen from the classes. It is also easily verified that RD is a metric
ring, and the mapping x -> [xdjd] is an isometry of R into RD if d is in
D. An element d in D may be identified with the element [did] of RD

which has the inverse \dldλ] in RD. We thus obtain the following lemma.

LEMMA 17. Let R be a metric ring, and D a nonempty multiplica-
tive semigroup in R which does not contain 0. Suppose DCZ^(R) and
D is contained in the center of R. Then RD is a metric ring which is
an extension of R such that every element of D has an inverse in RD.n

COROLLARY. Let R1 be a commutative metric ring. Then there is
an extension, R, of Rx such that 1/{R)= 2^U{0}. In particular, all of
the nonzero elements of JSf (i^) have inverses in R.

Proof If D is the set of nonzero elements of S/f{Rλ), then R=(R1)D

is the required extension of R.

COROLLARY 2. Let R be a commutative metric ring in which Ml
holds. Then there is a field, K, with absolute value, such that K is
complete and K is an extension of R.11

Proof. If D is the set of nonzero elements of R, then RD is a
field with absolute value. The completion, K, of RD is the required field.

If if is a field with absolute value, and R is a metric ring which
is also an associative linear algebra over K such that ||&α|| = |l&ll IMI for
all k in K and a in R, then R is called a normed algebra over K. For
example, the metric rings of examples (3)-(7) and (10) are normed
algebras over ?ίi, while the rings in examples (4), (6) and (7) are normed
algebras over (£. It will now be shown that any weakly homogeneous
metric ring has an extension which is a normed algebra. Also, for
homogeneous metric rings, there is an extension which is a normed
algebra over 9ΐ.

THEOREM 18. Let R be a weakly homogeneous metric ring. Then
11 Compare the results on algebras of quotients in [24].
1 2 Compare the proof of Theorem 2, Corollary 2 in [4], where the technique of embed-

ding in a quotient field is also employed.
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there exists an extension of R which is a complete normed algebra over
some field K, where either K has the trivial norm, or K is the real field
with some power of the ordinary absolute value as its norm, or K is a
p-adic field, with some power of the norm given in example (9) as the
norm of K.

Proof. Let D be the set of nonzero elements of R which have the
form ne, with n an integer. Then RD is an extension of R and contains
a subset which is isomorphic to the quotient field, F, for D\J [0}. Then
RD is a normed algebra over F, so that the completion of RD is a
normed algebra over the field K, where K is the completion of F; see,
for instance, [6]. Thus, R has an extension which is a complete normed
algebra over K. If the norm of F is the trivial one, then K coincides
with F. In the contrary case, there is a natural number n such that
\\ne\\ is distinct from 0 and 1. Also, F is a prime field and is therefore
isomorphic to the field of rational numbers since the other prime fields
are finite and would only admit the trivial absolute value. If | |we | |<l ,
we have | | p β | | < l for some rational prime p. As in Ostrowski's proof,
p is unique in that case and the norm is a power of the norm described
in example (8), so K is isomorphic to the field of p-adic numbers with
the norm taken as some power of the p-adic norm. In case | | n e | | > l
for every natural number n greater than 1, we have the archimedean
case, so F is the field of rational numbers with the norm taken as the
pth power of the absolute value, with 0<^p<Ll. Thus, K consists of
the real numbers with the norm given as the ^th power of the absolute
value.

COROLLARY. Let R be a homogeneous metric ring. Then there is an
extension of R which is a complete normed algebra over 9i.

Proof. In this case, ||rce|| = [ra| |!eii = |ra| for any integer n, so in the
proof of Theorem 18 the norm of an element of F is the usual absolute
value. Thus, K is the real field with its usual absolute value.

If K is a complete division ring with absolute value such that | |2e| |=2,
then the corollary of Theorem 11 implies that K is algebraically and topolo-
gically isomorphic to 9ΐ, to (£, or to £}, with the norm corresponding to
the ^th power of the ordinary absolute value. K is homogeneous since
the condition ||2e|| = 2 implies that | |2α| |=2| |α| | for all a in K. The prime
field of K is then the field of rational numbers with the ordinary abso-
lute value as the norm, as the preceding proofs imply. But | |α| | = |α|p

for all a in K, while for a rational, | |α| | = |α|. Thus, p = l , and the fol-
lowing theorem results.

THEOREM 19. // K is a complete division ring with absolute value
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such that \\2e\\ = 2, then K is algebraically isomorphic and isometric to 9ΐ,
to &, or to O.

This result implies that if the hypothesis that ||2e|| = 2 is added to
Theorems 11-17 and their corollaries the algebraic isomorphism of the
conclusions must be an isometry. In a similar vein, Theorem 18 asserts
that a weakly homogeneous metric ring R may always be embedded in
a complete normed algebra, so a metric ring with absolute value may
be embedded in a complete normed algebra; the addition of the strong
hypothesis ||2β|| = 2 yields a stronger result.

THEOREM 20. Let R be a metric ring with absolute value such that
| |2e | |=2. Then R is algebraically isomorphic and isometric to a subring
of £}.

Proof. Lemma 16 shows that R is homogeneous, so the corollary
of Theorem 18 implies that there is an extension of R which is a com-
plete normed algebra over 31. The construction of this extension Rx is
such that R1 also has an absolute value. If the real dimension of Rλ as
a vector space is greater than one, then R^ is connected, so, by Theo-
rem 16, in the strengthened form just mentioned, R1 is algebraically
isomorphic and isometric to 9ΐ, to K, or to G. If the real dimension
of Rι is one, then Rλ is algebraically isomorphic and isometric to 5R. In
any event, R is algebraically isomorphic and isometric to a subring of
Rl9 R1 is algebraically isomorphic and isometric to 3Ϊ, to (£, or to £},
each of which is algebraically isomorphic and isometric to a subset of
D, and the theorem follows.

Note. If r is a fixed integer greater than 1, then the condition
| |re| | = r is equivalent to the condition |]2β|| = 2 and may be used as a
hypothesis instead of the latter in any of the preceding results.

9 Real and complex normed algebras* The results of the last
two sections may now be specialized to the case of normed algebras
over 3i or (£. Any normed algebra over (£ may of course be regarded
as a normed algebra over 91. A complete normed algebra over 9t((5) is
called a Banach algebra {complex Banach algebra).

THEOREM 21. Let 21 be a Banach algebra for which one of the con-
ditions M1-M5 holds. Then 21 is algebraically isomorphic and isometric
to 9t, to ©, or to Q.

Proof If 31 has dimension one as a vector space over 91, then 21
is certainly algebraically isomorphic and isometric to 3ΐ. If the dimen-
sion of 2ί is greater than one, then 2I(0) is clearly connected, and the
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result follows from the strengthened from of Theorem 16 mentioned in
the previous section.

COROLLARY 1. Let 21 be a normed algebra over ^\ (Q-rίng which is
also a normed algebra over ))i) such that one of the conditions Ml, M3,
M4 or M5 (M1-M5) holds. Then 21 is algebraically iso?norphic and iso-
metric to 31, to (Σ, or to G.

Proof. The completion, 21^ of 21 is a Banach algebra. Because of
the relations among M1-M5, we may assume that M5 holds, and it fol-
lows that M5 holds for 2^. The theorem shows that 2^ is algebraically
isomorphic and isometric to 3ί, to β, or to £l. But 31 is a dense, con-
nected linear subspace of the finitedimensional real vector space 2^ and
therefore coincides with %.

The theorem, with M2 assumed, is essentially the result of Edwards
[8 Theorem 1] combined with the first of Mazur's theorems. The
corollary, with Ml assumed is the same as Mazur's second theorem in
[19].

It may be noted that the corollary does not hold when M2 is as-
sumed and 91 is not a Q-ring. For example, the algebra of all real
polynomials f(x) with the norm | | / | | = sup|/(a?)|, where the supremum is
taken for all x such that 0<i=x<L=l, is a normed algebra over 3ΐ for
which G consists only of the constant polynomials distinct from zero;
clearly, & = G for this algebra, so M2 holds, even though this algebra
is not even a division ring.

COROLLARY 2. If 91 is a normed algebra over 3ϊ which is not iso-
morphic to 31, to Of, or to £}, then Λ/"'(s2ί), ^ ( 2 ί ) , £ ' and all μ-groups
of 21 are nowhere dense.

Proof. The hypothesis implies that M4 and M5 can not hold, so
.1/(21), ,:^?(2l) and ?s are nowhere dense in 21.

It remains to show that all //-groups of 21 are nowhere dense. Sup-
pose that A is a / -group which fails to be nowhere dense. The unit
element, j , of the group A is an idempotent, and wτe have the inclusion
A Q Ά C i S I , so that fii also fails to be nowhere dense. If {jxn} is a
sequence of elements of fll which converges to an element a in 2(, then
{j2'Xn} converges to ja. But since j is an idempotent the sequences
\jxn} and {j2 xn} coincide, so their limits coincide, whence a=ja is in
i?t. This shows that j21 contains the limit of any convergent sequence
of elements of j2I, so j21 is closed. Because j % fails to be nowhere
dense it must contain a nonempty open set. But fll is a right ideal
and therefore, in particular, a topological group relative to addition; the
homogeneity of a topological group then implies that j2ί is open. Since
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βί is open and closed and nonempty in the connected space SI, we see
that jSI=Sl. This shows that j has a right inverse, so j=e. Now, A
is a μ-group which has e as its unit element, so if ae A then a has an
inverse a~ι relative to e in A, and ||α||-Hα"1|| = ||αα""1|| = ||β|| = l, so ae SZ
This shows that AC £.' But it has already been observed that V is
nowhere dense, so the assumption that A fails to be nowhere dense
leads to a contradiction. This proves the corollary.

The same proof can be used to show that all //-groups are nowhere
dense in a connected metric ring for which V is nowhere dense.

In the case of normed algebras over (£, one can also show that the
set '&' is generally not too extensive.

THEOREM 22. // SI is a normed algebra over (£, then 5?' consists
exclusively of extreme points of the unit sphere of SI.

Proof. Suppose that a is an element of V which is not an ex-
treme point of the unit sphere. The mapping x -> xa"1 is a linear
automorphism of the linear space over (£ which underlies SI, and this
mapping also preserves distances since α~Ί belongs to V and has norm
one. Thus, the property of failing to be an extreme point of the unit
sphere is preserved, so e, the image of a relative to this mapping, is
not an extreme point of the unit sphere.

If 21 were completed, e would also fail to be an extreme point of
the unit sphere of the completion, and we therefore assume, without
loss of generality, that 51 is complete. Now, e is the midpoint of a
segment which lies wholly in the unit sphere of SI, so e=(δ-fc)/2, where
|[δ|| = ||c|| = l and bφc. Clearly, b and c commute since c=2e — b is in
the algebra generated by b and e, so the closed complex normed algebra
which is generated by e, b and c is a commutative complex Banach
algebra. If y=(b — c)J2, then e — y=c and e-\-y=-b, whence \\e — y\\ =
11̂  + 2/11 = 1 in this algebra. But the remark which follows Theorem 1 of
[11] asserts that if y is an element of a commutative complex Banach
algebra such that ||e —2/||==||e + 2/||==l, then y = 0. It follows that y=0,
so b=c. This contradiction shows that a was an extreme point of the
unit sphere of ^L

In conclusion, while the results of this paper show that the sets
K, ?y'"', J2?{R) and &(R) are usually topologically trivial, they are not
algebraically trivial. For, in the case of the algebra C(X) of example
(6) where X has at least two points, it is evident that any two points
of X may be separated by an element of S>?/. The Stone-Weierstrass
approximation theorem may be used to show that the closed complex
subalgebra generated by W coincides with C(X).
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ON THE CONSTRUCTION OF ^-MODULES AND RINGS

WITH POLYNOMIAL MULTIPLICATION

Ross A. BEAUMONT AND J. RICHARD BYRNE

1. Introduction* Let R be a ring and let R+ be the additive group
of R. If i ? + = S 1 φ S 2 φ ••• φ S n is a direct sum of subgroups Si9 then
each element of R can be writ ten as an %-tuple (slf s2, •••, sw), sieSi9

i = l , 2, -", n, and multiplication in i2 is given by rc mappings

Λ : Si x S2 x x Sn x SΊ x S2 x x Sn -> iϋ+ , λ ; = l , 2, , w ,

where/A.(si, s2,
 # , s n ; £i, £2,

 # # >^) is the &-th component of the product
(su s2, •••, sw) (ίi, £2, •**> ίw) The distributive laws in R imply t h a t the
mappings fk are additive in the first n and in the last n arguments. If
S19 S2, , Sn are ideals in R, then

which is a homogeneous quadratic polynomial with integral coefficients in
the arguments.

If R is a commutative ring with identity, and if M is a free (left)
i2-module with basis el9 e.i9 •••, en9 then Λf is an algebra over R if and
only if there exist elements γίjlύ e R such that multiplication in M is
defined by

/ n \ / n \ w

( Σ^eJ I Σ^e? )= Σ
\ ί = i / \ j = i J i,j,k = i

The yfc-th coordinate of the product,

is a mapping
fh: R+xR+x ^xϊi+ - ^ R +

which is additive in the first n and last n arguments, and which is a
homogeneous quadratic polynomial with coefficients in R in the argu-
ments.

These examples suggest the investigation of polynomial mappings
with the indicated additive properties, and a discussion of the problem
of constructing i2-modules and rings which have an additive group which
is the direct sum of ideals of a ring R, and for which the multiplication

Received October 12, 1956. Presented to the Amer. Math. Soc. October 30, 1954.
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is defined by a polynomial mapping.
In § 2 the basic properties of distributive mappings are given. The

form of a distributive polynomial mapping is investigated in § 3, and
such mappings are characterized in Theorem 2, under the assumption
that R is a commutative integral domain. In § 4 and 5 the results of
the previous sections are applied to the construction problems mentioned
above.

2 Distributive mappings* Let Su S2, , Sk be additive semi-groups
with identity 0, and let M be an additive abelian group. Let / be a
mapping of Sλ x S2 x x Sfc into M.

DEFINITION. If there exists an integer m, where l<Lm<Lk, such
that

/(SL + SU •• ,SM +

J \S\y ° " , Sr

/ ( S i , e , s,Λ; s m +

ζ? * Q

so+/(«;,

% + sί)

ϊ*) + / ( 8 l f

(ii)

for all su s[eSu ΐ = l , 2, •••,&, the mapping / of SιxS.λx ---SL into M

is called m-distributίve.
If k=m, only (i) of the definition applies, and the mapping / is a

homomorphism of SΊ © So 0 φ Sh. into M. In the examples given in
the introduction, Jc=2n, and the mappings are ^-distributive.

The following are rather obvious consequences of the definition.
(1) The m-distributive mappings of Sλ x S2 x x Sh. into M form a sub-
group Hof the additive abelian group G of all mappings of SιxS2x •
xSL into M.

If M is a ring, then the set of mappings G is an Λf-module in the
usual way, and the set of m-distributive mappings H is a submodule
of G.
(2) The mappings in H satisfy the relation

= Σ Σ / ( 0 , ••-, 0 , 8 l ( 0 , . . . . 0 ; 0 , •••, 0 , 8 j , 0 , . . - , 0 )
j = m + ί ΐ = l

f o r a l l SiβSi, ΐ = l , 2, . . . , & .

Statement (2) is proved by induction from (i) and (ii) of the

definition.

(3) The mappings in H satisfy
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f(su ••-,*„; 0, . . . , 0 ) = / ( 0 , •-., 0;s,rt+1, ---,8k) = 0

for all sLeSu i = l , 2, ••, k.
Statement (3) is a generalization of the fact that the distributive

laws in a ring imply α 0 = 0 α = 0 .

3. Polynomial functions. Let Sl9 S2, , Sk be subsemigroups (not
necessarily distinct) of the additive group R+ of a ring R, all of which
contain the element 0 of R. Let R* be any ring containing R, and let

be a polynomial in R*[xlf xi9 •••,#,]. Then / defines a mapping of
SiXS2x " xSk into # * where

/(s :, s2, •••, s ;) = Σ ^ 1 v Jfc

sίls22 ' s*fc » s i e S t , ΐ = l , 2, ••-, A; .

The set S of all such mappings (polynomial functions) is a submodule
of the left .B*-module G of all mappings of ^ x S2 x x & into
iϋ*. As above, we let H be the set of m-distributive mappings of
S1xS.2x •* XSA into i2*, so that i ϊ is a submodule of G. Consequently
the set of mappings H^\S is a submodule of G.

THEOREM 1. Zϊ'αc/z, mapping feHΓ\S is defined by a polynomial of
the form

k m ί - 1

(A) f(xitx2, . . ,arA.)= Σ Σ Σ a ^ a r ^ .
Z 1 ί ^ '

Proof L e t / be defined b y a po lynomia l in R*[xlf x,, ••-, a;fc] of
d e g r e e ί. S ince f e H, w e h a v e b y (2), S e c t i o n 2

fc m

= Σ Σ / ( θ . •••, o , β,, o , . . . , 0 ; o , •••, o , 8,, o , - . . , 0 )
7 l ί

, o , j . , o , •••, o , j ; , o , ^ i f S Z

for all SiβSt, ΐ = l , 2, *",k. The latter expression can be written

fc 77? ί - l

m t
4- V V n Qj;
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/,- t

"^ 2 - i 2-χ ^ o , , ϋ, j L , o, , o &1 ' " Ό , o, , o

By (3), Section 2,

0 = / ( 0 , 0, •• , O ) = α o , o . . . . , o ;

t

0— f(() . . . 0 ςj 0 . . β A. π . . . Λ\ ^ i v a < ? 7 ί

ί

f o r a l l steSlr i = l, 2, , m ;

0 - / ( 0 , .-, 0; 0, ••-, 0, Si, 0, •••, 0)

ί

f o r a l l s z e S z ; Z = m + 1 , •••, A;. D e n o t i n g α O i . . . ) O , / . , o , . . . , o , ? z,o,-- ,o b y ^ ^, w e
h a v e

fc m ί - 1

„ βlf •• ,s,)= Σ Σ Σ α W #
? + l i l J l

for all SiβSi, i==l, 2, - - -, k, which completes the proof.

The following examples show that for an arbitrary ring i?, the
converse of Theorem 1 does not hold, and that Theorem 1 is the best
possible theorem in the sense that there exist rings for which every
polynomial function defined by a polynomial of form (A) is m-distributive.

EXAMPLE 1. Let R=I, the ring of ordinary integers, let R*=R,
and let S1=S2=R+. Let / : SλxS2~>R be defined by f{xu xt)=x\x2.
Then / is defined by a polynomial of form (A) with m = l . However
fφHίor /( l + l; l) = /(2, 1)=4, and /(I; 1)4-/(1; 1)=--1 + 1 = 2.

EXAMPLE 2. Let R be the ring with additive group R+ = {u], the
cyclic group of order 9, and with multiplication defined by (iu)-(ju) = 3ίju.
Then R is a commutative ring [2] such that i23=O, Rιφ0.

Let / be any mapping of SλxS2x xSk into an extension R* of
R, where Su £,, , Sk are any subsemigroups of R+ containing 0, such
that / is defined by a polynomial of form (A). Then



ON THE CONSTRUCTION OF i?-MODULES AND RINGS 1309

k m t-ί

f(sus«, •• ,sA.)= Σ Σ Σ °Ίίlh

k m

2-ι 2-ι °&U S i S l y

since # 3 =0. It is evident that / is m-distributive, that is, feHf\S.
In the sequel we will be concerned with m-distributive polynomial

mappings of S1 x S2 x x Sk into R. Since a polynomial with coefficients
in an extension ϋJ* of β may have its values in R, we obtain a larger
class of mappings by allowing the coefficients of f(xu x2, , xk) to be in
R*Z^R. For example, polynomials with (ordinary) integral coefficients
have values in R, and if R does not have an identity, we may con-
sider the coefficients to be in an extension R* of R. Moreover it is
a consequence of the theorem that if R is an ideal in R\ then / has
values in R.

The following lemma is well known (see for example [6, pp. 65-
66]), but is given here in the form in which it is most useful for our
purposes.

LEMMA. Let

where i2* is a commutative integral domain, and let f be of degree mt

in x h, ΐ = l, 2, •••,&. Let (sγ\ s 2), •••, s£V) be a set of distinct elements
of R* where n.t> mL, i = l , 2, , k, such that /(si?i\ sc

2

ιJ, , sc

k

k)) = 0
for lt = l, 2, , nlf i = l , 2, , k. Then f=QeR*[xu x,, , xk].

THEOREM 2. Let i2* be a commutative integral domain, let R be a
subring of R*, and let Slf S2, , Sk be non-zero ideals in R. A mapping
f from Si x S2 x x Sk into j?* is in H f\S if and only if f is defined
by a polynomial of the form

k m r

(T)\ fίrγ sy. . . . ™ \ — \ Λ V V ΠCί^ ^1

0,T'S ^
V-C-V J V ^ l * *^2> y ^k)— ZΛ 2-Λ 2-Λ jsi, s ι ι ι

when R has characteristic p^>0, and by

k in

\\j) J \*IΊ, *1>Z9 , Jjk) 2-1 ZΛ ^ll^i^l

when R has characteristic zero.

Proof. Let / be defined by a polynomial of form (B) when R has
characteristic p > 0 . Then
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= Σ Σ Σ

= Σ Σ Σ
1 l 4 L

, 4.; s ί W + 1, , sk) ,

so that / satisfies (i) of the definition for ??ι-distributiveness. Similarly
(ii) is satisfied, so that feHΓ\S.

It is immediate that a mapping / defined by a polynomial of form
(C) is m-distributive.

Conversely, we divide the proof into three parts.
1. R is infinite and has characteristic p^>0.

If feHf^S, then / is defined by a polynomial of form (A) by
Theorem 1. Then we have for each i (l<i<Lm) and for each I

/ ( O + O , ••-, St + s'u ••-, 0 4 - 0 ; 0 , ••-, Sj, - , 0 )

ί - L

- / ( O , . - - , 8 , , •. , 0 ; 0 , . . . , 8 , , - - - , 0 )

4 - / ( 0 , . . . , s ; , - . - , 0 ; 0 , .--, S ι , . - - , 0 )

f o r a l l s.t, s e ^ , s ? e S z . T h e r e f o r e w e h a v e t h e i d e n t i t y

.7 , — 2 > J> 7 - 1 L_ Z ί .

Since β is an infinite integral domain, each ideal S^O is infinite.
Therefore the polynomial in R*[x, y, z] which has the same coefficients
as the above expression, vanishes for infinitely many values of each
argument x, y, z in i?*. By the lemma, each coefficient is zero. Now the

coefficient of xjr>yzj< (0<r<O' t ; l<jt<t; 0 < j , <ί) is

If j t is not a power of p, then at least one of the binomial coefficients

r = l , 2, ••'tji — l, is prime to p. Since R, and consequently i2*,

has characteristic p, this implies that α?;;^=0, for j} and i? in the stipu-
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lated ranges, whenever j t is not a power of p.
Using (ii) of the definition of an m-distributive mapping, a similar

argument shows that α $ ^ = 0 for ji=l,2f •••,£ — 1; ^ = 2 , 3 , •••,£ — 1
whenever j \ is not a power of p.

Since the above argument holds for each i and each /, the polynomial

of form (A) which defines / has all coefficients zero except for coefficients
a°/l ,*ι> s* = 0> 1' 2, ••• , st = 0, 1, 2, ••• . Thus / is defined by a poly-

nomial of form (B).

2. R is finite and has characteristic p^>0.
Since R is a commutative integral domain, R is a finite field GF(pn)

and each ideal Stφ0 in R is R itself. Since spn=s for all seR, each
polynomial function of SLx S,x -- xSk into iϋ* is defined by a polynomial
of form (A) of degree at most pn~ι in each argument. Since the degree
in each argument is less than the number of elements in each Sι=R,
the lemma can be applied to the identity 3.1, and the proof of 1. is
valid in this case also.
3. R has characteristic zero.

Since R and each ideal Si Φ 0 in R have infinitely many elements,
the proof of 1. can be followed to obtain

x^==0 and

for jlf jlf and r in the ranges previously stipulated. Since R, and
consequently i2*, has characteristic zero, this implies that α ^ = 0 except
for jι=jι = l. Consequently / is defined by a polynomial of form (C).

The following result was obtained in the proof of the theorem.

COROLLARY. Let R=GF(pn) and i2* be a commutative integral domain
containing R. A mapping f of

k terms

R x R x x R

into jβ* is in HΓ\S if and only iff is defined by a polynomial of form
(B) with r=n — l.

4 Application to the construction of R-modules. Let SφO be
an ideal in a ring R. The set of (k — l)-tuples V= {(s,, s3, , sfc), st e S}
with equality, addition and left scalar multiplication defined component-
wise is a left β-module. The group of the module is the direct sum

k — 1 terms



1312 R. A. BEAUMONT AND J. R. BYRNE

For r e 72, ste S, the i-th. component rs.h of the scalar product r(s2, s3, , sk)
is a 1-distributive polynomial function / of the arguments r; s2s3, , sk.
In this section we characterize the most general polynomial function /
for which F = S + φ S + © © S + is an 72-module, where 72 is a com-
mutative integral domain with characteristic zero.

Now V is a left 72-module if and only if there exists a mapping /
from RxV into V which satisfies the module identities

(MO f(ru v1 + v,)^f(rlf

(M2) f{rλ + r2, v1)=f(ru

(M3) f(rτri9 vx)=f(rλ, /(r 2, Vl)) ,

for every rur2eR and every vuv2eV. Denoting the components of

fir, v)=f(r; s2, « ,s fc) by f(r; s2, « ,s f c), i = 2 , 3, ••-,&, we observe

t h a t / is given by a set of k — 1 mappings fi from

k terms

. x S

into SξΞ:R. Setting R=Slf S=S2, •••, S=Sk to agree with the notation
of the preceding sections, the identities (Mj) and (M2) are just the con-
ditions (i) and (ii) that each mapping /4 be 1-distributive. Interpreting
M3 for the components /4 we have

(4.1) /i(nr2; 8I9 , 8 ^ ) = / ^ ; / 2(n; s2, , sΛ), , Λ(r2; s2, , sfc))

for every r2, r2eR and every s^eS; i = 2 , 3, •••, k.
We now assume that 72* is an ideal-preserving extension of 72, that

is, 72* is a ring containing 72 with the property that if S is an ideal in
72, then S is an ideal in 72*. For example, there exists a ring with
identity containing 72 which is an ideal-preserving extension of 72. Let
fu i=2, 3, •••, k, be a mapping from 72x V into 72* defined by a poly-
nomial

(4.2) fix,) x2f , a O = Σ α w . . j f c # ^ xίk

with coefficients in 72*. Denote the system consisting of the group V
and the mappings ft defined by (4.2) by (V,ft). We obtain the following
application of Theorem 2.

THEOREM 3. Let 72* be a commutative integral domain with charac-
teristic zero which is an ideal-preserving extension of R. Then (V,ft) is
a left R-module with scalar multiplication defined by r (s2, s3, •••, sk) =
ifu fόi *m, fk) Ί'f and only if each f is defined by a polynomial of the
form
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(4.3) fix,) α?3, , xk)= Σ aPx&i , <#> e 12* ,

£Λe matrix A={a!p) is idempotent; that is r (s2, s3, •••, sΛ) =

K^* S3? •••> sfc)^'> where the right member is an ordinary matrix product

in which A' is the transpose of the matrix A.

Proof. If (V,fι) is a left 12-module, then by the foregoing discus-
sion, the mappings f are 1-distributive polynomial mappings with values
in S £ 1 2 * . By Theorem 2, with S^R, S2=S3=-- =*Sk=S, and m = l ,
each /4 is defined by a polynomial of form (C)

k k

flxύ x2, , a;Λ)= Σ a$ΰc1x Σ ^
1=2

Since each /β must satisfy the identity (4.1) we have

Σ αίo(^>« = Σ α^vί Σ α?V
1 l * Lj 2

V V
2-1 2u
1 = 2 j = 2

k

for every rx, rteR and every s^eS. This implies α£°= Y.aψa^ or that

the matrix A=(αP)) is idempotent. Since

)= Σ
1=2

we have r (s2, , sk)—r(s2, •• ,sfc)A/ where the right member is an
ordinary matrix product.

Conversely, it is readily observed that if f is defined by (4.3) with
A=(aγ)) idempotent, then ft has values in S since S is an ideal in 12*,
f is 1-distributive, and ft satisfies (4.1). Therefore (V, ft) is a left R-
module.

If we specialize to the case where 12=F is a field, we have S2=S3

= = S f c = F and # * = F , so that (V, f) is the group of (fc-l)-tuples
with elements in F for which scalar multiplication is defined by (4.2).
Theorem 3 characterizes the (V9ft) which are .F-modules, and we let
(V, A) denote the 1^-module (V, /*) with scalar multiplication defined by

(4.3) where A=(aP) is idempotent. Let Em=(Im °), where 0<L_m<Lk-l.

The following theorem completely classifies the F-modules (F,/«).

THEOREM 4. The left F-module (V, A) is F-isomorphic to the F-
modiile (F, Em) for some m, 0 <Lm<Lk — 1. Moreover (F, Em) is not F-
isomorphic to (F, En) if mφn.
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Proof. If A is similar to 5, then (F, A) is ίMsomorphic to (F, B).
For in (F, A),

r fe, s,, , s fc)=r(s2, si9 , sfc)A' ,

and in (F, 5),

r (s2, s3, , sk)=r(sly s3, , sA.)S/=r(s2, s3, , sk)PA'P~ι

for some non-singular matrix P. The mapping ψ defined by

is an jF'-isomorphism.
Since A is idempotent, A is similar to Em for some m, 0<^m<I& —1

[1, p. 88], which completes the proof of the first part of the theorem.
In (F, Em),

r ( s z , s ό , •••, s k ) = (rs.lf rs-if « , r s m + 1 , 0 , " , 0 ) ,

so that the submodule 1 (F, Em) = (si9 s3, , sm+1, 0, , 0) is the vector
space over î 7 of dimension m. Any .^-isomorphism of (F, £"m) onto
(V, En) induces an F-isomorphism of 1 (F, Em) onto 1 (F, £"w), but if
ΎYiφn these submodules cannot be F-isomorphic since they are vector
spaces of different dimensions over F.

COROLLARY. The F-modules (F, A) and (F, B) are F-isomorphic if
and only if A and B have the same rank.

In the above discussion, the (F, f) were all (k — l)-tuples for a fixed
k. We now consider (F f c,/*) and ( F 7 , / 4 ) , /k^Z. By Theorem 4, it is
sufficient to consider (F f c, £•„,), 0 <Lm<Lk — 1 and (F ? , £*n), 0<I?ι<iZ — 1 .

THEOREM 5. The F-modules (F f c, Em) and (VΊ, En) are F-isomorphic
if and only if m=n and either k = l or F+ has infinite rank.1

Proof. Suppose first that φ is an F-isomorphism of (F f c, Em) onto
(Vl9En). Then as in Theorem 4, l (Vk9 E.m) and l-(Vl9 En) are F-
isomorphic vector spaces of dimension m and n respectively over F.
Hence m=n. Assume that kφl, and let M and N be the submodules
of (F fc, Em) and (Vl9 Em) respectively which are annihilated by leF.
Then φ induces an isomorphism of M onto N as additive groups.

k — 1 — m

M={(0, ••-, 0, sm+u --,8,-0, ^ e f H ^ © . . ^ ? ^

1 The additive group 7^+ of a field F of characteristic 0 is a divisible torsion-free
group and therefore is the direct sum of a copies of the additive group of rational num-
bers. The cardinal number n, which is an invariant, is called the rank of F+ [4, pp. 10-
11].
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and

I — 1 — m

If F+ has finite rank, then M and iV have different rank, and are not
isomorphic. Hence F+ has infinite rank.

Conversely, if m=n and k=l, there is nothing to prove. Suppose,
then, that m=n and that F+ has infinite rank. Now (Vk9 Ew) =
l (Vk9Em)®M and (Vl9 Em) = l-(Vl9 Em)®N9 where M and N each
have the decomposition into a direct sum of copies of F+ given above.
Since F+ has infinite rank, M and N have the same rank and are
isomorphic as additive groups. But since F annihilates M and N9 this
isomorphism is an F-isomorphism. Finally, lm(Vk, Em) is F-isomorphic
to 1 (FZ, Em) since they are vector spaces of the same dimension.

5. Application to the construction of rings. As in the previous
section, we let S^O be an ideal in a ring R and consider the set of
w-tuples V={(su s,, , 8n), Si eS} with equality and addition defined
componentwise. Now V is a ring if and only if there exists a mapping
/ from V x V into V which satisfies

(Ri) f{Vi + V.if V3) = f(vlf V3) + f(vi9 V3)

(Ra) f(vl9 v, + v-ό) = f(vu v2) + f(vl9 v,)

(B3) f(f(vl9 v,\ v3)=f(vl9 f(v2f v3))

for every vlf v29 v3e V.

Denoting the components of f(vl9v2)=f(8l9 ',sn;tu ",tn) by

fi(sι, , sn; tu , tn)9 i = l, 2, -, n9 f is given by a set of n mappings
ft from

2n terms

SxSx -xS

into SξΞ:R. The identities i^ and i23 are just the conditions (i) and
(ii) that each mapping ft be ^-distributive. In this application, k=2n,
and Si=S, i=l, 2, •••, & in the notation of §2. Interpreting i?3, the
associative law, for the components fif we obtain

(5.1) /iί/ife, , sw; tu , ίw), , Λ(s :, , sn; tu , tn) ^ , , %n)

for every sh tJf uk e S.
We assume that R* is an ideal-preserving extension of R and that

each fu i = l , 2, •••, w is defined by a polynomial
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(5.2) f{xu , xn; yu , yn) = Σ α ^ . . . ^ ^ . . . ^ ^ - -aψ^i yfa

with coefficients in jβ*. Denote the system consisting of the group V
and the mappings / t defined by (5.2) by (V,fl9ή). We obtain the
following application of Theorem 2.

THEOREM 6. Let R* be a commutative integral domain which is an
ideal preserving extension of R. Then (V, fi9 n) is a ring with multipli-
cation defined by (s19 , sn)*(t19 , tn)=(fl9 , fn) if and only if each
fi, i=l, 2, " ,n satisfies (5.1) and is defined by a polynomial of the
form

(5.3) Uxu , xn; yu , yn) 4 Σ Σ «H%*f3vfι ,

or
n n

(5.4) ft(xu , xn) yu , yn)= Σ Σ a
1 = 1 j = l

according as R has characteristic p ]> 0 or 0.

Proof. If (V,/£, w) is a ring, then we have observed above that
the mappings ft are ^-distributive mappings with values in SQR*.
Since the f are polynomial mappings into R*9 it follows from Theorem
2, that they are defined by polynomials of form (B) or (C) according as
the characteristic of R is p > 0 or 0. We have seen that the associative
law implies (5.1).

Conversely, if multiplication in (V9fi9 n) is defined by (su •••, sn)
(£i> "••> *n) = (/i, •••,/»), where each/^ is defined by (5.3) or (5.4) ac-
cording as the characteristic of R is p > 0 or 0, then by Theorem 2,
each fi is ^-distributive. Thus, multiplication in (V9fi9 n) is distributive
with respect to addition. Since each ft satisfies (5.1), multiplication is
associative, and (V,fi9 n) is a ring.

EXAMPLE 3. Let R be a field F with characteristic zero. Then
R*=F, S=F, and ( F , / , 1) is the group F+ and the mapping / defined
by f(x; y)=ΣAajk%3yk, ^ e ί 1 . By Theorem 6, (V,f, 1) is a ring with
multiplication defined by S't=^ajks

jt]c only if / is defined by f(x; y)=
axy, aeF. If α ^ O , (V, /, 1) is isomorphic to F under the correspond-
ence sa~l<^s, so that we can conclude that the only non-trivial rings
with additive group F+ and with multiplication defined by a polynomial
function of FxF into F are fields isomorphic to F [3, p. 177].

EXAMPLE 4. Let R be the finite field GF(32). Then β * =
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S=GF(32), and (V,f, 1) is a ring only if multiplication is defined by
(see the Corollary to Theorem 2).

s -1 =f(s t) = a0Qst -f a0lst3 + aws
3t + ansΨ , atj e GF(32) .

Selecting α o o =α l o =l, aol=au = O, f(s; t)=st + s3t, and f(s; t) satisfies (5.1).
Hence (V, f, 1) is a ring. Let ξ be the primitive eighth root of unity
which generates the multiplicative group of GF(32). Then f2 l = /(£2; 1)
= f24-f6=62(l + fi) = 0. Hence (V,f, 1) has zero divisors, and in this case
we have an example of a non-trivial ring with additive group GF(32)+

and with polynomial multiplication which is not isomorphic to GF(32).
It should be remarked in conclusion, that when R has characteristic

zero and (V, fif n) is a ring, the multiplication rule (5.4) is the same as
that for an algebra over i2* (see Introduction) and if R* has an identity,
(V>fi, n) can be regarded as a subalgebra of an ordinary algebra of
dimension n over i?*. Hence the coefficients aψ of the polynomials ft

play the same role as the multiplication constants of an algebra, and
the associative law (5.1) can be interpreted as a matrix identity [5, p.
294].
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AN ULTRASPHERICAL GENERATING FUNCTION

FRED BRAFMAN

1* Introduction, Let P^'a)(v) denote ultraspherical polynomials and
let

g=l-2vt 4-ί2,

with the roots to be those assuming the value 1 for έ=0. Then this
note will prove that

( 2 ) J

= Σ

+ 2α-c; , -, Γc, 1-4 2α-c; 1 -,

lΛ-a Z -i L \-\~a Δ J

)n & u \P^(v)tn ,
n L 1 + (Xf l 4 _ 2 α ; J

valid for t sufficiently small. In (2), c is an arbitrary parameter. Equa-
tion (2) is a direct generalization of Rice's result given in [8, equ. 2.14],
to which it reduces for α=0. (A different generalization of Rice's
result is given in [3].) For c the non-positive integer —k, the left side
of (2) reduces to a product of ultraspherical polynomials:

?**\r-y)

- π ι.9rγ\ I— n > ~k> l + Z

= Σ }n,FΛ u

In addition, this note will show other results on ultraspherical
polynomials. Further, it will provide a new way of deriving some results
of Weisner. These will be shown later.

The author desires to thank the referee for helpful suggestions re-
garding the simplification of proof.

2, A preliminary result• It will be established in this section
that

Received May 7, 1956, and in revised form November 28, 1956.
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~ (h) r ~ n > a> η r ~ ~ n , clf c2, - - , c p ; η
( 4 ) Σ - - f

n 2 ^ i x \p+iFq\ u\tn

- » , a; χ -j
" - " W n • • ( < ? , ) „ ( ! - « ) " « ! L b .xt

f o r

| ί | < l , \tul(l-t)\<l , xt + l-tφθ, p<^q.

Start with

r-k, a; Ί

(5) ( l - ί r ^ a r f + i - ί ) - ^ 1 " I
L 5 . 1 — t + xt J

, a;

δ (α?-l)(l-ί)

A ̂  tn rb + n+k> a'> Ύ 1

Multiply the first and last lines of (5) by

and sum on fc from 0 to ω, A shift of indices will then give equation
(4). The restrictions given insure the absolute convergence of the vari-
ous series which are multiplied together.

It should be here noted that (4) includes two results by Weisner as
special cases. See [7, equ's. 4.3 and 4.6]. The first follows from (4)
by taking

(7) p=l, (7=1, cx=dy dx=-b

and summing the result by Chaundy's equation 25 in [4].

The second Weisner result follows from (4) by taking

(8) p = 0 , (7=1, d^b,

and summing by the formula of Rainville as quoted in [5, p. 267, equ. 25].
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3 Proof of (2). The use of a quadratic transformation [6, p. 9]
on a standard form of the ultraspherical polynomials converts them
into

-w, α + 1/2;

2α + l

(Λ Λ-ΓV\ r — n, α + 1/2; Ί

«>*\x) = ( 1 + ")-»z-n

tF1\ 1 -z 2

with 2x=z + ljz. This is equivalent to a formula by Weisner [7, p.
1038]. Let

(10) v= l(2-x)(l-x)-^ , α-α + 1/2 , b=2a-hl ,
Li

replace t by t(l — x)~ιri in (4), and let w, g, y, r be defined by (1). Then
(4) becomes

(ii) Σ ( ; 1 - Γ P+I^J

n~Λ-ll2 V (Cl)w* * *\Cv)n n.nK*-
— y 2JΓ 7 T /~X~y

Λ-ott)» "

In (11), take

(12) p=2, g=2, d 1=

and apply the formula given in [2, equ. 17]. Result (2) above follows
immediately.

For an additional result from (11), take

(13) p = 0 , (7=2, di=

and use the result from Bateman [1], that

(14) ^ . ( - l + α; ^ ~ - • 1 ) ) β F 1 ( - l + α;

This gives

^ 1 } )(15) g"

_ f, (1 4- 2a)n
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Two further results are obtainable from (11) on ultraspherical poly-
nomials. However they are both special cases of the results by Weisner
mentioned above, and so are merely presented here for completeness.
For the first, take in (11)

(16) p=(7=l , ^ = 1 + 20:, c^a,

and sum the result by [2, equ. (18)] to get

Γα/2, (a+ 1)12; ., 2 1 V 1

(17) g—^l-ywyjFA >y V
L 1 + a (l-2/w)-J

If a is a non-positive integer —k then (17) becomes

n L ι + a .

For the other result of Weisner's, in (11) take

(19) p = 0 , (7=1, ^ =

and sum to get:

(20) ^ - ^ e ^ o

= Σ i ^ ii

(l + ) -1 +2a
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ON THE CASIMIR OPERATOR

H. E. CAMPBELL

The Casimir operator is an important tool in the study of associative
[4], Lie [4] and alternative algebras [7]. However its use has been for
algebras of characteristic 0. We give a new definition of the Casimir
operator for associative, Lie and alternative algebras, which keeps
desirable properties of the usual Casimir operator and which is useful
for arbitrary characteristic.

We show that under certain conditions our Casimir operator is the
identity transformation and for non-degenerate alternative (or associative)
algebras we show that it is the transformation into which the identity
element of the algebra maps. We apply our results to obtain the first
Whitehead lemma for non-degenerate alternative algebras of arbitrary
characteristic. We also obtain a special case of the Levi theorem for
Lie algebras of prime characteristic.

1. The Casimir Operator* Let 21 be an associative, Lie or alter-
native algebra with basis eλ, e2, •••, en over an arbitrary field %. For
uniformity we use the notation x~^Sx for a representation of SI, where
if 21 is alternative we mean the Sx part of a representation x-+(Sx, Tx).
If 21 is a Lie or associative algebra, f(x, y)=t(SxSy) where t is the trace
function, is an invariant symmetric bilinear form. In [7, p. 444] it is
shown that if 21 is alternative this form is invariant if g is not of
characteristic 2. For arbitrary characteristic we have

t(SJSyt)=t(SxSyS, + SxTvSt-SxStTυ)

= t(SJSySt+SxTySβ-TvSJS,) = ί(SxySt) .

Similarly t(TxTy) is invariant.
We call 21 non-degenerate if t(RxRy) is non-degenerate where R is

the representation of right multiplications. It can be shown that this
is equivalent to the non-degeneracy of the bilinear form t(LxLy) of the
left multiplications. It is well known that if SI is a non-degenerate alter-
native (or associative) algebra it is a direct sum of simple algebras.
Dieudonne [3] has shown that this is also true for Lie algebras.

If 31 is semi-simple and % is of characteristic 0, the usual Casimir
operator Γ% for the representation S is defined as follows: Let 9ΐ be
the set of all x of 21 such that t(SxSy)=0 for all y of 21. Then 3t=5R® g
where SR and K are semi-simple ideals of 21. Let e[, e2, •••, ek be the

Received October 8, 1956. This research was supported by the United State Air Force
through the office of Scientific Research of the Air Research and Development Command.
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complementary basis to a basis el9 e2} ••-, ek of (£ such that 2 t(SiS'j) = δi5

(Kroneker's delta). (Note that the complementary basis depends on the

representation.) Then Γ f =
i = l

For arbitrary g w e define a new Casimir operator Γs for each non-
degenerate 2ί. This will include every semi-simple 21 of characteristic
0, since 31 is non-degenerate in this case. We use the same comple-
mentary basis e'l9 e2, , en such that £(22^)=5^ for every representation
(or anti-representation) and define

If 21 is alternative we also define Γτ=ΣJίTιTί .

Unlike Γ*, Γs does not automatically reduce to zero when t(SzSy)=0
for all x, y of 21. In fact it follows from Corollary 3.1 below that for
alternative algebras Γsφ<d if S^O. We note also that for the repre-
sentation x->Rx we have Γ% = ΓR.

Analogous to the corresponding result for Γs for Lie and associative
algebras [4, p. 682] and for alternative algebras [7, p. 445] we have
the following theorem.

THEOREM 1. Let Γs be the Casimir operator (1) for a representation
x -> Sx(x -> (Sx, Tx)) of a non-degenerate Lie or associative {alternative)
algebra 21 over an arbitrary field. Then Γs commutes with Sz (and Tx)
for all x of 2t.

Except for the commutativity of Γs and Tx which will be proved
along with Lemma 3.2, the proof is similar to those in the references.

We also have the following result which follows from the properties
of the complementary basis.

THEOREM 2. Let 21 be a non-degenerate associative. Lie or alternative
algebra over an arbitrary field. Then the Casimir operators ΓR and ΓL

of the right and left multiplications of 21 are both the identity transfor-
mation.

2. Application to alternative (and associative) algebras. Since every
associative algebra is an alternative algebra, the results of this section
hold for associative algebras.

In place of the identities (4) of [6] used in the definition of a
representation x-*(SX9 Tx) of an alternative algebra 21, we will use the

2 For simplification we write Sr. as Si and S£. as Sί .
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equivalent (except for characteristic 2) identities

( 2 ) Sί=Sfs2 , Tl=Tx* for all x of 21,

in order to insure that the semi-direct sum [6, p. 3] or split null ex-
tension @ = SI 4- 9Jί of SI and the representation space 9Jί is an alternative
algebra for arbitrary characteristic.

THEOREM 3. For every representation S of a non-degenerate alter-
native algebra SI, Γs=Se where e=Σeiei is the identity element of SI.

The proof follows from Theorem 2 and the properties of the com-
plementary basis.

COROLLARY 3.1. If S^O the matrix of Γs can be taken to have
the form diag (7, 0). Hence if in addition the representation is ir-
reducible, Γs is the identity transformation.

Proof. By (2), Sl=SP and the result follows.

COROLLARY 3.2. ΓSSX=SX for all x of 21.

Proof. Assume Sφΰ and take Γs to have the form diag(7, 0).
Then the matrix of Sx must have the form diag (S'xf S'x') where / and
Sx have the same order. By identity (4) of [6] we have TXΓS — ΓSTX =
SX-SXΓS. Hence Sή' = O and Tx = diag(Tx, T'J) and so SXΓS=SX. This
completes the proof of Theorem 1, for we also have TXΓS = ΓSTX.

Evidently all of the above results also hold when <5? is replaced by
T.

Now for a non-degenerate alternative algebra SI with neither S nor
T=0 we may apply Corollary 3.1 and Theorem 1 to take

( 3 )

where the superscript (ΐ) indicates the matrix has order kt and each /
is an identity matrix and S^=0('\ T™=0<». Also x-+(S<*\ T™),
( ΐ = l , 2, 3) are representations of S2I with respective Casimir operators

( 4 )

Thus the representation space 2JΪ can be expressed as $ϋi=2W1
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+ 2JΪ3 + 3JΪ.4 where 9K4 is an invariant subspace of dimension kt and hence
is an ideal of the split-null extension @ = 2l + sJTΪ. It also follows that
3Jί2 and 9Jί3 are in the nucleus [2] of @.

We are now able to obtain the following generalization of the first
Whitehead lemma (see [8]) for alternative algebras of characteristic zero
[6, Theorem 3],

THEOREM 4. Let 2ί be a non-degenerate alternative algebra over an
arbitrary field and let x -> (Sx, Tx) be a representation of 21 acting in a
space M. Let @ be the split null extension @=2ί-f Sffl and let h{x) be a
linear mapping of 2ί into 3Jί such that

for all x, y of 21. Then h(x) is an inner derivation of @. If 2ί is not
of characteristic 2 then6

( 6 ) Wχ)=\χ, g\ + Z Σ {[fiί, Rn^Ί + ίLu LΛ(β j }

where g is in the nucleus of & R, L are right and left multiplications
in <2> and e[, e2, , en are a complementary basis to a basis eu e2, , en

Proof If either S or T is zero the theorem follows similarly to
the associative characteristic zero case, so assume neither is. Since 2Jί* is
invariant,

h(x)=ho(x)=h1(x) + hz(

where h3(x) is a linear mapping of 2ί into Wlj (2)?0=9Jί) such that

hj(xy)=xhj(y) +• hJ(x)y=hj(x)Sy + hΰ(y)Tx .

Then we have

n n

hj(x)Γs= Σ {hj{xei)eί-xhJ{ei)*ei} =-

Consequently for j=0, 1, 2, 3

( 7 ) A^/'^a? Σ

Similarly

(8)

3 We use [P, Q] to denote the commutator PQ-QP.

Σ

.(,.}
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By (3) and (4) we have

Hence by (7) and (8) h(x)=xD where

D^ Σ {-W^op— Rn^e^R'i} + Σ

+ Σ g p 3 t

To show that Z) is inner it suffices to show that for x, y in @,
LxLy—RyRx is in the Lie algebra £(©) of linear transformations generated
by the right and left multiplications of @. This is true since LxLy —

Now let 21 have characteristic φ2 and use (7) and (8) to get

Mx){Γs + Γτ)=x\£ [Kι, ΛΛ(β<)] + Σ [L't, LΛ(βi)]J .

Then by (7) and the nucleus property of 5K2 we have4 A2(#)/\ = |>, u2]

where v2= Σ hi(et)ei ^s ίn ^ Similarly A3(a?)/7

Γ=[a;, v3] where v3 is in

W,. But

h(x)(Γg + Γ

hence

where g= (v2 + v3) is in the nucleus of @.

As is the case for similar theorems, the first part of Theorem 4
can be stated in the following form.

THEOREM 5. Let % be a non-degenerate subalgebra of an alternative
algebra 93 over an arbitrary field. Then any derivation of 51 into S3 can
be extended to an inner derivation of S3.

3 Application to Lie algebras. We obtain the following special
case of the generalization of the Levi theorem to algebras of prime
characteristic.

THEOREM 6. Let % be a Lie algebra over an arbitrary field with
radical 3 ΐ ^ £ such that 29ΐ=0 and S/3Ϊ is non-degenerate. Then there
is an algebra @ (which is isomorphic to S/3Ϊ and is a direct sum of

4 This actually =—v-ιX since ίπ;2=0.
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simple algebras) such that 8 is the direct sum 8 =

Proof, Let el9 e19 •••, en be a basis for 8 such that el9 eλy •••, ek

are a basis for a subspace 93 and ek+19 , en are a basis for 9ϊ. Then
the right multiplication of each x of 8 has the form

( 9 )
0

where P x = Q x = 0 if x is in 9i and Px is the right multiplication of the

image x of x in 8/9t. Now if ΓP= Σ-ίV* ί s the Casimir operator (1)

for the representation P of 8/91, then by Theorem 2, Γ P is the identity
/ and hence

Q O

By using the properties of the complementary basis of 8/91 and the
fact that the Lie algebra of right multiplications of the elements of S3
is isomorphic to 8/91 it can be shown that Γ commutes with Rx for all
x of 8.

We now show that the associative algebra 8* generated by the Rx

for all x of 8 is isomorphic to the associative algebra Sβ* generated by
the Px. Certainly by (9) there is a homomorphism of 8* onto φ *
which maps any polynomial p(Rx, Ry, --) into p(Px9 Py, •)• Now
if p(Rx, Ry, )==0 then p(Px, Py, ) = 0 since Γ commutes with
p(Rx,Ry, . . . ) . Hence S* ^ 5β*.

Now 8/91 is a direct sum of simple algebras and therefore [1, Lemma
2], ?fi* (and hence 8*) is semi-simple. Consequently [1, Lemma 2] 8 is
a direct sum of an algebra S, which is a direct sum of simple algebras,
and an abelian algebra 9t le But we must have 911=SR completing the
proof.

It is to be noted that it is easy to give examples of prime character-
istic where all but the non-degeneracy of 8/91 of the hypothesis is
satisfied but for which the conclusion is false.

REFERENCES

1. Λ. A. Albert, The radical of a non-associative algebra, Bull. Amer. Math. Soc. 48

(1942), 891-897.

2. R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc.

Amer. Math. Soc. 2 (1951), 878-890.

3. J. Dieudonne, On semi-simple Lie algebras, Proc. Amer. Math. Soc. 4 (1953), 931-932.

4. G. P. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math,

64 (1942), 677-694.



ON THE CASIMIR OPERATOR 1331

5. R. D. Schafer, Inner derivations of non-associative algebras, Bull. Amer. Math. Soc.
5 5 (1949), 769-776.
6. , Representations of alternative algebras, Trans. Amer. Math. Soc. 72(1952),
1-17.
7. , The Casimir operation for alternative algebras, Proc. Amer. Math. Soc. 73
(1953), 444-451.
8. J. H. C. Whitehead, On the decomposition of an infinitesimal group, Proc. Cambridge
Phil. Soc. 32 (1936), 229-236.

MICHIGAN STATE UNIVERSITY





REPRESENTATION THEOREMS FOR CERTAIN

FUNCTIONAL OPERATORS

R. E. EDWARDS

l Introduction* Almost all the operators arising in applications
of the Heaviside operational calculus share two properties. The precise
formulation of these properties may vary, but their general nature is,
in the first case, a commutativity rule relating to the operation of semi-
translation, whilst in the second case it is a condition of continuity of
some sort. Possible precise formulations of these conditions are typified
by postulates (0^, (Ot) and (O2), which appear subsequently. Verifica-
tion of the opening remark is to be found by glancing at the diverse
illustrations of the technique to he found for example throughout [4].

It is the aim of the present paper to base proofs of general repre-
sentation theorems upon such characteristic properties. The appropriate
theorems will depend of course on the topologies envisaged in the con-
tinuity condition. Because of this, neither theorem proved here applies
to all conceivable '' operational expressions " : an outlaw expression would
be exp(/φ)(/£>0), for instance. Modifications are possible, however, and
would lead to theorems covering wider ranges of operational expressions.

As is well known, if the operands are restricted suitably, the ope-
rational calculus can be formulated in terms of the one-sided Laplace
transform. Special attention is given to this case, and the correspond-
ing representation theorem can be looked upon as a solution of the pro-
blem of factor functions for the Laplace transformation. The methods
employed were suggested by those used in [3] to study factor functions
for the Fourier transformation.

The general nature of all results obtained is very close to one given
by L. Schwartz [5, p. 18, Theoreme X].

2. Classes of functions and operators. The widest class of func-
tions to be considered will be denoted by J^~ and will consist of those
functions f=f(t) which are defined and locally integrable on the half-
line j R + = { £ : ί > 0 } . Functions which are equal a.e. are identified. A
fundamental operator mapping J?~ into itself is " semi-translation by s " ,
where s I> 0: this is denoted by Us and is defined by

(2.1) Uf(t) \f{t~s) f o r\
(0 for 0 < ^

The first of the two characteristic properties to be postulated about

Received October 14, 1957.
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operators T is

(0λ) T commutes with Us for each s I> 0.

The second, which reads

(O2) T is continuous from J^ into J^~,

is interpreted relative to the topology of convergence in mean over each
bounded interval of R+ . This topology on J^~ is defined by the family
of seminorms

(2.2) Pn(f)=[l\f(t)\dt (n=l,2, ...)
Jo

and makes ^ into a Frechet space.
The first of the representation theorems may now be stated.

THEOREM 1. Let T be a linear operator mapping ^ into itself which
satisfies (Oλ) and (O2). Then T is given by truncated convolution with a
certain Radon measure μ concentrated on the closed half-line £l>0, that
is,

(2.3) Tf(t) = μ * /(ί)=Γ f{t-8)dμ{8)
Jo

for f in ^ Γ Conversely, if μ is such a measure, (2.3) defines an opera-
tor T satisfyiug (Ox) and (O2).

The measure μ may fail to be absolutely continuous; for this reason
some care is needed in defining the right members of (2.3). This is
dealt with in the proof of Theorem 1, to be given in § 3.

The second theorem pays special attention to the subspace gf of
composed of functions / for which

(2.4)

holds for some n which may depend on / . & is practically the largest
domain for the Laplace transformation

(2.5)

if / satisfies (2.4), then f(p) is defined for dlp^n. Many of the opera-
tional expressions F(p) appearing in applications of the Heaviside
method act on (<? according to the ritual: take the Laplace transform,
multiply by F(p), and then invert the Laplace transform. The opera-
tional expression F(p) thus acts as a " factor function ". Detailed con-
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sideration of such factor functions is deferred until § 5.
In order to state the second representation theorem it is necessary

to introduce a topology on £?. If ϊfn(n=l, 2, •) denotes the subspace

of έf defined by the inequality (2.4), then g" w C^+i and ^ = 0 ^ .
Furthermore qn is a norm on g; relative to which the latter is a Banach
space. Accordingly, on if one may introduce the inductive limit topo-
logy defined by the 8^ and the qn; see [1, p. 61] : this is the finest locally
convex topology on έf which induces on each &n a topology less fine
than that defined by the norm qn. We shall denote by (0 )̂ the condi-
tion which results from (O2) by replacing therein the Frechet space J^~
by the space CS" equipped with the said inductive limit topology.

THEOREM 2. Let T be a linear operator mapping into itself which
satisfies (Ox) and (0'2). Then T admits a representation (2.3), where now
the measure μ satisfies a condition

(2.6)

for some n {which may depend on μ, that is, on T); and conversely.
It may be noted here and now that Theorem 2 applies in particular

to any T satisfying (O:) and (O2) which happens to map ^ into g\
This is so because any such T has a restriction to £f which is neces-
sarily continuous for £f's topology, which assertion is most easily es-
tablished by applying the generalised closed graph theorem [2, p. 36,
Exercice 13]. Condition (O2) is easily seen to imply that the restriction
of T to έf has a closed graph when considered as a map of if into
itself1.

3- Proof of Theorem 1. The first thing is to define μ * / f or / e
J^ and any measure μ concentrated on the half-line £^>0. An analo-
gous process works in connection with Theorem 2 for functions fe &
and measures μ satisfying (2.6) for some n.

In the present case we note that for fixed / in J^ Usf is a conti-
nuous function with values in J?~ and that pn(Usf)=0 for s > w . It
is therefore certain that the abstract integral

(3.1) J U8f dμ(8)

exists as an element of J^~: this element is μ * / . To see how this

1 It is necessary merely to observe that, for each n, the topology of $f induces on
cSn a topology less fine than that defined by qn. So, by definition, the inductive limit
topology is finer than that induced on g by 5?'s topology. This being so, it is trivial to
verify that the restriction of T to £f has a closed graph.
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definition is related to the " pointwise " one, we note that the dual of
Jf may be identified with the space of bounded, measurable functions
ψ on R+ which vanish a.e. outside bounded intervals, the linear form
associated with such a φ being given by

(3.2) <f,φ>=\~f(t)φ(t)dt.
Jo

Now the definition of (3.1) is such that for all φ one has

so that by (3.2)

\~f * fit) ψ(t)dt^dμ(s)^f(t-s)φ(t)dt

for all <p. If /(£ —s), qua function of s, is integrable for μ over bound-
er

ed intervals, and if I f(t — s)dμ(s) is locally integrable (Lebesgue), the
Jo

integral on the right can be rewritten as

\~ψ(t)dt[f(t-8)dμ(8).
Jo Ju

Comparison shows that, under these conditions, μ * / is the function

defined a.e. as I f(t — s)dμ(s). This latter definition covers in particular
Jothe truncated convolution of two functions in

Consider then the operator T defined by Tf=μ* f. By what has
been said, T maps J^~ into itself. Linearity of T is obvious. Since
also UsUa=UaUs for α ! > 0 , s ^ O , and Ua is continuous on ^ " , the ab-
stract definition gives at once

=Ua^ Usf.dμ(s)=UaTf;

thus T satisfies (Ox).
To prove the continuity of T it is merely necessary to take stock

of the fact that pn(U8f) vanishes for s^>n and is everywhere at most
pn(f). As a consequence,

where m is the | μ |-measure of the interval 0<Ls<Ln. Thus (O2) is
satisfied. The converse part of Theorem 1 is thus established.

Suppose now that T satisfies (Oα) and (O2). If / and g belong to
we have
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T(f * flr)=r(JViflf./(8)ώ)=:\~TUsg f(s)ds

= \~UsTg-f(s)ds=f*Tg.
Jo

This is applied to a sequence g=gv(p=l> 2, •••) forming an " approxi-
mate identity " for the truncated convolution. A simple example of such
a sequence is furnished by the functions

v for

0 for t>l/v .

It is easily verified that / * gv -> / in J^, and that pn(gv) <1 1 for all n
and all v. Since T(f * g^)=f * Tgv, if we let y tend to infinity there
follows

where hv=Tgv. Now the sequence (#v) is bounded in J?~ and T is con-
tinuous; so the sequence (hv) is likewise bounded in J7~, that is,

Supv

for each n. By dropping terms if necessary, we may assume that the

sequence (kv) converges weakly to a measure μ concentrated on the half-

line £l>0. Accordingly, if / is continuous, f * hv(t) will converge point-

wise to \ f(t—s)dμ(s) for each t. However, f*h^->Tf in J^ and it
Jo

follows at once that the two limits must coincide. Thus Tf=μ * / holds
at any rate for / continuous. Such functions are dense in J^ and both
members of this equality are continuous on ^ 7 So equality holds for
all / . This completes the proof of Theorem 1.

4* Proof of Theorem 2. The general plan of the proof is very
similar to that of Theorem 1. As before, the existence of the abstract
integrals is dealt with first. In this connection it is useful to note the
inequality

(4.1) qn(μ * / ) ^Lqn(μ) Qn(f) >

where qn(μ) denotes the left member of (2.6), provided both factors on
the right are finite. Thus if μ satisfies (2.6) for a certain n, and if /
belongs to ?fN for some integer N, then (4.1) shows that μ* f belongs
to &M, where M=max(n, N). It shows also that the operator T defined
by Tf=μ*f has the property that its restriction to each subspace 8^
is continuous relative to the norm qn. Hence [1, p. 62] T is continuous
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from έf into itself. In this way the converse part of Theorem 2 is es-
tablished.

The direct part also runs much as before. The sequence (hv) is
constructed again and will this time be bounded in g\ The limiting
measure μ exists, but it remains to show that μ satisfies (2.6) for some
n. This will follow as soon as it is shown that the hv lie in some gζ,
where n is fixed independent of v, and remain bounded in c£n. This
does not follow directly from the boundedness of (Av) in gf by virtue
of [2, p. 8, Proposition 6] since έf is not a strict inductive limit. Never-
theless the desired result can be proved as follows.

LEMMA. Let B be a bounded subset of %?. There exists an integer
n such that B C c<£n and B is bounded relative to the norm qn.

Proof. The dual of έf may be identified with the space & of
measurable functions φ on R+ which satisfy

rjψ)= ess sup | entφ(t) | < -f oo
t>0

for all n, the linear form associated with such a ψ is given by (3.2).
Since B is bounded in ĝ  the quantity

is finite for each φ in &. Now ^?, equipped with the seminorms rn(n^=
1, 2, •••), is a Frέchet space. Further Q is a seminorm on &ΐ which
is plainly lower semicontinuous, this last since Q is expressly defined
as the upper envelope of continuous seminorms. It follows from this
that Q is in fact continuous on &. This signifies precisely that there
is an integer n and a number C such that

for all ψ in :7J C is independent of φ. Thus

(" h(t)ψ(t)dt
Jυ

^L C ess sup
ί > 0

enιφ{t)

holds for all ψ in & and all h in 5. From this it is an easy deduction
that

for all h in B, which is the result stated.
This lemma permits the proof of Theorem 2 to be effected.
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5. Factor Operators on <K By a factor operator we shall mean
one which is defined via a factor function for the Laplace transformation.
The factor function F(p) is assumed to be defined on some half-plane
3ίp2>%, where n may depend on F, and to have the property that, for

each / in έf the function F(p) f(p) concides on some right-hand half-
plane with the transform g{p) of some r; in &. This g, whose existence
is postulated, is then unique. The corresponding factor operator T is
then defined by Tf=g.

Such a factor operator T plainly satisfies (OO, but continuity of T
is not at all obvious. The relation

(5.1) Tf*g=f*Tg,

which plays a crucial role on the above proofs, has hitherto been deduced
from (OO by means of continuity. In the case of a factor operator,
(5.1) is verifiable right from the start due to basic properties of the
Laplace transformation. This fact permits us to deduce continuity of
T and thus renders possible an appeal to Theorem 2.

As we shall now see, continuity of T will follow if (5.1) is known
to hold for all / and for all g of a quite restricted class, say G. For
this purpose we use again the generalised closed graph theorem. Ac-
cording to this, in order to show that T is continuous it will suffice to
show that: if a directed family {ft) converges to 0 in such a way that
Tft converges to a limit, say /, then / is necessarily 0. However, we
have seen in §4 that convolution is continuous in each factor, so that Tft

-> g implies Tf.L * g -+ f * g for each g in if. Assuming that g belongs
to G, (5.1) permits this to be written f.t *Tg-+f *g. Since /*->(), the
left member tends to 0. Hence / * # = 0 for all g in G. If this holds,
even for quite small classes G, it follows that / = 0 .

In this way we see from Theorem 2 that the factor functions F are
precisely those which are themselves Laplace transforms of measures
μ satisfying (2.6) for some n.
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THE FIVE-POINT DIFFERENCE EQUATION WITH

PERIODIC COEFFICIENTS

TOMLINSON FORT

The five-point difference equation described in § 1 has most of the
important second order partial difference equations as special cases and as
limiting forms of these the more important partial differential equations of
the second order. In the present paper all coefficients are assumed periodic
in the same one of the two independent variables. The purpose of the
paper is the study of the form of the general solution as affected by
the periodic character of the coefficients. This study centers around the
roots of the characteristic equation and so-called semi-periodic solutions.
The reader is referred to the theorem of § 5 for a precise statement of
results.

l General discussion. Let us be given the five-point equation

where kl9 ki9 fc3, h and kδ are defined for integral values of i and j over
the rectangle l<ίi<Lnω — 1, l<Lj<Lω — l where n > l and α>>l are
integers. This rectangle will be called the defining rectangle and will
be denoted by R. We assume moreover that

( 2 ) Iφ + ω,j)=k$,j) , * = 1 , 2 , 3 , 4 , 5

and that neither, kl9 k2f k3, nor k± is zero at any point of R.
A solution of (1) is a function of (i,j) defined at points of R and

at the border points ( ΐ=0, .7 = 1,2, •••, ω — 1), (i=nω, j=l, 2, •••, ω — 1),
(.7 = 0, i = l , 2 , — ,nω — 1), (j=ω. i=l,2, -",nω — 1) and which satisfies
(1) at all points of R. Notice that this second set of points, namely R
plus the border points, form a lattice which is rectangular except that
its corner points are missing. It will be referred to as the rectangle S.

A fundamental domain is a set of points of S such that there exists
one and only one solution taking on prescribed arbitrary values at each
point of the set.

All fundamental domains1 contain the same number of points. We
denote this number by L. For the rectangle S

Received December 6, 1956. This paper was sponsored by the Office of Ordnance
Research of the U. S. Army.

1 For a detailed discussion see T. Fort, Amer. Math. Monthly, 62, (1955), 161.
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We note t h a t all sets of L points belonging to S do not form a funda-

mental domain.

A fundamental system of solutions consists of L solutions which are
linearly independent over a fundamental domain.

If yiiiffyfV-ziifJ)* **• JVL(J>>U)
 a r e a fundamental system of solutions

then any solution y(i,j) can be written

)Σ
μ = 0

where the c's are constants.
We choose the following fundamental domain for S namely points

where

•7 = 0, ϊ=l, 2, •••, nω — 1

j=l, i = 0, ω, ω + l, •••, 2ω — 1, 2ω, 3ω, •••, nω

j=2, i = 0, ω, 2ω, > , nω

j=ω — l, i = 0, ω, 2ω, •••, n ω ;

j = ω, i — ω, 2ω, •••, (TZ —l)α> .

We shall refer to this particular fundamental domain as Zλ The domain
D is pictured in figure 1 with ω=4, w=3. The points of Z) have no
accompanying numeral.

To prove D a fundamental domain simply assign values for y at
each of the points of D and fill in the rectangle by means of (1). This
can be done in a variety of ways. For example, the value of y at the
points of S not in D can be determined in the order indicated by the
accompanying numerals in Figure 1.

21 20 19 7 8 9 * 31 32 33

18 17 12 * 4 5 6 24 29 30

16 14 11 ' ί 2 3 " 23 26 28

15 13 iθ 22 25 27

Figure 1.

We now define all coefficients to the right of i=nω — 1 by formula
(2). We then define every solution y(i,j) at the points (nω, 0), (nω + 1, 0),
• , ((n-\-l)ω — 1, 0) by the formula
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y(nω + v,0) = y(v + l, 0) , * = 0 , 1, .- , ω - l

and at the points ((n + l)ω,j), j=l,2, « , ω — 1 by the formula

) also y(nω, ω) = y(ω, ω) .

This definition serves to determine y over a longer rectangle than S, nω
being replaced by (n + l)ω, the rectangles being in every other way the
same. We call this the rectangle T.

BASIC THEOREM. Ify(i,j) is a solution over S then y(i + ω,j) is also
a solution over S.

This theorem follows immediately from the periodic character of the
coefficients in (1).

THEOREM. If yi(i,j)f y2{i, j), , yL{i> j) we & fundamental system
of solutions for S then so are yi(i + ω,j), y*(i + ω,j), •• , yL(i + cυ, j).

This theorem follows from the fact that yL(i,j),y2(i,j), , 2/z(ί> i)
considered at the points of D constitute L sets of L constants linearly
independent over D and that, due to the extension of each solution over
T described above, 2/i(i-fβ>jf),2/i(l + ω,j), , yL{i-\-ω,j) at the points of
D are precisely the same sets of constants as yi(i,j),y>i(i,j), # ,2/z(ί>i)
although the order may be different.

2, Semiperiodίc solutions. We ask the question : Does there exist
a solution of (1) not identically zero over <S and satisfying the relation

( 3 ) y(i + ω,j)=py(i,j)

where pφO is constant? We, of course, except the case where either
(i \-ω,j) or (i,j) is a corner point of S since solutions are not defined
at corner points.

Let us assume a solution yq(i,j)φ0 satisfying (3) and work for
necessary conditions. As previously, let yi(i,j)9y2(i,j), * ,2/i(i,i) be
a fundamental system of solutions for S. Then so are
y>(i4- ω, j), , yL{i 4-ω, j). Consequently

L

μ = l

where det ( α v μ ) ^ 0 . Moreover

L

yq(i,j)=Σj<χμy^i,J)
/x = l

where not all the α's are zero. Then
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L L

μ = l v = l

= Σ Σ<vv

Also

We can equate coefficients since yL(i, j), , 2/z(i, ;/) are linearly indepen-
dent over D. We get

-H aLλaL = 0

4- aL,aL = 0

alLaλ + α2Zα2 + 4- (aLL - p)aL=0 .

But the α's are not all zero. Hence

( 4 )

(aLl-p) aA

«i2 fe — p)

(aLL-p)

= 0 .

This condition is not only necessary but it is also sufficient as is seen
by retracing steps.

Equation (4) is the characteristic equation for the problem and its
roots are the characteristic values.

THEOREM. The characteristic equation is independent of the particular
fundamental system of solutions chosen.

Consider a second fundamental system, y?{i,j), yC2Ό(i,j),

Then

yW(i + ω,j) =

The characteristic equation is

(bu-f>) b2l

hi

= 0 .
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But

where det(hyμ)j^0. Hence

L

I
μ = l

?\i+ω> i ) = Σ KvTii' ά) = Σ δvμ Σ ^
l l l

= Σ Σ bvμ,hM \yη(i,j) .

On the other hand

L L

Σ V̂μ Σ %
μ = l 7j = l

z Γ z Ί
= Σ Σ^vμβμr, %(^ Λ

ϊ7 = l L μ = l J

We can equate coefficients, as already explained, because ylf y2,
are linearly independent. We have

,yL

( 5 )

Now let us form the products

hL

and

hn

£1 hL

If we perform the indicated multiplication and then use (5) we get
identical determinants. This establishes the theorem.

THEOREM. NO characteristic value is zero.

This theorem follows from the fact that
If it were zero then yiiiΛ-ω^^^y^i + ω.j), , yL(i + ω, j) would be

linearly independent over a fundamental domain which they are not.

3. Roots distinct. Let the roots of the characteristic equation be

Pu Pu * > Pi and assume that no two are equal. Let corresponding
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semiperiodic solutions be yι(i9j)9"'9yL(i9j)9 that is yv(i-hco,j)=pv(i,j),
v = l , 2, , L and assume, as we can, that no one of these is identically
zero.

T H E O R E M . The solutions yϊ9 - *,yL constitute a fundamental system
of solutions.

To prove this theorem we assume first yl9 9yL-k are linearly
dependent over D but t h a t yl9 •• 9yL-k~1 are linearly independent over
Zλ Then

L-k

( 6 ) Σ Λ Vv(if i ) —0
V = 0

over D with at least one μ # 0 . Replace i by (i + ω). Then

( 7 ) Σ % v 2 /

over Zλ This is true because solutions linearly dependent over D are
linearly dependent over all of T.

From (7)

( 8 ) Σ*ΛPv2/v(i,:/H0.
V = 0

But μL — kφ0 else ?A, •• ,2/z-Jfc_i would be linearly dependent. Eliminate
2/i-fc between (6) and (8). We get

Σ
l

The only way that this can be true with the linear independence of

2/i, •••, 2/z-fc-i is t h a t

If / w 1 = ^ 2 = . . . = / / z - f c _ 1 = 0 , then μL-kyL-k(i,j) = 0. This is not the case
since μL~kφQ and yL-k(iyJ)^O over Zλ Consequently p ^ must equal
some other p. This contradicts our simple root hypothesis. Hence,
2/i> " ,VL, are linearly independent over Z) and the theorem is proved.

4. Multiple roots special discussion. Let us assume that p1 is a
double root of the characteristic equation but that all other roots are
simple. Let yi(i,j) be as before namely yλ(i + ω, i)=ft2/i(i,i)#0 and let
y£if3)9 y&J), •••» ^ . i ) b e s o chosen that ^ , y.i9 y3, •••, ^ form a
fundamental system. We have the relations
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( 9 ) Vi

L

The characteristic equation is

(10)

0 0

21 1^22

Since pλ is a double root of (10),

Hence from (9) the solutions
are linearly dependent.

This means that

Σ

= 0 .

C2L

= 0.

T.

Σ

, L

sinceLet X C / U = K and Y2(i, j) = ΣjCvyAi, J) We note that Y2(i,j):-
V = 2 V = 2

yuΊfzf "m,yL are linearly independent over D. Then

This is a difference equation in Y2 as a function of i with difference
interval ω. We shall solve2 for Y2(i + μo),j). Let U(i-hμω,j) be a solu-
tion of the difference equation

Then U(i + μωf j)=pϊU(i, j). Moreover U(ί,j) is arbitrary so we assume
it different from zero. Then

(13)
o[/(ί-f (y-f-l)ω, j)

We note that y1(i + voj,j)=ply1(i,j). With this in mind (13) yields

ω, j) =

2 T. Fort, Finite differences and difference equations in the real domain. Clarendon,
1948, p. 117.
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We rewrite this3

(14)

This is an interesting form for Y^i + μω, j). We note particularly the
μ in the first term of the bracket.

THEOREM. The solution y^i, j), Γ2(ΐ, j), y3(i, j), , yL(i, j) form a fun-
damental system

To prove this theorem assume the contrary, namely linear depend-
ence :

(15) cM^i, j) -f cλY2(i, j) -f c3y3(ί, j) -f + cLyL(i9 j) = 0 .

Then increasing i by ω yields

(16) cιp1y^J) + c2κyι(iJ)^cip1Y2(iJ) + c3p3y3(iJ)+^ +cLpLyL{i,j)=0 .

Now c2 is not zero else yL,y3, —-,yL would be linearly dependent
which they are not. We eliminate Y2(i,j) from (15) and (16). We get

But c3, , cL are not all zero. If they were we would have yλ(i, j) and
Yz(i,j) linearly dependent. They are not since Y2(i.j) is linearly
dependent upon y3{i,j), •••, yL(i,J) and by hypothesis yλ{iyj) is not. It
results that pλ must equal at least one of p3, " ,pL. This contradicts
our hypothesis.

We now assume pι a triple root but that other roots are distinct.
We consider yx{i, j) and Y2(i, j) of the double root discussion and

note that they are not linearly dependent. We then define ^3(ΐ,^'), •••,
V$,3) so that 2/i(ΐ,i), Y%(%3),M\3), § , δ i ( i i ) form a fundamental sys-
tem. The characteristic equation takes the form

= 0

-p) o
Cu (Pι~P)

( C 3 3 - 1

0

0

P)

0 •••

0 • ••

cu •••

0

0

cLX cL1 cLd cLi "- (cLL-p)

Since px is a triple root of this equation we have
- 1

3 Xhe convention used in (13) is Σ / M = 0



THE FIVE-POINT DIFFERENCE EQUATION WITH PERIODIC COEFFICIENTS 1349

(17)

It follows from (17) that
• , L are linearly dependent. Let constants determining the linear

L

dependence be γ3, γif —-,γL. Then let / c v = Σ ? W v , v = l , 2. Let
3

, j)=^iVι(if 3) + >^0\ i

Then

This is a difference equation in F3 as a function of i with difference
interval ω. We solve precisely as we solved (11).

As previously we choose U(ί,j) not equal to zero then

J

Now substitute

we get

}j) = pιy1(ίfj) and

τ(i9 3) + ™2pr2 - ^ y -

5 Multiple roots general discussion* The work that we have just
done is easily generalized. Details are ommitted but can be readily
supplied by one who has read § 4.

T H E O R E M . If p1 is an arfold root of the characteristic equation

there exist solutions of (1) which we call Y[Ό(i,j), Y^(i,j), •••, Yc£(i, j),

were

(i + μω, j) =

i f 3)
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+ + c
2! " i - 1 (αχ-1)!

If the roots are p1 of order al9 p2 of order a2, •••, ρt of order <xt

then the solutions Yϊ\ Yc

2

]\ , Y™, Y{1\ , Fβ«, , Y?\ , Ycξ form

a fundamental system of solutions.

UNIVERSITY OF SOUTH CAROLINA



ON LINEAR SYSTEMS WITH INTEGRAL

VALUED SOLUTIONS

I. HELLER

1* Introduction* We consider a system of linear equations and
inequalities in k variables

(1.1) Ax=b , x^>o ,

where the matrix A has r rows, k columns, and rank less than k.
Assuming the system consistent, the solution set is a convex poly-

hedron P in yfc-space. A solution x° that satisfies k independent relations
of (1.1) as equations, is a vertex of P, and conversely. Such solution
is generally called basic or extremal, and is equivalently defined by the
property, that the columns of A corresponding to nonzero coordinates
of xΰ are independent. Basic solutions are of particular interest in
problems where a linear functional is extremised over P, the extremum
then being assumed at a vertex or at all points of a positive dimensional
face F of P, that is, the convex hull of the vertices of F. In such
problems the interest is often restricted to the integral valued basic
solutions as the only ones that have meaning in the application. Now
given P, any vertex of P can appear as solution of an extremum pro-
blem for some linear functional, and a question of interest is: when, that
is for which systems (1.1), are all the vertices of P integral valued.

Directing the attention to the system

(1.2) Ax=b,

we may, slightly generalizing, respectively specializing, carry over the
definition and the question:

(1.3) DEFINITION. A solution xΰ of (1.2) is basic, when its nonzero co-
ordinates correspond to linearly independent columns of A.

(1.4) QUESTION. Which systems (1.2) have all their basic solutions
integral valued ?

Obviously (1.4) is not equivalent to the same question for systems
(1.1); the basic solutions of (1.2) contain those of (1.1); but they may
also contain others, namely such with negative integral coordinates.
Hence (1.4) asks more and will therefore yield a smaller family of

Received October 26, 1956. Presented to the American Mathematical Society, August
1956. Work done under the sponsorship of the Office of Naval Research. Reproduction in
whole or in part is permitted for any purpose of the United States Government.
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systems as answer.
A further specialization in the same direction is obtained, when the

attention is restricted to the matrix A above and the question varied as
follows:

QUESTION. Wh.'ch matrices A have the property that

(1.5) whenever b is such that (1.2) has an integral solution (that is
whenever b belongs to the integral span of A), then all basic
solutions of (1.2) are integral?

The subject of this note is precisely the question above, which
will receive a partial answer.

We note first that (1.5) is equivalent to

(1.6) If a column of A is a linear combination of a set of independent
columns of A, then the coefficients in the combination are integers.

The proof is nearly obvious: If d is a column of A, d is certainly in
the integral span of A) hence, when A satisfies (1.5), the basic solutions
of Ax=d are integral, which is precisely (1.6). Conversely, if A satis-
fies (1.6), let a? be some (not necessarily basic) integral and y° an ar-
bitrary basic solution of (1.2); let B and C be the set of columns of A
corresponding to nonzero coordinates of x° and y° respectively, that is,

where L, M denote linear combinations. Extending C in A to a basis,
say C*, for the span of A, and substituting in L{B) for each column
of B its (certainly integral) representation in C*, yields an integral re-
presentation of b in C*, which representation, because of uniqueness,
is identical with M(C).

Next we observe that (1.6) is equivalent to

(1.7) THE DANTZING PROPERTY. If a column of A is a linear combi-
nation of a set of independent columns of A, then the coefficients
in the combination are 1, —1, or 0.

To see that (1.6) implies (1.7): a representation of a column d where a
column c enters with coefficient a φ 0, yields a representation of c where
d enters with coefficient 1/α.

After these remarks the question can be rephrased as: which
matrices A satisfy (1.7)?

Recent investigations on the subject comprise the following.
In the so-called Transportation Problem, there appears a matrix Df

which G. Dantzig [1] showed to have the property (1.7). This fact was
used by T. C. Koopmans and Dantzig to prove the existence of integral
solutions to the mentioned problem, and by Dantzig [1] to establish a
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simplified computational procedure for solving the problem.
The mentioned matrix D appears partitioned into an upper and a

lower submatrix, and the columns of D consist of all possible vectors
having a single 1 in each of the two submatrices .̂nd zeros everywhere
else. If ev denotes the ^th unit vector, then

(1.8) D={eί + ej} ( ΐ = l , 2, •••, m; j=m-\-l9 •••, m + w=r)

Later C. Tompkins and the author [2] showed the property (1.7) to
hold for a somewhat larger class of matrices:

If

u l f u 2 , •••, u m , v l 9 v 2 9 . - . , v n

is a set of linearly independent vectors in r-dimensional vector space
(rl>ra4-?ι), then the set

(1.9) T={±ui9 ±υJ9 ±(uί + vj), (%i-%4*), (VJ-VJ*)}

(i, i* = l, 2, ••-, ra; j9 j * = l, 2, •••, n)

has property (1.7).
Finally A. J. Hoffman and J. Krushall [5] showed property (1.7) to

hold for several classes of incidence matrices associated with partially
ordered sets.

The property (1.7) will be referred to as Dantzίg property through-
out this note. The term unimodular property has also been proposed
and used [5]. This term seems quite appropriate for the case of in-
cidence matrices, as in [5], where nonsingular submatrices then represent
unimodular transformations; in the general case it is the transition from
one basis in the matrix to another that is a unimodular transformation.

2. Unification of prior result. This is achieved by a few trivial
observations.

First, since the Dantzig property does not depend on the order in
which the columns of A are arranged, it is convenient to interpret A
simply as a set of vectors.

Second, the Dantzig Property is invariant under nonsingular linear
transformations, hence if A has the property, so does the image of A
under a nonsingular linear transformation.

Third, in (1.9) the partition of the set of vectors into two sets
{Ui} and {vj} is rather artificial. If, for instance, we substitute —w3

for vj9 (1.9) becomes

T={±Ui9 ±WJ9 ±{ut — Wj)9 (Ui — Ut*), (WJ* — WJ)}

which shows that T can be simply described by
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(2.1) T={±xu (Xi-x,)} (iφj\ i , i = l , 2, -. , r ) ,

or

(2.2) T={xt-xj} (iφy, ί, j = 0 , 1, .- . , r),

where xQ denotes the null vector, and x19 xi9 , xr are linearly indepen-
dent vectors.

In the last formulation T is the set of differences of the xt. Since
differences are invariant under translations, the xt in (2.2) may also be
specified as a set of r-f-1 vectors whose affine span (all linear combi-
nations with coefficients sum equal 1) is of dimension r; in other words,
the x% are the vertices of an r-simplex. This reduces the result (1.9) of
[2] to the simple statement:

(2.3) The set of edges (that is, one-dimensional faces, taken in both
orientations and interpreted as vectors) of a simplex has the
Dantzig property.

In this form the statement is nearly obvious. Clearly, a basis B
among the edges:

(i ) contains all the r 4-1 vertices (otherwise the vectors of B would
be among the edges of a lower-dimensional simplex, and hence
not a basis for the span of all edges),

(ii) is connected (otherwise the vectors of B would be among the
edges of two simplices of s and r + 1 — s vertices, so that
dim B <1 s — 1 -f r — s=r — 1),

(iii) is free of cycles (the vectors of a cycle being linearly dependent).
Hence B is a tree containing all vertices and r oriented segments. Any
edge not in B closes a chain in B, which proves the statement.

Using the statement (2.3) one can show the Dantzig property to
hold for a series of incidence matrices (incidence matrices are defined
here simply as having only O's and ± Γ s as entries), some of which can
be identified with matrices exhibited in [5]. Let E be Euclidean n-
space, S an ^-simplex in E, T the set of edges of S and B a maximal
independent subset of Γ, hence a basis in S. If B is taken as the basis
for the coordinate system, the representation of T is the set of columns
of an incidence matrix with Dantzig property.

It is worthwhile to follow this somewhat closer. Since choosing a
basis among the vectors of T amounts to choosing, in the net of verti-
ces and edges of S, a tree containing all n + 1 vertices and n oriented
segments, the construction leads to as many essentially different inci-
dence matrices as there are graphically different trees of n + 1 vertices
(note that permutation of columns or rows in a matrix preserves the
Dantzig property, so that matrices obtained from each other by such
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permutations may be considered as equivalent; by essentially different
we then mean not equivalent).

We point out two particular choices.
(i) The star consisting of all edges radiating from a given vertex

and oriented from this vertex to the remaining vertices. This
yields the set T of (2.1) with the xt as unit vectors,

(ii) The oriented chain obtained by numbering the vertices from 0
to n and taking the set of oriented edges

X I XQ , Qϋ I X\ , * , dθn 00 n —\

If these vectors are taken as basis in the listed order, then the repre-
sentation of all edges in this basis is the set of all columns that have
a consecutive string of Γs or ( — l)'s, and O's everywhere else. This is
a result of [5].

Obviously the transition from one basis to another is a unimodular
transformation.

3. Maximal Dantzig sets. Since with a set D each subset of D
has the Dantzig property, or briefly is a Dantzig set, the interest lies
in determining maximal Dantzig sets.

Obviously a maximal Dantzig set contains with each vector x also
— x. Further, it should contain, but we agree to exclude, the null
vector.

(3.1) A set T consisting of the edges of a simplex is a Dantzig set which
is maximal for its dimension {in the sense that there is no Dantzig
set of the same dimension properly containing T).

Proof. We have to show that when a vector x not belonging to T
is adjoined to Γ, the new set does not have the Dantzig property. In
the representation (2.1) with the xt as basis vectors, x will have at
least two coordinates of the same sign (both = 1 or both =—1), since
all other possibilities are already in T. Say

L(x,, •••, xn),

where L denotes linear combination. But then

x = ( x 1 — x2)-\-2x2 + L(x3, •••, x n ) ,

that is, the representation of x in the basis

X\ X i) X'2 j *β'ό i ' ' * j Xn

does not satisfy the Dantzig property, since the coefficient of x2 equals
2 ^ 0 , ± 1 ,
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The question whether every maximal Dantzig set is the set of edges
of a simplex will obtain a negative answer by an example. We first
note that in order to test whether a Dantzig set D can be extended to
contain an additional vector b without losing the Dantzig property, it
is sufficient to test the representation of b in every basis of D. That
is:

(3.2) Let D be a Dantzig set, b a vector not in D, and C the union of
D and {b}. Then C has the Dantzig property if and only if the
coordinates of b with respect to every basis in D consist of O's and
±Vs.

To see (indirectly) that the condition is sufficient, let d be a vector of
C, B a basis in C, and let the representation of d in B have a coeffi-
cient =£0, ± 1 . Then obviously dφb, b is in £>, and the coefficient of b
is not 0:

d=λ1b + lj)2+----hλnbn (ΛiT^O; some λtφ 0, ±1)

But then the representation of 6 in the basis {d, bi9 •••, bn} contradicts
the condition. This proves (3.2), since the necessity of the condition is
obvious.

Further we formulate a necessary consistency condition for the
Dantzig property which will be helpful in the sequel. Let 6 and d be
two vectors in a Dantzig set Z>, and C a basis in D. Comparing the
representations of b and d in C, we consider those vectors of C (if any)
that enter with nonzero coefficients in both representations; say these
are clf c2, , cs, so that

+ +βscs+ . d=γ1c1 + γ2c,+ -f γscs+

(βiφQφϊi- i = l , 2, . . . ,*)

Obviously βi^j^ΰ et=±l. However, we confirm that e t remains con-
stant, that is

(3.3) β^eTi ( i = l , 2, . . . , s )

where 6 = constant = ± 1 .

Proof (indirect). Assume

Replacing cλ by d yields a new basis in which b is represented by 6=
cZ-f 2c24 , contradicting the Dantzig Property. This proves (3.3), which
excludes " mixed incidences" (and permits to assign an "incidence
number" 0 , 1 , —1 to every pair of vectors, with respect to a given



ON LINEAR SYSTEMS WITH INTEGRAL VALUED SOLUTIONS 1357

basis in D).

Finally we give the example:

(3.4) Let eιt e2, e3, eί be independent vectors and

A={±e1} ±e2, ±e-i, ±eί9 ±(e1 + e-s + e3 + e1) ,

Then A is a maximal Dantzig set which is not the set of edges of
a simplex.

To see that A has the Dantzig property, we note that the subset
A*, obtained from A by deleting ±(eι-\-eλ + e-i-\-eί), consists of (not all)
edges of the simplex S given by the vertices

Of 0χ, e.χy 6 3 , G± .

Hence A* is a Dantzig set. The deleted vector is represented with
coefficients 0, ± 1 in every basis of A*, as seen by direct verification.
By (3.2) this implies that A has the Dantzig property.

To see that A is maximal, assume a vector h can be adjoined to A
without disturbing the Dantzig property. If h is expressed in the basis
βi, en e-6j e±, then the nonzero coefficients are all equal, otherwise h
would have " mixed incidence " with d=e19+e2 + e d + eι in that basis and
contradict (3.3). This leaves for h the following possibilities:

±h=e1-hei + e3==d — ei and the equivalents.

However, each of these possibilities contradicts the Dantzig property,
since, after adequate choice of bases, we obtain:

βι + e 6=(eι + e2) + (e2 + e3) - 2e2

e2-\-ei=(eι-\- e.2) + (e14- β4) - 2eι

eλΛ-etΛ-e3=(eι + e±) + e.2 + (e34-ek) — 2e±.

Finally A has 18 elements and therefore is not the set of 20 edges
of a simplex (of dimension 4).

4. The two theorems in this section are prepared by the following
lemma:

(4.1) The image Π of a Dantzig set D under a projection, along a sub-
space N spanned by vectors of D, is a Dantzig set.
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Proof. Let D be in a vectorspace V, both of dimension n,

N the span of {dlf d,, •••, 4 } C A (k<^n; for k=n the lemma
is trivial),

M the range of the projection (some complement of N in V),
{b'l, b'2, •••, b's} a basis (for ilf) in Π (hence k-hs=n),
{bl9 δ2, •••, δs} some set of originals in D (that is b\ is image

of 60,
V an arbitrary vector in U,
b an original of br in Z), and

Clearly the set 5 = 1 ^ , d2, •••, dA., δj, δ2, •••, δs} is a basis (for V) in D
(a nontrivial representation of o could not have all its nonzero coefficients
attached to the dt alone, since these are independent; on the other
hand, nonzero coefficients of the bt would imply dependence for the δί).
Therefore δ is representable in B:

b=γιdι+- +γA + β1b, 4- +β8b8 ,

where all coefficients, and hence in particular the βu are 0, ± 1 , which
proves the lemma.

(4.2) THEOREM. A Dantzίg set of dimension n contains at most n(n
elements (not counting the nullvector); that is, if it contains

elements, then it is maximal.

The proof is by induction on the dimension n. For n=l the theorem
is obvious. Assuming it holds for dimensions < n, we prove it to hold
for n(n^> 2).

Let D be a Dantzig set of dimension n^>2 containing at least
n{n-\~l) elements. We may assume that D contains with each vector also
its negative (otherwise we extend D to that effect, since adjoining the
negatives does not remove the Dantzig property).

After choosing a basis B= [b19 δ2, , bn} in D, D is projected along
bλ on the span of {δ,, δ3, •••, bn}. Then the image D' of D is of dimen-
sion <Ln — l, has the Dantzig property (by Lemma 4.1), and, excluding
the nullvector, has at most n(n — l) elements (by the induction's assump-
tion that the theorem holds for dimensions <^ ri).

We prove that D has at most, and hence exactly, n(n + l) elements,
in showing that the number of nonzero elements cannot be reduced, by
the projection, by more than 2n=(n + l)n — n(n — l); this will be shown
in two steps, namely:
(i) that a vector in Ό' is image of at most two originals in D, and
(ii) that the set of nonzero vectors with double originals consists of a

linearly independent set and its negatives.
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If distinct vectors x and y of D have the same nonzero image,
then, with respect to the basis By they coincide ,in all but their first
coordinates. Further they cannot both have nonzero values for the first
coordinate, since these would then have to be 1 and —1 and contradict
the consistency condition (3.3). Therefore the first coordinate of the
two vectors is 0 and ± 1 respectively. This implies that no three vec-
tors can have the same nonzero image. If the image is 0, the only two
originals are ±bλ. Hence

(4.3) a vector x' in Dr is the image of at most two vectors x and y in
D; if xφy and χ'=y'φθ, then x=x' and y=x'±bτ (if α?'=0,
then x=±blf y=zfb1)

Denoting by D* the set obtained from Π after removal of the null
vector, let 2£* be the set of vectors in D* that have double originals in
D. Since D contains with each vector also its negative, so does JS1*.
Furthermore E* is also in D. If xr is in E*;, then its originals are

x' and y=x'-\-ebί (e=d=l)

while the originals of —x' are —xf and —y=—x/ — ebι.
From the pair — x', x' we choose one vector, call it d! so, that its orig-
inals are d' and d=d' + bι. Making this choice from each such pair in
E*, we obtain the set F*={d'l9 d'2, •••, d's}, where certainly d\Φ ±d'j for
iφj, and d\ and di=d/

i + b1 are the originals of d\ in D.

An indirect proof will establish that the vectors of ί1* are linearly
independent. Obviously a linear relation between them" must involve
at least 3 vectors, say the first 3, with nonzero coefficients (which im-
plies in particular that the assertion is true when F* contains less than
3 vectors). We consider separately each of the two following possibilities

( i ) d ' 1 = ± ( d ' 2 + d'fi) + L(<%, •••, d't)

(ii) dl^di — dl + Lid't, •••, d{),

where L denotes a linear combination with nonzero coefficients through-
out. We assume to have chosen, among all existing linear relations, the
one that involves the smallest number of vectors. Then the vectors ap-
pearing on the right hand side, that is d'2, d'3y d{, •••, d[, are linearly
independent. Therefore each of the following two sets in D is also
linearly independent:

(a) blf d2, d3, d'4, dl, - , d[

(b) blf d'«, d 3 , d'49 d'δ, •••, d\ .
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We now obtain,

i n c a s e ( i ) : d [ = ± ( - 2 b 1 + di + d3) + L(d'4, •••, d't)

i n c a s e ( i i ) : d 1 = 2 b ι - h d /

2 - d 3 + L(d^ •••, d ' t ) ,

hence in either case a contradiction to the Dantzig property (note that
all vectors are in D).

This completes the proof that the vectors of F¥ are linearly indepen-
dent, which implies, because of dimD* <I?z--l, that F* contains at
most n — 1 vectors. Hence £** contains at most 2(n — l) vectors.

Now, since E* consists of all nonnull vectors with double originals
and the null vector has two originals (namely ±b1), it follows that the
number of vectors in D exceeds the number of vectors in Z>* by at
most 2n. Since Z>*, as a Dantzig set of dimension <Ln — l, contains at
most n(n — l) vectors, it follows that D contains at most n(n — l) + 2n=
n(n hl) vectors.

This completes the proof of Theorem (4.2), and, in addition yields
the following conclusions, which will be used in the proof of next
theorem.

From the assumption that D contains at least n(n + l) vectors it
now follows that

(4.4) D contains exactly n(n + l) vectors
D* contains exactly n(n — l) vectors
F* contains exactly n — 1 vectors,

and hence

(4.5) F*={d[, d'2y •••, d'n-J is a basis in £)*.

(4.6) THEOREM. // a Dantzig set D of dimension n contains n{n-\-l)
vectors {not counting the null vector), then D is the set of edges of
an n-simplex.

Proof. We will construct a basic H= {hlf h2, , hn) in Z), such
that every element of D which is not in H, is a difference of two ele-
ments of H. The mechanism that governs the construction is based on
the obvious geometrical picture (assuming the theorem true).

We take over the projection, notation and facts from the proof of
theorem (4.2); the assumptions made in that proof contain the assump-
tions of the present theorem as special case (note, that the induction's
hypothesis made there, is now a true statement).

For ease of writing we renumber the vectors of F* in (4.5) to

(4.7) F*={d*, d'3f •••, d'n} ,
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and first show that

(4.8) the representation of an element of D* in the basis F* has at
most two nonzero coefficients.

Proof (indirect). Let x' be in /)*, and

•••, d'n); e^il.

We distinguish whether x' is, or is not, in D.
(i) x' is in D: We use the fact, that two of the ê  are equal, say

e 2 = e 3 = l (if = — 1, we take —x'), and consider the basis in D (see page
1356):

bl9 d21 d3, d'4, d[, , d'n .

Then

which contradicts the Dantzig property.
(ii) x' is not in D: Then its original x=x'-\-eb1 ( e = ± l ) is in Dy

and we distinguish whether all three et are equal or not. In the first
case we may assume all e ^ l (otherwise we take —a?), and obtain, after
adequate choice of basis

where e — 3= — 2 or—4 contradicts the Dantzig property. In the second
case, e and one of the el9 say e2, have opposite sign. Then a contradic-
tion is obtained by the coefficient of bλ in the representation

x=(e — e.,)^ 4- e2dz 4- eβl + e±d{ + L .

This completes the proof of (4.8), and furthermore establishes the more
specific assertions (i) and (ii) of the following statement:

(4.9) (i ) If x' of (Z)*-E*) is in Ό, then x'=d'μ-d'y,
(ii) If y' of (D*-J5*) is not in D, then ±y'=d'^ + d'v,
(iii) Conversely, for any two distinct d^ and d'y of ί1*, either ±x'

of (i) or ±yr of (ii), but not both, are in (D* — E*).

Part (iii) follows from the fact that D* has n(n — l) elements and the
observation that the sum and the difference of d'μ and d'v cannot both
belong to the Dantzig set JD* because of the consistency condition (3.3).

By means of (4.9) F* can be divided in (at most two) classes, by
putting two distinct vectors of F* into the same class when their dif-
ference is in D\
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We first prove that this is an equivalence relation. Reflexivity and
symmetry are obvious. Transitivity is shown indirectly. Let only the
first two of the following three differences be in Π

d'i-d'j, dj-d'k, d'k-d't .

Then in particular d'k — d\φo, and hence by (4.9 iii), dk + dl=dr is in D*.
But then

d'=(d't-d'j)-(dj-d'k) + 2dj

violates the Dantzig property of D*.
To see that there are at most two classes, we assume that d\, d),

d'k belong to three distinct classes, which by (4.9 iii) implies that the
sum of any two of the three vectors is in D*. Then the representation

(d\ + d'k)=(d\ 4- d'j) + (d'j + dk) - 2d]

violates the Dantzig property of JD*. This establishes that F * decom-
poses in two classes

I = { d ' 2 , d'3f •••, d'k}

ΐ l = { d k + u dk+2f •••, dn}

(where II may be empty), such that

(4.10) ( i ) the difference of two distinct vectors of the same class is

in D*
(ii) the (positive and negative) sum of two vectors of distinct

classes is in D*
(iii) the representations (i) and (ii) comprise all vectors of Z)*

which are not in E*

We are now ready to construct the basis H={hιy hi9 •••, hn} of Z>,
setting

(4.11) h^by] h^d'. + h (2<:ί^k); h,= -d) (k < i <n) .

That hι=df

i

Jtbι=dί is in D, follows from the construction of the d\ on

page 1359.
To verify that every x of D is represented by either x=±hv or

x=zh^ — hv we consider the projection xf of x, so that x=x' + abι where
a may be one of the values 0, 1, — 1. We may disregard a=—l (which
amounts to consider only one vector of each pair x, —x), and distinguish
the following cases:

(a) x'=o

(b) χr φ o and α=0
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(c) xr -φo and a=l .

(a) implies x=b1=h1.
(b) implies x=x', that is, x is in D*; we distinguish (bl) x is in 2?*,

(b2) x is in D*-E*.
(bl) implies ±x=d'v; hence, according to whether d'v belongs to class I

or II, we have either ±x=hv — b1=h^ — hι or ±x=— hv.
(b2) and (4.9 i) imply x=d'μ.— d[, where the last two vectors are in the

same class because of (4.10); hence either x=hiλ~hv or x= — (hfX—h^).
(c) implies x=x/ + b1; we distinguish: (cl) x' is in 2?*, (c2) x' is in

D*-E* and in D, (c3) x' is in Z ) * - ^ 1 * and is not in D.
(cl) implies ^ = ± ^ + 6^ the negative sign would yield mixed incidence

of x and dv=d'v-]-b1 and hence contradict (3.3); this leaves only
x=d'v + bι; hence either x=hv or x==b1 — hv=h1 — hv.

(c2) cannot occur, since x' Φ x and x' in D imply that x' has two dis-
tinct originals in D and therefore x' is in E1*.

(c3), (4.9 ii) and (4.10) imply # ' = ±(d;-f<ζ); hence # = ±{d'i-\-d'j)-\-bι\ the
negative sign would yield x=— di — dj-hSbt violating the Dantzig
property. This leaves only

This completes the proof of Theorem (4.6).

5 Open questions. While the set of edges of a simplex, which we
may briefly call "difference s e t " , is maximal in the sense of statement
(3.1), it is, by Theorems (4.2) and (4.6), also maximal in the sense that
it contains the largest number of elements for its dimension. Obviously
the class of all difference sets of a given dimension can be obtained
from a single one of its members by nonsingular linear transformations,
and we may consider the set

(5.1) jθ={e4 — βj} (iφj: i9 j=-0, 1, •••, n; e0=o; e z =ΐth unit vector)

as a canonical representative of the class.
In regard to computational aspects we refer to [3].
For dimensions n I> 4 the example (3.4) establishes the existence of

other maximal Dantzig sets of necessarily less than n(n + l) elements.
A classification of these sets has not been attempted, yet would certain-
ly constitute the next natural step. The problem may be formulated as
follows: Determine, for each dimension n, a complete (obviously finite)
set of representatives Dlf Dz, •••, Dk (k=k(n)) of maximal Dantzig sets,
in the sense that

(i) two distinct Dt are not related by a linear transformation
(ii) every maximal Dantzig set of dimension n is the image of some Όi

under a linear transformation.
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6, Interpretations* Geometrically, the statement (3.1) and Theorem
(4.6) solve the following problem: Given a set S of n(n + l)j2 (free)
vectors φ o in Euclidean space, such that S is of dimension n, and
does not contain the negative of any of its vectors; what is a necessary
and sufficient condition that S may be so arranged in space as to form
a simplex? Statement (3.1) gives the Dantzig property as obvious ne-
cessary condition, while Theorem (4.6) proves that it is also sufficient.

The considerations of this note were carried on in vector space in
order to assure the benefit of intuition from the geometric picture. It
is clear, however, that the study of Dantzig sets belongs properly to
group theory; from the number field underlying the vector space only
the integers are used, which amounts to actually restricting the con-
siderations to an Abelian group. To interpret the results in terms of
this structure, let G be a free Abelian group, and S a set of rank n,
in G. The Dantzig property for £ is, by § 1, precisely the condition
that every set of n linearly independent elements of S span the same
group as S. In particular; if S spans G, the Dantzig property means
that every set of n linearly independent elements of S is a basis for
G. The translation of statement (3.1) and Theorems (4.2) and (4.6) is
immediate (compare [4]).
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ADDITION THEOREMS FOR SOLUTIONS OF THE WAVE

EQUATION IN PARABOLIC COORDINATES

HARRY HOCHSTADT

1. Introduction. The wave equation

admits solutions of the form

Uκ,μ=Aκ,μ(ξ)Bκ,μ(V)Cκ,μ(φ)

if the coordinate system is such that separation of variables is possible.
ξ, η and φ are the three independent variables, and /c and μ represent
arbitrary complex parameters. In general Uκ,μ will not be regular and
one-valued over the whole space, but will be so for special values of /c
and μ. Let ξ', ΎJ and φr be functions of ξ, τjy and φ resulting from a
translation or rotation of the coordinate system then a relation which
expresses Uκ^(jς, η;, φf) as a summation of terms of the form UKtμ(ξ, η, φ)
is called an addition theorem.

Addition theorems for cylindrical and spherical coordinate systems
are well known. These are the addition theorems for Bessel and Hankel
functions, Legendre polynomials, spherical harmonics, Mathieu functions
and spheroidal wave functions (see Meixner and Schafke [5] and Erdelyi
[2]).

It is proposed to derive such addition theorems for those functions
of the paraboloid of revolution which are regular and one-valued in the
whole space. As will be seen subsequently, these restrictions are not
always necessary. That such theorems might exist can be inferred from
the invariance of ΔU under rotations and translations of space, and from
the fact that the family of solutions that are everywhere regular and
one-valued will be mapped onto itself by motions of space.

It is possible to derive several of these theorems by using known
addition theorems. For example, it is possible to derive linear relations
between the functions of the paraboloid of revolution and spherical
harmonics. Since an addition theorem under a rotation of coordinates
is known for the latter functions, it is possible to derive one for the
functions of the paraboloid of revolution.

2. The functions of the paraboloid of revolution* The introduction
Received November 14, 1956. The work was sponsored by the Office of Scientific

Research under Contract No. Af 18(600)-367. The author wishes to express his thanks to
Prof. W. Magnus for suggesting the problem considered here and for his help and interest
during the course of the investigation.
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of the parabolic coordinates

cosφ

into the wave equation

leads to the equation

1 \d-2ξdU+ o^v.+
2(ξ+η)\dξ dξ dη dη 2ξη

The method of separation of variables then shows, that the solution U
can be expressed in terms of functions of the type

In the notation of Buchholz [1], these can be represented by

Γ(l + μ)

and

In case μ is an integer, wlί( — 2ikξ) must be derived by a limit process
from the above definition. Similarly

and

When μ is an integer the function m£(z) is regular and single-valued
over the entire space ivφz) in general is neither single-valued nor
regular.
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For the case χ=rc+ μ the function m$(z) can be expressed in

terms of the more familiar Laguerre polynomials

However, the more general notation introduced by Buchholz in his book
on confluent hypergeometric functions will be used throughout this
article.

The generating function for the functions

^ n = 0, 1, 2,

is known as the Hardy-Hille expansion (for proof and additional reference
see [1].) For the sake of completeness, it will be stated as a theorem.

THEOREM 1. For | ί | < l , μφ-\, - 2 , •••

(1) G , ( P , ( ) - Σ * ( ? ) ( - ( ) • -

The case in which μ is a negative integer must be treated with
some care. From the limit relationship [1]

l i m m μ

 1 + f l ( - 2 i k ξ ) m I M

 λ+I

— m ) ! J w+

 3

,0 , n <^m

it follows that

lim Gμ(P, t)=(-t)mGm(P, t)enmφ .

A relationship between the spherical wave functions and the para-
bolic functions can now be established. The Fourier expansions of a
plane wave in cylindrical and spherical coordinates respectively are [4]

exp (ik[z cos Ψ + p cos φ sin ¥'})= Σ imemjm(kp sin ^ ) e ^ c o s * cos mφ ,

e i S r c o s v = / . . ^ Σ (2n + l)inJn+ll,Xkr)Pn(cos γ) ,
' 2kr o
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cos r=cos θ cos?F + sin θ sin Ψ cos φ ,

m } ;Σ ;-P?(cos ί)PJ(cos ?F) cos mφ
l

Comparison of coefficients of cos mφ leads to

exp (ikz cos Ψ)Jm(kp sin Ψ)

m=0, ±1, ±2,

where

jn{kr) = J π Jn+iiiikr) .

If we substitute ~~ for cos Ψ here, introduce parabolic coordinates,

and then use Theorem 1, we obtain an expression for GV(P, t) in terms
of spherical harmonics :

P1n(

( 2 ) Gm(P, t)= f ^ ' m (2^ + l)^"-~^ί Jn(kr)Pΐ (cos fl). J ^ *

cos θ=

The right-hand side of (2) can be expanded in a power series in t by
using

tml*(l + t)

The left-hand side of (2) has been defined as a power series in t by
equation (1). Comparing coefficients of equal powers of t in this series
leads to

β?(P)= Σ a{n\ m, s)jn(kr)P™(cos θ)e-im* ,
n = m

( 3 )

α(ίi; m, s ) =
m! J -O (m + l)(r)(s —r)! r!

m = 0 , 1, 2,
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That the above series converges everywhere follows from the fact that
a(n; m, s)P™(cos θ) behaves like a power of n for large n, but jn(kr) is

In order to find the inverse to the above relationship, the variable
wt is replaced by w in (2). From the resulting power series expansion

1 — w
it now follows that

( 4 )

_ _ x ^ ^ib + nι + ί.1^

n =l+m (n-hm)l
h(n;m, l)jn(kr)Pi:(cosθ)e- ίmt>

where

b(n; m, l)= m=0, 1, 2,

The following vectors and matrices can now be defined :

A(m) =

l-s)l(m + s)l

' Oo(m) \

a2(m)

! jn(kr)P™(co$ θ)e
l

~imφ

B(m) =

. J

fb(m; m, 0) 6(m + l; m, 0) δ(m + 2; m, 0)

0 6(m+l;m, 1) 6(m + 2; m, 1)

C(m)= 0 0 δ(m + 2;m, 2)
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With this notation the system of equations represented by (4) can be
written as

( 5 ) A{m) = C(m)B{m) , m«=0, 1, .

In order to express the spherical functions in terms of parabolic func-
tions it is necessary to invert the system (5). The inverse of the matrix
C(m) is given by

ι\ m, 0) γ(m; m, 1) γ{m\ m, 2)

0 ?(m + l; m, 1) γ(m-\-l\ m, 2)

0 0 r ( m - h 2 ; m , 2 ) •••

where

, n (-)n+m+ι(2n + ΐ)
r(n: m, ί)= \ / v /

To prove the assertion that this matrix is really the inverse of C{m),
it must be shown that

k

Σ r ( ^ + i; m, i)b(m + k; m, i) = δJk .

We have
A"

k; m, ί)

= * ( - ) ί + .'(2m + 2i +1) (2m + A: + i)\
h \i -j) l(

y - .,Fτ(j-k, 2m+k + j + l;
+ 2jy "

= ί 0 ,
(k-j)\(2m + 2j)\

Use of the inverse matrix allows one to write

( 6 ) jn(kr)Pζ(cos θ)e~mφ

Σ ( )
«-» (,?' —s)!(m + s)!

One can now state

T H E O R E M 2. F o r m = 0 , 1 , 2, •••
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) = Σ a>(n; m, H)j7Ί{kr)Plι{cos 0)e~ίmφ ,

m!

jn{kr)P™{cos0)e-ίmφ

{n — m)\ j = n-m {j —

It is not permissible to interchange the two summations in (6) because
the coefficient of the inner summation is 0{l/j). Although the series
does not converge absolutely it can be shown to converge conditionally.
The inverse Laplace transform of the Kummer function is given by [2]

- 1V1
. z dz

2πi }c zm+ι

where C is a circle enclosing the origin and 2=1. If ΩT{P) is expressed
in terms of Kummer functions, then (6) can be rewritten as

. i f f ^ ^ L > Γ i + l _ l T
{2πif]c)c {zζ)m+ι Lz ζ ZζJ

On sufficiently large circles the quantity +__ — | becomes suf-
Lz ζ zζJ

ficiently small so that an interchange of summation and integrations is
permissible and the series converges. One then obtains the double
integral

-m)l (2kv/ξrj)m+ι(2n+l)l

I f f p 2 t t ( i j { - f ί ) Γ 1 1 1 ~ \ n - m

πiγ)o}o> (ζz)m+ι Lz ζ zζJ
U +

(2πiγ)o}o> (ζz)m+ι Lz ζ zζ

ζ z ζzJ

As consequences of Theorem 2 and the integral relations [4]

sin θ dθ = - A(n + ™)L_ δn
(2 l)( — m)\
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sin θ m(n — m)l

one can state the following.

COROLLARY 1.

sin Odθ= f[a(n; m,

θ) sin θdθ=a(n; m, s)jn(kr)

0__ za(n; m, s^Me
Jo sin θ n=m m{n — m)\

= Σ Φ ; rn, s)a(n; m, a)3l{

3. The addition theorem resulting from a translation of the axes
along the axis of symmetry.

Since z is the axis of symmetry one can introduce the translated
coordinates

It follows from Theorem 1 that

(7, βλp, o- μ

In particular, for ^ = ^ = 0, £=£0 Theorem 1 yields

exp Γifcfo J - - 1 = ( 1 + ί) Σ < + i/ 2 ( -2iΛf0)( - t)n .
L 1 + ίJ rc=o

Using this expression in (7), expanding and multiplying the power series
in t and comparing coefficients, we obtain the following.

THEOREM 3.

( / J / ^ J

μφ-h -2 , ••• w=0, 1, 2, . . . .

The case in which μ is a negative integer can be handled as a limiting
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case of Theorem 3. By differentiating both sides with respect to ξ0 at
?o=O one obtains the following.

COROLLARY 2.

d
d(2ikξ0)

In particular for rj = O one obtains from the above

n\

Aikξnl

J. m£+ ( 1 + μ ) / 2(
d{2ιkξ)

!ί+ 0 + μ ) / 2 ( - 2ikξ)Γ(l

j-o 7

It is possible to define a vector

and a matrix

0 0

α10 απ 0

where

" " " l o ,

such that Theorem 3 can be restated as follows.

THEOREM 3\
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4* The addition theorem resulting from a translation of axes perpen-
dicular to the axis of symmetry*

The translation can be assumed to be in the ^-direction without
loss of generality. Introducing the new coordinates

x=x'-δ , y=yf , z=z' ,

R=Vf + ̂ ~^2f)d'cos~ψ ,

p-δe'

P=(x, y, z) ,

one obtains from Theorem 1

Under the condition p^> δ one can take advantage of the addition
theorem for the Bessel functions

and obtain

tn/2

( 8 )

The case where μ is an integer must be handled as a limiting case.
To determine the addition theorem one must expand both sides in powers
of t and compare coefficients. Using

,_w/2 7 (ZkδVΊ \ _ v a t*
\ 1 _μf / s=0

r=o (s — τ ) ! τ ! i

one obtains the following.
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THEOREM 4.

H Σ Σ g,-3,norn(P') + Σ (-)n Σ gs-^r\n ,
l j O 0 j 0

for μφ ± 1 , ±2, ••• . For μ=m, with m a positive integer,

s s s j + m

( \sOmCP\ V V Π Qn + m( p ' \ _i_ V V π ( \nΓ)n-m (-p'\p li(n-m\φ'

For μ=—m

\immΩttP)^^~meMΦ' ^2
Another method by which such addition theorems can be derived is

to take advantage of a theorem by Friedman [3], which is an addition
theorem for spherical harmonics under translations of the coordinate
system. This theorem in combination with Theorem 2 will yield an
addition theorem, but in a very cumbersome form. Conversely the
theorem for spherical harmonics could be derived by using Theorems 2
and 4.

A similar plan will be used in the next section. The addition
theorem for spherical harmonics under rotations of the coordinate system
in combination with Theorem 2 yields the corresponding theorem for
parabolic functions.

5 The addition theorem resulting from a rotation of coordinates.
Since a rotation about the axis of symmetry, namely the z-axis,

yields trivial results, a rotation about the y-axis will be used without
loss of generality. Let

z=z' cos Ψ-x'sin Ψ

( 9 ) x=x' co

Under this rotation the following addition theorem holds for the spherical
harmonics [2]:

n /(yj 171 \ I

~ι—n9ι(n+\ϊ\)\ 2n

where

YcoB YΊi,m
n+ιy\ 2/ v 2

tFλ( — n — l, n — l + 1; 1—m—l; cos2—]
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for ra-fZ<I0, and

HARRY HOCHSTADT

for

• .,Fλ\l — n, n +1 +1;

and where

; cos2

Qι'-

Using the above in conjunction with Theorem 2 one can state the full
addition theorem.

THEOREM 5. Under a rotation of coordinates (9) the following state-
ment holds:

oo γι oo ' n j - l T l Γ / , I 7 I \ Π )

Σ ( - )s ,,--^~( )!(

6 The infinitesimal transformations. It is possible to restate the
addition theorems for infinitesimal transformations. The theorem for a
translation along the z-axis can be rewritten from Theorem 3 :

where

- f c ; 1; z

For small values of ξ0, namely dξ0, it follows that

- y

and that

(10)

1 0 0

2 1 0

2 2 1

. . V

\
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where / is the identity matrix.

THEOREM 3". Consider an infinitesimal translation along the z-axis
such that

Then

where T(dξ0) is given by (10) and Vμ(P) is as defined in Theorem 3'.
Similarly one can find the addition theorem for translations in the

^-direction from expression (8):

For a differential translation dd this expression reduces to

G ( T) J.\ f^ (ΊD' +\ \ rCaO Γ±/^i / Γ)/ j \ f^ ί TJf 4-XΛ
μ\-*- 1 v) \JΓμ\-L j L) ~r [^ί/KJΓμ + ^yJ ? C) \JΓμ—-[\1Γ y t/yj

from which it is possible to state

THEOREM 4'. For an infinitesimal translation of coordinates given
by

x—xf — dd , y=yr i z=zf

the following holds:

*( n - i n~ί +i / )

For negative integral values of μ one can use limit processes.
To derive the analogous theorem for a rotation of coordinates it is

first necessary to derive the addition theorem for the spherical har-
monics. This can be done conveniently by starting with the following
definition of the spherical harmonics [2] :

r rn+ι

where

D= d D= d D = d

dz ' " dx ' 3 dy

Under the rotation
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x'=z sin Ψ -\-x cos Ψ

y'=y

zf—z cos Ψ — sin Ψ

these differential operators are also transformed :

,= -D[ sin y + D; cos Ψ

Let

D2-iD3=Q ,

Then it follows that

[ 1 -\n-mΓ

D[cosΨ+ L smΨ(Qr + Q')\ I - Ό \ sin '/

+ 1 cos ?F(Q' + Q') + I (Q' - Q')T .
Δ Δ Δ

The existence of the operational equivalence

QQ1 - = - £ > ? !
r r

Q ) - = J — = 0 .

follows from

If Ψ is taken to be a differential angle d^ in (12), then one obtains
from (11)

(13) e-ίmφP%(cos θ)=e-imφ'P%(cos θ')

Equation (2) written in the form

G,U(P, t)

m + 1; J
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combined with (13) yields

Gm(P, t)=Gm(P\ t)-dl
9 tir

•1; m + 1; -*• )
1 + ί/

ml(l-\-tγ

(14)

+ dΨ Σ in^V
2 n = m

In order to be able to rewrite the above as generating functions one
can make use of the differentiation formulas [2]

\z\lz)JF1(mn + l, m±n\2; m + 2; z)]
dz

; z)

[ ^ ( m — n — 1, m-4-n; m; z)]
dz

m

Using these in (14) one obtains

GJP. t^GΛP', t)+

from which one derives

GUP, t)=Gm(P', i ) + ^ [ ( m + l)GM+1(P'( ί) + ί(l + ί)^(?»+1(P', ί)

One can now state the following.

THEOREM 5r. Under the infinitesimal rotation
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tf=x + zd¥ , y'=y , z'

one has the formula
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THE COEFFICIENT REGIONS OF STARLIKE FUNCTIONS

J. A. HUMMEL

1. The coefficient regions of schlicht functions have been studied
at some length by Schaeffer, Schiffer, and Spencer [2, 3]. Properties
of these coefficient regions are obtained only with difficulty, and in
particular the actual coefficient regions can be computed only with a
great deal of labor [2]. In fact, the computations necessary to deter-
mine the coefficient region of (α2, α3, α4) probably would be prohibitive.

The class of starlike functions is of course much simpler in be-
havior. Since f(z)==z-ha2z

2-J

Γa3z
i-\- is starlike if and only if zf'{z)\f(z)

has a positive real part in | ^ |<^1, one might say that everything is
known about such functions. However, in practice, our rather complete
knowledge about functions with positive real part proves difficult to
apply back to the class of starlike functions. This is easily seen to be
true by noting the number of papers on starlike functions which appear
every year.

In an earlier paper, the writer presented a new variational method
in the class of starlike functions. It is the purpose of this paper to
apply this variational method to find the coefficient regions for starlike
functions.

LetS* be the class of all normalized functions f(z)=z-\-a2z
2-ha3z

3 + ,
schlicht and starlike in the unit circle. Let F * be the (2n — 2) dimen-
sional region composed of all points (α2, α3, •••, an) belonging to the
functions of S*. Since the class of functions p(z) with p(0) = l, regular
and having a positive real part in \z\ <^1, is a compact family, so is S*.
Thus F * is a closed domain (i.e., the closure of a domain).

We will study F * by determining its cross sections with α2, α3, , an-1

held fixed. In § 2, a simple proof of the fact that each such cross
section is convex is given. It is then shown that any point on the
boundary of this cross section must lie on a particular circle, and thus
that the cross section itself is a circle. The actual equations for the
region F * can be determined for each n by means of a simple recur-
sion, but the calculation becomes tedious after the first few n.

2. For fixed az, α3, •• ,αw_ 1, let C* = C*(a.z, •• ,αw_1) be the two
dimensional cross section of F * in which an varies.

LEMMA 1. C* is a closed, convex set.

Received June 24, 1957. The work reported on here was done while the writer held
a National Science Foundation post doctoral Fellowship. The writer wishes to thank Pro-
fessor M. Schiffer for many helpful conversations during the course of this work.
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Proof. Cn is certainly closed, since it is a cross section of the closed
set F * . To show that it is convex, we introduce a new variation.

If f(z) and g(z) belong to S*, define for any e, 0<Ie <I1,

( 1 ) hs(z)=f(zy-*g(zγ .

Here, appropriate branches of the powers are chosen so that hz(z) is
regular at the origin and has a series expansion z-f there. Taking
the logrithmatic derivative of (1), we have,

lhM=(i _ efl!{
zl + £

 zg'^
Hz) f{z) g\z)

Therefore, if / and g are in S*, so is he(z)f for all e between 0 and 1.
If f(z) and g(z) are any two functions of £* belonging to C*, say,

f(z)=Λ(z) + anz
n+ , g(z)=Mz) + bnz

n± -, where fb(z)=z + a^+ 4-
an-1z

n~1

y then by direct computation from (1),

Y"Yi+ δf

Jo

=/o + [αn - ε(αw - bn)]zn 4- ,

and so, as e goes from 0 to 1, the n-th coefficient of he(z) moves along
the line between an and bn. Therefore this entire line segment is con-
tained in C'n, and the lemma is proved.

3. In an earlier paper [1], the writer showed by use of a vari-
ational method in the class of starlike functions, that any function f(z)

in S* which maximizes S i j S ^ A r must be of the form

( 2 ) /(*)=• — Z , μ*>.0, Σ/<.=2, m<n-l
TT (Λ \v< v = 1

V = 1

and that f(z) must satisfy the differential equation

( 3 )

where

( 4 )
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(Here, and throughout the paper, an asterisk attached to a value in-
dicates the complex conjugate of that value.) The function R(z) has m
zeros on \z\ = l corresponding to the m poles of ff{z)\f{z). The function
Q(z) has m zeros on |z| = l corresponding to the tips of the m slits (where
f'(z) = 0). The functions R{z) and Q(z) have 2n — m—2 additional zeros
in common.

In order to study the coefficient regions, we will determine the
nature of C* (α2, •••, an-λ). Since C* is convex, as shown above, the
boundary points of C* can be determined by finding a function which
maximizes $l{λnan} for fixed aly α3, •••, an-1 and for each λn=eω. If f(z)

maximizes ϋl{λnan}, then it also maximizes 3tj Σ ΛV<M where Λ2> Λ3, , 4-i

are a set of Lagrange multipliers which are determined by the fact
that a.zy •••, αw_! must take on the prescribed values.

The desired results are obtained by use of 2n—m — 2 zeros which
R(z) and Q(z) in (4) have in common. To this end, we obtain the GCD
of R(z) and Q(z). The Euclidean algorithm is used in a simple form.
That is, having two polynomials of the same degree.

7? 1 (2)=α 0 + α12;H Λ-anz
n ,

two new polynomials of lesser degree are obtained by the process

f Qi(z) = —[βoPi(z)-
z( 5 ) z

q,(z)=βnp1(z)-anp.z(z) .

This scheme is started by taking Q{z)—R(z) and multiplying through
by an appropriate power of z (the functions Q(z) and R(z) have no zeros
at 2=0 or 2=oo). From (4) this gives a polynomial

where

( 6 )

In a similar fashion, taking Q(z)+R(z) we obtain
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The coefficients of Qx(z) are exactly the conjugates of the coefficients of
Rι{z) in reverse order. This is easily seen from (4), except that it must

n

be noted that for the extremal f(z), the center term Σ O — l)Λvαv is a
V = 2

purely real number, (see [3])
The polynomials Rλ{z) and Qτ(z) have in common the same 2n — m — 2

zeros that R{z) and Q(z) have in common, and each has in addition m — l
other zeros. The latter zeros are distinct in Rx{z) and QL(z) since any
common zero of R{(z) and QΛ (z) must be a common zero of R(z) and
Q(z).

This process may then be continued, combining RΊ(z) and Qτ(z) as
in the scheme (5) to produce two new polynomials R.,(z) and Q2{z), each
one lower in degree. It is easily seen from (5) that the relationship
between the coefficients of Rλ(z) and Qτ(z) will be preserved in the
reduced polynomial. Thus, as this scheme is continued, pairs of poly-
nomials Rk(z) and Qk(z) of degree 2n — k — 2 will be produced. The coef-
ficients of Qk(z) will be the conjugates of the coefficients of Rk(z), in
reverse order. Rk(z) and Qk(z) will have in common the 2n — m—2 zeros
that R(z) and Q(z) have in common, and m — k others, not in common.
The process will terminate with Rm(z) and Qv{z), for these two will then
be identical up to a constant factor.

Because of the relationship between the coefficients, we need to
determine only Rk(z) for each k. The corresponding Qk(z) can be com-
puted as needed.

LEMMA 2. For I <^k <ίm, the polynomial Rk(z) is of the form

with

Here, each Ajtk and each Bhk is a polynomial in the αv and their
conjugates {independent of the λj, and the A Uk and BUJc satisfy the
recursion relations

Proof. We first remark that the coefficients of Rk(z) belonging to
powers of z between zn'k~ι and zn~ι are of no interest to us here. From
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(6) we see that the form of the coefficients is as asserted in the lemma
for k=l. Suppose now that the form is correct for k=v. Then using
the scheme (5) (removing a common factor of λn) we can compute

Thus, α / x v + 1 has the form asserted in the lemma, with the AJ>v+ι deter-
mined by the recursion formula (7). The other recursion formula and
the remainder of the lemma is proved in an exactly similar fashion.

LEMMA 3. For eachj,k, 0 <±j <Ln — k — 1, l<I&<^m, the AJtk and
BJtl& of Lemma 2 satisfy the following:

(i ) Auic is a polynomial in a2, α3, , aj+lύ and at, af, , α*_1#

(ii) Bjtk is a polynomial in a2, α3, , aj+!ύ-1 and af, αf, , α*.

(iii) Bι>k is real for any choice of α2, α3, , ah.

(iv) AJtk=(j + k

(v) For any v, 1 <J v <^ fe

Proof. From (6) we see that

( 8 )

hence properties (i), (ii), and (iii) of the lemma hold true for fc=l. Us-
ing the recursion formulas (7), properties (i) and (ii) can be verified
inductively for all k <L m. Property (iii) is obvious from (7) since Bhk

Property (iv) is clearly true for fe=l from (8). It also can be
verified simply by induction on k.

Finally, property (v) is clearly true by (7) and (iii) for v=k — l and
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any kf 1 < k <1 m. It can then be proved in general by backward in-
duction on v. Thus, from (7)

and substituting this for one of the Bxv factors in the first term of (v),
the corresponding formula for v — 1 is obtained.

4. The reduction process given above must lead to Rm+1(z) ΞΞ 0 since
Rm(z) and Qm(z) have all of their roots in common. Therefore the ex-

{ n \

Σ^vC&vf, must have |A1>m| = |Z? l im | be-
V = 2 )

cause of (7). We may now prove.
THEOREM 1. Let (α2, α3, , an^) e F*-i. // (a.i9 α3, , an^) is an

interior point of F * _ x then Ct{aZJ •••, an-τ) is a circular disc determined
by \Ahn-.ι\=Bι>n_ι; furthermore \ALJ <Bιk for k<n-l. If (α 2 , •••, an-λ)
is a boundary point of V%_1 then C*n(a2, •••, an-i) consists of a single
point.1

Proof. Note that the statement of this theorem makes the tacit
assumption that Bιjc (which is real by Lemma 3) is always non-negative.
This of course will be true by (7) if we merely prove \Alik\ <I \BLtk\ for
all k.

Given (α2, , an-λ) in F*-i, Lemma 1 shows that the cross section
Cn is convex. Hence, given any point an on the boundary of C*, there
is a line of support for CJ passing through this point, and therefore a
λn such that the function (or functions) belonging to this point satisfy
(2) and (3). The reduction process described above then leads to |^41)m|
= |Bi,J for some m, l<^m<Ln — l.

We now procede to prove the first half of the theorem by induction.
If n=2, then m must be n —1 = 1, and hence the function correspond-
ing to each boundary point of C2* must satisfy \A1Λ\=B1Λ, or, using the
values from (8), there is some θ such that a2=2ew. Therefore each
boundary point of C* is a point of this circle and hence Ct consists of
the disc |σ2] <1 2. However, α2 is an interior point of Cf if and only if
\AlΛ\<Bltl.

Now suppose (α2, ••-, αw_χ) is an interior point of F*_! . Then αv is
an interior point of CJ(σ 2 j •••, αv-i) for »=2, •••, n — 1, and hence by
the inductive hypothesis | A l ι V | < Z ? l ι V for v=l, 2, •••, n—2. Therefore
m=n — l and each boundary point of C * must, from (iv) of Lemma 3,
satisfy

1 Professor G. Pόlya has shown the writer that the fact that the cross sections are
circular discs can easily be proved with the help of the Caratheodory theory for functions
with positive real part. The exact expressions for these cross sections found from (9),
(8), and (7) do not seem to be obtainable from the Caratheodory theory in any simple way
however.
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for some θ, 0 <1 θ <12π. Then expressions Cn and Rn are rational
functions of the αv and their conjugates and are defined by (9). In
particular Rn is real and positive since Z?ifW-i=LBi,n-2|

3 — |i41>w-2|
3 > 0.

From (9), each an on the boundary of C* must lie on the circle
with center Cn and radius Rn. This means that C* is itself this circle.
Thus if an is interior point of C*, we must have lA^^I < BUn-x. By
induction, the first half of the theorem is proved.

Now suppose that (α2, •••, an^) is a boundary point of F*_τ. Then
there is a unique smallest v<Ln — 1 such that αμ is an interior point of
C*(α2, , αμ-χ) for μ = 2, ••, y —1 and αv is a boundary point of
Cy(d.i9 - , αv-i). But then I A ^ V - ^ S L V - I > 0, \Altti\<^BltlL for μ<^v — 1
(and in particular Z ? l ι μ > 0 for μ=l, 2, •••, v —1), and £ 1 ; V = 0. Choose
a sequence of interior points {(ac

2

3\ •• ,αί/2ι)} of F*_! which approach
(α,, , an-λ). For each such point, α£° is contained in a circle (9) of
center Q j ) and radius R^. Now Cw is a rational function of the coef-
ficients and their conjugates. Hence as j -> oo, Q j ) must approach
some limit, finite or infinite. However this limit cannot be infinite since
Cn is always bounded (indeed \Cn\ <^n because \an\<Ln for starlike func-
tions). Thus the limiting value Cn must exist and be finite. On the
other hand, the radius Rc

n

j) -> 0, since by (v) of Lemma 3

R(fi = {zhi^zi << ι y B^y+ι

Therefore, the cross section C£(a,, •• ,α72_1) consists of the single point
Vλ This completes the proof of the theorem.

5. With the help of the above theorem, we may now describe
something of the nature of the coefficient region F * . The region F * is
(2n — 2)-dimensional and its boundary is a (2n — 3)-dimensional manifold.
This manifold, however may be decomposed into n — \ parts. That is,
the boundary of F * is composed of U%\ Π^2), ••-, ΓL?~υ, where Π^v)

is a (2v — l)-dimensional manifold lying on the surface of F * and such
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t h a t (α2, α3, ••-, an) is in Π£° if and only if (ai9 •••, αv) is an interior
point of F ? and (α3, •••, α v + 1) is a boundary point of F ? + ι .

For example, from (9) we can explicitly calculate the first few cross
sections C ? , C*, Cf. The boundaries of these cross sections are given
by

(10) a,=2eίθ ,

(11) α 3 = . 3 α Ϊ 4 . e * β 4 - W a

4 4

Q2) α = =

4 α 2α 3 ,

' 6

iθ(4:\atfy
"6(4-K)

Taking for example Ff, the 5-dimensional manifold Π40 is defined by
(10), (11), and (12) as a, varies in the interior of the disc (10), a3 varies
in the interior of the disc (11), and θ varies from 0 to 2π. The 3-
dimensional manifold Π£3) is determined by (10), (11), and

__ Aa.jβ3 i θ 6 α 3 - 2 α 2 * α 3

6 6

as αa varies in the interior of the disc (10) and θ varies from 0 to 2π.
Finally, the 1-dimensional manifold IJ j 0 is determined by a2=2eίθ,
a3=Se2ίθ

f α1=4e3ίa and θ varies from 0 to 2τr.

As a final remark, we may note that the coefficient regions F * be-
come quite " thin >? as n becomes large. In fact, using (v) of Lemma 3

T> __ t ^ ^ ^
w (

and hence the radius of any cross section C* is less than or equal to
2/(^ — 1). This estimate in sharp since it is attained for α,=α 3 =
==αw-Ί = 0, the functions being

Since a function f(z) is convex if and only if the function zf'(z) is
starlike, the structure of the coefficient regions for convex functions
can be determined directly from the structure of the coefficient regions
of starlike functions.
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ESTIMATES FOR THE EIGENVALUES OF

INFINITE MATRICES

FULTON KOEHLER

l Introduction* In most of the self-ad joint differential eigenvalue
problems occurring in mathematical physics we are concerned with finding
the extremal values of the quotient of two integro-differential quadratic
forms in a certain space of admissible functions. By setting up a
suitable basis in this space the problem can be reduced to that of finding
the extremal values of a quotient of the form (aX, X)/(βX, X), where
a and β are infinite symmetric matrices and X is a vector. The ordinary
Rayleigh-Ritz method of approximating the solutions of the latter problem
is to replace the infinite matrices a = (aί})T and β=φίj)? by their finite
sections αn=(α ί J)? and βn=(bu)?. The extremal values of the quotient
(anXn, Xn)l(βnXn, Xn), where Xn is an n dimensional vector, are the
roots λ of the equation

(1) άet(an-λβn) = 0 ,

and these are taken as approximations to the first n solutions of the
original problem. If the roots of (1) are denoted by λl with Λ?I>Λ?^
"'^λl, then for any fixed k, λl increases monotonically with n and
its limit as n-+c& is the kth. eigenvalue of the original problem. It
should be stated here that the quotient of integro-differential quadratic
forms in the original problem is taken as the reciprocal of the usual
Rayleigh quotient so that the eigenvalues are all bounded.

If we let

(2) ; f c=limtf ,

then the problem arises of estimating the difference λk — λΐ.
We shall consider this problem under certain assumptions with re-

gard to the matrices a and β. These assumptions are that a and β are
both positive definite, that the matrix (&£J)£+1 has a positive lower bound
independent of n, that the matrix (αo)^+1 has an upper bound which
tends towards zero as n —• oo, and that

lim Σ Σ αί,=0 , lim Σ Σ &?,=0 .

2. The simplest case, which we take up first, is that in which β

Received September 22, 1955. Prepared under contract N onr 710 (16) (NR 044 004)
between the University of Minnesota and the Office of Naval Research.
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is the unit matrix. Let X("d be the orthonormal eigenvectors correspond-
ing to the eigenvalues λn

k as defined above. Let numbers εn and (>n be
defined by

( 3 ) ε)? >= ( Σ Σ ah ) ,

In general the exact values of the right-hand members of (3) and (4)
will not be available, and for this reason we define en and (>n as merely
upper bounds for these quantities. The more closely these upper bounds
can be estimated, the better will be the subsequent estimates of the
eigenvalues. For the effectiveness of the method it is necessary that
the values of εn and pn can be made arbitrarily small for n sufficiently
large. One method of defining f>n is to take it as an upper bound for
/ oo oo y/2

( Σ Σ ah) ^n those cases where the latter series converges. A
\ ί=»w + l j = n + l /

different method is given in the example of § 6.
We shall adopt the convention that, if X is a vector, (x.)?9 then

Xn stands for the ^-dimensional vector (#,•)?. Let k<,n<^ N. By the
minimax principle,

(5) ; , f = m i n m a x ( ^ \ ^ ) , (XN, Z7f) = O, i = l, 2, . . . , fc-t .

Choose the vector f/? so that its first n components are equal respec-
tively to those of X(ir> and its remaining components are zero. Let

Then

(n?NYN YN\
ηfκ '* > , (X", X?>) = 0, i==l, 2, •••, k-\

{A , Λ )

(flr"X", X») + 2 Σ £ a,nxlx,+ Σ Σ a^
> ~ 1 1 -- n + 1 / rr n + \ j - n +1

(X\ XSB))-fl, i - 1 , 2, -•-, k~l

< max ^"^ + 2εnVιΊh + WA»

The last step is justified by use of the maximum principle for the first
term of the numerator and the Schwarz inequality for the second term.

The quantity on the right side of this inequality is the larger root
λ of the equation
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Hence,

2

and, since the right side is independent of Ny

(e) xi <;,. < 3 +f*
2

If j>n<C.λl, this inequality gives the simpler, but less precise, one

(6a) λl^λh^λl+-β- .

The inequality (6) (or 6a) makes it possible to obtain arbitrarily close
bounds for λk by taking n sufficiently large.

Better estimates for λh can be obtained if one makes full use of
the available data, namely λl and X£n). With these it is possible to
transform a into an equivalent matrix (one having the same eigenvalues)
a^ίcίi)), where

«** = « (k=l, 2, . . . , n),

at1=0 (i9j=l9 2, •••, n;

, n + 2, •

( pin) Q

o ^
(X[n\ X?\ •••, X ? } ) and the vectors X^ are orthonormal.

Let

( 7 ) εnk^( Σ S^Y'2 ( fe-1, 2, ..-,77,).
\j = w + l /

If any one of the numbers en7c is equal to zero, then the corresponding
eigenvalue Γk of an is actually an eigenvalue of a and the kth. row and
column of a can be deleted before proceeding with any further calcu-
lations. We may therefore assume without loss of generality that all
the numbers εnk appearing in subsequent formulas are different from
zero.

Apply (5) with aN replaced by aN and with U, equal to the vector
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whose ίth component is 1 and whose remaining components are zero.
This gives, with y=(xl+ι + + x2

N)ίl*

1°;

n N N N

Λ A + ΛJ+A+i + 4- / Λ + 2 2 J 2-I &ij%i%jJt- 2a Za ci
i k i 1 l j

Krt + 2 Σ * n ί |α t 12/ + P«2/2

The maximum value of the quotient

can be attained when the variables xk, ••-, xn, y are restricted to non-
negative values. Hence λ* cannot exceed the largest root λ of the
equation

( 9 )

0

0

0

•λ ϋ

0

0

0 enl

0 0

}n — )An A

fcWfc CW,fc4

n ^ Π
= {pn-i) Π ( ^ - ^ ) - Σ - ^ -

If a number r appears m-fl times in the set λ%, λl+ι, ••-, ^ , then
this number is an m-f old root of (9). If μΎ > μ2 > > μτ are the
distinct values in the set λl, λn

k+1, , λ%, then (9) also has roots
Λ» 2̂» •* >^+i> where rL < / ^ < r 2 < ^ 2 < <//? < r ? + 1 . The latter
roots are all the roots of the equation

(9a)
2

3. As a simple example illustrating the estimates of the last section,
let us take the problem of finding the eigenvalues A defined by

y(0)=y(l) = 0 .
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The reciprocals of these will be the extremal values λ λ> λt > λ-λ > •
of the quotient

Q(y) = * dx

in the space J? consisting of all functions y(x) with sectionally continu-
ous first derivatives and with y(0)=y(l)^=0. As a basis for this space
we take

2 sin nπx

nπ

( r c = l , 2,

and let

Zu= 1 (l+x)φiφJdx=- >
Jo

,= l φ\φfjdx=(
Jo

if ΐ = ^ ,

i f i φ j

where a=(ait)Γ, β=φί1)T, X=(%i)Γ, so the problem is reduced to one
of the type for which the estimates of the last section apply.

Let n=3. The equation for $, λl, $ is

2πz

87Γ2 L

3 ~
0

The eigenvalues and eigenvectors are :

;?=.1527 0819 , Z f = (.99684, -.07935, .00192),

Λ|= .0377 8273 , X®=(.07869, .98480, -.15482),

^-.0163 7316 , X^=(.O1O4O, .15449, .98794) .
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We make the following estimates

< 6 4 Γ ! _ + 1 + 1 + y 1
7Γ8L15' 35 ι 6 3 ' ί=i (Sσ2

64Γ.1_+ l . + 1. + - 1-("^-1=1.389x10-,
τr8Ll5ι 351 63' 8lJi a? J

r . . + ....+ . . + f ^ l = .
7iBL211 45' 771 256Ji a;s J

7r8

1 + .1_+ l . + l ( - 4 ? 1=28.234x10-',
74 271 55' 81 Jί x8 J

^ _64 ^
2, o l j α j J — ~ Σ.t

6 4 Γ ! + ί . - H X + 1

π8Ll5 2 73 353 272 63J 552 81

Σ i A j Σ ^ 3 j ,

Σ.iah + aίj + άijX 29.991 xlθ"7=ε2 ,

128 y y 1.
8 ^ ί [ ( 2 2 ) 2 (- (2re +1)2]1

9 y l + 1 2 8 ( y y 1
Aπ1^ a' π* I ^ σ-o [4n(l + 2o

+ y y _ 1
»->«i[2(2re + l)(2<τ-l)]1

= 9 y l 8 y 1 J y 1_ y 1
4?r

1<,.4 σ 7Γ

s^(Γ+2<7)
1l»-2(2w)1 ώ ( 2 «f
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Σ - + " = 0 0 0 1 7 9117 = ^ f

^,-=.013 3835 .

If the matrix a is transformed into the equivalent matrix a in which
the upper left hand 3 x 3 matrix is diagonalized, the formulas for the
elements a.u are (for j I> 4) :

αu=.99684 au~.07935 α2, + .00192 aΛ) ,

ά2 j = .07869 α1; + .98480 a,,-. 15482 a31 ,

α,,-.01040 απ-h. 15449 tt^-f .98794 a-όJ .

Hence,

Σ αϊ,< 1.395 x l O - ' - ^ ,

Σ aij< 1.042 xl0-7-=4 ,

Σ α ^ < 27.630 x l 0 - 7 = 4 .

The first three extremal values of the quotient Q(y) can now be
estimated by either (6), (6a), or (9a). From (6) we get

.152 708<;i1<: .152 730 ,

.037 782<: 4S-.037 905 ,

.016 373 =<: Λ,<ς.O17 167

whereas (9a) yields the following more precise estimates :

.152 7081 < Λ < ; . 152 7092 ,

.037 7827 .<; ,<; .037 7871 ,

.016 3731 <U,:<.017 1139 .

4, Returning to the general problem, let us assume that, by a
preliminary transformation, the matrices a and β are already diagonalized
in the n x n upper left-hand corner that is, that

αi;-=&^ = 0 (i,j-=l, 2, •••, n; iφjl) .

Let the bounds μn and enk be defined by (4) and (7) (with akj replaced
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by akJ): In addition let bounds δnk and rn be defined by

(10) ^^{^blή (fc = l , 2, . . .

x. i = n + l j~7i + i I i = w + l

We assume that all these bounds exist, that

(12) rn>±Pnk,

and that enhj-\-δnkφ0 (k=l, 2, •••, n) (see remark following (7)).
By the minimax principle with k<^n<^N,

= min max ( ^ )=0, i = l , 2, . , fc-1 .

Proceeding as before, let UΊ be the vector whose ΐth component is 1
and whose remaining components are zero. Then

λn

kχl + 4- λn

nx
λ

n + 2 Σ . Σ aijXiXj + . Σ Σ dijXiXj

^ max
xi X2

*\ max

n

f + «+2Σ

N

c
^12/ + ^

N

Σ
i == ?i +1

.2

iV

Σ
j = w •

where y=(xl+ι-{-xl+,+ - β H-^)1/2. The condition (12) is equivalent to
the positive deίiniteness of the denominator of the last expression.
Hence, λζ and therefore λk, cannot exceed the largest root λ of the
equation

(13)
0

εnk 4- λδnk

0

^n ~ Λ ε w w 4- λόnn

which is the same thing as the largest root of the equation

(13a) ^»-^=Σ
Λ- r;
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To analyze the location of the largest root of (13a), let

Then

ψ>{λ)^ ± [2δnj(en]

h

φ'Ί X) = 9 V v w * ~*~1 °n

For Λ>ΛJ, ?>"(Λ)>0, and therefore in this range the graph of ψ(λ) can
intersect that of the function rnλ — pn in at most two points. Since

lim φ(λ)= + 00 and since, by (12), rnλ — p.n^>φ(λ) for all λ sufficiently

large, there must be exactly one point of intersection, that is, one root
of (13) or (13a), in the range λ^>λn

k. This root is the upper bound
which we obtain for λk.

Let us now assume that

(14) rnXt-~pn>,a>®

for all n sufficiently large, and that

n

Then, for any ε_>0, and for n sufficiently large, ψ{)'lΛ-e)<^rn(X%Λ-e)~pn

and so the largest root of (13) or (13a) is less than ^-f-e. Therefore,
(14) and (15) are sufficient to ensure that the method gives arbitrarily
close bounds on λk, for any k, by taking n sufficiently large.

5. To illustrate the method of the last section let us consider the
problem :

d Λi , \ dy
dx V dx

The reciprocals of the eigenvalues A of this problem are the extremal
values of the quotient
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on the space of functions y(x) with sectionally continuous first derivatives
and with y(0)=y(l) = 0. If {φn(x)}7 is a basis in this space and

Jo " Jυ

then the problem is reduced to that of finding the extremal values of
the quotient (aX, X)l(βX, X), where α=(αc,)Γ, β=φt,)T.

Let the sequence {φn} be defined as follows :

3

Ψι^= Σ ct1 sin jπx ( i ^ l , 2, 3) ,

where the constants cn are chosen in such a way that

.0696 820 0 0

(«„)?=[ 0 .0173 553 0

0 0 .0073 9145

The values of the constants cV] are given by the table :

ί\:i

1

2

3

1

.3713655

-.0189824

.0007276

2

.0378935

.1828646

-.0197241

3

.0039777

.0301791

.1199722

We now apply the method of the last section with n=2. Since the
matrix a is of diagonal form, e,t and eaa may be taken as zero and p.A

may be taken as the maximum of the elements au (i]>3), namely
c^-.0073 9145.

For ΐ = l, 2 we have

c o s ^^ + 2c,;, cos 27r.τ 4- 3ci3 cos 3τrα;) cos jrr^ dx

— 2πz Σ c*i ( I (1 + ̂ *) c o s πx c o s i 7 1 ^ ' ^ ) + 4c|2( I (1 + x) cos 2τr̂  cos /TΓX dx)
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+ 9cfJ I (1 4- %) cos Sπx cos jπx dx j + 6c uc i 3 Π (14- x) cos 7r# cos i7r^ dx \

(14- x) cos 3 ra cos jπx dx)

0 / J

_ 8 Γ a ^ ( 1 4 - 4 ^ 4 2 ^ ( 4 + (2,7+ I) 2) 2

π'l UcΓri ( 4 ^ - I ) 1 ^ ( ( 2 r τ + l ) 2 - 4 ) }

A (4^-9)4 ^(4^_i)^(4^_9yJ

We make the following estimates :

Σ ^ t - M 8 < - Γ / 2 + 3 ? 2 + 6 5 3 +-^- Σ ^- = .00712722 ,
^ (4ua-1)1 151 351 631 15 ί=ί ^

y ( 4 + ( 2 ^ 1 ) T < 29̂  53̂  85» + 53 85 + 5 £ 1 __SBS#00541918
451 77; 4 - 5 (2^+ iy

2 5 - + 4 5 j + _732_f 1 ^ 1 = .26514737 ,
7 ι 27 1 55{ 8 <χ=5 ^

) .17-25•,37^45^ 65-73 1 A 1
ja" 1 5 ^ 35-272 βS2"-"^ 8 oέl o

[

-.04125482 .

This gives

Σ 6ϊ7<.0011490=^ ,

Σ 65j<.0023514 = % .

To obtain a value for r2 we let F(x)= ΎiXiψix), where (x^ is any
ί = 3

given vector. Then

ί
i ri

F'2(x)dx=xl\ φ'^dx+
ϋ JO

ί = 4

= .646936^ + Σ ^ > .646936 Σ %l ,
ί=4 ί=3

Hence,
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Σ,Σ,bt,xtx, \{l + x)F'\x)dx
^ J 3 ^ J u - (.646 936) ^ .646936

Since the bound on the right side is independent of N we may take

τ2=.646936 .

The use of equation (13a) now gives the following results, where
λΎ and lz are the reciprocals of the first two eigenvalues of the original
problem: *

.06968 <L*!<^ .06984 ,

.01735 <Lίz<L.01754 .

6. In conclusion we shall show how the method would work on
the two dimensional problem of an oscillating square membrane of
variable density namely,

uxx + uyy-= — Agu in R ,

u=0 on C ,

where R is the region 0 < C # < l , 0<^?/<Cl> ^ ^ s ^ n e boundary n'
and g is a nonnegative function with the derivative gxy sectionally
continuous in R-hC. The reciprocals <~" the eigenvalues A are the ex-
tremal values of the quotient

r i p I ciri

Q(u) = \ \ gu2 dxdy / \\ (μl + ul) dx dy
Jojo / Jϋjϋ

in the space of functions u(x, y) with sectionally continuous first deriva-
tives in R + C and vanishing on C.

As a basis for this problem we take the functions

2 sin mπx sin nπy Λ 9 q

and arrange them in a sequence φL, φ2, φ-ό, ordered according to the
value of mz + ri*; that is,

^ 2 s i n τ ^ s J

As Λ^->oo, (7^=O(i/iV) Let
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- Yj)dxdy=didy )JoJϋVθa? dx dy dy

If u= "ΣχXιψι, then
ί = l

Q(%)=(αZ, Z)/(/?X, X)

where

In order to show that the method will give arbitrarily close esti-
mates of the eigenvalues, we must show that the quantity defined in

(4) can be determined and made arbitrarily small, and that X 2 ah c a n

i=l j=n+l

be made arbitrarily small by taking n sufficiently large. The estimate

pn can be managed by noting that (4) is equivalent, in the present

case, to

gifdxdy/ \ \ (vl +ιή) dx dy ,

o / Jojo

wheίv, an is the set of admissible functions which are orthogonal to
ψu ψf> β *» Ψn Let g<LM in R. Then we may define f>n by

ΰ
ι /Ciri

v1 dx dy \ \ (vl 4- v2

v) dx dy ,
o / Jojo

and this gives

(17) ft.-,^ —

since the functions {̂ J are the extremal functions for the quotient in

(16).
Next, the numbers al3 satisfy

|cU<: c j j

where C is an absolute constant, and

1
if Ύπi φrrij ,

1 if τnί = m, ,
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Hence, for 1 <I i <C n,

if Ui φ γij ,

V //2 //2

— 2LJ niinn

and

SO

Therefore,

Σ «l c
ι(n+1)

Σ Σ α ί , < C

ί = - l 7 - W + l

where C, and C, are absolute constants.
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PERTURBATION OF DIFFERENTIAL OPERATORS

HENRY P. KRAMER

Introduction, N. Dunford, in a series of papers [3, 4, 5], has
initiated the study of operators on Banach spaces that allow a represen-
tation analogous to the Jordan canonical form for operators on a finite
dimensional vector space. Such operators he has called spectral opera-
tors. They include, of course, self-ad joint operators which have found
such wide application to problems of analysis. J. Schwartz [9] has ex-
hibited an interesting class of spectral operators which contains many
classical ordinary differential operators. His chief tool was a pertur-
bation theorem that guarantees that if T is a regular spectral operator
with a discrete spectrum that converges to infinity sufficiently rapidly
and B is a bounded operator, then TΛ-B is again a regular spectral
operator. This result provides a tool for showing that second order dif-
ferential operators with suitable boundary conditions are regular spectral
but does not suffice for proving this property for differential operators
of higher order. This paper refines the method of J. Schwartz to allow
application also to differential operators of higher order by showing
that under certain conditions a regular spectral operator T may be per-
turbed by an unbounded operator S with the result that T-\~S is still
regular spectral.

The paper is divided into three parts. The first part presents
preliminary notions and lemmas to be used in part II where the princi-
pal theoretical tool is fashioned in Theorem 1. Its object is to set
forth conditions under which an operators is spectral (see Definition 1).
This problem is attacked in the following form. Suppose that T is known
to be a spectral operator. Under what hypotheses on T and a per-
turbing operator $ may it be said that the operator TΛ-S is spectral?
An answer to this question is given in Theorem 1. This theorem is
then applied in the third part to differential operators of even order
with " separated '' boundary conditions on a finite interval. First, the
simple operator defined by means of the formal differential operator

and " separated '' boundary conditions is shown to be spectral.
dxίlL

Then, with the aid of Theorem 1, the perturbed operator

d2fL Ά Q dzμ-1

Received August 21, 1956. This paper constitutes part of the author's doctoral dis-
sertation submitted to the University of California, Berkeley, 1954, prepared under the
guidance of Professor Frantisek Wolf
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where Qt may be any bounded operator on ..5^(0, 1) is seen to be
spectral as well.

1. Preliminaries. N. Dunford [3, p. 560] has laid down the
following.

DEFINITION 1. Let X be Banach space and T a transformation on
X to X. If E(e) is an operator valued function of Borel sets in the
complex plane and

(a) E(e)E(g)=E(ef\g), E(e')=I-E(e), TE(e)=E(e)T,
(b) E{e)x is completely additive in e for each xe X,
(c) the spectrum of T, with domain and range restricted to E(e)X,

is contained in the closure of e, and
(d) there exists a constant M such that for every Borel set e \\E(e)\\

<^ M, then E(e) is called a resolution of the identity for T and T is
called a spectral operator.

The preceding definition covers a wide class of operators. In what
is to follow, attention is focussed on a very restricted subset consisting
of the regular spectral operators. The meaning of the adjective regular
is clarified as follows.

DEFINITION 2. An operator T is regular if the resolvent set f>(T)
•φφ and if for some λep(T), (T — λ)~ι is completely continuous. (To be
abbreviated c.c.)

Note that the spectrum of the c.c. operator Rλ(T)=(T — λ)~ι consists
of a sequence of isolated points converging to 0.

It follows by the spectral mapping theorem [12, p. 324 et seq.]
that the spectrum of T consists of a sequence of points λn converging
t O CXD.

In the sequel, the condition

shall sometimes be made in regard to the spectral measure of a regular
spectral operator T. The above condition asserts that the spectral
measure corresponding to the point at infinity is the null operator or
μ = 0 is not an eigenvalue of T"1. The existence of T~ι as a c.c. opera-
tor may be assumed without loss of generality in view of the following.

LEMMA 1. / / λ{)e (>{T) and RKf)(T) is c .c , then Rλ(T) is c.c. for all

λ 6 p(T).

Proof. The first resolvent identity [6, p, 99] states that for λ{) e p(T)
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and λep(T)

The product of a bounded operator and a c.c. operator is c.c. and
the sum of two c.c. operators is again c.c. Thus it is apparent from
(1) that Rk(T) is c.c. for all λ e p{T).

LEMMA 2\ If S is a closed operator and B is a bounded operator
and .&r(S)Z3 &(B), then SB is bounded.

Proof. SB is closed. For suppose that xn -> x and SBxn ->y. Since
B is continuous, Bxn -> Bx. But since S is closed S(Bxn)-+ S(Bx)=(SB)x
=y. Thus SB is a closed operator defined on all of X and therefore
by virtue of the closed graph theorem [1, p. 41] it is bounded.

LEMMA 3. Let J be a finite set of integers and suppose that Bn is
a set of bounded operators and En a set of mutually orthogonal projec-
tions1, both sets being indexed by J. Then

Proof. L e t / e if and | | / | | = 1. It is an easy consequence of the
Hermitian nature of En and Schwarz' Lemma that

II ΣEnBnf\\z- Σ Σ (#»*»/, EkBkf)
ne.r ne.r h ej

<,Σ\(Bnf, EnBnf)\<Σ\\Bnf\\ \\EnBnf\\
nej nej

nβJ

In the sequel, reference shall be made several times to the following.

CONDITION A. All but a finite number of the idempotents2 E(λh)
associated with the points of the spectrum of T project onto a one-
dimensional range and

For a regular spectral operator, the last statement is equivalent to the
assertion that the range of

1 If T is an operator then J&(T) denotes its domain and &(T) its range.
2 Λn idewφotent is an operator E such that E=E2. Idempotents Eλ and E2 will be

called orthogonal if E-ιE >—-0. If E~E*, then E is a projection.
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consists only of the null vector.

CONDITION B. Let dk denote the distance between λk and the rest
of the spectrum of T. Then there exists a number τ^> 0 such that

Σ d Γ < > .

For use in the theorem to follow, it is necessary to define explicit-
ly the concept of a fractional power for the special class of operators
with which the theorem is concerned.

In this definition an application shall be made of a theorem of
Lorch [8] and Mackey which asserts that if E(e) is a uniformly bound-
ed spectral measure, then there exists a nonsingular transformation of
Hubert space into itself such that WE(e)W~1 is a Hermitian spectral
measure.

Let T be a regular spectral operator on Hubert space H which
satisfies Condition A. Let & be the finite set of characteristic values
λ for which the idempotents E(λ) project onto ranges of multiple dimen-
sion. Let W be the automorphism of H into itself which carries the
spectral measure E(e) of T into the Hermitian spectral measure E'(e)
= WE(e)W~1 of T'=WTW-\

Since E\&)\_ I—E'{,^), the two projections effect a unique decom-
position of H into a direct sum

where

and

Now

where

and
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Upon restricting the domain of T[ to Ht and that of Tr

λ to H.z one is

confronted by a finite dimensional operator T[ and a normal operator

If — 1 < > < 1 , the function /(/() = Γ of the complex variable λ is

regular on the spectrum of T[ provided 0 0 σ(T) (which is no essential

limitation of generality) and f(λ) is restricted to its principal value.
Then, following Dunford [4], one defines

= Σ Σ
i ml

{Tι ~ ^ {»(»-1) {y-m + l)XΓm&(λt)
ml

where μi is the order of the pole λi or the resolvent and E'{λi) is the
restriction of /£"( 4̂) to E\^)H. Since T'<A is normal one has the spec-
tral decomposition

and by the operational calculus for normal operators (cf. [10, pp. 48-
51] for example)

Now define (T[)y and (T$)v by the rules

% , ϊ ( Γ ί ) v Λ = 0

Then

(r) v

and finally,

The proof of the perturbation theorem below strongly depends on
the operational calculus for spectral operators developed by N. Dunford
and explicitly adapted to the case at hand by J. Schwartz [9]. For
the sake of ready reference the pertinent results are presented here.

If T is a regular operator with a finite set of characteristic
numbers

which are multiple poles of the resolvent and
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and f(λ) is a complex-valued function which is uniformly bounded on
the spectrum of T and possesses the required derivatives, then

f(T) ̂  Σ Σ J4 - (T- WEVi) + Σ

For such an f(T) Dunford [5] has shown that the series defining it
converges in the strong operator topology and that there exists a con-
stant K(T) such that

On the basis of this result J. Schwartz [9] enunciates the
following.

LEMMA. If S is a regular spectral operator all but a finite set of
Ίvhose eigenvalues λn are siwφle poles of the resolvent, and if S also
satisfies

then there exists an absolute constant K such that

for all λ not within a fixed radius ε of any multiple pole of the resolvent.
In the theorem below let it be understood that

2. The perturbation theorem. The principal result of the present
paper is the following.

THEOREM 1. Let T be a regular spectral operator on Hilbert space
H and suppose that it satisfi.es conditions A and B. Let S be such a,
closed operator that for som,e v, 0 < ^ < ^ l , £&{S)Zϊ &{Tv) and 1^(5*) ID
^ ( Γ * v ) . Moreover, suppose that for all but a finite set P of positive

integers, for all

l-tn\= λ d,,\ =φ max ^ < M ,

Under the above hypotheses, T + S is again a regular spectral operator*
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Proof. Since, for λ e p{T)y

&(Rλ{T))= &(T) C ^ ( Γ v ) g &(S),

SRλ(T) is well defined and is, in fact, by Lemma 2, a bounded operator.
By the same token ST~* is bounded. In order to show that T-+-S is
regular, it need merely be ascertained that Rλ(T + S) is c.c. at one point
λ e fj(T) and for this purpose we examine the formula

(1) Rk(T+S)=Rλ(T){I-SRλ(T)}~1

which is valid for λep{T) provided only that {l~SRk{T)}-1 exists. If,
{/—SRλ(T)) ~1 not only exists but is also bounded, then RK(T + S) as the
product of a c.c. and a bounded operator is itself c.c.

But the hypotheses of the theorem allow one to state that
{l-SRλ(T)}-L<2 for λeCn and all n sufficiently large. This is proved
as follows

By Dunford's operational calculus and the hypotheses of the theorem it
is true that

\\W-T)T-*}-'\\<^M* max j ^ 1 <M l

μeσc/'.)|Λ — μ\ <ΓΊΓ

Let \\ST-T\\~M,. Then

(2) llS^(2ΊII-^7^ = j ^

and since in view of Condition B, Iim(i~τ/2—0, one has for all n suf-
ficiently large \\SRK(T)\\ < 1/2 while λeCn. From this estimate follows
the possibility of expanding

in an absolutely convergent series so that

||< 1 / 2 .

It is immediate from the above that if λ lies outside the assemblage
of circles Ck, then for each μk e o(T) we have

where / is the intersection of the line connecting λ with μk and the
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circle Ck. From this, the above estimates follow a fortiori. Consequent-
ly, except for a finite set, all points of σ(T+S) lie inside the circles Ck.

In order to show that the spectral measure {E'(λ[)} of T+S is
uniformly bounded it is convenient to assume that the spectral measure
{E(λk)} of T consists of Hermitian idempotents, that is, that E(λk) = E{λk)*.
That this assumption may be made without sacrificing generality is due
to the theorem of Lorch-Mackey. It must be verified that if T and S
satisfy the conditions of the theorem so do T'=WTW"λ and S'=WSW-1.

(a) σ(T') = σ(T). For suppose λβp(T). Then RK(T) is a bounded
operator. But

is also bounded. Hence p(T)=p(T') and the result follows on taking
complements with respect to the extended complex plane.

(b) dim WE(λk)W-1 = dim WE(λk)<* dim E(λk).

However, since W is continuous, with a continuous inverse, it maps no
nonzero vector into zero and thus, since dim E(λk) = l for almost all k,
the same is true with regard to WEiλ^W"1. Also

0=w(l-

(c) fe ^(WT'W-1) => W-ιfe ^{T^z^W-'fe &(S)=$fe Ω)(β)

and similarly for the adjoints.
In the remainder of the proof it shall, therefore, be supposed that

the spectral family E{λk) consists of Hermitian idempotents. For con-
venience, the primes introduced above shall be suppressed.

The proof of uniform boundedness rests on the formula

(4) Rλ(T+S)-Rλ(T)

λ(T)SRλ(T)SRλ(T){I-SRλ(T)}~1

which is easily obtained from (1) and the operator analogue of 1/(1 —
l — x), and on the basic relation

(5) # ( 4 ) = A ; ( f Rλ(T)dλ.
2 J ccn

Let J be a finite set of positive integers all of which are sufficient-
ly large that is, NeJ=}N>N,. The nature of N0(T, S) will be
specified somewhat more precisely in the sequel. Then, on integrating
both members of (4) one finds that
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( 6 ) || Σ En-E{λn)\\ <| | Σ -K ί R£Γ)SRκ(T)dλ

\nej2πι J σ
-f i

where £^ represents the spectral measure corresponding to that portion
of the spectrum of T-hS which lies inside the circle Cn. In order to
place bounds on the right member of (6) one employs a well established
inequality for operator valued functions A(λ) analytic on a contour C
of length L [12, p. 324].

A(λ)dλl<Lma,x\\A(λ)\\.L.
7 II λ e c

Applying this result to the second term of the right member of (6) one
finds

\\nej2πi J cn

^ Σ , , 1 \\R,(T)\\
nej2π ό

Now using inequalities (2) and (3) to estimate ||{/— SRλ(T)}~ι\\ and
HSi^ϊ7)!! and Lemma 3 of J. Schwartz reproduced above, one obtains
for this term the bound

1 y M* ̂ M* V A<OO

The term

requires closer investigation. By employing the representation

A A n

where An{λ — λn) is a power series in λ — λn without constant term and,
applying the residue theorem, one finds that

^ . 1
Zπi J cn

It remains to find bounds for
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and

On observing that

and identifying SRΰ(λn) is one case and S*β°*(Λw) in the other with i?w

of Lemma 3, one sees that the terms in question are bounded by

It is not difficult to estimate ||Si2°(Λw)||. Again turning to the
device

and noting that

one has

/α4H Σ

(In this formula, in order to avoid notational complications, the effect
of the finite set of multiple poles of the resolvent has been neglected.)
One sees that R%λn) = F(T), where F{λ) is defined in the neighborhoods
of the spectral points λk as follows:

x near 4 k φn

0 λ near λn .

Consequently, fΓP%ln)^G(T) with

— λ near λk kφ n

0 λ near λn

Now applying the bound arising from the operational calculus one
obtains
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Let μeCn.

'\i-μ\ *'

Un—μ\ 1

\λ-μ\

- 1

3 \r\
2 \λ-μ\

Using the hypothesis made with regard to this function one finally has

||SflU,)||<* I MM J -M'J- .
6 Un iln

Now one is prepared to state that

ΣA
nejZm

Rλ(T)SRλ(T)dλ < 2M-
»=i dτ

n

Thus

If it were known that En is the spectral measure corresponding to one
point of the spectrum of T + S, the proof of uniform boundedness would
be complete. The next few lines shall be devoted to showing that,
indeed, except for a finite number of indices, in every circle of radius
Idn about λneo(T) there lies exactly one point λ'neo(T-\-S) and the
spectral measure E\λ'n) corresponding to this point has a one dimensional
range.

In (6) let the index set J have n for its only member. Then one
sees on examining the estimates of the bound of the right member of
(6),

( 7 ) V'n-E(λu)\\ <- K'

For n sufficiently large

K >
1
2

which by Lemma 4 of [9] (also cf. [10, p. 320]) implies that E'n and
E(λn) have the same, dimension, which by hypothesis is 1. Therefore,
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(T+S)E'n considered as an operator on the range of En is a scalar λ'n and
precisely one point λ'neσ(T+S) lies in the circle Cn.

Thus T+S is a regular operator with uniformly bounded spectral
measure and is therefore a spectral operator, (cf. [9, Lemma 2].

From the foregoing proof flow two consequences deserving of ex-
plicit mention.

COROLLARY 1. The operator T-t-S satisfies Condition B and for all
n sufficiently large \λ'n — λn\<^\dn .

Proof. In virtue of the remark following inequality (3) of the
proof, all but a finite number of the points of σ(T+S) lie inside the
circles Cn with center at lneσ(T) and radius ldn. Moreover, the dis-
cussion following (3) shows that except for a finite number of indices
exactly one point λ'n of o(T+S) lies in the circle Cn about λn. Now
suppose λr

kea{TΛ-S) and its nearest neighbor is 4-i£ σ(T + S). Then

<; 1/3 dk + dk +1/3 dk-x <; 5/3

and

It is of importance to know whether the perturbed operator T±S
still enjoys the " completeness " property

with which the unperturbed operator T is endowed by hypothesis.
The answer is given in the following.

THEOREM 2. If T and S satisfy the conditions of Theorem 1, then

Proof. The proof rests on Lemma 16 of [9] which states:
The space S^iT)— {f\ for each positive integer k, E(λk)f=0} is the

set of all fe H for which f(λ)=JRλ(T)f is an entire function of λ.
Suppose C is a contour in the complex plane whose minimum dis-

tance from the spectrum σ(T) is d(C). Consider the function
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λ-μ

for λ e C and μ e σ(T). Now let λ' e C be such that dist (λ'9 σ(T))=d(C).
and let μn be the point in σ(T) such that dist(Λ', μn) = d{C). Then

By choosing C properly one can achieve that ||&ffλ(jΓ)|| < 1/2 for λ e Cn

and, therefore, a fortiori, for λ e C. Hence, by (3) \\{I-SRλ(T)}-1\\<C2
and by the above cited lemma, for feS^T), one then has for λeC

<——11/11.= d(C)

Now, given ε > 0, choose C in such a way that kfjd{C)<Ce . Then

The arbitrary nature of ε, the fact that f(λ)=Rλ(T-\-S)f is an entire
function of λ, and the permissible application of the maximum modulus
principle allow one to assert that for all λ in the interior of C,

Rλ(T+S)f=0.

In particular at points λep(T), Rλ(T + S) has an inverse. There are such
points in the interior of C. Thus / = 0 and the theorem is proved.

3. Application to differential operators of even order. N=2μ.
In appliying Theorems 1 and 2 to differential operators, the unperturbed
operator T is identified with the operator r = dNjdxN with domain
restricted by the two considerations:

(a) fe &(T) only if / e C ^ O , 1) and ^ - ^ is absolutely continu-
dx*'1

ous, and
(b) fe&(T) only if / satisfies N==2μ linearly independent boundary

conditions of which μ bear on the point x=0 and μ on the point x=l.
These boundary conditions can always, by linear combinations, be brought
to the form

i = l, 2, . . . , μ

h > fe > > /bμ
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( 8 ) Bt{f)=fi'i>(l)+ Σ βijβ'Kl) ΐ = l, 2, . . - , ^
3 = 0

k > k > * * * > h

To show that T is a regular operator it is most convenient to refer
to Lemma 10 of [9, p. 434] which states:

Let T be a differential operator and suppose that for some complex

λ both T—λ and T* — λ have an inverse. Then T and T* are regular

operators, T and T* have spectra related by σ(T)=σ(T*), and determine

spectral measures Ex and E2 related by Eι{λ) = Et{λ) .
Consider the differential equation (τ — λ)f=O. By manipulating a

tentative power series solution it can be shown in an elementary fashion
that there exists a set of linearly independent solutions which are entire
in the parameter λ. Let this set be {uL, %a> •••, uN}. The general solu-
tion of the above equation can then be expressed in the form:

On imposing the N linearly independent boundary conditions, one obtains
a system of N homogeneous equations in the N unknowns Cέ. This
system has a nonvanishing solution vector if and only if the determinant
of the matrix of the coefficients vanishes. This determinant, however,
being a linear combination of entire functions in λ is itself entire.
Hence its zeroes are isolated. Thus, for all but a countable set of
points λk, one finds that f(x) = 0, and thus (T— λ)~ι exists. But, since
the adjoint operator also has exactly N linearly independent boundary
conditions associated with it, it follows by the same argument that there
exists only a countable number of points μ}, where (T*~-μn)~ι fails to
exist. Consequently, one can find a point λ such that both (T—λ)~v

and (T* — I )" 1 exist and, therefore, by the cited lemma, T is regular.
It shall now be verified that T satisfies the spectral Condition B.

This will be accomplished by showing that the above boundary conditions
are what Birkhoff [2] has called regular. To clarify the meaning of
this term the technique for obtaining an asymptotic development for
the characteristic numbers and functions established in the general case
by G. D. Birkhoff [2] and amplified and developed rigorously by J. Ta-
rnarkin shall here be briefly recapitulated.

Since there are N linearly independent solutions of the equation

dNf , ,
dx^A

a solution of the boundary value problem must have the form
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The requirement that Ai(f)=Bι{f) = 0 leads to a set of N linear equa-
tions in N unknowns {C?}. A necessary and sufficient condition that
a nontrivial solution {CΊ} of this system exist is the vanishing of the
determinant of the coefficients:

Aλ(uN)

l(uλ) ... Bμ(uN)

It should be noted that the solution is unique provided not all of
the first minors of Δ(λ) vanish, that is, in this case, the characteristic
value is simple.

A fundamental set of solutions of the differential equation

consists of

where

Λ
dor

uh{x; λ)= p/

,ί(l/Λr)argλ

and ωfo are the AT" distinct Afth roots of unity. The transformation
(>N = λ transports the entire Λ-plane into a sector of angular width 27r/JV
of the jθ-plane. There is, then, a biunique correspondence between the
zeroes of Δ(λ) in the Λ-plane and the zeroes of d(p) = Δ(pN) in a sector
of angular width 2πjN in the ^-plane.

The elements of the determinant d(p) can, by (8) be written as
follows:

A,(uί)=P'i\aήt+ Σ

^ ^ ^ Bί7}

where lim Λ π = lim B.u = 0. After removing the factors pkι, pι\ from
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the rows with index i and i-vμ one has

n\kΛ A- A s.λkΛ _1_ Λ

•
ω^ + A^

The sector S shall now be chosen in a convenient fashion. To this
end, it is proper to distinguish between two cases:

(!) μ is even

2μ

π
—

2μ

(2) μ is odd

Let c/j=^/μ. Then in the first case, for arg/)=0

In the second case

for arg p=πj2μ. Suppose the indexing is arranged so that in the first
case

and in the second,

Upon bringing e/ω^ out of the determinant wherever dl(pω,)y> 0, one
has

where δ'(p) has the appearance
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ω\ι
. Λ n

ϊ* + Aμl

CO μ+l

lwII

Vμ+i

Here, 2ΪΓ and S37/ are matrices consisting of μ — 1 columns and // rows
all of whose terms have for a factor an exponential term with negative
real part. Asymptotically, these matrices are therefore negligible.

Thus

0(1/?)

Only the case in which μ is even shall be considered explicitly since
the treatment for μ odd is completely analagous. First note that

and

1 V ί

Thus ω1=— ωμ+1. Now let ^Ξ=(ϋfci and yi==ωιim The conditions that
&i > 2̂ > * > μ̂ a n d Zi > ^ > Zμ and the fact that ω=e ί7Γ/μ is a
primitive root of unity imply that xt Φ xlf yt φ y} for iφj. Recall that
by the arrangement of the indices, ω s=ω (^"μ / 2 ) + s"1=α>~μ /W"1. Therefore,

and

Using now the explicit representation of %TI and W given previously,

but taking only zero order terms into account, one has
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t * - 1

μ+l /v,-μ/2/ϊ»2μ-l
2 ) ) «*y2 **/2

2 7 .

y ? 7 ?

/μ > ί/μ f/μ> > ί/μ

4- < r p ω ]

/2 / y,-μ/2 / y,μ + l # , β -μ/2 '2μ-1
» " y μ «'μ ? j **-'μ "-'/t/.

? ί/2

By bringing common factors outside the determinant, one can simplify
the expression for <>'({>).

1 T

l y* yt-'

i Vμ. - vi~Λ

y'c\ y

The first determinantal factor of the second term above can be treated
by noting that l=xf- and switching columns μ — 1 times and then bring-
ing the factor α# outside. These manipulations yield

n'U>)=er< Π χ^hy

- β - p < ° i

1 /y . . . -r'χ-Ί

1 Λ< /v.μ -1

I rp . . . /y.μ-1
•*• «^μ ^ y μ

1 or ί̂ ^"1

i m

1 ί/a

1 Vμ

a;;
,μ-T

1 2/1

+ 0(1//))

Now note that the determinants involved in the above expression are
Vandermonde determinants. But such determinants do not vanish
provided only the entries (xL, x,, •••, xμ) or (ylf y,, •••, ?/μ) are distinct.
That this is the case was demonstrated above. Therefore, the given
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boundary conditions are regular in the sense of Birkhoff since in the
equation

not both θλ and θ2 vanish. Tamarkin [11] who examined " separated "
boundary conditions failed to reach tbis general conclusion. By includ-
ing common factors in the term 0(1/p), the equation df(p) = O can now
be written in the form

But

Hence, on multiplying by e~pωi, one obtains

or

On taking square roots of both members, one finds that

epί=±i(

or

Taking logarithms of both members and noting that

lo

results in the expressions

( 9 )
ρJIk = πl2 4- 2πk + 0(1/p)

or

(10)

By neglecting the terms of order lip first estimates may be obtained
which may then be inserted in (9) or (10) with the following results:
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(ii)

or

(12)

where the £?7(/fc) and En(k) represent bounded functions of k.
It should be noted that (11) and (12) are valid not only in the

case in which μ is even, but also when μ is odd.
Reverting to the Λ-plane one finds that

(13)

or

(14)

Since the zeroes of Δ(λ) furnish the poles of the Green's function,
one sees that all except a finite set of characteristic values of T are
simple poles of the resolvent. This does not, however, assert anything
about the number of linearly independent characteristic functions as-
sociated with each characteristic value. This matter will be dealt with
below.

From (13) and (14) one obtains expressions for the distance separating
the points of the spectrum σ(T),
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k

k i

so that in any case, for r > \\2μ —

Γ <

This verifies that Condition B is satisfied.
In view of a prior remark it is merely necessary to exhibit a non-

vanishing first minor of Δ(λ) in order to permit the conclusion that all
but a finite number of characteristic values are simple. Moreover, since
A(λ)=F(p)df(p) where F(p)φO it is sufficient to find a nonvanishing
first minor of δ'(p).

Reverting to the expression for δ'(p) and singling out the minor of
the element in the first column and 2μth row results in the exhibit:

jg/

Here 35/jΓ and 33'/z are obtained from 33' and 35r/ by deleting the last
row in each of these matrices. On expanding M2μ,tl in terms of the
μxμ minors occupying the first μ rows and their complements and not-
ing that all the terms of 2F and 33//J are negligible in view of the fact
that each has an exponential factor with negative real part, one has

+ 0(11 p).

In the previously employed notation, xί=ωkίf yί==ωιiJ one can write Λf2fAi 2

in the form:

μ

Π ™μ/2
Xl

ΐ = l
ff2

1 2/i

1 2/2

1 2/μ-l
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Again, the Vandermonde determinants appearing above do not vanish

because the xt and the yι are distinct. Upon using the previously deriv-

ed expressions for pky one sees that |ep*ωμ+i|->l. Hence, it follows that

M.lμΛ φ 0 except, possibly, for a finite number of indices fc, and thus

all except possibly a finite number of characteristic values are simple.
In order to show that T is spectral, it is necessary at this point

merely to establish a uniform bound on the spectral resolution E(e) of
T. But because T is regular this is tantamount to giving a uniform
bound for sums

whenever J is a finite set of indices. In establishing such a bound,
the finite set of {λk} which are multiple poles of the resolvent or multi-
ple characteristic values cause no difficulty. Therefore, it shall be sup-
posed that E(λk) projects onto a one-dimensional range. One can
construct E(λ^) explicitly by drawing on Lemma 12 of J. Schwartz which
states:

" Let E be a projection of 5-space Xonto a finite dimensional range,
and let E*: X* —> X* be its adjoint. Then if <plt •••, φn is a basis of
EX, we can find a unique basis of ψ?," ,ψ% of E*X* such that
ψ*(φj)=διj, and then

for any / e l .
Now let ψm(x) be the mth characteristic function of T, and ψm(x) the

corresponding mth characteristic function of T*. Then

ri

}j = 111:3

Jo

Now suppose that

(15) ψjx) = θm{x) + l Kλ{m, x)
m

m

where Kλ{m, x) and Kλ{m, x) are uniformly bounded in m. Then

^ ^
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and

\φΛχ)ΨJχ)dχ={φυ,, ίUHIflJI3 + --(K, KJ + ±(K1, θm) +1,(K1, κt).

Jo m m m'

Upon insert ing these expansions in t h e expression for E(λ,,,)f above, we
get

\θ,,{x)~θjy)f{y)dy r
E{λm)f= -•>? +M

PJI3
+

PJI 3 m \\θm\\>

ί l j l

Kλ(m, x)θm(y)f(y)dy c^m^KL(m, x)K2{m, y)f(y)dy

mm

where E.m is a Hermitian projection since its norm is unity and it is an
integral operator with symmetric kernel and AVl, Bm, Km are multipli-
cation operators that are uniformly bounded in m.

Now if J is a finite set of integers,

J I | Σ
βJ I neJ

V> 1 D

nej n

The first term is bounded by 1 because of the Hermitian character of
the idempotents. Applying Lemma 3 to the second and third terms
yields the bounds

and

For the fourth term one has the bound

sup \\Kn\\ Σ h .
n n = i U"

So that, granting the above representation for the characteristic func-
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tions of the operator T and the adjoint Γ*, one may draw the conclusion
that T is spectral.

In order to exhibit φjx) and ψ.m(x) in the forms (15) and (16) it is
necessary once more to resort to an asymptotic development, (cf. p. )

•1

(17)

2μ

3=1,2, >.,μ

From the compatibility of equations (17) it follows that C% is proportional
to the minor MIM+ι>ί of the element in the μΛ-1 st column and the ΐth
row of the matrix. This gives then the representation

μl

Here and in similar expressions to follow, proportionality factors are
freely discarded. Since the above determinant closely resembles d'(p),
essentially the same techniques that were successful before shall be
applied again. For k=2, 3, •••,/* we have ϊR(pm

ω*)>0. Bring β p Λ
outside the determinant.

Si1

1 Λ
μ + 1 » - " l . μ + 1

The entries of the matrices 21f and W1 are all negligible for large jfc.
Expanding the above expression one obtains
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ω>
ω\μ

epmωιx

ePιmωιω\μ

OJXIP).

Recall that the two determinants involving W1 are proportional to lowest
order in lip and that the factor of proportionality is ± 1 . Hence, on
incorporating this factor in 0(1/^; x) and bringing βpΛ+i and epmωi out-
side the determinants one has:

φm(x)

epm^x 1 }

ωι

22
•
•

. . eW C a r ~ υ

• ^ »

ω\μ

epmωμ-

ω2

It should be noted that except at x=l, the terms 6p^ωA c " 1 ) r , k Φ 1 are
negligible asymptotically since 3ΐ(pM(ωfc(a?—1))< 0. Now using the pre-
viously obtained asymptotic expressions for pm, one finds that for x Φ 1

cυ2

2

2

ω\μ

CL>2 2 * * *

ω\μ

<^μ>
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φmi{%)

4-

<PmIl{x)'

4- ι; x) .

On incorporating common factors that are uniformly bounded with
respect to m into the terms O(l/m; x) one has

m

(18)

or

) = sin 2πmx 4- ^S
ΎΠ

(19)

m

Thus the characteristic functions of T have been brought into the
desired form. Note, however, that since τ=dN!dxN is formally self-
adjoint, T and ϊ7* differ only in the boundary conditions. But it is a
simple matter to see that the boundary conditions of ϊ7* will again be
of the " separated " type (cf. [7, p. 186]) and that therefore all the
developments leading to an asymptotic expression for ψmI and ψmII will
be the same as those that served to find (18) and (19). Now note that
the first terms in (18) and (19) in no way reflect the quantities occur-
ring in the boundary conditions. Therefore it may be concluded that
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mI(x) = Bin 2π(m + A
\ 44 / m

(20)

Λnu(aO=sin 2π(m— —
4/ m

or

m
(21)

V 2 / m

By what has preceded, then, it may be concluded that T is spectral.
To complete the verification of Condition A for T is still necessary

to show that

* = 0

To this end note that

lim

so that in virtue of the fact that Ek is Hermitian and the above cited
lemma of J. Schwartz and F. Wolf, the range of

for sufficiently large m is finite dimensional. But in his Lemma 15
J. Schwartz asserts that

is either infinite dimensional or else the null space. But since

SL ϋi range (i— X, EQk)j ,

the above implies that SL is finite dimensional and hence consists of
the null vector alone.

It remains to verify the special hypothesis placed on the spectrum
of T in Theorem 1 and embodied in the requirement that for all suf-
ficiently large N, for all
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λ e c '

max
zkeσiT ) \λ-

where

^ = d i s t [ ^

First observe that if N=k,

ιi-
and if N Φ k

U Iv ]_

I; _ ^ 1 I n ιi-v
lΛiV ^k\ \ LJfNk\

DNlc

<? 1 / 7 τ / 2

^ o(i ) ~ {ANH .

iv 1 ; Jv

Zfcl ^

c
< l p*^ + i

1 4-1 <-

In any case, therefore, there exists a C such that

max - M L < C-'^ .

Now recall that according to the previously obtained asymptotic formulas,
λN ~ N2μ and dN ~ N2μ~\ Hence

Convergence of

Σ -—

is assured for r > 1/2// —1. It is thus required that 2//(v —1)4-1 < —1/2.
This requirement is satisfied by taking v <(// — 3/4)/// and, a fortiori, by
the choice v=(2// — 2)j2μ.

Finally, it is necessary to determine the class of operators £ for
which 3ί iβ)"Z> &{Ty). To this end it shall be shown first that if
f(x)e & (Γv), then f(x) is v=2//-2 times differentiable. Suppose

. Then
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If this series is differentiated termwise 2μ — 1 times one has formally,

ί ('sin 2π(k± l/4)# sin 2π(k± H±)yf(y)dy
IJo

4-
k

But this expansion converges for fe &(TV) almost everywhere to
/o-~2)(a;). Now let S be any closed operator whose domain consists of
2μ —2 times differentiate functions on the closed interval (0, 1) such
that the (2μ-2)nd, derivative is square-integrable. Theorem 1 applies.

Thus in conclusion one has the following.

THEOREM 3. Let T be the operator d2μΊdx2μt with boundary conditions

Ai(f)=f^i\0) + Σ «u/α )(0) <=l, 2, , μ

h > K > > K

then, if S is any closed operator whose domain consists of 2/>< —2 times
differentiate functions f with /(2μ~2)(#) e J9?(0, 1), T + S is a spectral
operator and, if E{λk) is its spectral measure, then

In particular, one may make the following choice for S:

where the coefficients qt(x) e »Sf(0, I)2. More generally, S may be chosen
in the form:

2 Note that the theorem actually holds for the wider class of boundary value problems

in which the 2μ - l t h derivative can be eliminated by a standard change of dependent

variable [7, p. 72],
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where Qt is any bounded operator in ~S£X0, 1).
Application of Theorem 2 shows that if fe J2£(0, 1) and E(λk) are

the idempotents corresponding to T+S, then the series expansion

converges in -S (̂0, 1) norm.
An additional consequence of Theorem 3 and Corollary 2 of [9, p

448] is the following.

COROLLARY 1. Iffe C2μ-\ f^~ι\x) is absolutely continuous, f^~ι\x)
e J2f (0, 1), and f(x) satisfies the boundary conditions above, then f can

be expanded in the series

where convergence is in the sense that, letting

we have

+ max max.
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DEVELOPMENT OF THE MAPPING FUNCTION

AT AN ANALYTIC CORNER

R. SHERMAN LEHMAN

!• Introduction* In this paper we shall apply some theorems proved
in [3] to study the following problem in conformal mapping. Let D be
a domain of the complex plane, the boundary of which in the neighbor-
hood of the origin consists of portions of two analytic curves Γx and Γ2.
Suppose Γλ and Γ2 meet at the origin and form a corner with opening
7rα>0, and suppose the origin is a regular point of both curves. Let
F(z) be a function which maps conformally the upper half plane $ 2 > 0
onto the domain D, and suppose that F(0) = 0. How does the mapping
function F(z) behave in the neighborhood of the origin ?

A partial answer to this question is given by a theorem stated by
Lichtenstein [5]. Let F~\z) be the inverse function which maps D onto
the upper half plane. Then Lichtenstein stated that for z in the neigh-
borhood of the origin

dz

where ψ(z) is a continuous function with ^(O^O.1 This same result
can, however, be obtained with much weaker requirements on the
boundary curve as has been shown by the work of Kellogg [2] and
Warschawski [6].

In the case α = l where the curves Γλ and Γ2 meet at a straight
angle Lewy [4] has proved a much stronger result—that F(z) has an
asymptotic expansion in powers of z and log z. The method used in this
paper is a generalization of that used by Lewy. We find that for all
a > 0 the function F{z) has an asymptotic expansion in the neighborhood
of the origin. If a is irrational then the expansion is in integral powers
of z, and z*. If a is rational then the expansion is in integral powers
of z, zf*, and logs.

2* Notation, First let us make clear what type of asymptotic
expansions we will be considering. Let χn(z), (^=0,1,2, •••) be a se-
quence of functions such that yn+ι(z)lχn(z)~^0 as z->0 in the sector

Received September 11, 1956. This work was sponsored by the Office of Naval Research
and the National Science Foundation. It appeared in report form as Tech. Report No. 21,
Contract Nonr 225 (11), March 1954. The author wishes to acknowledge the guidance of
Professor Hans Lewy.

1 Lichtenstein proved this result only in the case of irrational a. The complete theorem
has been proved recently by Warschawski [7].
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. A series ΣjAnχn(z) is called an asymptotic expansion for
n = Q

f(z) valid in the sector θ^argz^Lθz, and we write

if for every integer JV̂ >

as 2->0,
Clearly, in a sector #i<Iarg2:<I#2 a function /(s) cannot have more

than one asymptotic expansion in terms of such a sequence of functions

We shall sometimes be concerned with asymptotic expansions which
are valid in every finite sector on the logarithmic Riemann surface with
the origin as branch point. By this we mean that the limits hold for
2->0 in any finite sector Θ1^argz^θ2 where θλ and 02 are arbitrary con-
stants. Otherwise expressed, we consider any sequence z19 z2, zs,
such that there exist constants θx and θ2 for which

(^=1,2,3, . . .)

and

lim |sJ = O.

Thus we exclude any sequence for which lim sup | arg zn \ = oo.

Throughout this paper we will use the letter c to denote a typical

coefficient in a series when the exact value of the coefficient is not im-

portant in the discussion. For example, instead of writing Σ cmnz
n, we

may write simply ^cz71. Thus we avoid a multiplicity of subscripts.

3. Principal results* Let F(z) be the mapping function which maps
the upper half plane onto the domain D, and let Γx be the image of
a portion of the negative real axis and Γ2 the image of a portion of
the positive real axis. We shall prove the following theorem.

THEOREM 1. If oc^>0 is irrational, then for z->0 in any finite
sector

where k and I run over integers, &^>0, £2>1 and the coefficient A
If ct=plq^>0, a fraction reduced to lowest terms, then for z->0 in any
finite sector
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where k, I, and m run over integers for which

and the coefficient A
In this theorem the terms in the series are supposed to be arranged

in an order such that a term of the form zk+ιoύ(\ogz)m precedes one of
the form zk'+ι'*(\ogz)m' if either k-hla<Ck' + Va or k + la=kr + Γa and
m^>mf. Arranged in this order, these products of powers of z and
log z form a sequence of functions χn. The coefficients in these expan-
sions are complex constants, some of which may be zero.

From Theorem 1 an asymptotic expansion for the inverse function
F~\z), which maps the domain D onto a portion of the upper half plane,
can be obtained easily by replacing the asymptotic expansions by finite
developments with error terms and proceeding as usual in the inversion
of functions. The result obtained is stated in the following theorem.

THEOREM 2. // a is irrational, then for z-+0 in any finite sector
the inverse of F(z),

ivhere k and I run over integers, k^tO, ZI>1 and B01φ0. If oc=p\q,
a fraction reduced to lowest terms, then for z->0 in any finite sector

where k, I and m run over integers for which &I>0, l<Ll^Lp, 0<Lm<Lk/q ;
and BmφQ.

There is another way to state Theorems 1 and 2 in the case of ra-
tional a. We can write

F(z)^zllaM1(z9 zλl«, zq logs)

and

F~\z) ^ z« M2 (s, z*, zp log s)

where M1 and M2 are triple power series in their three arguments. In
the case a=l the triple power series reduces to a double series in s and

z \ogz as found by Lewy [4].
Observe that the function F(s), defined originally for 0<Iarg2<Ξ>,

can be extended by the reflection principle across both the positive #-axis
and the negative x-axis since the curves Γτ and Γ2 are analytic curves.
The images of Γ1 and Γ\λ in such reflections are again analytic curves.
Hence F(z) can again be extended by reflection, and in fact can be con-
tinued near the origin onto the entire logarithmic Riemann surface with
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branch point at the origin. The function F(z) is regular for \z\ suf-
ficiently small, say, 0 < | 2 ; | < j o , on any sheet of this Riemann surface
but, generally speaking, p depends on the sheet of the surface.

4* Extension of developments to larger sectors. If the asymptotic
expansions of Theorems 1 and 2 hold for z->0 in 0<Iarg2<;7r, they
hold for z->0 in any finite sector 0i<larg3<102. Suppose, indeed, that
for given r > 0 , F(z) has a finite development of the form

(4.1) F(z)=ΣAklmz^(\ogzr + o(zη

as 2->0, 0<Iarg£<i7r, where the sum is extended over integers k, I, and
m such that kΛ-la<Ir, &ί>0, 1^1 ) and 0<im<l&/p when <X=PIQ, m = 0
when a is irrational. Then the same development is valid for z->0 with
— 7τ<Iarg2<10. To see this let C* be the image of ζ in an analytic reflec-
tion on the curve A . Then £*, the complex conjugate of £*, is an analytic
function of ζ, say φ(ζ), which is regular for \ζ\ sufficiently small. By
the reflection principle, since F(z) takes the positive real axis, arg2=0,
into the analytic curve Γlf we have

F(z) = (F(zψ=Φ(F(z))

for 0^arga:^7r. Observe that this formula continues F(z) for \z\ suf-
ficiently small into the sector — 7r<Iarg2:<l7r. Since Φ(ζ) is regular for
\ζ\ sufficiently small and Φ(0) = 0, we have

for z->0. Then with

we have by (4.1) for ̂ —>0, 0 < a r g 2 < π ,

where A^O, Ϊ^O, k + la<Lr — na m is limited as before. Also

o(Cl«)=o((O(z«)yl«)=o(zr)

as ^->0. Consequently for z-+0, 0<arg^<7r τ

where /fc, Z, and m are restricted in the same way as in (4.1). But this
means that F(z) has a development of the same type as (4.1) for
— τr<;arg2<I0. This new development must coincide with that given
by (4.1) since both hold for z-+0 with arg2=0.
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In the same way we can reflect across the line &τgz=π and estab-
lish that (4.1) holds in the larger sector thus obtained. By induction we
can prove that (4.1) holds in any finite sector #i^arg2<^#2. Thus we
see that if Theorem 1 holds for z->0 in the sector 0<iarg2<i7r, it holds
for z-+0 in any finite sector.

5* Some lemmas. We now state some lemmas which will be used
in the proof of Theorem 1. Lemmas 1 and 2 are special cases of
Theorems 4.1 and 4.2 of [3]. The integrals are Lebesgue integrals ex-
tended over positive values of t. The range of z considered is 0 < | z | < A ,
— 27r<Iarg2:<I0. We take the branch of the analytic function of z,
\og(l — zit) which is real for 0<O<£, argz=0.

LEMMA 1. Let A be a positive real number, μ a real number ]>•—1,
and n a nonnegative integer and let

<p(z)= f V(log t)n log (l-zlt)dt .
Jo

Then there is a power series q(z), which converges for \z\<^A, and
a polynomial in logz, P(logz), such that

If μ is an integer then, the polynomial P is of degree n 4-1 and if μ is
not an integer, it is of degree n.

LEMMA 2. Let β(t) be a measurable function, bounded absolutely for
0<^t<^A and such that /?(£)-> 0 as t~+0 through positive real values.
Let μ be a real number > —1 which is not an integer, and let

W log(l-z/t)dt .

Then there is a power series q(z) such that for z—>0

LEMMA 3. Let μ be a real number. Let η(z) be an analytic func-
tion, regular for Q<l\z\<lR, ^i5^arg^^^2 and such that η(z) = o(zμ) for
£->0 in the sector βι<L&γg z<L02. Then the derivative

for z->0 in any sector in the interior of the sector θ{<Laγg z^θ2.
A proof of Lemma 3 is obtained by estimating a Cauchy integral

with path a circle about z with radius d\z\, o small.
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LEMMA 4. Let λ be a real number. Then for z->0 with |arg£|
bounded, \z~λF(z)\ tends to zero if Λ<α and tends to infinity if Λ>α.

A proof of Lemma 4 can be obtained by a study of the Poisson
integral (see Gross [1, pp. 57-61] the requirement that z-^0 in an
angle in the interior of 0<Largz<Lπ can be eliminated by using the fact
that Γτ and Γ2 are analytic curves).

This lemma also follows from the theorem of Lichtenstein mentioned
in the introduction.

6Φ Preliminary transformations. First we establish that the general
case can be reduced to the special case in which the curve Γ2 is an
analytic curve tangent to the positive real axis and Γλ is a portion of
the ray argC= — πa in the ζ plane. Consider a function ψ(ζ), regular
for |Cl sufficiently small, for which ^(0) = 0, φ/(O)=b^Of and which takes
the analytic curve Γλ into the line argζ=—πa. The function ψ maps Γ2

into an analytic curve tangent to the positive real axis. For the sake
of simplicity of notation we carry through the proof in detail only for
irrational a.

Suppose that we know Theorem 1 in the special case in which Γλ is
the line argC= — π<x, then for z->0 we have

where the sum is extended over integers k and I for which &I>0, Z>0,
h + loc<Lr. In addition, we can suppose that CΌO=£O. Then since the
inverse

as ζ->0, we have

)

+ +s**{Σ czk+ι« + o(zr)} +o{zN«)

for 2->0. Hence by taking N large enough, we obtain

where Cίo=-—CΌOT^O. All of the sums considered are extended over
b

integers Jc^>0, 1<LO, k + lcc^Lr. Thus we need consider only the special
case in which Γτ is a portion of the line argC= — ̂ a.

Now we make another preliminary transformation. Let w=ζιloL> so
that the line argC=— πa goes into the negative real axis. The analytic
curve Γ% goes into a curve Γr tangent to the positive real axis. This
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new curve Γ' is not analytic at the origin; we will find it useful to have
the equation of Γ;.

Let ζ=ξ Λ-iη. The analytic curve Γ2 is given by an equation with
real dj

for 6>0, where the series is convergent for ξ sufficiently small. Then
on Γ' we have

Separating real and imaginary parts, we have with w^u-hiv

Consequently,

and thus

Hence we obtain finally that the curve Γ' is given by an equation of
the form

(6.1) v=

for u<0, where the series converges for u sufficiently small.

7. Obtaining the asymptotic expansion. Let Ώ' be the image of
D under the transformation w=ζlloi we can now assume that near the
origin Π is bounded by the negative real axis and the curve Γr given
by the equation (6.1). We consider the function w=G(z)=(F( — z))ll<*
which is a univalent conformal mapping of a semi-neighborhood y<^0 oί
the z=x + iy plane into the domain U of the w=uJriv plane. Observe
that G(0)=0, a portion — .4<Ia;<I0 of the negative α -axis is mapped into
a portion of the negative w-axis, and a portion 0<^x<LA of the positive
a -axis goes into Γf.

We will need an estimate for G(z) and its derivative G\z). By
Lemma 4 we have for z->0, |argz| bounded

for any Λ<α. Hence for any ε > 0
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(7.1) G(z)=o(z1-*)

as 2;~>0 with |argz| bounded. Using Lemma 3 we conclude further that
for 2-»0

(7.2) G'(z)=o(z-*) .

Now we construct a certain function H(z) which differs from G(z)
by a single-valued function. Observe that the function

G(z)=u(x, y) + iv(x, y)

can be continued across the negative real axis, argz= — π, by the reflec-
tion principle. In particular, we have for arg£=0

G(z)-(Gze-2*l)=u(z, 0) + i φ , 0)-[%(s, 0)-iv(z, 0)]

= 2 i φ , 0) .

Consider for — 2π <:arg2<I0 the analytic function

(7.3) H( π Jo dt

where the integral is extended over positive real values and the branch
of \og(l — zlt) considered is the one which is real for 0<O<£, argz=0.
That the integral converges follows from the estimate (7.2).

For arg£=0 we have

2^ f "M*0) = = 2iφ, 0)
π Jo dt

since

2πί for
log(l-zlt)-log(l-zβ-"*lt)=.

I 0 for

Thus the difference p(z) = G(z) — H(z) satisfies the condition p(z)=p{ze~%ηci)
for arg£=0. Furthermore p(z) is regular for 0 < | ^ | < A , — 2τr<argz<<0
it is continuous as z approaches a point of the positive real axis for
argz=0 or arg£= —2π, and it is bounded for s->0. Hence by Riemann's
theorem on removable singularities p(z) is equal to a power series con-
vergent for j ^ K A

From (6.1) and (7.3) we conclude that for — 2τr<;arg£<I0

(7.4) {)
J I dt
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where p(z) is a power series with constant term equal to zero.

By (7.1) and (7.2) we have M M ) = 0 (ί-«) and uΛ=o(t^1-^) for

£->0, ε an arbitrary positive number. Hence for £->0

du(t,0)

dt

Inserting this estimate in (7.4) and applying Lemma 2, we obtain for
z->0,

(7.5)

where q(z) is a power series in z which converges for \z\ sufficiently
small. We conclude that α ^ O by applying Lemma 4 with λ slightly
larger than a. Knowing this, we can conclude further that a is posi-
tive from the fact that G(z) maps the positive real axis into Γ', a curve
which at the origin makes an angle of π with the negative real axis.
Since G(z) = [F(-z)]ίloύ the result of § 4 shows that the estimate (7.5)
holds for z->0 in any finite sector.

Now we prove Theorem 1 by induction. We consider first the case
in which a is irrational. We shall prove that there are constants akl

such that for every integer N,

(7.6) G(z)= Σ aklz
k+ι* + o(z?*) , k^l, Z>0

as 2-»0 with | a rgz | bounded. We begin by noting that G(z) has such

a development for N=NQ where iV0 is the integer for which <IiVo<l
a

4- --. This follows directly from (7.5) since for ε sufficiently small
a

α)(l-ε):>iVoα and hence o(2 ( 1 +* ) ( 1- ε )=o(zV). Consequently, to prove
(7.6) by induction it will be sufficient to show that if G(z) has a develop-
ment of the type (7.6) with an error term 0(zm), then G(z) has such a
development with an error term o(#(iV+1)Ω% In proving (7.6) by induction
we will simultaneously obtatin a proof of Theorem 1 by using the fact
that F(z) = [G(-z)γ.

By the induction hypothesis we have

H Σ
k l^N

and thus since α l o = α

u(t, 0)=a

where the sum is over k^>0, l^>0, for which (k, l)Φ(0, 0) and Jc + la
<LNa — l. Using the binomial theorem, we find
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un*=an«tn*{ Σ ct^' + oit""-1)} , (&I>0, Z^O) .
λ + ZctfgiVtf-l

Moreover, by Lemma 3 and the induction hypothesis we have for £->0

?.0).=s=gtG/(ί)= Σ

where &I>0, Z^>0. Inserting these estimates in (7.4), we obtain

where the sum is over integers &I>0, ZI>1, for which &4-Zα:<I(iV-fl)α: —1.
Now we apply Lemmas 1 and 2, observing that since ZI>1 and a is
irrational, kΛ-loi cannot be an integer. We find for 2->0, — 2π<arg£<I0,

(7.7) G(s)= Σ α ^ + ^ + φ ^ 1 * ) , ( * ^ 1 , Z^O) .

When k and Z are integers for which k-\-la<LNa, the coefficient akl must,
of ceurse, be the same as that appearing in the development with error
term o(zNoί).

We wish to prove that (7.7) holds for 2->0 in any finite sector.
We note that for z-+0,

where the sum is over fc^O, Z^O, which for (k, 1)^(0, 0) and k + la
<L(N+1)OL — 1. Hence by the binomial theorem

(7.8) F(2) = ΣΛι«*+ I Λ + ΦCΛΓ+a)fli"1)

where the sum is extended over k^>0, l^l, for which k + la<L(N+2)a — 1.
Note further that AQ1^0. We have proved (7.8) for z->0 with O^arg^
<L2π, but by the result of § 4 this formula must hold for 2->0 in any
finite sector. Consequently, from (7.8) by using the binomial theorem
we can obtain (7.7) for z->0 in any finite sector. Thus G(z) has
a development with error term o(z(N+Όa). Hence by induction (7.6) and
also (7.8) hold for all N. This proves Theorem 1 for irrational a.

Now we prove Theorem 1 for a = p/q9 a fraction reduced to lowest
terms. Let γ be a positive irrational number less than a. We shall
prove that there are constants aklm such that for every integer N, as
3->0, in a finite sector

(7.9) G(z)= Σ aklmz*+ι*(logz)m + o(z*v)
k + lcc^Ny

where k^>l, 0<Ll<^q — l, and 0<Ira^I~^——. We begin by noting that
V

G(z) has such a development for N=N0 where No is the integer for
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which <liVo<l + —, as can be seen directly from (7.5). Consequently,

r r
to prove (7.9) by induction it will be sufficient to show that if G(z) has
a development of the above type with error term o(zNΊ), then it has
such a development with error term o{ziN+r)Ί).

By the induction hypothesis we have for positive £->0

where fcl>l, O ^ i ^ g —1, 0<lm<I ~ —. Since am=a^0, we have
V

u(t, 0)=at{l + Σ,ctk

where the sum is over integers for which

(7.10) k^O O^l<Lq-l O^m^k/p fc-fkc<LNγ-l .

Using the binomial theorem, we obtain

+ o(tNy-1)}

where k, I, and m are restricted by the conditions (7.10). Moreover, by
Lemma 3 and the induction hypothesis we have

L 0) =

where again Λ, I, and m are restricted by the conditions (7.10).
Inserting these estimates in (7.4) we have, since

the formula

G(z)=p(z)+

The sum in the integrand is extended over integers k, I, and m for which

Now we apply Lemmas 1 and 2 to obtain a better development for
G(z). Note that kΛ-la^kΛ-lpfq cannot be an integer unless l=q. Con-
sequently terms of the form

cbk+ι*(\ogt)m

in the integrand, with Iφq, produce besides a power series only terms
of the form
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czk+ι+ιoύ(logz)m'

with

V

in the development for G(z). On the other hand, when l=q they produce
besides a power series only terms of the form

czk+1+ι«(log z)m'=czk+p+1(\og z)m'

with

In applying Lemma 2 we observe that (N+l)γ — l is not an integer be-
cause γ is irrational. Hence we conclude that for z->0, —

(7.11) G(z)= Σ akl1^*+

where fcl>l, Q<Ll^q-l, and O ^

As in the case of irrational a we obtain from this the result

(7.12) F(z)= ΣΛ ί ms f c + ί*(logz)m + φ ^ 1 ^ * " 1 ) ,

where the sum is over integers k, I, and m for which

&^0 , l<Ll<Lq , 0<Lm<Lk/p;

By (7.11) this result holds for z->0 with 0<;arg£<;27r, but by the
result of §4, it must hold for 2-+0 in any finite sector. From this we
then obtain (7.11) for z->0 in any finite sector. Hence G(z) has a deve-
lopment with error term o(zCN+Όy). Thus by induction (7.9) and also
(7.12) hold for all N. This completes the proof of Theorem 1.

We note finally that by Lemma 3 derivatives of F(z) and F~\z) of
arbitrary order have asymptotic expansions which can be obtained by
differentiating the expansion for F(z) and F~\z) termwise and then
rearranging the terms in the new series in an appropriate order.
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CONVEXITY OF ORLICZ SPACES

HAROLD WILLIS MILNES

In a paper [1] which appeared in 1936, J. A. Clarkson defined a
property of Banach spaces known as uniform convexity. Let |/| | denote
the norm of an element / of such a space and let {fή, fή'} be any
sequence of pairs of elements such that ||/n|=|/n'| = l and lim J|/ή + /ή/||=:l.

The space is said to be uniformly convex if these conditions imply that
lim \\fn—fn\\ = 0 It has been shown [2] that an equivalent definition is

one in which the condition ||/̂ 1I=||/?ΓH=1 may be replaced with the
weaker ||jζ||<Il and | | /Γ | |^1 . Clarkson has been successful in showing
that the Lebesgue spaces Lp are uniformly convex if p Φ1 and that
Lλ is not uniformly convex. The convexity properties of more general
classes of Banach spaces have been investigated by M. M. Day [3], I.
Halperin [4] and E. J. McShane [7].

A concept of convexity related to uniform convexity has been de-
scribed and is termed strict convexity. It is defined in the following
manner. -*t / ' , f" be any pair of elements in a Banach space such
that ||/1I H|/ΊI = 1 a n d έ||/'4-/ήΊI=l. The space is said to be strictly
convex if these conditions imply that ||/' — / " | = 0. In a Euclidean space,
strict convexity corresponds geometrically to the property that the unit
sphere | | / | = 1 does not contain a segment. We remark that, if a space
has the property of uniform convexity, then it possesses that of strict
convexity as well; however, the converse implication is generally untrue.

The principal objective of this paper is to investigate the conditions
which an Orlicz space [9] must satisfy to be uniformly convex. Also
the related problem of determining the conditions for strict convexity
is considered. A solution to both of these questions has been presented
which may be regarded as complete in the sense that both the neces-
sary and sufficient criteria are developed.

We begin by formulating the definitions of Orlicz spaces in accord-
ance with the notations to be used subsequently. Except in minor
details we shall adopt the standard conventions. Let v=φ(u) be a
monotonically nondecreasing function not identically zero, defined for
all 0<I^ such that φ(u)=φ(u — ) and <̂ (0) = 0; also, let φ(u) denote the
associated function φ(u) = φ(u + ). Let u = ψ(v) be the function inverse to
φ(u) which is defined by the relations:

Received December 26, 1956. This paper is part of a doctoral dissertation with the
same title completed under the direction of Prof. G. G. Lorentz at Wayne State University,
January, 1956. The work was in part, supported by the National Science Foundation
(Grant: NSF G 1014).
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( i ) Φ(0) = 0,

(ii) ψ(v)=u if φ(u)=v and u is a point of continuity for <p(u),
(iii) ψ(v)=ψ(v-),
(iv) if φ(u)φφ{u), then ψ(v)=u for all φ(u)<Lv<Lφ(u),
(v) if lim^(^) = Z<oo, then ^;(i;)=4-oo for all

Also, let ψ(v) = ψ(v + ) . Since (̂w) and ^(v) are monotonic functions they
are Lebesgue measurable and their indefinite Lebesgue integrals define
the functions:

φ(u) = \Uψ(ΰ)dΰ and Ψ(v)=[Όψ(v)dv .
Jo Jo

Let Δ be a measure space with a ^-finite nonatomic measure μ and a
tf-ring of measurable subsets. Let f(x) be a ^-measurable function
defined on Δ; then, the functions ψ(\f(x)\), Ψ(\f(x)\)9 Φ(\f(x)\), etc., are
also ^-measurable on Δ. For each function f(x), we define:

| |/| |Φ=SUP( \f(x)\g(x)dμ
J Δ

where the supremum is taken for all g(x)'^zO satisfying I Ψ(g)dμ<Ll.
JΔ

The Orlicz space LΦ=LΦ(Δ, μ) is defined to be the collection of all func-
tions f(x)f /^-measurable on Δ, for which | |/ | |Φ<co. It may be shown
(Zaanen, [10]) that the space Lφ is a Banach space with the norm ||/||φ.
If Φ(u)=uι\ l<I;p<αD then Lφ is the classical Lebesgue space Lp.

Necessary and sufficient conditions for both types of convexity will
be expressed directly in terms of the functions <p, ψ, etc. For strict
convexity of Lφ these conditions are simply that ψ(v) and Ψ(v) should
be continuous in the extended sense. By this we mean that if VQ is
defined by VQ= sup?; then ψ{v) and Ψ(v) are continuous for v<^V0 and

(i;)=oo and lim ?Γ(i;)=oo. Of course, requirements additional to
F

Q o

those for strict convexity must be satisfied to imply uniform convexity.
It is found that these conditions are alternative according as Δ is as-
sumed to have finite or infinite measure. If Δ is of infinite measure it
is necessary and sufficient that the space satisfy the following require-
ments: not only must the functions ψ(v) and Ψ(v) be continuous in the
extended sense but the function ψ(μ) may neither increase too rapidly
nor too slowly. Precisely stated, there must be a constant 0 < i V < o o
such that Φ(2u)jΦ(u) <̂  N for all 0 < u (or what is readily shown to be
an equivalent statement, that there exist a constant 0 < i V < o o such
that <f(2u)lψ(u)<LN for all 0 < ^ ) , and also that for each constant
0<^ε<^l/4 there is a corresponding constant l<CRζ<^^> such that if

then R2 <C<p(u)l<p((l — ε)u). When Δ is of finite measure, the func-



CONVEXITY OF ORLICZ SPACES 1453

tions φ(v) and Ψ(v), as before, must be continuous in the extended sense;
however, slightly less stringent conditions apply to the functions ψ(u)
and Φ(u). It is required merely that the conditions stated for Δ of
infinite measure apply only in the limiting sense; namely, that there
exist a constant 0<iV<«D such that lim sup Φ(2u)IΦ(u)<LN and that

W->oo

for each constant 0 < ε < l / 4 there is a corresponding constant l<β ε<cx>
such that Rζ<^\im inf ψ{u)lψ({l — e)u).

W->oo

We begin the demonstration by establishing first the statements
relative to strict convexity.

LEMMA 1. If f(x)eLφ is a step function, then

l/k-supf \f\gdμ
{/(αO^o J Δ

where \ Ψ(g) dμ <I 1 and where g(x) is also a step function with the

same regions of constancy as f(x) and g(x)=0 whenever f(x)=0.

Proof. Let \f(x)\=ft on sets et of measure μ(et)=λt^>0 i = l , 2, ••-,

n. Let h(x)^>0 be any function such t h a t I Ψ(h)dμ<Ll. Define:
JΔ

ι=^Γ1\ h{x)dμ=gι on et .

Since Ψ(v) is the integral of a monotone nondecreasing function, it is a
convex function so that by Jensen's inequality [10]:

and therefore:

On the other hand:

f\gdμ=±flgiλi=±fLΛ hdμ\
ί = l 4 = 1 \ Jet J

A \f\hdμ.
JΔ

It is clear that we may take g(x) = 0 where f(x)=0 since the

integral \ \f\gdμ will remain unaltered in value while \ Ψ(g)dμ can
JΔ JΔ
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only become smaller.

THEOREM 1. // Ψ{v) is discontinuous, then Lφ is not strictly convex.

Proof. Since Ψ(v) is defined as the integral of a positive function,
the only type of discontinuity which can arise is of the form Ψ(V0)<^oo
while Ψ(V0-h) = cχD where O < y o < ° ° . (It is to be remarked that the
definition of the space Lφ excludes the case V0=0 as trivial). Let
λ<Lmm[μ(d)l2, l/2^(F0)] be a finite number, A g J , B g J be two sets
such that Af\B=b and μ(A) = μ(B) = λ. Define f'(x) = llλVQ on A and
0 elsewhere, / " ( # ) = 1/ΛFO on B and 0 elsewhere. By Lemma 1, if c',

dr represent positive n u m b e r s :

Ί | Φ = s u p .}_- λcf where Ψ ( \

| /" | Φ =sup -1 λc" where Ψ(c") <; -- .

Since Ψ(VB)<L 1/2/1 and ?P(v)=oo for V0<v the largest value of c' or
c" that may be chosen is c'=c" = yo. Thus | | / ' | | φ = | / " | | φ = l .

But i\f'(x) + f"(x)\=i\ff(x)-f"(x)\ = ll2λV0 on A\jB and 0 else-

where, so that by Lemma 1:

Z || II Δ || c>o Z/ /̂0

where c represents any positive number with Ψ{c)<Lll2λ. As before,
it follows the largest value of c it is possible to choose is: c=V0 so that

THEOREM 2. If ψ{v) is discontinuous, then Lφ is not strictly convex.

Proof. Let vQ= sup v, Vo= sup v. By Theorem 1 it may be assumed

that Ψ(v) is continuous in the extended sense, so that lim^(i;)=oo.

Two cases are distinguished according as ψ{v) is or is not continuous at
v=vQ.

(A) i?0 is a point of discontinuity for Φ(v). Let vQ <^ β <C Vo be a

point of continuity for ψ(v) and choose β large enough so that the re-
lation Ψ{β)=ljλ defines λ<Lμ{Δ)j2 and λ<C<^. It is then possible to
determine sets A^Δ, BξLA such that: μ(A) = μ{B) = λ and A[\B=Q.

For each value of a parameter O<C^<^1 define cLv^=\l~

) and
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j" - A

^ on B ,

(0 on (A\JB)'.

By Lemma 1, | |/J Φ = sup(αp? + bpyj) where Wi^ + Wiy)^!/*. Since Ψ(v)

is the integral of a positive non-decreasing function not identically zero,
Ψ(v) increases continuously to infinity; hence, it is possible to replace
the condition Φ(ζ) + Φ(η)^llλ by Ψ{ξ)-\ Ψ(jj) = Hλ with ξ^>vQ, η^tv0 for
it ξ19 ηv satisfy Ψ{ξ^)-\rΨ(y]^<illλ it is always possible to find f2l>£i,
%^Vι so that Ψ(ξ2)-{-Ψ(wJ = llλ and £2i>^o, %^^o while α ^ + δ ^ ^
ttpfi + δp^. Thus η='η{ξ) is determined as a single-valued function with
vo<Lξ<Lβ. If Ip(ξ)=apς + bpη(ξ)ΐhen\\fPlΦ= sup 7p(ί:). But/^(f) assumes

its maximum subject to ^ 0 ^ f ^ / 5 either for 6=^0, 6=/? or at points
for which d+lp{ξ)\dξ and d~Ip(i)ldξ simultaneously change their signs,
where d+ldξ, d'jdξ denote respectively upper and lower derivatives.
That is, the maximum must be assumed either at a boundary of the
interval vo<Lζ^β or at a turning value or a cusp. But

dξ

so that

If p is any value 0 <C V <C P where

then d-Ip(ξ)!dξ>0, vo<ξ<β; and since Ip(vQ)<Ip(β) it follows: ||/JΦ

Ip(β) = l for all such p. Choose 0 < p / < p / / < P / 2 and define

Then i(f'(x) + f"(x))=ifp,+Ax) so that | |/ /k==I/X=i| |/ / + / X = l . On
the other hand \fr(x)~fff(x)\ is different from zero on B and therefore
its norm is not zero. Thus Lφ fails to be strictly convex in this case.

(B) ô is a point of continuity for ψ(v). Let a be a point of dis-
continuity for ψ(v) so that Φ{oί)<^ψ{a)φ 0. Also, let tf</2<F0 be a
point of continuity for ψ(v) and choose β large enough so that the relation
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Ψ(a) + Ψ(β) = llλ defines λ<Lμ(Δ)l2 and 0</ l<oo. It is then possible
to determine sets AgΞz/, BξZΔ such that μ(A)=μ(B)=λ and AP |S=0.

Consider the equations

Since (̂/9) I> ̂ A(α) > 0 it follows that the determinants of these equations
do not vanish; therefore, the equations may be solved and it may be
observed that the values of a', b', a", b" are all greater than zero.
Define

' a'
λ

V

λ

,0

on

on

on

A

B

(A\JB)'

f

'a"

~λ

b"

λ

0

on

on

on

A

B

(A\JB)'

^l. As in (A)By Lemma 1, | |/Ί|Φ= sup(α'f + b'η) where

above the condition Φ(ξ) + Φ(y)<Lllλ may be replaced with
and ξ^Vo, yJ^Vo and these relationships determine ξ=ξ(η) and η=ij(ξ)
as single-valued functions with vo<lξ<Lδ and vo<Lγ<Lδ respectively
where Φ(δ)=llλ. If d+jdξ, d'jdξ denote respectively upper and lower
derivatives, it may be seen:

d+η _

dξ

d rj __ _

dη dη

where Ψ(ξ)+Ψ(y)=l.
If I\ξ)=a'ξ^b'7]{ξ) then | | / ' | φ = sup I\ξ). As in (A), Γ(ξ) assumes

«osίss

its maximum subject to vo<Lξ <Lδ either for ξ=v0, ξ=δ or at points
for which d+l(ξ)ldξ and d~I(ξ)ldξ simultaneously change their signs.
Now

lim Γ^ί ^ ^ l = α ' -
dξ J ^ n +

since η = δ when f=v0 and ^(<5)>0. Thus, Γ(ξ) increases in the im-
mediate neighborhood of ξ=v0 and ξ=v0 cannot give a maximum. Also



lim Γ ^ i Γ L * + b\d+

CONVEXITY OF ORLICZ SPACES

« a'-V Km WL- -
&()

1457

dξ

since 6 '>0. Thus /'(£) decreases in the immediate neighborhood of ξ=δ
to the value Γ(3) and ξ=δ cannot give a maximum.

Now

a n d

dξ

Since a'φ(β)-b'f(a)=0 and the condition Ψ(ξ) + Ψ(τ](ξ)) = llλ implies that
as f increases, η cannot increase and conversely, a critical examination
of the expressions above establishes the following relations:

if ξ>a then ^ ! < ; o ,

if € = « then ^
dξ dξ

if then

Since that d+Γ(ξ)ldξ1 d~Γ(ξ)ldξ can change sign only once, it follows
that the value ξ=a, η=β gives unique maximum to Γ(ξ). Thus | |/Ί|Φ=

If I"(ξt)=a"ξ + b"η(ξ) then an analogous argument leads to the re-
lations

if then ^
dξ

if ί = « then ^ ί l )

if then

so that ||/"|| ( 1 >=α"α; + δ/'/3=l.
Consider

f'(x) + f"{x)_\
2λ

b' + b"

on A

on B
2λ

0 on (A \J B)'
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Let

•a on A

g(x)=< β on B

0 on {A\JB)r

then

and

Γ±f"
2

' + a'', , δ'
2

Thus by the triangle inequality £| |/'-f/"| |φ=l
A consideration of the defining equation shows that br φ b". There-

fore \f'(x) — f"(x)\ is not zero on B and it may be concluded immediately
that I/' — /"| |φ=£0. Thus Lφ fails to be strictly convex in this case
also.

LEMMA 2. // ψ(v) is continuous in the extended sense and 0<Lv<L Fo,

Proof. If t'^?;7 then the relation certainly holds. If v <^v' then

Ψ(v') = \ φ(v)dv= \ψ(v)dv+ [V <p(v)dv^>¥(v) + <p(v)(v'-v)
JO Jo Jυ

If vy>v' then

Γ ί V Γ v) .

THEOREM 3. / /

(i ) Ψ(v) is continuous in the extended sense,
(ii) φ(v) is continuous in the extended sense,
(iii) f(x)eLφ and |/(#)|=ess sup \f(x)\=M<^ oo on some set of posi-

tive measure and also, when Δ is of infinite measure, f(x) vanishes
outside a set of finite measure; then there is a constant 0 <̂  Cf <̂  oo and

a function gf(x)^0 such that ||/flΦ=\ f{%)gf(x)dμ, where ψ(gf(x)) = Cf\f(x)\

and [ Ψ(gf)dμ = l.
JΔ

Proof. We first establish the existence of a constant Cf and a
function gf(x) which satisfy the last two relations of the theorem. Let
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E = E{\f(x)\>0] and let S^S[\f(x)\=M] with μ(S)=δ^0. Since
x x

Ψ(v) is continuous in the extended sense and increases from zero to
infinity, there is a value v' < Vo such that Ψ(v') = Hδ. With C = Φ{vf)M-1

define g'(x) = v' for xeS and g'(x) = φ(C'\f(x)\) for xeS'. Then
= C/|y(α;)| and

Ψ{g\x)

Two cases will be distinguished according as

(A) \

or

(B) ( Ψ(ψ(C'\f\))dμ>l.
JΔ

(A) For each value of the parameter 1 <̂  k < oo define

, , iψ{C'\f(x)\) for xeS' ,
w lmin[^(CΊ/(α;)|), vf] for

The family of functions gk(x) is then a continuous one satisfying
(̂flrfc(̂ )) = C/|/(a?)| and increasing with k from g1(x) = φ(Cί\f(x)\) to ^(a?).

The integral I(k)=\ Ψ{gk)dμ increases continuously from value <^1 to

values ^ 1 . There is then a value kQ such that I Ψ(gicQ)dμ = l. The

function gjnQ(x)=gf(x) and the constant C'=Cf are those of the theorem.

(B) Let C0=inf C where J y(p(C|/(αOI))Φ^l. Since

limφ(C\f(x)\)=φ(C0\f(x)\)
C-+C +

it follows by Lebesgue's theorem that

Again, let C°=supC where

f Ψ(φ(C\f(x)\))dμ^l .
JΔ

By the continuity of ψ(v) it follows that C°=C0 and since

lim φ(C\f(x)\)=ψ(C0\f(x)\)
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then by Lebesgue's theorem I W(φ(C0\f(x)\))dμ <L1. For each value of
JΔ

the parameter 0<;/b<;i define

then the family of functions gk(x) satisfies Ψ(git(x)) = CQ\f(x)\ and increases
continuously with k from ψ(CQ\f(x)\) to φ(CQ\f(x)\). The integral I(k)=

\ Φ{ΰk)dμ increases continuously from values ^ 1 so that there is a
JΔ

value kQ such that i Ψ{gk^)dμ=l. The constant CQ=Cf and function
J Δ

gJCQ(x)^=gf(x) are those of the theorem.
It is easily seen in either case (A) or (B) that 0 < C / for if Cf=0

then the corresponding function gΛx) <I v0 and hence I Ψ(gf)dμ==0 which
J Δ

is a contradiction of the proof already made that I Ψ(gf)dμ==l .
JΔ

Finally, it follows from Lemma 2 that

Let h(x)^>0 be any function such that \ Ψ(h)dμ<Ll. In Lemma 2 let
JΔ

v=gf(x), v/=h(x); then, integrating over Δ gives

Ψ
Δ

Ψ{h)dμ>\ Ψ(gf)dμ + Cf[ \f(x)\(h(x)-gf(x))dμ
J Δ J Δ

or

\f(x)\9f(x)dμϊ>\ \f(x)\h{x)dμ+ J-4-
J Δ J Δ 0/

Since C r

/ >0 we obtain | | /L=[ \f(x)\gf(x)dμ.
J Δ

THEOREM 4. If

( i ) the hypotheses of Theorem 3 are satisfied,
(ϋ) | | / | | Φ > 0 ,

then

\ Φ{Cf\f\)dμ + l

l/lk= lΔ »

where Cf is the associated constant of Theorem 3.
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Proof, By Young's inequality, for arbitrary 0<l^, 0<lt>,

with equality if and only if at least one of the relations v=ψ(u) or
u=φ(v) is satisfied. Let u=Cf\f(x)\, v=gf(x) then since Ψ(gf(x)) =
Cf\f(x)\ the inequality becomes an equality and

Cf\f(x)\gf(x)^Φ(Cf\f(x)\)+Ψ(gf{x)) .

Since 0<C^ < cχ>, integration over Δ gives the stated result.

THEOREM 5. / /

(i ) Ψ(y) is continuous in the extended sense,
(ii) φ(v) is continuous in the extended sense,

then Lφ is strictly convex.

Proof. Let f'(x), fπ{x) be any pair of elements of Lφ such that
Ί Φ =1, 1 / Ί Φ = 1 . Let f(x)=f'(x) + f"(x) and

If μ(S)=Ό let

E=E[\f(x)\^min(n, ( l - ί ) ess sup |/(») | ) ] ( n = l , 2, •••)

if /i(S')^>0 let E=S' (n=l, 2, •••). Let Δn be a sequence of sets snch
n

that 4 £ 4,+1 S zi, μ(Δn) < ex,, μ(Δn-En)> 0 and lim4,=J. If /*(S)=0

define

mini w,^l-—jess sup |/(a?)|J

0

while if M S ) > 0 define

I ess sup |/(α)|

Fn(x)=\\f(x)\

1 o
observing that since ||/||Φ<oo then ess sup | / (^) |< oo in this case. It
follows easily from the definition of the norm in Lφ that ||FJΦ->||// + ///||Φ.
The functions Fn(x) have been constructed in such a way that they satisfy
postulate (iii) of Theorem 3 so that by this theorem and also Theorem

on

on

on

on

on

on

(4,-#») ,

^nΓ\En) ,

Vn-En)

(ΛnΓ\En)
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4, there are constants i < l C w < o o and functions gn(x) satisfying the

relations: Φ{gn{x))=CnFn{x), \ Ψ{gn)dμ=l and \\Fn\φ=\ Fn{x)gn{x)dμ.
J Δ JΛ

Since Fn(x)<:Fn+ί(x) and f Ψ{gn)dμ=l, (rc=l, 2, etc.) it follows that

the sequence Cn decreases to a limit i ^ C < co. Since Φ(gn(^))=CnFn(x)9

Fn(x)<LFn+ι(x) and \ Ψ(gn)dμ==l it follows by the monotone properties

of φ(v) that for each arbitrarily chosen but fixed m0 the sequence gn(x)
ultimately decreases on (Δmf~]Em). When μ(S)>0 we see (Δnf\En)~>
(Δ—S) and {Δn — En)~->S so that in this event the sequence gn(x) de-
creases on £ also. When μ(S) = 0 we see as before {ΔnΓ\En)~>{Δ~S)
and (Δn — En)->S. Thus the sequence gn{x) in both cases converges in
measure to its limit inferior which we denote by g(x).

By Theorem 3

( Fn\gndμ=\ \f' + f"\gndμ
JΔ

Since

it follows that

limf \f\gndμ=\f% and lim \ | /" | f f n ^=I/" | |* .

We show that there is a constant 0<Z) r <co such that Φ(g(x))=
Df\ff(x)\ almost everywhere. If this were not the case there is a con-
stant 0 < 5 < oo and sets T[, T'2 of finite positive measure such that

φ(g(x))>B\f(x)\ on T[

0<Φ(g(x))<B\f(x)\ on T'2 .

By Egoroff 7s theorem we may extract subsets T" ξ^T'u T^ Q T'2 such
that the sequence gn(x) ultimately tends uniformly to g(x) on T" and
T'2\ From TΊ', Tϊ we may extract subsets ΓΓ, ΓΓ of positive measure
such that the sequence is not only bounded on T'" and T'ί' but, since

\ Ψ{gn)dμ<Ll and (̂α?) = lim inf gn(x), it is also bounded away from
J Δ

F o. We may again find subsets 2\ <Ξ 2T and T2gΞ2T such that for
suitably small constants 0 < £ < c » , 0 < α < <» :

(1)
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0 < Φ(gn(x) +1") <B(\f(x)\) , x e T2, 0 ̂  ί" ^ t ,

for all n sufficiently large.

Since \ \ff\gndμ-^\f%1}} for each 0 < e there is an ns such such
J Δ

that if nz<Ln then: I \fr\hdμ— I \f'\gndμ<ie where h(x)7>0 is any

function with \ Ψ(h)dμ<Ll. Also, since g(x) is bounded away from VQ

JΔ

and the sequence gn(x) converges uniformly on Tι to g{x), there is a
constant 0 < β < ^ such that for sufficiently large rc

( 2 ) [ (̂ί7»(α)) dμ ̂  \ φ{g{x) 4- β) dμ < ex, .

Let

Ψ(g(v))dμ Ί
0 < ε < α^ΓJ min ί, -

L

and choose n^nε so that (2) holds. Then, if

(3) ^ Ψ{gn)dμ + \τ Ψ(gn)dμ=b

and if 0 < tι < oo, 0 < ίa < oo also satisfy

(4) [ Ψ(gn(x)-i

we have by the mean value theorem, for some 0<ί 0lτ

(5)

Thus, if

- t\τ Φ{g(χ))dμ

ί t = min ί, —

then ί a ^ ί . Now by (1)

\f\dμ,
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so that by (5)

But if

\ \f\dμ+t%\

h(x)=

Qnix)-^ on 2\

gn(x) + t2 on T2

gn{x) on (Tτ

then by (3) and (4) \ψ(h)dμ=[ψ(gn)dμ=l while

t \f'\hdμ=\ \Γ\gndμ-t\ \Γ\dμΛ-tλ \f'\dμ
JΔ JΔ J n Jr2

which contradicts the demonstration already made that l \f'\hdμ —
JΔ

\f'\gndμ<ie. Thus, there is a constant 0 < D' < oo such that ψ(g(x))=\ \

D'\f'(x)\. Similarly, there is a constant 0 < D / / < oo such that ψ(g(x))=
D"\Γ(x)\

Since \f\x)\ = Ψ(g{x))IΠ and \f"{x)\=Φ(g(x))lD" we see \f{x)\ and
\f"(x)\ differ at most by a constant factor. But U / I Φ H I / Ί I Φ ^ 1 S O t h a t

this factor is unity. Thus, ff(x) and f"(x) differ at most in sign. But
ψ(g(x)) = C\f'(x) + f"(x)\ so that if f\x)=-f"{x) at any point, then
ψ{g{x))=H\f'(x)\=H'\f"{x)\ = Q at this same point. Hence f'(x)=f"(x)
almost everywhere and \\f — / / / lΦ=0.

Theorems 1, 2 and 5 together have established the necessary and
sufficient conditions for the strict convexity of the spaces Lφ. In order
to proceed with the more difficult demonstrations for uniform convexity
we shall require the following important proposition relating to the
norm of an element in Lφ.

THEOREM 6. / /

(i ) Ψ(v) is continuous in the extended sense,
(ii) Ψ(v) is continuous in the extended sense,
(iii) (a) there is a constant 0<iV<co such that Φ{2u)fΦ{u) <LN,

(0<Cu), when A is of infinite measure,
(b) lim sup Φ(2u)\Φ(u) <C + °° when Δ is of finite measure, then

for each f e Lφ different from zero there is a constant Cf and a function
such that
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\\f\U=\jf\dμ,

Ψ(gf(x))=Cf\f(x)\ and

Proof. Let

If μ(S)=O, let

^ = s[ |/(a?) |^min(re,(l--ί)esssup!/(aj) | )] f (n=l, 2, •••);

if μ(S)^>0 let E=S', (w=l, 2, •). Let Δn be a sequence of sets such that
n

<oo, μ(Δn-En)y>0 and limz/w=zί. If μ(S) = O, define

min 7i, ( 1 - — ) ess sup \f(x)\ on {Δn-En) ,
L \ nJ J

|/(ίc)| on

0 on 4i

while if Λ ( S ) > 0 , define

on (Δn-En)

on
0 on

observing that in this case ess sup \f(x)\ <c« since ||/||φ<^oo. The func-
tions Fn(x) satisfy the postulates of Theorems 3 and 4 so that there are
constants \FJ^X<LCn<ioo and functions gn(%)^0 such that

and functions gn(x)7>0 such that ||Fn|φ==\ Fngndμ where ψ(gn(x))=

Cn.Fn(x) and j j f c ) ^ = l. Since Fn(x)^Fn+1(x)<,\f(x)\ it follows

from the condition \ Ψ(gn)dμ = l that the sequence Cn cannot increase

and since | | / | Φ > | | F J Φ it has a limit 1/lί1 <!C<oo. Since Ψ(gn(x))=

CnFn{x), Fn(x) <LFn+1(x) and I Ψ{gn)dμ=l it follows by the monotone
J Δ

properties of φ(v) that for each arbitrarily chosen but fixed m the
sequence gn(x) ultimately decreases on (Δmf\Em). When μ(S)>0 we
see {Δnf\En)~>(A — S) and (Δn — En)-^S, so that in this event the sequence
gn(x) decreases on S also. When μ(S) = 0 we see (ΔnΓ\En)->(Δ-S) and
{Δn — En)->S. Thus, the sequence gn(x) in both cases converges in
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measure to its limit inferior, which we denote by g{x).
(a) Assume that postulate (iii) (a) holds. In this case there is a

constant 0 < M < c o such that φ(2u)<LMφ(u) for 0 < ^ . Thus, if
Φ(2u)<LNΦ(u) for 0 < ^ then Φ(4u)<LN2Φ(u). Suppose there were a
sequence 0 <. un such that for each natural number ψ(2un) ^> nφ{un),
then

ΰ ^> 2unψ(2un) >_ 2nunψ(un) :> 2nΦ{un)

since unφ(un)^Φ(un). Now

since

I Ψ{ψ{C\f\)) dμ<^ \ lim inf Ψ(gn)dμ <1 lim in

by Fatou's lemma. By Young's inequality

\ Ψ(ψ(2C\f\)dμ^2c\ \f\φ(2C\f\)dμ-\ Φ(2C\f\)dμ
J Δ J Δ J Δ

But for all n sufficiently large φ(2C\f(x)\)2>^gn(x)~^g(x) therefore by
the monotone property of Ψ(v) and Lebesgue?s theorem

1= liminf \^(9n)dμ=^ liminf

Let h(x)^>0 be any function such that \ Ψ{h)dμ<,Λ. In Lemma 2
J Δ

let v=g{x), vf=h{x)\ then integrating over Δ gives

or

\f\(h-g)dμ

- Ψ(h)dμ

C

Since C > 0 we have ||/||Φ=f \f(x)\g(x)dμ. The function g(x) and the

constant C are those of the theorem.
(b) Assume that postulate (iii) (b) holds. Since lim sup Φ{2u)jΦ{u)

W->oo

<±N, there is a v! such that for v! <Lu, Φ(2u)IΦ(u)<L2N. Then for
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u' O , Φ(4:u)<L(2NyΦ(u). With appropriate modifications of the corre-
sponding demonstration in (a) above we easily show that there is a
constant 0<CΛf<°° and a value nx such that forw^w, ψ(u)l<p(u)<LM.
Recalling that Δ is of finite measure, let ^ > 0 be a value such that
Ψ(vλ)<LHμ(Δ), then

since φ(C\f(x)\)<^g(x) and by Fatou's lemma

i = \ lim inf Ψ(gn) dμ <ΞI lim inf
J Δ

By Young's inequality

But p(2C|/(αO|)^0rw(α:)^0(a?) for all n sufficiently large, so that by
Lebesgue's theorem and the monotone property of ψ(v)

Ψ(g)dμ=[\im inf Ψ(gn)dμ=\im inf

The remainder of the proof is as in (a) above. The constant C and
the function g(x) are those of the theorem.

The above theorem may be generalized in several ways. The author
has secceeded in obtaining a number of analogous conclusions [8] when
the function ψ(v) is discontinuous and when the hypotheses relative to
the function Φ(u) do not hold. It is interesting to observe that for
spaces in which conditions (iii) (a) or (iii) (b) do not apply, there is al-
ways an element / of the space for which the norm is not attained;

that is to say, there is no function h(x)^0 such that | | / | | Φ = \ \f\hdμ
JΔ

with \ Ψ(h)dμ=l. In this case, however, there is a constant 0 < C
JΔ

such that

( nψ(C\f\))dμ=l-a ,
J Δ

where 0 < a < 1 is a constant for any larger constant D^>C the inte-
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gral I Ψ(φ(D\f\)dμ is infinite. It is further remarkable that in this

case

The proofs and complete statements of these propositions will not be
presented since they are not essential to the discussions relating to
convexity. Theorem 4 admits an obvious generalization not only to
spaces which satisfy the postulates of Theorem 6, but to the more
general case when only the first of these conditions holds. The problem
of determining the constant C which appears in all of these theorems
in terms of elementary properties of f(x) has hot met with a suitable
and satisfying solution despite the author's attempts to find one.

We proceed now to a consideration of the necessary and sufficient
conditions for uniform convexity of Orlicz spaces. It was remarked in
the introduction that every uniformly convex space is strictly convex
but that the converse statement need not be true; therefore, it is clear
that any necessary condition for strict convexity must be also a necessary
condition for uniform convexity. Thus by Theorems 1 and 2 we must
assume at least that Ψ(v) is continuous in the extended sense and ψ(v)
is continuous in the extended sense. For a similar reason, the following
theorems furnish us with further necessary conditions.

THEOREM 7. [5] Every uniformly convex space is reflexive.

THEOREM 8. [6] Necessary and sufficient conditions that an Orlicz
space be reflexive are that there exist a constant 0 <C iV <̂  oo, such that

(a) Φ{2u)IΦ{u)<LN and Ψ(2v)[Ψ(v)<LN, (0<>, 0 < » when A is
of infinite measure]

(b) lim sup Φ(2u)lΦ(u) <̂  N and lim sup Ψ(2v)IΨ(v) <i N when Δ is of

finite measure.
The conditions implied in Theorems 1, 2 and 8 must be supplemented

with an additional necessary condition in order to insure uniform con-
vexity. This is expressed in the next theorem.

THEOREM 9. A necessary condition that Lφ should be uniformly
convex is that for every constant 0 < α < o o there is a constant l< iΓ α <co
such that (a) when Δ is of infinite measure then φ(u + au)l<p(u)y> Ka,
(0<^u); and (b) when Δ is of finite measure then lim inf φ(u-hau)l<p(u)

>Ka.

Proof. By Theorems 1, 2 and 8 and our above remarks we may
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and shall assume that Ψ(v) and ψ{v) are continuous in the extended
sense and that lim sup Φ(2u)!Φ{u) <LN and lim sup Ψ(2v)lΨ(v)<LN for

some constant 0<iV<cχD. We see then that ψ(v)-+^ for if ^vφ
φ(u)du=oD for

o

which contradicts lim sup Φ(2u)lΦ(u) <J N. Similarly the condition
W->oo

lim sup Ψ(2v)/Ψ(v) <: N implies that ψ(v) -> co.

Suppose there were a value 0 < a < co and a sequence un such that
alternatively according to the respective hypotheses

(a)

(b) liminf

There is then a sequence of pairs: {vn=<p(un), vn=ψ(un

Jraun)} such that
vn\vn-+l. Let λn=ll(Ψ(vn) + Ψ(vn)) and define wn by 2Ψ(wn) = ljλn; then
vn ^ ^ Λ ^ ^^ and 7;w/̂ w -> 1, vnjwn -> 1. We remark that in the second
case un -> oo so that vn -> oo and ultimately Λw <̂  ̂ (^)/2. Determine sets:
yln, βw of positive measure such that il nf\Sw=0, μ(An) = μ(Bn)=μn

= min [μ(d)l2, 4 ] ; and define functions/^), f'ή{x) respectively as

fix)-

(1 + α)
on

on

on (An\JBnγ

on An ,

on Bn ,

. 0 on (i4n\J£ny.

With C'n^C'n =[{!•¥a)vn + vn~\μnun we see: ψ(gn)=C'nf'n, ψ(g'ή)=Cnf'n' where

vΛ on ^4W

ί;n on S n

0 on ( 4 U 5 J

^w on

^w on

0 on

and for all n sufficiently large so that λn=μn we have



1470 HAROLD WILLIS MILNES

Thus, by Theorem 6

f"|| _ f f"
n | |Φ— I J n

JA

Now

1

o n Λ

on (Λ

so that by Lemma 1 and Theorem 6

since vnlwn-+l and vnjwn—*-l. Again

on

on (An\JBJ

so that

and Lφ is not uniformly convex.

LEMMA 3. Let 0 < ε < l / 4 and l < i Γ s < T < α D , 0 < δ 6β constants
such that alternatively

(a) ( 0 < u ) f

is a constant 0 <Γ Lε swc/«. ί/?,αί
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Φ(V') ̂  Ψ(V) + φ(v){v' -V) + L,Φ(W ~V\)

1471

when respectively

(a)

(b)

\U —1

max

(1-εf ^

Γb, ( 2 ε ~ e "" )
L (1-ef

where {it, v), (u'f vr) are related by either v=ψ(u) or u = ψ(v) and v' = <p(u')
or ιι'—φ(y'}.

Proof, Assume n' ^ u and consider the first diagram

We note first

(a) (1 -ε)V ^ u > 0 (b) (1 - e ) 2 u ' ^ u ^ b

according to the respective hypotheses. Since ψ(u) is a monotone non-
decreasing function we find from the definition of Ψ(v)

Ψ(v')-Ψ(v)=AτesL (OCT)~Area (OBA)

I>Area (4SST) + Area (PQRS)

so that:

Observing that respectively

(a)
(l-e)*

•u' >_ u > 0 ,
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(b) v!
(1-e)

> v! >̂ u > b ,

by corresponding hypotheses with u'l(l — ε) instead of u, we see that

φ((l-ε)u')^(lIKs)φ(uΊ Thus

- ^ )φ{ιϊ).

Also

Hence

- e)u'φ{u')

-^)e(l-e)φ{\u'-u\)

Thus with Pβ=(l-l/JBΓβ)ε(l-e)>0 we have

Ψ{v')>,Ψ{v) + ψ{v)(v'-v) + P2Φ(\u'-u\) .

Assume vl <Cu and consider the second diagram.

/9(u)

v'

w (f-ί)2u (hί)u b υ

We note first that

:> (2ε - ε
(1-e) 2

so that (1 — ε)2u^>u'. Since ψ(u) is monotone nondecreasing, from the
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definition of Ψ(v) we find:

Ψ(v)-Ψ(v') = Aΐea (OBA)-Area (OCT)

^Area (ABDT)-Area (PQRS)

so that

Ψ(v')>_Mv)-Area (ABDT) + Area

But

= φ((l-ε)u)-φ((l-εγU)

where, if we are considering the second set of hypotheses, we make

use of the fact that b<u. Also RP=εu; therefore

> Ψ(v) + ψ(v)(v'-v) + (l- ) ε- Φ(u)

;> y(v) + ̂ ) ( v ' - v) + Qε^( k ; - ^ I)

where Qβ==(l-l/JBΓβ)(e/Γ)>O.
Taking L ε-=min(P ε, Qε) we have the stated result.

THEOREM 10. Let ψ(v) be continuous, u=ψ(v) and yf = ψ{v') and let
0<Cε<^l/4, l < ^ i 2 ε ^ N < ^ o o be constants such that alternatively

(a) ( i ) Φ^<^N, (0 0 )

(ii) Rs

(iii) |M'
(1-e)'

or

(b) ( i ) lim sup i 5 ( 2 w ) <; JV ,
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(ii) lim sup j}"\-z
^((1 — ε)u)

(m\ W ?yl>(m) | u - u | ^

then there is a constant Lε > 0 such that

Proof, (a) By the same reasoning employed in Theorem 6, we
may use hypothesis (a) (i) to show that there is a constant 0 < M < α >
such that <p(2u)l<p(u)<LM, 0 < ^ . Writing (1 — εfu for u and noting that
ψ(2(l-eγu)>:φ((l-ε)u), 0<e<l/4 we have

M > Ά^Σ-J^l > JK(1" Φ). , (0 < M) .

Again writing (l — ε)u for % in (ii) we have

With M=T, Rs=Kζ we may apply Lemma 3 to obtain the stated result.
(b) As in the proofs of Theorem 6 we may use (b) (i) to show that

there is a constant 0 < M < C X D such that lim sup φ(2u)jφ(u)<L M; this

implies that for each 0 <C e <C 1/4 there is a value uλ <^ co such that if
( l - ε y ^ O then φ(2u)l<p(u)^2M.

Writing (l — ε)2u for % we see

Since ψ(v) is continuous, it follows that if 0 < 6 is any constant then
^((l-ε) 2δ)>0; since ψ(2u)l<p(u)<L2M when (l-εYuλ<,u it follows that
φ(2u1) <C °° therefore

Thus with

we have
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The second hypothesis implies that there is a u2 < oo such that

•efu) 2

Let 3? = (2ε-ε2)/(l-ε)2, then J ? > 0 . Let

S= inf

Suppose S = l , then there would exist a sequence ^^un^u^ such that
f((l —ε)ww)/^((l — ε)Vw)->l. From this sequence a subsequence wnl could
be extracted which either increases or decreases to a limit η < vl < ?Λ2.
If MW1 increases to %', then the left continuity of φ(u) implies that
φ((l — ε)ur)lφ{(l — ε)V) = l ; while if wnl decreases to ur then the right
continuity of φ(u) implies that ^((1 — e)u')lφ{{l — ε)V)=l. In either event
this would imply that ψ{v) had a discontinuity at alternatively v=

φ((l-ε)ur) or v=φ((l-e)u'), since ^ ) £ ( l - £ ) V < ( l - e K ^ ^ ) . Since
ψ{v) is continuous by hypothesis, we conclude: S^> 1. If we let
lf8=min[S, (ϋίe + l)/2], δ=(2ε-ε2)/(l-ε)2 and Γ as above, we see that
the hypotheses of Lemma 3 are satisfied and we have established the
proposition.

We shall suppress the proofs of the two following lemmas since
they may be found readily in the reference cited.

LEMMA 4. [10] If f(x) e LΦ and f(x) ^ 0 on a set of positive measure,
then

i/CCS?')*-*1-1/IIΦ

LEMMA 5. [10] // f(x)eLΦ and if there is a constant 0<Λ Γ <oo
such that (a) Φ(2u)/Φ(u) <LN, 0 O when Δ is of infinite measure or
(b) lim sup Φ(2u)jΦ(u) <1 N when Δ is of finite measure, then

\ Φ(\f(x)\)dμ <co .
J Δ

LEMMA 6. If {fn(x)} is a sequence of elements of LΦ such that

\ Φ(\fn(%)\)dμ-+0 and if there is a constant 0<iV<oo such that
J Δ

either (a) Φ(2u)IΦ(u)<Ξ,N, 0<Cu when Δ is of infinite measure; or
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(b) lim sup Φ(2ιι)jΦ(ΐi) r< N and also ψ(v) is continuous, token Δ is of finite
?i-»oo

measure, then ||/n | |φ->0.

Proof, (a) let p [> 1 be any positive integer and choose np suffi-

ciently small so that \ Φ(\fn{x)\)dμ<^llNp for all nv<Ln. Then

so that if ffnίaO^O and \ Ψ{gn)dμ <L 1 by Young's inequality

2> \fn\gndμ^\ Φ(2*\fn\)dμ+\ Ψ(gn)dμ^2
JΔ JΔ

so that ||Λ||Φ <I 2/2p, (np<Ln). Since p may be chosen arbitrarily large,
the proposition is demonstrated.

(b) Since lim sup Φ(2u)jΦ(u) <1 N it follows that there ίs a ^ < ω

such that: Φ(2u)/Φ(u) <;2N, u' <Lu and Φ{2ur)<^<^. Since ψ(v) is con-
tinuous and ^(0) = 0, it follows that <p(u)>0, 0 < ^ and hence $(V)>0,
0<Cu; therefore, if 0<Cιι"<Luf be any number we see Φ(2u)lΦ(u) <I
Φ(2u')lΦ(u")<oo when u" <*u^u' so that if JVtt,,=max[2iV, Φ(2u')IΦ(u")]
we have Φ(2u)IΦ(u)<^Nu,, <C oo, u" <du. Let p ^ l be any number
and choose 0 < w" ^ 1/2"; let S n=#[|/ n(ατ)| ^ % " ] . If ^ n ( » ) ^ 0 and

μ <L1 then by Young's inequality
Δ

2*\fn\gndμ <:[ Φ(2*\fn\)dμ+\ Ψ(gn)dμ
J Δ J Δ

,Φ(2»\fn\)dμ+l

By choosing n sufficiently large, we have \ Φ(\fn\)dμ<^{Nu»)~~v so that

Taking 29 sufficiently large we see that | |/J|Φ->0 since

LEMMA 7. If a, β cere real, then



CONVEXITY OF ORLICZ SPACES 1477

Proof. If ac^β^O then |tf-/9| = lk*Hi9ll and \ct\ + \β\ = \a + β\. If

= 0^/3 then \oc\ + \β\ = \cc-β\ and \a + β\ = \\a\-\β\\. If 0 > α ^ / H h e n
l / Ή I ^ + βl and \a — β\ = \\a\ — \β\\. The remaining cases in which
a hold by symmetry.

LEMMA 8. If η <; 1 then Φ{rju) <ί ηΦ{u) and if η :> 1 £ / ^ Φ(μu) 2>

Proof. Since ^(^) is monotone nondecreasing if ^ < 1 we have

φ(u)du<Lη\ φ(u)du=ηΦ(u) .

o Jo

If η>Λ and f = l / ^ l then Φ{ξu')<LξΦ{uf)\ so that, if fw'=^, we have

LEMMA 9. (a) // there is a constant 0 < i V < oo such that Φ(2u)lΦ(u)
V then

/or arbitrary 0<LuL, 0 <^u2;

(b) if / o r e α c ^ 0 <C ̂ r / i/^re is a constant 0
Φ(2u)IΦ(u)<L_Nu», u" <Lu, then

Φ(μλ 4- ̂ ) <ς ̂ (2^r/) + iV^,^^) 4- Φ(u2)]

for arbitrary 0 <±ulf 0 <i u.z.

Proof, (a) Let %3=max[%1, i62] so that w14-u2<^2^3. Then

(P(«6t 4- u2) ^ Φ(2^3) ̂  iV^(^3) S. NlΦi

(b) Let %3=max[%1, ^ 2 ] . If uz<Lun, then

If uzy-u" then

THEOREM 10. Let Ψ(v) and ψ(v) continuous and let 0 < ε < l / 4 ,
^ A/" <C °° &e constants such that alternatively

(a) wΛe% z/ is of infinite measure
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(i) Φ(2u)IΦ(u)^N, (0 0 ) ,

(ϋ) R. <-&&—, (0<u);

ψ((l)u)

or
(b) when A is of finite measure

(i) lim sup Φ(2u)jΦ{u) <^ N ,

(ii) lim sup . fM >Rt

u-»- <f((l-ε)u)

then Lφ is uniformly convex.

Proof We first assume that/ n(^) IΞ> 0, /ήX^^O, that ||/fί

/||φ=||/»Ί)Φ

!=1

and that £lf'n + f'nlq>-+l; a n d we shall prove that \\fή~ fή'U ~* 0.
Let ^ = (2e — e2)/(l — e)2; we observe that lim?? = 0. By Theorem 9

there is a constant 0 < L 7 ? < C Ό such that, corresponding to the alterna-
tive hypotheses, when

(a) \u' — u\^>?juy>0 ,

(b) \u' — u\ ί> max (??, ^ ) ,

then

(*) Ψ(v') > !P (v) + ̂ (v)(v' - v) 4- L^(|%' -%|)

where u=ψ(v) and u' = ψ(v'). By Theorem 6, let 1 < D W < C X D , 1 < C , ; < C O

be constants, #n(α?) ̂  0, A'(a ) >; 0 be functions such that

Let alternatively

(a) #n(?)

(b) Sn( 7) EEE S max

Write v'=gn(x), v=h'n{x) in (*) above and integrate over 2£n(??) to obtain
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Ψ(K)dμ+\ C;j^x){gn{x)-h'n{x))dμ

+ L, )dμ.

But, by Lemma 2, Ψ(vr) ̂ > Ψ(v) + ψ(v)(v'-- v); so that making the same
substitutions as before and integrating over Eή(V) we may assert

Hence

\ , Ψ(K)dμ+ \ , C«f»(x)(gn(x)-K(x))dμ .

n) dμ > j ^ Ψ(K) dμ + C/nJ Δ C,;/

+ L, ( φ(\c'nf'n(χ)- P» (f'n(χ) +fή'(x))\) dμ ,
J C ) \| 2 |/

so that

By Lemma 8, since 1 r%_ C'n <C °° we have

- 2C' (fή+fή')\)dμ

Now

But

and

and also

= j Λ fή(χ)gn(χ)dμ + j£fn{χ)gn(χ)dμ <:

<fn{χ)gn{χ)dμ<L

<L \\fn\\
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so that:

fή(x)(hn{x) - gn(x))dμ -> 0

Thus by (+) since 0 < Lv < OD ,

on E'n{η) alternatively

(a) A {/(

(b) f'Jx) - ", (fή(x) + f'ή{x)) <L_ max • ^,, ηf'n{χ) <; max [rj, ηf'n(x)~\

so that, since η <-Λ, by Lemma 4 and 8 we have alternatively as e->0

(a) L ' c / ( | / ; i ~ 2C' ( / ; i + / ; ; ) | ) ^ — \F'M

Φ(Ύlf'n)dμ

<,.?i\r,iΰΦ{fn)dμ^ri^^

(b) Φ f _ f"\) ^ ^ \ , Φ(v)dμ
/ JEn(η^

+ \JE,(J
rKvfή)dμ:>:Φ(η)μ(Δ) + ^Φ(rif;)dμ

< Φ(VMΔ) + V\ ̂  Φ{fύ)dμ r£ Φ{V)μ(Δ) + η -> 0

since μ{Δ) is finite. Combining these results with (**) we see that

Thus by Lemma 6

f '-'n ( j" I f"λ

2c;r*

and this implies in turn that
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But έ||/; + / ; | φ ^ l = ||/);||φ so that DJCή -> 1. It then follows that

from which we have immediately that

We now prove the theorem for the general case when the functions

fή(x), fn{%) are not necessarily positive. We use the equivalent definition

of uniform convexity which has been noted in the introduction. Let

|/ήlφ=5l/»Ί|φ=l and suppose \fή + fή% -+ 2. We define

(\f'n(x)\ if (fή(x) + fή'(x)) has the sign of f\x)

l 0 otherwise

»'(*)l if (fή(x)+fή'(x)) has the sign of fn\x) ,

0 otherwise .

Clearly

o <L F IX) <, \fn{χ)\, o ̂  F;;(X) ^ \fn\x)\,

and

so that | | i q Φ < ; i , I I K H Φ ^ I , liminf||F7; + K Ί | φ > 2 and \fn'-fή'l^
2\\Fή — Fή'\\φ. Our result for positive functions applied to Fή(x) and F'ή(x)
now gives \f'n—fn%-+0 and LΦ is uniformly convex.

THEOREM 11. Necessary and sufficient conditions that LΦ be uniformly
convex are

(a) in case A is of infinite measure
( i ) Ψ(v) is continuous,
(ii) ψ(v) is continuousj
(iii) there is a constant 0 < i V < o o such that Φ(2u)jΦ(u)<Ξ:N9

Φ(2v)IΨ{v)<LN, (0 0 , 0 < v ) .

(iv) for each constant 0 <C ε <^ 1/4 there is a constant 1 <C ̂ ε <C °°
such that <p(u)l<p((l — e)u)>Rz, ( 0 < % ) ;
r :

(b) irc case J is of finite measure
(i ) Ψ(v) is continuons,
(ii) ^(v) is continuous,
(iii) £Λere is a constant 0 < i V < c o
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lim sup Φ(2u)/Φ(u) <I N , and lim sup Ψ(2v)lΨ(v) <

(iv) /or each constant 0 < ε < 1/4 ί/̂ ere is α constant 1 < Λ8 < oo
lim inf ψ

Proof. The theorem is simply a summary of the results of Theorems
1, 2, 7, 8 and 9 and of Theorem 10.

It is interesting to remark (a) that the condition φ((l + e)u)lφ(u)^>
R2y>l implies that Ψ(2v)jΨ(v)<LN for some constant 0 < i V < o o , and
(b) that the condition lim inf φ((l 4- e)u)jφ(u) > RΞ > 1 implies that

lim sup Ψ(2v)jΨ{v) <L N for some constant 0 < N < oo but the implica-

tions converse to (a) and (b) are untrue. To prove the direct statement
we choose an integer 0 < p such that ((Re + l)/2) p> 2. Now, respectively
(a) for all 0 < > ,

2

and (b) there is a value 0 < > ε such that if us<ίu, then

Then if (a) 0 O , (b) us<Cu, we see that

Letting v=φ(u) we have (1 + e)V(^)^^(2v) when alternatively:
(a) OO,
(b) v2<Cv where ve=φ(u9). But then

(a)

where 0<[v,

(b) (l +

where vs ^ v, and since Ψ(2vB) < co and ^(v) -> co we see that
lim sup Ψ{2v)jΨ{v) ^ 2 ( l + e)2' < oo. To prove the converse construct the
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following function. Let ih=Of v{ = 0, un=2n, vn = 2n, uή=(l + ε)un, vή=
(2n + i); (n=2, 3, •••)• Join the points (uxvx) to (u^); (unvn) to (uήvή);
(Un, vή) to (un+1, un+1) each by straight line segments and let this function
be φ(u). Then

ψ{{l±ε)nn) _ψ{un) _ < _ 2 n + i ^ 1

ψ(un) φ(un) Vn 2n

while ψ(2v)<L4φ(v), (0<v) and therefore Ψ(2v)IΦ(v)<L8, ( 0 < » . It is
also clear that condition (i) is implied by the condition lim sup Ψ{2v)jΨ(v)

^ i V a n d consequently by (iv). Thus, if we wished to do so, we might
delete any statement relative to the function Ψ(v) from Theorem 11.
It is true, however, that the remaining conditions are independent for
none of them is implied by any combination of the other hypotheses.
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INTERIOR VARIATIONS AND SOME EXTREMAL

PROBLEMS FOR CERTAIN CLASSES OF

UNIVALENT FUNCTIONS

VlKRAMADITYA SlNGH

!• Introduction, The theory of regular univalent functions in the
unit circle Uz has been developed for various subclasses, for example,
the class of real univalent functions which leads to symmetric domains,
the class of bounded univalent functions whose image domain lies with
in the unit circle and the functions for which the image domains are
convex or star-like. The approach through the calculus of variations
has been used very successfully towards the solution of extremal problems
belonging to the various classes and also towards the determination of
the extremal domains. The purpose of the present paper is to show
how the method of interior variations due to Schiffer [1] can be adapt-
ed for the following subclasses:

(i) The class V of symmetric regular univalent-functions f(z) in

Uz which have the form f(z)=z-h^anz
n with real an. In particular we

w = 2

show that if φ(ai9 α3, , an; α2, α3, , an) is a real valued function
which is symmetric and analytic in av and av (v=2, 3, , n) and where
{an} are the coefficients in the power series expansion of the more
general class Vx of regular univalent functions then, under the assump-
tion that the function f(z) whose coefficients {αv} maximize φ(a,} •••, an,
<h> •••> «w) is symmetric, the functional differential equation satisfied by
f(z) in the general class Vτ is the same as the functional differential
equation satisfied by f(z) in the class V.

(ii) The class S of bounded univalent functions f(z) in Uz which
are normalized so t h a t / ( 0 ) = 0 , \f(z)\<Ll and at a fixed point ζeUZJ

f(ζ)=ω. In particular we find the functions which maximize or minimize

j
(iii) The class Σ of bounded univalent functions f(z) in Uz which

are real on the real axis and are normalized so that /(0)=0, |/(s)|<Il
and at a fixed point ζ on the real axis f(ζ) = <o. In particular we find
the functions which maximize or minimize f(η) for real ηeUz.

We observe that the existence and uniqueness of the solutions of
these problems is assured because the families of functions belonging
to the classes V, S and Σ are normal and compact.

2. Real univalent functions. Let D be the image in the TF-plane

Received October 15, 1956, Prepared under Contract Nonr-225 (11) (NR-041-086) Office
of Naval Research,
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W=f(z) G V of \z\ <I 1 and let us consider the Schiffer variation

(i) " ϊ
where WQ is an interior point of D. It is easily seen that for small

enough p say pί<^p, \W—Wύ\==pι and \W—WQ\=Pι lie entirely in D
and WT is univalent on the boundary C of D and maps it univalently
on to the boundary C* of the new domain Z)*. Further, we see that
TΓi* = 0 for W=0 and that TFf is real for real values of W. Thus if
W is a symmetric univalent function which vanishes at the origin we
have obtained another neighbouring function which also has the same
properties. In order to be able to add some side conditions to the
function W we consider the variation

(2) W*=W+f?Y \ - a^-^+ d"W \
1 ' w+p h \(w~wv)w, (w- wy)wv f'
where p is an integer >; ! . This variation is of the same type as (1)
and has the independent constants (av)

}) which can be used to satisfy
the side conditions, if any.

The technique of getting the variation formula for f(z) under the
variation (2) is similar to that used in [2] in getting the variation
formula for/(s) under the variation W* = W + ap*l(W-W0). For the
sake of completeness we mention that we first find the variation formula
for the Green's function G(W, 0) of D under the variation (2). We
thus have [3J

( 3 ) δG(W, 0)= df. \ V\rh
L2π?, J r

where

(4) <P(W)=±

and p(W, η) is the analytic function whose real part is the Green's
function G{W, η) and Γ is a curve system in D which is homotopic to
C and such that φ(W) is analytic in the ring system bounded by C and
Γ. If now z=φ(W) is the inverse function of W=f(z) then the rela-
tionship of the Green's function G{W, ω) to the function φ(W) is given
by

(5) G(W, ω)=

and in particular

φ(W)-φ(ω)
l-φ(ω)φ(W)
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OHog - 1 -
\ψ(W)\

Proceeding in this way we find that the variation formula for f(z)
is given by

(6) r^MΛtaJ^
i Ll~ztv

where

ί»=f(^v) or yftv)=/(2v).

Let /(z) have the following power series expansion

(7) f(z)=z+±aHzn ,

where the an are real. Then denoting by at the coefficient of zn in
/*(£) and substituting these expansions in (6) and equating the coeffici-
ents of zn on both sides we get

8 ) "I = αB + 231 f>2 Σ or J ^v Σ
α f ^ v=i L w=

where

and Tn{f{z)) are given by the formula

We remark that (8) is the variation formula for the coefficient an

given by (7) and for v=l it agrees with the variation formula obtained
by Schiffer [2] for \an\ when an are complex. Further, if we put δan

= a*laf — an then dan=δan + O(pό) and we find that 3an in the present
case is twice δan in the general case an=an-hίβn.
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Now let us consider a function φ(aIy «•*, α.Λ, α2, * ,α w ) which is

symmetric and analytic in αv and αv and has real coefficients. Then,

because av=av + iβv, we can write F(a2, , an\ β,, , βn)=φ(az, , α w ;

ά2, * , α n ) , and the function F will contain only even powers of βv's

and

(10) ? f = 0 if A = A = ... = / J n = 0 .

Further, the condition for the extremum of F in the general case when
av are complex is

which in the limit when ^ -> 0 can be written as

If αv are real then in view of (10), (11) reduces to

(12) Σ f v̂-0.

We will obtain the same equation if we look for the solution of the
extremumproblem in the particular class V of real functions. Thus
under the assumption that the extremum function is real the functional
differential equation in the general case will coincide with the differential
equation in the symmetric case. We know from compactness arguments
that the problem φ = max has a solution in V. We also know that the
same problem has a solution in the general class V1. What we have
shown is that both extremum functions satisfy the same functional dif-
ferential equation. This implies that either there are many solutions of
the problem in the class Vλ or that the solution lies in the class V.
Thus in particular the coefficient problem anάn=max leads to the same
functional differential equation for real univalent functions as for the
general class.

3. Bounded univalent functions. We now consider a variation
which transforms a function of the class S into another function of the
class S. We will first obtain a variation which keeps the origin fixed
and also keeps the unit circumference fixed. We will then add the side
condition that for a fixed ζ, f(ζ)=ω. Let
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where O(pA) can be suitably chosen and Wo is an interior point of the
image domain of \z\ ^ 1 by f(z). For small enough p, Wf is a univa-
lent function of W outside \W- WQ\=p, < p such that Wf = 0 for W=0
and keeps the unit circumference |TF| = 1 fixed. In fact, to prove the
latter, we observe that when

and

(14) |TF?|

So to the order p2 the unit circumference is kept fixed. By adding
to (13) term of the order of p4 one could make the unit circumference
fixed. To see this let us denote by D* the boundary of the domain to
which Wf maps the unit circumference |TF| = 1. Now by the Riemann
mapping theorem there exists an analytic function S(Wf) which vanishes
at the origin and maps D* univalently on the unit circumference [S(PF2*)|
= 1, WfeD*. From the boundary behavior (14) of Wf when WΐeD*
we then conclude that

(15)

Since log \S(Wf)IW*\ is harmonic in |W*|<^1, we conclude, by the
maximum principle that (15) holds everywhere inside the unit circle.
Thus

for |TF| = 1. We have thus obtained a function S*(TF) which maps the
unit circumference |TF| = 1 onto itself and differs from Wt by O(ρA). •

A more general type of variation which can take care of some ex-
tra side conditions can be written in the form

(16) TF*= W+ Σ Γ

Taking n=l we get according to the procedure outlined in § 2 the
following variation formula

(17) φ*{W)=Ψ{W)-a^A{W, WQ) + ck(?B(W, Wo)
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where

(is) A(W, wa)=y;-p

and

(19)

Since we require that for all f(z)eS and fixed £, / ( C ) = ω , w e must
have ^*(ω)=^(ω)=C. Thus we obtain the determining relation between
aQ and αx

(20) - M K W0) + aJB(ω9 Wΰ)-aιA(ωy W1) + a1B(ωf W1) + O(pi)=-Q .

We shall see that in general we can prescribe Wo, Wλ and aQ arbi-
trarily and adjust aλ such that (20) holds.

Again, as φ\W) = Hf'(z) we see that the minimum and maximum
of \f'{ζ)\ would be given by the maximum and minimum of \φf(ω)\.
Thus the necessary condition for the extremum of \f\ζ)\ is

p a , s U ^ s . f + t , 1 S
L ^ ( ) f () φ (ω) φ

where A'(ω, TF0) and B\ωy WQ) are, respectively, the derivatives of

A(ω, Wo) and B(ω, Wo) with respect to the first argument.
The extremum condition (21) can also be written in the form

(22) adC(ω, W0)-aQC(ω,

where

φ'{ω) φ'(ω)

From (20) it is clear that for a fixed value of α0, ax is a linear
function of aΰ and α0 and can be written as

Ί AQB{) Q, 2V

if

(24)
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where we have put A0=A(ω, Wo), A1=A(ω9 Wλ), and similarly for Bo

and Bγ. We will show later that (24) can always be taken to be valid.
Taking the case when (24) holds, we get on substituting this value of
α: in (22) that

(25) aJLC(ω, Wo) +Ί2? 0 ~ M o ] + alC(ω~'Wl) + WQ-lA0] + O(p2) = 0 ,

where

=sBιC(ωf W1)fA1C(ω9
λ=s

This holds for all sufficiently small values of p hence because aQ

is arbitrary, in the limit p -> 0 the extremum function satisfies the
equation

(26) C(ω, W0) = λA(ω, W0)-λB(ω, Wo) ,

where λ is independent of Wo. Again, because Wo is an arbitrary point
from (26), the equation satisfied by the extremum function can be
written in the form

W _λωφ'{ω) Jω2φ;(ω)
{1-ώWf ω-W 1-ωW

φ(W) _ψ{ω){2-φ{ω)φ{W))
ψ(W) L (φiW)-φ(ω)f {l~ψ(ω)ψ{W)f

λφ(ω) __ λ ψ\ω) Ί

φ(W)-φ(ω) ϊ-φ(ω)φ(W) J ?

where

a = ωφ"(ω)lφ'(ω)=-f(ζ)f"(ζ) .

We now prove the following.

LEMMA. For the extremum functions of the class S ivhich satisfy
the equation (27), we have

(28) 3 {1 + ωφ"(ω)lφ\ω) - λωψ\ω)} = 0

and

(29)

Proof. Let us consider the variation



1492 VIKRAMADITYA SINGH

(30) W*W+ +
W~W0 1-WUW W-WL 1-

where T is real. It is easily seen that this variation keeps the origin
and the unit circumference fixed and, for small enough μ, is univalent
on the boundary. So this is an acceptable variation. Under this variation
the variation formula (17) will have the additional term iTpzWψ\W) on
the right-hand side. This will give rise to an additional term iT(jιωψ'{ω)
in (19), and to iT{l + ωφ"{ω)lφ\ω)} in (21). Then, because (26) holds,
the equation corresponding to (26) in this case will give rise to (28).

To prove (29) we observe that the derivation of the variational
equation (17) leaves an arbitrariness which permits us to add a term
ίkφ(W), for k real, to the right hand side of (17). The addition of this
term does affect the extremum condition (21), but it does appear as
ikφ(co) in the equation (20). The equation corresponding to (26) will

then have an extra term ik(λφ(co) — λφ(ω), which must vanish since (26)
has been proved to be the equation for the extremum function.

Transforming (27) in terms of f(z) and using (28) and (29) we find
that the extremum function statisfies the differential equation

(31)
D

coY(l - ωf(z)f z(z - If (1 - ζzf '

where the constants au a2, D, ft and β2 are obtained from (27) in the
following form:

(32) D= l(r2lC[ a±iC(JCl 2-1))

and

β=l+ωφ"{ω)lφ'(ω)-λωφ'(ω) .

One further finds from (33) and (34) that Kα,| = l and
In order to fix λ which remains arbitrary, as yet, we need the geometry
of the extremum domain. In particular we prove the following.

THEOREM. If f(z) is a function of the class S for which \f'(ζ)\ is
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either a maximum or a minimumf then f(z) maps the unit circle \z\ <C 1
onto a slit domain.

Proof. If the theorem were not true, then there would exist a
point Wo, | T F O | < 1 such that a neighborhood of WQ is contained in
|TF|<^1 and does not belong to the image domain. In the variation
(16) taking Wo and Wv to be two such points we get the following
variation formula for f(z):

(35) f*{z)=A*)+?tlJ^v %ΓS ,

v=o L f(z) -f(zv) 1 -f(z)f(z,)

The requirement that for all f(z), f(ζ)=f(ζ)=ω, yields that

(36)

and the condition for the extremum of \f'{ζ)\ leads to

(37)

Thus, because

1 2 ^ ω
—J(zv) ϊ—ωj(Zv)

we see that the extremal function satisfies the equation

But this is impossible since the left hand side has a second order
pole at z=ζ, where as the right hand side has only a first order pole.

As a consequence of this theorem it follows that (24) can always

be assumed to hold. Indeed, if it were not so, we could find no point

zλ in \z\ <I 1 such that \Aλ\ φ \Bλ\. Hence, because Aτ and Bτ are analy-

tic functions of zι and as equality is to hold for all z1, we have

(39) A(ω, f(z))

(39) gives the following differential equation for f(z):

(40) /ωr«(C) - μ&fiQ)
f/2(ζ)Λζ)f(z)(f(z) - ω)(l - ωf(z))

z(z-ζ)(l-ζz)
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But the function given by the differential equation (40) does not
map the unit circle onto a slit domain, because at one end of the slit
f'{z) will have a first order zero. Hence the right hand side of (40)
should have a second order zero on the unit circumference. Since this
is obviously not so, we have shown that (24) can always be taken to
be valid.

We have thus shown that all extremal functions f(z) which belong
to S, and for which \f\ζ)\ is a maximum or minimum, satisfy the dif-
ferential equation (31). As the extremal function f(z) maps \z\ <I 1 onto
a slit domain, at one end of the slit f\z) will have a first order zero.
To this zero of f'{z) there need to be a corresponding zero on the right-
hand side of (31), and as it is on the unit circumference |z| = l, we
must have βr=βχ=eiφ in (31). Further, because the slit will make an
angle 0 with the unit circle such that \θ\ < π, we get from simple
geometric considerations and the fact that the right hand side of (31)
has no pole at any point on the unit circumference that a1=ai=eiθ.
Geometrically this means that the slit starts from the unit circumference
|Wn = l, making an angle π/2 with it.

As a result of the equality of au <xz and βu β2, we have from (33)
and (34) that

f (ζ) 1—|ω|-

and

(42) ^ 1 ^ ^

Eliminating λ from both these equations one finds that, at the fixed
point ζ, the extremum function satisfies the equation

ζf (

The differential equation (31) now reduces to

(44) f\z){M* ± M)3 {i±\ω\γ _{i^\ζ\γ _ C ΐ
Λz)(Λz)-ωγ(i-ωf(z)Y * c z{z-ζ)\ι-lzγ '

where on each side either the upper or the lower sign is to be taken
at one time.

From (44) one can get the information regarding the nature of the
extremum domain. On account of the slit character of the extremum
domain, the unit circumference |TF| = ]/(^)| = 1 is definitely a part of the
boundary. Further, if z=ew we get from (44) that
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)o> ± \ω\Y (\Ψ \ω\f

is real. Hence, writing W(t)=f(z) and making a proper choice of the
parameter ί, we can put it in the form

(45) W (Wώ± W d±M)2= C
w (w-ωγ(i-ώwγ ω

C being some real constant. We now observe that this is an ordinary
differential equation of the first order and hence has only one solution.
Further, the straight line W=r\ω\ld>, where r is a real parameter, does
satisfy the differential equation. Since there is only one slit, this line
corresponds to the slit and we conclude that the boundary of the image
domain consists of the unit circumference and a radial slit pointing in-
wards at the points ± \ω\jω.

Taking the square root and integrating (44) we obtain

(46) Γ± log-^f t ^ . +logj + ^ ) l + c o n s t .L Vf{) V l-Vω f(z) J

The various possibilities arising from different combinations of signs
on the two sides of (46) are to be taken in such a way that the singulari-
ties at f(z)=ω and z=ζ on the two sides of (46) balance each other.
We are thus left with only four possible combinations which after some
simple algebra give rise to the following equations for the extremal
functions:

(ω-\ω\f(z)y (ζ=f\ζ\zY

and

(ω+\ω\f(z)Y (ζ±\ζW

Equations (47) and (48), respectively, give rise to the following
values of

( }

and
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(50) / ' (C)= ω -1—'£-' —--'•
u c i±lci i - M

As |ω| <1 |Cl, one easily sees that the maximum value of \f\ζ)\
given by

and that the function f(z) corresponding to it is given by

(52) '

Also, the minimum of \ff(ζ)\ is given by

7 ( c ) ϊ T i c ί ϊ ΐ μ '

and the function corresponding to it is given by

(ω-\ω\f(z)f

We have thus proven the following.

THEOREM. Let S denote the family of regular univalent functions
f(z) defined in the unit circle \z\<Ll such that \f(z)\<Ll, /(0) = 0 and,
for some fixed point ζ in \z\<Cl, f(ζ) = cυ Then the maximum and
minimum values of \f\ζ)\ are given by

and the corresponding maximizing and minimizing functions are, respec-
tively, given by the equation

(56) (l±\ω\Yωf(z)_ (lτJCl)X_
(co±\ω\f(z)Y (ζψ\ζ\zf '

where the upper signs on both sides give the maximal function and the
lower signs on both sides given the minimal function. The boundaries of
the maximal and the minimal domains consist of the unit circumference
together with radial slits starting, respectively, at the points ± \ω\jώf the
end points of the slits being the images of the points qp \ζ\Γζ by the cor-
responding functions given by (56).
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We now remark that we could as well have tried to solve the fol-
lowing problem:

In the class $ of regular univalent functions f(z) in \z\ <I 1 statisfy-
ing the normalization /(0) = 0, |/(z)| <i 1 and, f(ζ) = ω at some fixed point
C in 1̂1 <!1, to find the function which maximizes |/(/;)| at some ηφζ
in | s | < 1 .

The existence and uniqueness of the solution is easily proven. It
can also be readily shown that the extremal domain will be a slit
damain. The variational equation for the extremum as obtained from
(17) can be written as

(57) sjJ["^(^i> /fe)) __ΰnB(<ϋi, f(z0)) + α ^ , / ^ ) )
IL ωι co1 cυ1

where ωι=f(η)9 and we have replaced φ(ω) by ζ and Wo by J\z0),
φ{W*)=z*, ψf(W0) by lifted, and similarly for Wλ.

By arguments similar to those which lead to the equation (26) we
can again assert that if

(58) c 0 = ^ Δ ^ Δ

then the extremum function will satisfy the equation

(59) CQ fW(ύ

where μ is independent of f(z0).
As in the lemma we can again show that μf(ζ)!Γ(ζ) and μζ are

real. The differential equation for the extremum function can now be
written as

f(z)(f(z) - ωjQXz) - ω)(l - ωf{z)){l - ω

where |c1cZ1| = l, and l̂ ê -l = 1 and cu dι, eu e, and K can be determined
by a comparison with (59).

From geometric considerations and the fact that the extremal domain
will be a slight domain, one easily deduces that c1==d1=eiθ and eL=e2=eiy.
These conditions lead to
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(61) [(l - K H ( i -h μ a ) - M I - |α)|a)(i 4- | ω i |
a ) p = 4 | ( i - μ L | > - ^ ( 1 - μpHi 2 ,

and

(62) [(1 -|? | a)(l4- l C i 2 K - K ( l ~ ICI2)(1 + M a ) ] a =4|( l - l^|a)C«χ-/<?(! - ICla)l3,

where

and

Eliminating // from (61) and (62), we get

(63)
/(C) ( l - 7

From the slit character of the extremal domain and geometric con-
siderations we prove that the boundary of the extremal domain consists
of the unit circumference with a slit that starts at right angles to the
circumference. But we can no longer claim that this slit is radial.
Also, because the integration of (60) involves hyperelliptic integrals it
is not possible to get analytically any further information about the
nature of the image domain. However, if one could show that the
image domain is symmetric one could obtain an explicit result at least
when ζ and η are real. We are thus lead to reformulate the problem
for bounded symmetric univalent functions.

4. Symmetric bounded univalent functions. We now want to con-
struct a variation which keeps the unit circumference and the real axis
fixed and which maps the origin into the origin. Evidently such a
variation will be a combination of the variations considered in §§ 2 and
3. One easily deduces that any such variation will be of the form

(64) W*~=W+ a^W - a^W*
ι w-w0 i-wow w-w0 i~wow

where O(pι) can be suitably chosen.
In order to be able to get a variation which can take account of

some side conditions we need to take a linear combination of the vari-
ational terms in (64) with different αn and WQ. Thus, we get the
variation

(65) w*=w+ t\ - ̂ W(i-wη _
L(WWJ(1WW)
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The variation formula for f(z) in this case is

(66) r(*)=M

άyf^(?)z(l-z>)_f(zv) Ί
(1 -zvz)(zv -z) zyf

n(zj) J+

(1 -zvz)(zv -z) z

If we require /*(C)=/(C)= c"ι C real, we get, using that f(z) is
symmetric,

(67) S R Γ Σ J - -

Also, if η is real, then the condition for the extremum of f(η) = ωL

is

(68)

Thus the extremum function satisfies the equations (67) and (68).
By Lagrange's method of multipliers we see that the equation satisfied
by the extremum function is

(69) zf'Λ*)\ (i-^) - ^ λ{l-ω>) _ Ί
f(z)

(rj-z)(l-7/z) (ζ~z)(l-ζz)

where

and

It is easily proven in this case that the image domain is a slit
domain. Thus, as in § 3, from geometric considerations and the fact
that the image domain is a slit domain we conclude that numerators on
both the sides of (69) should be perfect squares. We thus have that
either

(70)



1500 VIKRAMΛDITYA SINGH

or

(71)

and either

(72)

or

(73) (1-0)0(1 + ω)=^λ(l-ω){l-\-ω[) .

The differential equation finally reduces to the form

( 7 4 ) (1 ±ω^ω-ωMl -cυωJfHβKfiz) Ψ If
(1* ωj(z))(ω - ϊ Ϊ j

where the upper or the lower sign on each side is to be taken at one
time.

The alternative in (70), (71) and (72), (73) arises on account of the
ambiguity of sign of the root in (74).

In the left hand side of (74) let us make the transformation

(75) ^ |

according as we take the upper or the lower sign in (74). Then the
left hand side transforms either to

or

respectively, where βι = (l + ω)l(l — ω) and

Similarly, making the transformation

(78) z=Ψ

y-1

according as we take the upper or the lower sign in the right hand
side of (74), we get either
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L-C7)(C-7)/ 7 9 )

or

ί 8 0 )

respectively, where γι = (l-hζ)l(l — ζ) and γ2=(l + η)j(l — ΎJ). We note that
(77) is obtained from (76) by changing the signs of ω and ωu and
similarly (80) is obtained from (79) by changing the signs of ζ and η.
Thus it is enough to consider the cases

where

and

Γ(
1 L

Putting

and

o

we have from (81), on integration,

cλv=cλuΛ- const. ,

where p(v)=W2 and ??*(%) = X, p and ?)* being the Weierstrass's p-
functions.

Since /(0)=0, j\ζ) = ω and f(ή) = ωu we get, using the periodicity
and homogeneity property of the p-functions,

(82) W,=~ι-X.
cl

Transforming back to z and f(z), we can write (82) in the form
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d 3 I \i+ζ

Since /(0) = 0 we have from (83) that

( 8 4 ) 3 1 V l 4 - ω / Kl+ωJ) c\L 3 I Vl + C/ Vl + ^ / ί J

This gives us ω1? but it involves a which is not yet known in terms
of ζ, ω and ^. Towards this we observe that on subtracting (84) from
(83) we have

c\

and because f(ζ) = ω we have

and finally

(86)

Now, putting z=η and f(ή)=ωu we get for ω{ the required equation

(87) (\±ωfah^^JχΛ-ζf ̂

Observing that all the possible extremal functions could be obtain-
ed by changing the signs of ω, ωu ζ and η and taking all the combi-
nations, we see that

(88) iχ±ωf ___m___=± _? a±σ

ω (l±ftz)Y (l±zY C

gives all the extremal functions and

(89) Q C '

the corresponding values of ωu where at one time either the upper or
the lower sign is to be taken on each side of (88) and (89).

Further, on account of the continuity and univalence of f(z) on the
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real axis, f(z) will have the same sign or different sign as z according
as ω has the same or different sign as ζ. Thus (88) and (89), respec-
tively, reduce to

ω a±f(z)γ

and

(1±JD)2 _ωλ = η

The following different cases need to be considered: (i) ω > 0 ,
C > 0 and η > 0 (ii) ω > 0, ζ > 0 and η < 0 (iii) ω > 0, C < 0 and η > 0
and (iv) ω > 0, C <C 0 a n d ^ <C 0 We observe that (ii) can be easily
deduced from (i) for in this case ω{ <^ 0, and the maximum and the
minimum of ωλ in this case will be the same as the minimum and maxi-
mum of ωλ in (i). A similar relationship exists between (iii) and (iv).
So we need to consider only the two cases (i) and (iii).

We now observe that if \x\ <C 1 and x is real then x + llx is a
monotonic decreasing function of x, and also that

(92) 5 + 1 / ^ - 2 ^7j+ l\η + 2
C + ϊ / C - 2 C+l/C + 2 '

according as 57 ̂  £ > 0 .
With these considerations we can prove the following.

THEOREM. Let Σ be the class of bounded, symmetric univalent func-
tions f(z) which are normalized so that | / (z) |<I l , |£ |<I1, /(0) = 0 and
f(ζ)=ω where ζ is a fixed real point in | z | < ] l . Further let ω^>0,
ζ > 0 and for some real point rj let f{yj) = ωx. Then the maximum and
the minimum values of ωλ, when η^>ζ, are given by

ωv + \\ωλ ± 2^-ηj-1/5_=F 2
C + Ϊ /C I F2 '

and the corresponding maximizing and minimizing functions are respec-
tively given by

(94) Q±°>Y Λz) = z

ω (l±f(z)f (i + zY C '

tvhere the upper signs on both sides give the maximum and the lower
signs the minimum. However, if η <C C then the maximum and minimum
values given by (93) and the corresponding function given by (94) are
interchanged.
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If ω <^0, ζ <^ 0 and η ̂ > 0 then the maximum and the minimum
values of ωλ are given by

(95)

and the corresponding maximizing and minimizing functions are given
by

(96) i1

ω (l±f(z)Y (l±zY C '

where, as before, the upper sign on both sides gives the maximum and
the lower sign gives the minimum.

The boundary of the extremal domain in each case consists of the
unit circumference with a radial slit starting either at W=l or W= — l.
The length of the slit differs in various cases.

My thanks are due to Professor M. Schiffer for his interest and
help in the progress and completion of the paper.
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ON GENERALIZED EUCLIDEAN AND

NON-EUCLIDEAN SPACES

W. L. STAMEY

Introduction, The present paper develops necessary and sufficient
conditions that a complete, convex, metric space with extendible seg-
ments shall be generalized euclidean, r-hyperbolic, r-spherical, or r-
elliptic. Blumenthal and others have given four-point conditions which
characterize these generalized spaces among certain classes of spaces,
and the results of this paper follow the general plan of these earlier
works.

1. Definitions, notation and previous results. Unless otherwise
noted all terms used have the same meanings as those given in [1],
The distance between two points p and q of a semi-metric space is de-
noted by pq, a point s distinct from p and from q is between p and q,
denoted by psq, provided ps-\-sq=pq, and a triple of points (not neces-
sarily distinct) is a mid-point triple, denoted by (psq), provided ps=sq=
pq/2. A metric space is said to be generalized {euclidean, r-hyperbolic,
r-spherical, r-elliptic} provided each of its ^-dimensional subspaces is
congruent with {En, Hnr1 SntT9 £ζ,r}, where these four symbols represent
w-dimensional euclidean, hyperbolic, spherical, elliptic space respectively,
the last three of space constant r > 0 . A metric space is said to have
the weak {euclidean, r-hyperbolic, r-spherical, r-elliptic} four-point pro-
perty provided each of its quadruples containing a triple of points con-
gruent to three points of {Elf HltT, SltV, £ζ,r} is itself congruent to four
points of {E2, H2fT, S2tr, 8I,r}. A space has the feeble {euclidean, r-
hyperbolic, r-spherical, r-elliptic} four-point property provided each
quadruple containing a mid-point triple is congruently imbeddable in
{E2, H2tr, S2,r, 82,»•}- The weak property obviously implies the feeble
property.

THEOREM 1 (Blumenthal [2]). A complete, convex, externally convex
metric space is generalized euclidean if and only if it has the feeble euclid-
ean four-point property.

Defining a conjugate space as one with finite metric diameter <5>0
and having the further property that corresponding to each pair of
points p, q of the space with 0<^pq<C^ there exist points p¥, q* of the
space with pqp*, qpq*, and pp*=qq*=δ all holding, Han kins [4] has
shown the following.
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THEOREM 2. If a complete, convex, conjugate, metric space M has
diameter πr/2, r^>0, and if M possesses the feeble r-elliptic four-point
property, then M is generalized r-elliptic.

2. Metric characterizations. Throughout the remainder of the
paper Σ will denote a space which satisfies:

( i ) Σ is metric,
(ii) I ' is complete,
(iii) Σ is metrically convex,
(iv) if TPιQ is a segment with end points p, q, there exists S(p)y>0

such that if seTp,q with 0<ps<<5, then there exists a point t eΣ with
(spt) holding.

LEMMA 1. If Σ has the feeble euclidean, r-hyperbolic, r-elliptic, or
r-spherical four point property, and if (pqs), (pqt), qs = qt, then s=t.

Proof. Let R represent any one of the spaces E,, H,,r, S2,r, iξ,r

Then p, q, s, t&p19 ql9 su tλeR and {ViQ^ΛViQA), qiS1=qA imply that

sι=tlf so t h a t s=t.

REMARK. If in condition (iv) on Σ the quantity δ(p) is unbounded
for all peΣ, then Σ is externally convex.

THEOREM 1. If Σ is externally convex then each two points of Σ lie
on a unique metric line if and only if pqs, pqt, and ps=pt imply s=t.

Proof The necessity is obvious. The sufficiency is proved by no-
ting that each two points are joined by at least one metric line. Then
if there are two distinct segments joining p and q, each may be pro-
longed beyond q along the same segment Γr/S to a point s, but this
implies that Tq>s may be prolonged in two distinct ways beyond q to p,
contrary to hypotheses. Thus p and q must determine a unique seg-
ment, and this segment can be prolonged to a metric line in exactly
one way.

THEOREM 2. If Σ has the feeble euclidean or feeble r-hyperbolic four -
point property then Σ is externally convex.

Proof. Let p, q e Σ with p^=q. Then on a segment TPtQ joining p
and q choose a point s with tfs>0 and such that there exists a point t
with (sqt). Then denoting either E.2 or H2r by R2, the hypotheses
guarantee that p, q, s, t(§R,. This together with psq and (sqt) implies
that pqt holds.

THEOREM 3. If Σ has the feeble {euclidean, r-hyperbolic] four-pσiM
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property, then Σ is generalized {euclidean, r-hyperbolic).

Proof. By Theorem 2 I7 is externally convex and by Lemma 1
(along with the completeness and convexity of Σ) pqs, pqt, qs=qt imply
that s=t. Thus (Theorem 1) each two points of Σ lie on a unique
metric line. Then the theorem in the euclidean case is identical with
theorem 4.1 in [2]. The r-hyperbolic case is handled in the same man-
ner as the euclidean case.

THEOREM 4. If Σ has the feeble r-spherical four-point property, then
Σ is a conjugate metric space with metric diameter equal to πr, and each
point p e Σ determines a unique point p* such that pp* = πr.

Proof. Since Σ has the feeble r-spherical four-point property, the
metric diameter of Σ is at most πr. If p, qeΣ with 0 < p g < > r there
exist points t9 veΣ such that ptq and (tgv) hold and pt + tq-\-qv<^πr.
The feeble r-spherical four-point property then implies that p9 t, q, v @
S2>r, and this can be strengthened to p, t, q9 v@Shr because ptq and tqv
hold.

The feeble r-spherical four-point property implies that each pair of
points of Σ with distance less than πr have a unique mid point. This
then implies that each two such points are joined by a unique segment.
Let TPtq be the segment joining p and q, and let E be the set of points
x of Σ such that pqx holds. All xeE such that px<^πr lie on a unique
segment since repeated application of Lemma 1 will show that if pqxlf

pqx2, px1==px29 then x1=x2m If for xeE, a=lubpx, then there exists a
point xeE such that px=a. If px<^πr there exists a point yeE such
that py^>a, so px=πr.

If there exist two points p*, p** in Σ with pp*=pp** = πr, let q be
a mid-point of p* and p**. Then p, p*, p**, q^pιy pf, p**, QieS2,r

= πr gives pf = pf* so that p * = p * * .

THEOREM 5. // Σ has the feeble r-spherical four-point property, then
Σ has the weak r-spherical four-point property.

Proof. Let p, q, s, t be four points of Σ with p, q, s(^Shr, to show
that p, q, s, t(§S2,r. If two of the points p, q> s coincide, then p, q, s, t
&S,>r, so let it be assumed that p, q, s are pairwise distinct. Then
because of the feeble r-spherical four-point property some pair, say p
and q, have distance less than πr and determine a unique segment Tp>q.
Let p, q, 87&plf qlf s1eSitr and let Shr(plf qj be the unique Shr determin-
ed by pι and qλ. If v and vλ are the unique mid-points of p, q and p19

qλ respectively, the congruence p, q, v, tτ& p19 q19 vl9 tx can be extended
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to t + Tpίq»t1-hTPltqi. If se TPfq, p, q, s, t @ S2>r. If not, suppose the
labelling is such that qs<Lps, and consider the congruence q, w, s, q%^
Q19 Wn 8ii QTJ where w is the mid-point of the unique segment TQtQ* join-
ing q, g* and containing s. This congruence follows from the feeble r-
spherical four-point property and the free movability of S2>r. Then this
congruence can be extended to t + T^&τ&^ + T^qf and p, q, s, £@S2,r.

THEOREM 6. If Σ has the feeble r-elliptic four-point property, then
Σ has metric diameter πr\2 and Σ is a conjugate space.

Proof. Because of the feeble r-elliptic four-point property Σ has
diameter at most πr/2. Let p, qeΣ with pq<^πrj2. Then there exist
points t,veΣ with ptq, (tqv) holding and pt-i-tq + qv<Cπr!2. By the
feeble r-elliptic four-point property p, t, q, v& ^r a n ( i this can be
strengthened to p, t, q, v<^c6\r because of ptq and (tqv).

Let p, t, q, v^plf tL, ql9 v1e &lir and let xφv and w be points of Σ
with pivq and (wqx) holding and px<^πr. Then p, w, q, xτ^pt, w29 q>>,
x2e

 cS\r and p2y wi9 q2, x-λ lie on an c£\,r. Then there exists a motion of
8^,r sending p2, q.A into pιy qL respectively and sending wλ and x2 into

uniquely determined points w1 and xι on the ^hr determined by pλ and
q{. Thus if M is the set of xeΣ with pqx and px<^πr holding, the
unique segment TPtQ can be uniquely extended to TPiQ\J TqtX=TPιX for
xeM.

Let now a = lubpx for xeM and let {xt} be a sequence of points
of M such that limpx=a and if i<^j, ρxix) holds. Then since p and
all of the xt lie on the same metric segment, as i, j->oo, χ^j->0. The
completeness of Σ then implies the existence of a point y such that
y=\imXi and py=a<πrj2. Furthermore, since pqx% holds for i = l, 2,
• and Σ is metric, pqy holds. If py^πr/2, then yeM and there exists
yeΣ such that py^>py=<x, and this is impossible.

Finally the uniqueness of extensions of segments insures that if
pp* = pp** = πrj2 and pqp*, pqp** hold, then p* = p**.

THEOREM 7. // 27 te the feeble {r-svherical, r-elliptic} four-point
property, then Σ is generalized {r-spherical, r-elliptic).

Proof. The theorem follows in the spherical case from Theorem 5
upon application of Theorem 66.5 of [1] and in the elliptic case from
Theorem 6 and Theorem 4.4 of [3].

M. M. Day1 [3] has defined another four-point property which he
calls the "queasy euclidean four-point property" and has shown that a

1 The author is indebted to the referee for calling his attention to Day's work and for
suggesting the possibility of the extension of Day's work.
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complete, externally convex semimetric space possessing this property is
generalized euclidean. The remainder of this paper is devoted to ex-
tending Day's work.

A semimetric space M will be said to have the queasy {euclidean,
r-hyperbolic, r-spherical} four-point property provided that corresponding
to each pair of points p, se M there exists qeM such that pqs holds
and for each teM, the quadruple p, q, s, t(§{E2, H2ir, S2ir}.

LEMMA 2. // Σ has the {euclidean, r-hyperbolic} four-point property,
then each two distinct points of Σ are joined by a unique metric segment.

Proof. Since Σ is complete, convex and metric each two points are
joined by at least one segment. It will be sufficient then to show that
each pair of points of Σ have just one mid-point. Let p, qlf q2, se Σ
with (pqφ), (pq2s) and pφs holding, and let R represent either of the
spaces E2 or H2r. If there exists a sequence of points t^Σ, i=l, 2,
•••, with \im ti=qlf ptiQl9 pttq2 holding, then \\mti=q2 and q1=q2.

If qx φq2, then there exists a positive number p1 such that if pt-h
tQi^PQi and pt + tq2=pq2 then tq1=tq2^>p1. Also there exists ft.>0 such
that if qit + ts=q1s and q2t

Jrts=q2s, then tq1=tq2^>p2. Let pλ be the least
upper bound of the numbers ~pι and p2 that of the numbers p2. Let p
and p* be points of Σ with ppΛ-pqλ=pqu pp* + p*q*=pqvi 2inάpq1=p^q2=
px. Then either p=p* or there is a sequence pt with ppιqlf PPiq* hold-
ing and l imp—p, l i m ^ = p * so that ρ=p*. Thus there exist two points
of Σ with qι and q2 each metrically between these points but such that
any segment joining the points and containing qx has only end points in
common with a segment joining these points and containing g2. There
will be no loss of generality if these points are taken to be p and s
and if qx and q2 are assumed to be distinct middle points of p and s.

The queasy four-point property of Σ implies that there exist x e Σ,
p, x, q, s, £>*, x*, <7*, s* eR with pxs holding and

p, x, ql9 s ^ p , x, q, s

p, x, q2, s^p*f a?*, #*, s*.

Then since p*^*s* and p*q*s* hold, there is a motion sending the
" starred" points into the corresponding " barred" ones, and p, x, q, s
all lie on one metric segment of R. Thus either x=q and x=qι=q2 or
there is a metric segment joining p, qlf s and one joining p, q2, s with
these two segments having interior point x in common. This contradic-
tion completes the proof.

LEMMA 3. If Σ has the queasy r-spherical four-point property, then
each tivo distinct points having distance less than πr are joined by a
unique segment.
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Proof. The proof is identical with that of the preceeding lemma if
distance ps is restricted to be less than πr.

THEOREM 8. If Σ has the queasy {euclidean, r-hyperbolic, r-spheri-
cal} four point property, then Σ is generalized {euclidean, r-hyperbolic,
r-spherical}.

Proof. It will be sufficient to show that if p, q, s, te Σ with (pqs)
holding, then p, g, s, t @ R, where R represents any one of the spaces
E2, H2,r, S2,r Assume for the present that if R is spherical, ps<^πr.
Then let xeR with pxs holding and

pf x, q, s^p, x, q,seR

p, x, s, tτ& p*, #*, s*, ί* e R

Then there exists a motion of R sending p*9 «* into p, s respectively

and £* into a point t. If qt=qt, then p, g, s, tτ^p, q, s, "ί.

If qtφqt, let a congruence / between the segments TP)S and T j ^
be established so that f(p)=p, f(s)=s. Let Q represent the set of
points xeTp,s such that tx=ϊf(x). Then the continuity of the metric
in Σ implies that in traversing TPjS from p to q there is a last point of
Q encountered. Let this point be u, and let w be the last point of Q
encountered in traversing TPιS from s toward q. Denote ΰ=f(u), w=
f(w).

T h e n t h e r e e x i s t s b y t h e q u e a s y p r o p e r t y a p o i n t y e Σ w i t h u y w

holding and u, y, w, t^u\ y', w\ t! eR. A motion of R sends u\ w\ tr

into %, w, t and yr into a unique point y with zΐpϊF holding and yt=yft;

=yt. This contradicts the property used to pick out u and w so that

qt=qt and p, g, s, t^R.
Finally if R represents S,,r and ps^πr, there is a point a e ί with
holding and

p, x, s, g ̂  P, £, s, g e S2tr

p} X, 8, t7& p*, X*, S*, ί* 6 S 2 > r .

Let a motion be performed sending £>*, s* into p, S respectively and ί*

into a point ί". Consider the set of distances tx where x belongs to the
Sltr at distance ττr/2 from p. This set of numbers has a minimum m
and a maximum M. Let the labelling be taken so that pt<Lπr/2. Then
it is necessary that m<Ltq<^M. For if tq<^m, then ptΛ-m^πrβ and
pt + tq<Cπrl2=pq. Also if tq^>M, tq^>tpΛ-pq.

Now on the S l r at distance ττr/2 from p there is a point q so that

tq=tq. Then p, g, s, tτ&p, q, s, ί, and this completes the proof.
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Of course the proof of Theorem 8 is not valid for £^r because of
the strong use made of free movability. It should also be noted that
when the queasy four-point property is assumed for a semi-metric space,
it is unnecessary to assume convexity and metricity since the queasy
property implies these.
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RETRACTIONS IN SEMIGROUPS

A. D. WALLACE

Let S be a semigroup (that is, a Hausdorff space together with a
continuous associative multiplication) and let E denote the set of idem-
potents of S. If xeS let

Lx={y\y\JSy=xVSx}

and

Rx= {y\y\JyS=x\jxS] .

P u t H X = L X Γ \ R X a n d f o r eeE l e t

H=U{He\eeE} ,

M e = {x\ex e H and xee H} ,

Zc=Hex{Rcf\E)x{Lef\E)

and

Under the assumption that S is compact we shall prove that Ke is a
retract of Me and that Ke and Ze are equivalent, both algebraically and
topologically. This latter fact sharpens a result announced in [6] and
the former settles several questions raised in [7].

I am grateful to A. H. Clifford and to R. J. Koch for their several
comments. This work was supported by the National Science Foundation.

LEMMA 1. Let Z^SxSxS and define a multiplication in Z by

(£, x, y)-(t', x', yf) = (txy't'y x', y)

then Z is a semigroup and, with this multiplication, the function f:
Z-+S defined by f(t, x, y)=ytx is a continuous homomorphism.

The proof of this is immediate. We use only the above defined
multiplication in Z and not coordinatewise multiplication. It is clear
that f(Ze)=Ke.

Since the sets He, eeE, are pairwise disjoint groups [1] it is legiti-
mate to define functions

rj: H-+E , θ: H-+H

Received August 10, 1956.
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by " η(x) is the unit of the group He which contains x" and " θ(x) is
the inverse of x in the group He which contains x". If xeMe then
ex, xeeH so that η(ex), η(χe) are defined. Define g: Me-+Z by

g(x)=(exe, η(ex), η(xe))

and note that the continuity of η implies the continuity of g. For

xeMe let

p(x) = η{χe)χrj(ex)

so that p is continuous if η is continuous.

LEMMA 2. For any xeKc we have fg(x)=x=p(x) and g(Ke)=Ze.
The function f\Ze takes Zc onto Ke in a one-to-one way and is a homeo-
morphism if rj is continuous. If η is continuous then p retracts Me onto
Ke.

Proof. Let te He9e1eReΓ\E and e,eLef\E. Since Le>=Le it is
immediate that ee, = e and since t is an element of the group He whose
unit is e (Green [3]) we also have et=t = te. Similarly we see that
eλe=e. It is important to observe that the sets {Lx\xeS}, {Rx\xeS}
and {Hx\xe S} are disjointed covers of S so that, for example Lxf\Lyφ •
implies Lx=Ly. We see that eeMι=teι and e,teγe=e,t so that ee.2teιe=t.
We note next that teLeHei and thus ?y(ie1)=e1. For eeRef]Le=Reιf\Lt

and e>2=e, give te1eRtf\LCι in view of Theorem 3 of [2]. But

and HCi being a group with unit e1 we have, from the definition of η,
^(ίeι)=e1. In a similar fashion we show that η(e2t)=e2. If xeKe then
we have x=e.zteL with the above notation and

, rj(ex), η(χe)) =

I t w i l l su f f ice t o s h o w i n a d d i t i o n t h a t gf(z)=z f o r zeZ s i n c e fg(x)=x

gives x=p(x). Now let z=(t, el9 e2)eZe so that f(z)=e2te1eKe and

9(f(z))=(ef(z)e, Φf(z)), η(f(z)e)) = (t, e19 ez)

in virtue of the computation given earlier.
It remains to prove the continuity of η when S is compact. This

was announced in [7] but no proof of this fact has been published. Let

-Sf= {(x, y)\LΛ=Ly} , & = {(x, y)\RX-Ry]

and let 3ίf=&r(\&.
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LEMMA 3. // S is compact then <%'] S^ and & are closed.

Proof. Let

J*f'={(x,y)\SxClSy}

and assume that (a,b)eSxS\,Sff. Then SbCS\a and hence
Sb CZS\U* for some open set U about a since Sb is closed and S is
regular. Again from the compactness of S we can find an open set V
about b such that SVC.S\U*. Hence (UxV)Γ\ &" = Π and we may
infer that j£f' is closed. There is no loss of generality in assuming
that S has a unit [3]. Hence if h: SxS-^SxS is defined by h(x, y)
= (y, x) then h(£f') is closed and thus ^f= £f' f\ h{&") is closed. In a
similar way it may be shown that & is closed. Moreover, Sίf is
closed because 3ί?= £f f\ &.

THEOREM 1 [7]. // S is compact then H is closed, -η : H-*E is a
retraction and 0 : H->H is a homeomorphism.

Proof. Define p: SxS->S by p(x, y)=x. Then

H= \J {He\ee E] =p

is closed since £ίf and Έ are closed. We show next that θ is continuous
and to this end it is enough to prove that G={(x, θ{x))\xeH] in virtue
of the fact that H is compact Hausdorff. If m: SxS->S is defined
by m(Xj y)=xy then r9^f\(HxH) (~\m~ι(E) is closed and we will show
that this set is the same as G. For (x, θ(x)) in G implies m(x, θ(x))=
xθ(x) G E in virtue of the definition of θ. Since x and θ(χ) are in the
same set He, eeE, it is clear that (x, θ(x))e HxH and it is easily seen
from the definition of HX=LXΓ\RX, and J%?=£?Γ\& that also (a?, θ(x))
e rW. N o w t a k e x , y s u c h t h a t xy=eeE, x,yeH a n d (x, y) e Sίf.

The last fact shows that Hx=Hy and the penultimate condition, together
with this shows that x, y e HGχ for some eίeE. But e=xyeHβi and the
fact that Hβι is a group implies that e=e1. Now the uniqueness of
inversion in the group Hβ shows that y=θ(x). Hence θ is continuous
and Ύ] is continuous because rj(x)=xθ(x) from the definition of η and θ.

G. B. Preston raised the question as to the continuity of a certain
generalized " inversion"—Suppose that there is a unique function a :
S-^S such that xa(x)x=x and a(x)xa(x) = a{x) for each xeS. If S is
compact then a is continuous. To see this let ,/Kbe the set of all
(x, y)e SxS such that xyx=x and yxy=y and define ψ: SxS->SxS
by φ(x, y)=(xyx, x). If D is the diagonal of SxS then φ~\D) is closed.
Similarly ψ~λ{D) is closed where ψ(x, y) = (y, yxy) and ^1^=φ~\D) Γ\Φ~\D)
is therefore closed. The uniqueness of a implies that {(x, a(x))\x e S} =^/f/"
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so that a is continuous if S is compact. For a discussion of the ex-
istence and uniqueness of such functions as a, see [2, pp. 273-274] as
well as references therein to Liber, Munn and Penrose, Thierrin, Vagner
and the papers of Preston in London Math. Soc, 1954.

From Theorem 1 and Lemma 2 we obtain at once

THEOREM 3. Let S be compact and let e e E then Ke is topologically
isomorphic with

Zβ=Hex(Lef\E)x(Rβf\E)

and Ke is a retract of Me.
It is not asserted that Ke is a subsemigroup of S. The first corol-

lary is a topologized form of the Rees-Suschkewitsch theorem, see [6],
[7] and [2] for a bibliography of relevant algebraic results.

COROLLARY 1. If S is compact, if K is the minimal ideal of S and
ifee E f\K then K is topologically isomorphic with eSe x (Se f\E)x(es Γ\E)
and K and each "factor " of K is a retract of S.

Proof. We rely, without explicit citation, on the results of [1].
It is immediate that Me = S. Now Le=Se, Re=eS and He=eSe so that
(by definition and [1]) Ke=Se-eSe-eS (ZK and, being an ideal, Ke=K.
Clearly x->exe retracts *S onto eSe. Now SeCZKCZ.H and rj\Se re-
tracts Se onto Sef\E.

It is clear, when S is compact, that K enjoys all the retraction
invariants of S, for example, if S is locally connected so is K. We do
not list these nor do we give here the applications of Corollary 1 that
were mentioned in [6].

COROLLARY 2. // S is a clan [7], if KcZE and if Hn{S)φ0 for
some n^>0 and some coefficient group, then dim K > 2.

Proof. If KCZE then He={e} and K is thus topologically the
product Se x eS since Se, eS C K. Now Hn(Se) w Hn(S)« Hn(eS) [9] and
hence Se, eS are non-degenerate continua. It follows that dim KI>2.

It is possible to put some of the above in a more general frame-
work. Let T be a closed subsemigroup of S and let

LΛ={y\x\)Tx=y\)Ty} ,

with similar definitions for Rx and Hx. If e e E then He is a semigroup
and He is a group if eT\J TeC_T. If ,_%f £/] & are defined analogously
then . . 2 ί 7 o . ^ = , ^ o ^ 7 . Moreover we have ί̂ 7° &= J\ where
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when S is compact [5]. In this case J%? =S? &, Sf<>& and J^ are
closed. It is easy to see that many of the results of [3] and [2] are
valid in this setting. If we define a left T-ideal as a non-void set A
such that TACIA, then the basic propositions about ideals are also
available. Many of these results follow from general theorems on
structs [8].
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MONOTONE MAPPINGS OF MANIFOLDS

R. L. WILDER

1. Introduction- Mappings of the 2-sphere, and more generally of
the 2-manifolds, have been studied by various authors. (See, for instance,
[9] and references therein, [7].) Generally, these mappings have been
subjected to certain " monotoneity " conditions on the counter-images of
points. Thus, in Moore's first paper [8] on the 2-sphere, it was required
not only that counter-images be connected, but that they not separate
the sphere. In terms of homology, then, he required of a counter-image
C that pr

a(C) = 0 for r=0, l . Later studies of Moore and others usually
omitted the requirement that pτ(C)=0, thus increasing the possible
number of topological types of images. With the condition pι(C)=0
imposed, the image of the 2-sphere is a 2-sphere, and of a 2-manifold
is a 2-manifold of the same type. Without this condition, the various
types of "cactoids" are obtained.

In the present paper we consider some higher dimensional cases.
As might be expected, we impose higher dimensional "monotoneity"
conditions.

DEFINITION 1. A mapping / : A->5 is called n-monotone if
Hr(f-\b)) = 0 for all beB and r<Ljι. (See [10; p. 904].)

EXAMPLE. Let us consider the mapping induced by decomposing
the 3-sphere into disjoint closed sets each of which is a point, except
that all points on some suitable "wild" arc [5; Ex. 1.1] A are identified.
This mapping is r-monotone for all r, but the image-space is no longer
a 3-sphere; indeed, it is not a 3-manifold in the classical sense at all,
since the point corresponding to A does not have a 3-cell neighborhood.

This example makes it at first appear that because of such "homotopy"
difficulties, it may be useless to look for any well-defined class of con-
figurations in higher dimensions. However, as we show below, the class
of configurations obtained is precisely that of the generalized manifolds.
Moreover, we need not restrict the mappings to the mappings of 3-
manifolds in the classical sense, since the generalized manifolds turn
out to form a class which is closed relative to the mappings considered.
This result forms, then, a new justification for the study of generalized
manifolds.

2. Preliminary theorems and lemmas. In general, spaces are

Received January 28, 1957. Presented to the American Mathematical Society September
9, 1948,
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Hausdorff, but no conditions of metrizibility or separability are assumed.

Except where noted to the contrary, we use augmented Cech homology

with an algebraic field as coefficient domain. We recall the following

definition [11; p. 237].

DEFINITION 2. If S is a locally compact space, such that for every

pair of open sets P, Q for which P~^> Q and Q is compact, the group

Hn(S:Q,0;P,0) (cf. [11; 166, Def. 18.28]) is of finite dimension, then

S is said to have property (P, Q)n.

REMARK. Since the space is assumed locally compact, the above
definition can be stated in a number of different but equivalent forms.
Thus, Q may be replaced in the definition by any compact set M; that
is, S has property (P, Q)n if for every pair of sets P, M such that P is

open, M i s compact, and PZ)M, then Hn(S: M, O P, 0) is of finite di-
mension. Another variant, but equivalent form of the definition, is
obtained if in either of the above definitions it be required only that

there exist at most a finite number of n-cycles on Q(M) which are lirh
on compact subsets of P (that is, in P).

Another variant would be to require that there exist at most a
finite number of cycles on compact subsets of Q (that is, in Q) that are

lirh on P (or, that are lirh in P). Each of the equivalent forms of the
definition may be found particularly adapted to a given situation.

We express the fact that S has property (P, Q)r for r = 0 , 1 , , n
by stating that S has property (P, Q)J .

THEOREM 1. If S is a compact space having property (P, Q)n, and
f:S->S' is a continuous (n — l)-monotone mapping of S onto a Hausdorff
space S'y then Sf has property (P, Q)n.

Proof Let U\ V be open subsets of S' such that U'ZϊV' and V'

is compact. The sets U=f~1(U')f V*=f-\Vf) are open and closed sub-

sets, respectively, of S, such that UZ^> V*.

In the mapping / ( y * ) = y / , counter-images of points are all r-acyclic

for r = 0 , 1, •••, n — 1. Hence [3] for any cycle γn on V, there exists a
cycle Zn on F* such that

(1) f{Zn)^γn on V .

Since S has property (P, Q)n, there exist cycles Z?, i = l , ••• ,m of

7 * such t h a t if Zn is any cycle of V*, then
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(2) 2*~Sa'2? in U .
i = l

Consequently, since (2) implies

m

(3) /(^)~Σ
i = l

we have, combining (1) and (3), that

It follows that at most m cycles on V are lirh in Z7 and hence that S"
has property (P, Q)w .

REMARK. It is worthwhile noting that the above proof gives the
following: If f:S-*S' is a continuous (n — l)-monotone proper mapping
of a locally compact space £ onto a Hausdorff space S', and P\ Fr are
open and compact subsets of S', respectively, such that P;^F\ then

f\P*:Hn(S:F, P)->Hn{S': Ff, F )

is a homomorphism onto, where F=f-\Fr), P=f-\P), and Hn(S:F,P)
denotes the group of ?z-cycles on F reduced modulo the subgroup of
%-cycles that bound in P. A similar argument shows that f\P*:
Hn-\S: F, P)->Hn-\S': F\ Pf) is an isomorphism onto. These are general-
izations of the Vietoris mapping theorem [2], [3].

THEOREM 2. If S is an lcn compact space, w > 0 , and f:S->S' is

a continuous {n — l)-monotone mapping of S onto a Hausdorff space S',

then S; is lcn.

Proof. By [11; p. 70, Th. 1.6], Sf is 04c. And since S' is a compact
04c space, it has property (P, Q)ϋ. (See [11; p. 106, 3.7]). That S' has
property (P, Q)r for r = l , 2, « ,w follows from Theorem 1. Since, for
compact spaces, lcn and (P, Q)J are equivalent, we conclude that Sf is
lcn (see 11; p. 238, 7.17]).

LEMMA 1. In a locally compact space S, let P and Q be open sets

such that P is compact and PZ^> Q and let M be a closed subset of Q

such that for any open set Qv for which M(ZQV(ZQ, the dimension of

Hr(S:S,S-P; S, S-Q,) [11; 166, Def. 18.29] is the same finite number

k. If Z]., " ,Zr form a base for r-cocycles mod S—P relative to co-

homologies mod S—Q, then for every open set Qv such that
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the cocycles Zι

r form a base for r-cocycles mod S—P relative to cohomologies

mod S—Qv.

Proof. Let γι

r, , γf. be a base for cocycles mod S—P relative to

cohomologies mod S—Qv. Then there exist cohomologies:

( 1 ) γί~ Σ clZί mod S-Q , j=l, , k .

Relations (1) hold a fortiori mod S—Qv.

The matrix |c/| | is of rank k, since otherwise there would exist a

cohomology relation between them's, mod S—Qv.

Suppose the Z}.'s are not lircoh mod S—Qy. Then there exists a
relation

But the system of equations

c\xvλ

has a non-trivial solution in the α /s. Hence, multiplying the relations

(1) by xx, , xk , respectively, we get

Σ ffjT-r — Σ aiZi.^0 mod S-Q V .

Thus, the assumption that the Zι

r are not liroch mod S— Qv leads to

contradiction; and since the dimension of Hr(S:S, S~P;S, S—Qv)=k ,

we conclude that the i^'s form a base for cohomologies mod S—Qv.

LEMMA 2. In a locally compact space S, let M be a compact set

such that Hr(M) = 0 and suppose that there exist open sets P, Q such

that MdQCLP and such that Hr(S: Q, 0; P, 0) has finite dimension. Then

there exists an open set Qv such that MCZQ^CZQ and Hr(S: Qv, 0; P, 0)=0.

Proof. Suppose, on the contrary, that for all such Qv, H'(S: Qv,0;P, 0)

7^0. Since Hr(S:Q,0;P,0) is of finite dimension, we may assume Q

shrunk so that all dimensions qf groups Hr(S: Qv, 0; P, 0) are equal to

the same positive integer k for all Qv such that McZQvdQ .

Since

Hr(S: S, S-P; S, S-Qv)^Hr(S:~Qy, 0; P, 0)

[ 1 1 ; 1 6 6 , 1 8 . 3 0 ] , t h e r e e x i s t , b y L e m m a 2 , c o c y c l e s Zl

r9 i = l , •••,&,
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mod S—P, that form a base for cocycles mod S—P relative to cohomologies

mod S-Q~v for all Qv such that MCLQ^CQ. Consider Z\, and IX a fcos

of P such that Z\{\X) exists. Let 33>U be a normal refinement of U

rel. M [11; 140], and let Qv be such that if a simplex of 33 meets Qv,

then it meets M. Since Z^O mod S—Qv, there exists on QV a cycle Z r

such that Zι

r-Zr=l . And by the choice of 33, the coordinate Zr(33) is

on M. Hence π^Z'X^i) is the coordinate on M of a Cech cycle r r

But Hr(M) = 0 and consequently f^O on Λf, and a fortiori, r r W ~ 0

on Q; and since Zr(U) ~ τrUίδZ
r(33) on Q, it follows that Z r (U)~0 on <Q.

But then Zr(U)'Z]

r(ϊl) = 0, in contradiction to the choice of Zr(VL). We

conclude, then, that for some Qv, Hr(S: Qv, 0; P, 0) = 0 .

THEOREM 3. A necessary and sufficient condition that a locally com-

pact space S be lcn is that if M is any compact subset of S such that

Hr(M) = 0, for some r<Ln, then for any open set P containing M there exist

an open set Q such that MCZQCZQCZP and such that Hr(S: Q, 0; P, 0) = 0.

Proof of sufficiency. Trivial. (See [11; 193, 6.14]).

Proof of necessity. With M and P as in the hypothesis, and any

open set Q such that Q is compact and MCIQCZQCZP, the dimension

of Hr(S:Q,0;P,0) is finite [11; 193, 6.16]. Lemma 2 now gives the
desired result.

LEMMA 3. ifS is an orientable n-gm and M a compact subset of S

which is r- and (n — r — iyacyclic for some r such that r<^n — 2y then

for any open set P containing M, there exists an open set Q such that

MCZQCΪQ CLP and such that all compact r-cycles in Q — M bound in P—M.

Proof. Since S is lcn [11; 244], there exists by Theorem 3 an open

set Q containing M such that QCZP and such that all r- and (n — r — ί)-

cycles in Q bound in P. Suppose there exists a cycle Zr in Q-M that

does not bound in P—M.
By Lemma VIII 5.4 of [11; 255] there exists a cocycle Zn_r=τ*Zr

in Q-M such that Zn-r^JΓn~Zr in Q-M, where Γn is the fundamental
Ή-cycle of S. And since Zr^0 in P, we may assume that Zn-r^0 in
P. There exists a covering IX and a relation.

( 1 ) <5Cn-r.1(U) = Zn. r(U) in P.

The chain Cn.r^(l\) is clearly a cocycle mod P - Λ f = S - [ ( E x t P)\J M].
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And if C^-xooO mod S-[(Ext P)UM], then by [11; 164, 18.19] there
exists a cycle zn-r~l on (Ext P)\J M such that CΛ_r_1 Z w - r - 1 =l. Since
Z n - r - 1 =Z 1 + Z 2, where Zλ is on Ext P and ^ on M, we may neglect Zx

(as Cn-y-̂ U) is in P) and write Cn-r-1 ίΓa=l. But Z2~0 on M since
M is (n —r —l)-acyclic, implying Cn_r-i-Z2=0. We conclude, then, that
Cn-r-^0 mod P-Λί. There exists, therefore, a covering 33>U and a
relation

where L^^SS) is in P-M.
Applying δ to (2) and utilizing (1), we get

That is, # w - r ~ 0 in P - M . But this implies Zr~0 in P - M , contrary
to supposition.

REMARK. In the hypothesis of Lemma 3 it was assumed that
r<n — 2, that is, n — r — 22>0. The necessity for this is shown by the
following example: Let S be the 2-sphere, 8\ and in 8 let M be a
circular disk, and U and V open circular disks concentric with M and

such that MCVCVCU. Then in V-M an S1 which encloses M car-
ries a Z1 which fails to bound in U—M.

Note also that if M is an S1 in S\ then M is 2-acyclic but in any
open set P containing M there exist 2-dimensional cycles linking M.
This shows the necessity for the assumption that M be (n — r — l)-acyclic
in the hypothesis.

LEMMA 4. Let Zn~ι be a cycle carried by a closed subset K of an
orientable n-gcm S> and M a connected subset of S—K. If Zn^^0 on
S, then must Zn~ι^0 on a compact subset of S—M.

Proof. This is analogous to that of Lemma XII 3.12, p. 375 of [11].

For the purposes of the proof of the next theorem, let us recall
the following form of the definition of an orientable n-gcm: An n-
dimensional compact space 8 such that (1) pn(S) = l and all π-cycles on
closed proper subsets of S bound on S; (2) S is semi-r-connected for all
r such that l<Ξ><Irc —1; (3) S is completely ?*-avoidable at all points
for all r<^tt-2; (4) S is ^-extendible at all points. (This is IX 3.6, p.
273, of [11]). (By Lemmas VII 5.2, 5.3, p. 224 of [11], condition (4)
may be replaced by the requirement that S is locally (^-l)-avoidable
at all points; this fact will be utilized in the proof of Main Theorem A
below.)
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3. Main theorems*

MAIN THEOREM A. Let S be an orientable n-gcm and f: S-+S' an
(n — ϊ)-monotone continuous mapping of S onto an at most n-dimensional
nondegenerate Hausdorff space S'. Then S' is an orientable n-gcm of the
same homology type as S.

Proof. Since S' is nondegenerate, / is ^-monotone and therefore
by the Vietoris-Begle Theorem [2], pn(S')=pn(S)=l. And since p%S')>0,
S' is at least ^-dimensional, and therefore, by the dimensionality as-
sumption of the hypothesis, is exactly ^-dimensional. And if F' is a
proper closed subset of S', and Zn a cycle on F', there exists on the
set F=f-\F') a cycle γn such that f(γn)^Zn on Fr (see [2; § 5J). As
F is a proper closed subset of S, γn^0 on S and therefore f(γn)^0 on
S'—implying that Zn^Ό on S'. Thus S' satisfies condition (1) above.

That condition (2) is satisfied, follows from the fact that S' is Tcn

by Theorem 2.
Let p'eS', and U an open set containing p\ Then U=f-\Ur) is

an open set containing the set M=f~ι{pf). Let r be any integer such
that l<Lr<Ln-2. Since Hr(M)=Hn-r-\M)=0, there exists by Lemma

3 an open set P such that MCZPCZPC.U and such that all r-cycles in
P-M bound in U-M. Let W be an open set such that p' e W C W C U\
and such that f-\W')CZP- Let Q' be an open set such that preQrC
Q'CZW. As S' is ΐcn, there exists a finite base Zϊ, - - -, Zl of r-cycles
of F(W) relative to homologies in U'-Q'. Let W=f-\W), Q=f-\Q),
and consider any cycle Z\. There exists a cycle y\ on f~\F(W')) such
that firD^Zl on F{W). And as γl^O in U-M, Z\ must bound in
Uf—P'. Finally, since there are only a finite number of the r-cycles

Z\, there must exist an open set Rf such that p' e R' (Z.B! dQ and such

that all r-cycles on F(W) bound in Ur — Rr. Thus Sf satisfies condition

(3).
To show that S' satisfies condition (4), let p\ Uf, U and M be as

before. Since by hypothesis pn~Ί(M) = 0, there exists by Theorem 3 an
open set V such that McZVcZVClU such that all (w-l)-cycles of V

bound on U. LetP ; be an open set such that p' e P ' CZPf CZU' and such
that if Fr=F(Pf), then the set F=f~\F') lies in V. Let Q' be an open

set such that p' e Q' C.Q' C-P''. As above, there exist cycles Zf"1,
i = l , * ,A;, of F' forming a base for (n — l)-cycles of F' relative to
homologies in Sf — Qf. And for each Zf~ι there exists a cycle γf~ι on F

such that / ( rΓ 1 )^^?" 1 on ί\ But since r Γ 1 ^ 0 on £7, hence on S, it
follows from Lemma 4 that r Γ ' ^ 0 in S—M. Therefore each Z^^O
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in S' — p', and it follows that, as above, an open set R exists such that

p'eRCQ and all Zf1 bound in S'-R'. Thus 8' is locally (n-ϊ)-
avoidable.

The necessity for assuming that S' is at most ^-dimensional above
may be avoided if the monotoneity condition on / is strengthened. We
recall that for the Vietoris Mapping Theorem to hold when the coef-
ficient group is not a field or an elementary compact topological group,
it is necessary to phrase the monotoneity condition in terms of the in-
dividual coordinates of cycles (just as, for example, may be done with
the r-lc condition; compare [11; 176, Defs. 1.1, 1.2]). In terms of the
generalized Vietoris cycles such as Begle employed [2], the condition is
defined as follows:

DEFINITION 3. A mapping / of a space X onto a space Y is a
Vietoris mapping of order n if for each covering IX of X and y eY
there exists a refinement 33=3S(ϊt, y) of U such that every r-cycle of
X(yi)Λf-\y) [11; 131], r^n, bounds on X{U)Af'ι(y). (By X(U) is
denoted the complex consisting of all simplexes σ such that the vertices
of a are points of X and diameter of σ < Π . )

When the coefficient group is a field or elementary compact group,
this definition is equivalent to that of ^-monotone. It will be convenient,
then, to retain the term " w-monotone" with, however, a qualification

regarding the coefficient group employed. Also, for working with Cech
cycles, the definition is more suitable in the following form:

DEFINITION 3'. A mapping / of a space X onto a space Y is n-
monotone over (an abelian group) G if for each covering U of X, yeY
and M=f~ι{y), there exists a refinement 33 of Π such that for every
r-cycle Zr(S5) over G, r<^n, on $ Λ M the projection πχmZr(^&) bounds
on UAM.

A routine argument shows that the two Definitions 3 and 3' are
equivalent.

LEMMA 4. If f is an n-monotone mapping over the additive group
I of integers of a compact space S onto a Hausdorff space S', then f is
n-monotone over every abelian group G.

(Remark. As will be seen from the proof below, it is sufficient to
assume the condition of the Definition 3' only for r = n and n — 1.)

Proof. For n=0 the lemma follows at once since, as is easily
shown, 0-monotone over any group G is equivalent to the connectedness
of f-\x) for all xeS\



MONOTONE MAPPING OF MANIFOLDS 1527

For n > 0 we proceed as follows (see Cech [4; 11-13], where a
similar type of argument is employed for quite different purposes):
Given a covering Ui of S and xeS\ M — f-\x), we choose U 2 >U! such
that for every 72-cycle Zn{Xiλ) over / on U2 Λ M, the projection π12Z

n(\l2)
thereof from Π2 to Ux bounds on l^ AM; and U 3 > U 2 such that for every
(rc-l)-cycle Zn-\M6) over / on U 3 Λ l , the projection π^Zn'ι(ll3) thereof
bounds on Mz Λ M.

There exists a base for w-chains over 7 for the complex U3/\M
consisting of chains Cf(1l3), i = l , « , α w , such that

where
Consider any cycle Zn(U.ό) over G of U 3 Λ l . Then

And since Zn(llό) is a cycle,

Σsw?crTO=o,
i = i

implying that

( 1 ) flri7? = 0 for

Also, since for βn-hl<Lί<Lan the chain Cf(U3) is a cycle, there exist
chains Hΐ+1(Ui) over / of Ux Λ M such that

( 2 )

Furthermore there exist chains Z??(1I2) over / of H 2 Λ l such that

And since the chains π23C?(Π3) — ??Z??(U2) are cycles over /, we also have
relations

on UxΛΛf. From (1), (2), and (3) we get

Σ ) - Σ ^2^

on U , Λ l .
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MAIN THEOREM B. Let S be an orientable n-gcm and f: S-+S' a
continuous mapping of S, (n — l)-monotone over the integers, onto a finite-
dimensional nondegenerate Hausdorff space S\ Then S' is an orientable
n-gcm of the some homology type as S.

Proof. The defining properties of an orientable n-gcm S utilize
an algebraic field Jf as coefficient domain, and in particular specify
that if F is a proper closed subset of S, then Hn(F; ^Γ) = 0. It follows
that since S' is nondegenerate, / is ^-monotone as defined in Definition
1, and consequently [2; 542-3] is ^-monotone over ^ as defined in
Definition 3'. Furthermore, / is ^-monotone over /. For it is trivial
that 92-monotoneity over a cofinal system of coverings of a space is
sufficient for w-monotoneity, and S has a cofinal system Σ of coverings
of dimension n; and since a cycle Zn(%$), 93 eΣ, over 7 is a fortiori a
cycle over J?~, for a projection πmZn(3$), U e Σf to bound implies
7τUςgZw(SS) = O. We conclude then that / is n-monotone over I.

Now suppose the dimension, dim S\^>n. Then ([6]; [1]) there
exists a closed set CCZS' and cycle Zn over Rτ (the additive group of
the reals mod 1) such that Zn~0 on S' but Zn^0 on C. As / is n-
monotone over Rλ by Lemma 4, there exists [2; § 5] a cycle γn on f~\C)
such that f(γn)~Zn on C. But since Zn^0 on S', it follows [2; 542]
that γn^0 on S. As S is w-dimensional, this implies γn=0 and a
fortiori that ^ ^ O o n C and consequently f(τn)/^O on C, implying Zn<^-Q
on C, contrary to the choice of Zn.

The theorem now follows from Main Theorem A, since by Lemma
4, γ is (n — l)-monotone over . i^ .
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