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A NOTE ON ADDITIVE FUNCTIONS

H. DELANGE AND H. HALBERSTAM

l A real valued function f(n), defined on the set of natural num-
bers, is called additive if f(mn) = f(m) + f(n) whenever (m, n) — \, and
strongly additive if a l s o f(p*) = f(p) f o r p p r i m e a n d a = 2, 3 , •••. W e
define

(1) An=Σ AP)IP , #»=Σ f\v)!v ,

and we assume throughout that

(2) Bw->°° , n-+co .

Additive functions for which Bn = O(l) have already been discussed
thoroughly in Erdos and Wintner [4], They proved the following theorem:

Define

r l for

t/(p)for

Then the additive function f(n) possesses a distribution function if, and
only if, the series

Σf'(p)IP and Σ{/'(P)}2IP
V V

converge.

Moreover, it follows from a general result of P. Levy [10] that this
distribution function is continuous if, and only if, the series Σ f(p)Iv

jΓ(ίO#0

diverges. Surveys of this subject are given in Kac [7] and Kubilyus [9].
A comprehensive account is being prepared by H. N. Shapiro.

Our knowledge of functions subject to (2) is not as complete. Out-
standing is the result of Erdos and Kac [3] which states that if

( 3 ) f(p) = O(l),

the distribution of

ArntA, m<n,
BT

is asymptotically Gaussian. In a recent note H. N. Shapiro [11] has
shown that the theorem of Erdos and Kac remains true even when (3)
is replaced by
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(4) limi?"1 Σ /KP)!P=O for every ε>0

Since (4) is essentially the Lindeberg condition which is necessary and
sufficient for the central limit theorem to hold, one is led to conjecture
that (4) is not only the sufficient but also the necessary condition for
the truth of the theorem of Erdόs and Kac. However, it seems very
difficult to establish the necessity (see Kubilyus [8] and Tanaka [12]).

Associated with such questions about the distributions of additive
arithmetic functions is a number of ' moment' problems, which, if solved,
lead to results of independent interest. Thus, for example, the following
result is suggested by, and includes, the theorem of Erdos and Kac.

THEOREM 1. Let f(m) be strongly additive and subject to (2) and

(5) f(p)=o(Bf).

Then we have for each fixed k=l, 2, 3,

(For proofs see Delange [1], [2], Halberstam [5], [6].)

The purpose of the present communication is to indicate briefly a
proof that Theorem 1 remains true even when (5) is replaced by the
weaker pair of conditions (4) and

(5a) f(p) = O(B]!2) .

That (5a) alone does not suffice can be seen readily from the case f(p)
= logp, which determines a very different kind of distribution. On the
other hand, (4) alone would also be inadequate, as can be seen from the
following example.

Let pu p2, , pj9 be an increasing sequence of primes with the
property that the number of primes which belong to this sequence and
do not exceed x is o(loglog#). Now take

j (^) 1 / 2 if p—Pj ,

ι1 , if p does not belong to the sequence.

Then Bn~(\og\ogri) and condition (4) is satisfied. However,

j g (fW - A,)' ^ (f(Pj) - APjY ~ p)

whereas, if Theorem 1 were true in this case, we should have
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Σ (f(m)-ApY~3Pj(\og\ogPjγ .

The most general formulation of Theorem 1 remains an open ques-
tion. The theorem shows, incidentally, that although the method of mo-
ments is in many ways more tractable for determining the distributions
of given functions, it is not as wide in scope as the method evolved by
Erdos and Kac.

2 We suppose throughout this section that (4) and (5a) hold. First
of all, we rewrite (4) as

(6) \im φ(n, ε) = 0 for every ε>0 ,

where

(7) Φ(n,ε)=B;> Σ f\v)lv .
P<n
I

To simplify subsequent arithmetic we choose ε<l/2 and keep it fixed;
then we choose n so large that

(8) φ(n, ε)<—ε

as is possible by (6). We set

and observe that in view of (9) and the well-known relation

(10) Σ P~τ = log log y+c+o(l)
p<y

where c is an absolute constant,1

We define

(12) i4*= Σ f(p)IP, Bf= Σ Γ(P)IP
*<*nιlt

and

(13) /*(m)= Σ /(P) .

By (7) and (12)
1 The constants implied by the use of the O-notation depend throughout on at most k.
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B*=Bn(l-φ(n, e))

and this combines with (11) to give

(14) Btn=BJl + O(ε*+φ(n, ε)) .

LEMMA 1. An=A*n+O(BT{ε+ε-'φin, e)}) .

Proof. By (1)

An= Σ ΆP)IP+ Σ ΆP)IP+ Σ f(p)lp

The first sum on the right is A* by (12) with y—an, the second sum
is O(εBιJ2) by (11), and the third"is less than

Σ f\p)\p=B)ϊh-'φ{n, ε)

by (7). Hence the result.

LEMMA 2. If r^k, then

Proof. By (13) and the definition of /(m)

f(m)-f*(m)= Σ /(P)+ Σ
< |

Σ / ( P ) Σ
p<.n,ρ)m p\m

where 8^ is the set of those primes less than n which satisfy either

( i )

or

(ii)

Then the sum of Lemma 2 is

O ( Σ Σ Σ'Ί/MPO /MPV)! Σ 1

= O ( Σ {max ι/αor>} Σ/r Γ—5—

where Σ / r indicates t h a t the summation is carried out over all sets of

distinct prime numbers pu p2, •••, pv with pte & (i — 1, 2, •••, v), and

[y] stands for the integer par t of y. Using (5a), (i) and (ii) this expres-

sion is
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Σ \f(p)\lp\s\ Σ \f(p)\lphs),
l>< / 2 /

which, as in the proof of Lemma 1, becomes

θ(n Σ,B^h ± {B)l\e^φ)Y{BTeγ-s)^θ(nBl Σ Σ {^
\ V=l S=0 / \ V=lS=0

here we have used the restrictions on the magnitudes of e and φ im-
posed at the beginning of § 2 (see inequality (8)).

Next we set

Mk(n) = ±(f(m)-Anf , M*(n)=£ (f*(m)-A*Y .
m = l mι=l

Then

so that by Lemmas 1 and 2 and Cauchy's inequality

Mk(n)-Mf(n)

= θ( Σ IΛ.-i4*|riΣI/(m)-/*(m)h|/*(
1 ^ o

k

But by the methods of Halberstam [5] or Delange [2] it is a straight-
forward matter to confirm that for n sufficiently large

Mf(rc) = ̂ 5 * )ι/ί(2τr)-1/aί~ ωιe-Jl2dω{l + O(ε)} ,

so that by (14) and (8)

(15) M*(rc) =

and, in particular

Hence
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now, whilst still keeping e fixed, we let n tend to infinity, and obtain

lim

Thus, by (15) with l=k,

MM_MJ(r?)
nBT

Since the left side is entirely independent of ε, and yet the relation is
true for every e<l/2, we have now proved that

for every fixed & = 1, 2, 3, ••• .
This concludes the proof of Theorem 1 with condition (5) replaced

by the pair of conditions (5a) and (4).
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