ON TWO THEOREMS OF PHRAGMÉN-LINDELÖF FOR LINEAR ELLIPTIC AND PARABOLIC DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

AVNER FRIEDMAN
1. Introduction. In Part I of this paper our main interest is to generalize to elliptic equations the following theorem of Phragmén-Lindelöf:

Theorem 0. If \(f(z) \to a \) as \(z \to \infty \) along two straight lines, and \(f(z) \) is regular and bounded in the angle between them, then \(f(z) \to a \) uniformly in the whole angle as \(z \to \infty \).

A generalization of the classic Phragmén-Lindelöf theorem to elliptic equations was given by Gilbarg [1] and Hopf [4]. A refined form of that classic theorem, due to the Nevanlinnas [5], [6; 42-44] and Heins [3], was generalized to elliptic equations by Serrin [8].

In generalizing Theorem 0 we shall make an extensive use of the Gilbarg-Hopf results.

In Part II we generalize to parabolic equations both the classic Phragmén-Lindelöf Theorem and Theorem 0.

In §2, Theorem 0 is proved for elliptic equations defined in any 2-dimensional domains (Theorems 1, 2). The case \(n>2 \) is treated in §3, for domains contained in a half space. In §4 we consider the behavior of solutions in an angular neighborhood of the origin, and we obtain results similar to those of §§2, 3. In §§5, 6, generalizations to parabolic equations are given: Theorems 7, 9 extend the classic Phragmén-Lindelöf Theorem and Theorems 8, 10 extend Theorem 0.

The results in Part I are somewhat analogous with Theorems 2, 3, 3' of Gilbarg-Serrin's paper [2]. The similarity appears both in the type of conditions imposed on the coefficients of the elliptic operator and in the assertions. It is however important to note that our results cannot be obtained by the Gilbarg-Serrin methods, since Harnack Inequalities which play an essential role in their paper, do not hold uniformly in open domains.

Received May, 13, 1957. Paper written under contract with Office of Naval Research N58304.
2. Consider the differential operator

\[Lu = \sum_{i,j=1}^{n} a_{i,j}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i} \]

defined in a domain \(D \). In this and the following chapter \(D \) is supposed to be unbounded. We denote by \(\partial D \) the boundary of \(D \), and by \(\overline{D} \) the closure of \(D \). We shall assume throughout Part I that \(L \) satisfies the following conditions ([1], [4]):

(i) \(\sum_{i,j} |a_{i,j}(x)| \) is bounded in \(D \), and, for all \(x \in D \), \(\xi_i \) real,

\[\sum_{i,j} a_{i,j}(x)\xi_i \xi_j \geq \alpha \sum_i \xi_i^2 \quad \alpha > 0 , \]

(ii) for all \(x \in D \), \(|x| = r \),

\[\sum_{i} |b_i(x)| \leq p(r) , \]

where \(p(r) \), defined for \(0 < r < \infty \), is monotone decreasing and

\[\int_0^\infty p(r) \, dr < \infty . \]

Define \(a_{i,j}(\infty) = \lim_{|x| \to \infty} a_{i,j}(x) \) as \(|x| \to \infty \) \((x \in D) \), whenever the limit exists. The matrix \((a_{i,j}(x)) \) is said to be \textit{Dini continuous} at infinity, if there exists a monotone decreasing function \(\varphi(r) \) with \(\int_0^\infty r^{-1}\varphi(r) \, dr < \infty \), such that for \(x \in D \), \(|x| = r \),

\[\sum_{i,j} |a_{i,j}(x) - a_{i,j}(\infty)| \leq \varphi(r) . \]

Let \(u(x) \) be defined in \(D \) and belong to \(C^2(D) \). In Theorems 1–6 the function \(u(x) \) is also assumed to be continuous in \(\overline{D} \). Denote

\[m(r) = \inf_{x \in D, \ |x| = r} u(x) , \quad \mu(r) = \sup_{x \in D, \ |x| = r} |u(x)| . \]

Let \(K_\beta \) denote the \(n \)-dimensional cone with angular opening \(\beta \), \(0 < \beta \leq 2\pi \), whose axis is the positive \(x_n \)-axis and whose vertex is at the origin.

\textbf{Lemma 1.} Suppose \(D \subset K_\beta \), \(n = 2 \). Assume that \(L \) satisfies (i), (ii) and that \((a_{i,j}(x)) \) is continuous at infinity with \(a_{i,j}(\infty) = \delta_{i,j} \). If \(Lu(x) \leq 0 \) in the open set \(D_{r_0} = D \cap |x| > r_0 \), \(u(x) \geq 0 \) on \(\partial D_{r_0} \) and for some \(\gamma' < \gamma = \pi/\beta \),

\[\lim_{k \to \infty} r_k^{\gamma'} m(r_k) = 0 \quad (r_k \to \infty \text{ as } k \to \infty) , \]

\[\lim_{k \to \infty} r_k^{\gamma'} m^2(r_k) = 0 \quad (r_k \to \infty \text{ as } k \to \infty) , \]

\[\lim_{k \to \infty} r_k^{\gamma'} m^3(r_k) = 0 \quad (r_k \to \infty \text{ as } k \to \infty) . \]
and if r_0 is sufficiently large (depending only on L, β and γ'), then $u(x) \geq 0$ in D_{r_0}.

By $u(x) \geq 0$ on ∂G we mean: $\liminf u(x) \geq 0$ as x tends to ∂G ($x \in G$).

Proof. Following the Gilbarg-Hopf method, it is enough to prove the existence of functions $v_R(x)$, $r_0 < R < \infty$, with the following properties:

\begin{equation}
 v_R(x) \geq 0 \quad \text{if} \quad |x| \leq R, \quad x \in \partial D_{r_0}, \tag{3}
\end{equation}

\begin{equation}
 v_R(x) = 1 \quad \text{if} \quad |x| = R, \quad x \in D_{r_0}, \tag{4}
\end{equation}

\begin{equation}
 L v_R(x) \leq 0 \quad \text{if} \quad |x| < R, \quad x \in D_{r_0}, \tag{5}
\end{equation}

for every $x \in D_{r_0}$, $R^\epsilon v_R(x)$ is bounded as $R \to \infty$.

Denote by $h(x'_1, x'_2)$ the harmonic function defined in the semicircle C': $x'_1^2 + x'_2^2 < 1$, $x'_2 > 0$, which takes the value 0 on the diameter and the value 1 on the rest of the boundary. The transformation $z' = z^\delta$, where $\gamma' < \delta < \gamma$, $z' = x'_2 + ix'_1$, $z = x_2 + ix_1$, maps $S = K_\beta \cap |x| < 1$ onto a domain $S' \subset C'$. The function $k(x, x_2) = h(x'_1, x'_2)$ is harmonic in S and takes boundary values ≥ 0 on the radii and the value 1 on the rest of the boundary.

We shall find $v_R(x)$ in the form $v_R(x) = f_R\left(\frac{x}{R}\right)$.

If we show, in addition to $L f_R \leq 0$, that

\begin{equation}
 f_R(0) = 0, \quad f_R(1) = 1, \quad 0 \leq f_R(k) \leq 1 \quad \text{if} \quad 0 \leq k \leq 1, \tag{6}
\end{equation}

\begin{equation}
 f_R(k) = 0(k^{\gamma'/\beta}) \quad \text{uniformly in} \ R, \quad \text{as} \ k \to 0, \tag{7}
\end{equation}

then (3), (4), (5) follow. Note, in proving (5), that $R^\epsilon k\left(\frac{x}{R}\right)$ is bounded as $R \to \infty$. The construction of f_R proceeds as in Hopf's proof [4], except for the facts that property d) on p. 421 and the inequality

\begin{equation}
 \sum_{i,j} \frac{|h''(x)|}{|h'(x)|^2} < C \quad 0 < |x| < 1 \tag{8}
\end{equation}

do not hold for the corresponding k.

The image of K_β under the mapping $z' = z^\delta$ is a 2-dimensional cone $K'_{\delta - \epsilon}$ ($\epsilon > 0$) with opening $\pi - \epsilon$ and $S' \subset K'_{\delta - \epsilon}$. From Hopf's proof it is clear that instead of satisfying d), it is enough for k to satisfy:

\begin{enumerate}
 \item[d')] along each equipotential arc $k(x) =$ const.,
 \begin{equation}
 |k'(x)| = \left(\sum \left(\frac{\partial k(x)}{\partial x_i}\right)^2\right)^{1/2} \geq H \frac{\partial k}{\partial x_2}
 \end{equation}
\end{enumerate}
on the axis of x_2 (say at x), $H > 0$. Since the equipotential arcs of $k(x)$ is S correspond to equipotential arcs of $h(x')$ in S', we have
\[|k'(x)| = |h'(x')| \left| \frac{dz'}{dz} \right| \geq H \frac{\partial h(\tilde{x}')}{\partial x'} \delta |x'|^{\delta - 1} = \frac{\partial h(\tilde{x}')}{\partial x'} |x'|^{(\delta - 1)/\delta} \]

where \(\tilde{x}' \) is the image of \(\tilde{x} \) and \(H > 0 \). Here, in the case \(\delta < 1 \), we used the inequality \(|x'| < H |\tilde{x}'| \) \((H, > 0)\), noting that \(S' \subset K_{\epsilon-r} \).

The estimation of \(\sum a_{ij}(x)h_{ij}(\xi) \) in \(Lk \) (see [4; p. 423]) has to be modified, since (8) does not hold for \(k \). Defining

\[
(9) \quad \varepsilon_{ij}(x) = a_{ij}(x) - \delta_{ij}, \quad \varepsilon(r) = \sup_{x \in D, |x| = r} \sum |\varepsilon_{ij}(x)| ,
\]

and using the harmonicity of \(k \), we get

\[
I = |k'(\xi)|^{-2} |\sum a_{ij}(x)h_{ij}(\xi)| \leq AC + \sum |\varepsilon_{ij}(x)| - \frac{\delta - 1 |\xi|^{\delta - 2}}{\delta |h'(\xi')| |\xi|^{2(\delta - 1)}}.
\]

where \(A \) and \(B \) are constants, and \(|\xi| < 1 \).

Using the inequality \(2|\xi| \geq h(\xi') \) ([1; p. 414]), we obtain

\[
I \leq AC + B\varepsilon(r)k^{-1}.
\]

Define \(r_0 \) to be such that if \(r > r_0 \) then \(B\varepsilon(r) < 1 - \gamma'/\delta \). Then, the last inequality for \(I \) shows that Hopf's method can be applied to prove that \(Lf \leq 0 \), provided that \(f \) satisfy:

\[
(10) \quad \frac{f''(k)}{f'(k)} = -AC - \frac{1 - \gamma'/\delta}{k} \frac{P(x_2)}{H(\partial k(\tilde{x})/\partial x_2)}, \quad f'(k) > 0,
\]

where \(\tilde{x} = (0, x_2) \) (\(k \) is a monotone function of \(x_2 \)).

Solving (10) we obtain,

\[
(11) \quad f'_R(k) = Ek^{\gamma'/\delta - 1} \exp \left(-ACk - P(x_2) \right), \quad f'_R(0) = 0,
\]

where

\[
E^{-1} = \int_0^1 k^{\gamma'/\delta - 1} \exp \left(-AC - P(x_2) \right) dk, \quad P(s) = H^{-1} \int_0^s p(t) \, dt.
\]

The verification of (6), (7) is immediate and the proof is thereby completed.

Lemma 2. Suppose \(D \subset K_\beta, n=2 \). Assume that \(L \) satisfies (i), (ii) and that \((a_{ij}(x)) \) is continuous at infinity with \(a_{ij}(\infty) = \delta_{ij} \). If \(r_0 \) is sufficiently large, then there exists a function \(w(x) \), defined in \(D_{r_0} \), and having the following properties:
ON TWO THEOREMS OF PHRAGMÉN-LINDELOF

(a) \(w(x) \geq 0 \) if \(x \in \partial D_{r_0} \),

(b) \(w(x) = 1 \) if \(x \in D \), \(|x| = r_0 \),

(c) \(|v(x)| \leq 0 \) if \(x \in \partial D_{r_0} \), and

(d) \(w(x) \to 0 \) uniformly in \(D_{r_0} \) as \(|x| \to \infty \).

Proof. To prove the lemma, define \(\tilde{v}(x') = \frac{2}{\pi} \theta(x') \), where \(\theta(x') \) is the polar angle of the point \(x' \) with \((-r_0', r_0')\) as a pole. Define also \(v(x) = \tilde{v}(x') \), where \(x' \) is the image of \(x \) under the mapping \(z' = z' \), where \(\gamma = \pi/\beta \), \(x' = x_2 + ix_1 \), \(z = x_2 + ix_1 \). We try to find \(w \) in the form \(w = f(v) \).

(c) implies that

\[f''(v) \sum_{i,j} a_{ij}(x) \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} + f'(v) \left(\sum_{i,j} a_{ij}(x) \frac{\partial^2 v}{\partial x_i \partial x_j} + \sum_i b_i(x) \frac{\partial v}{\partial x_i} \right) \leq 0. \]

Using the harmonicity of \(v(x) \) we conclude, after some calculations (see [1; p. 414]), that (12) is a consequence of the inequalities:

\[\frac{f''(v)}{f'(v)} < -A_1 \varepsilon(|x|) \frac{|x'|}{r_0} - A_2 |x| p(|x|) \frac{|x'}{r_0}, \quad f'(v) > 0, \]

where \(A_1, A_2 \) are proper constants and \(\varepsilon(r) \) is defined by (g).

Taking \(r_0 \) to be such that \(2A_1 \varepsilon(r) + 2A_2 r p(r) < 1 - \delta \) (0 < \(\delta < 1 \)) if \(r > r_0 \) (note that \(r p(r) \to 0 \)), and using the elementary inequalities

\[|x'| \leq r_0 \ctg \delta' / 2 \leq 2r_0' / \tilde{v}(x'), \]

we conclude that if \(f(v) \) satisfies:

\[f''(v) f'(v) = -(1 - \delta) |v|, \quad f'(v) > 0, \]

then (13) follows. Solving (14) we find that the function \(f(v) = v^\delta \) satisfies (a)-(d).

THEOREM 1. Suppose \(D \subset K_\beta, n = 2, \) and assume that \(L \) satisfies (i), (ii) and that \(a_{ij}(x) \) is continuous at infinity with \(a_{ij}(\infty) = \delta_{ij} \). If \(Lu(x) = 0 \) in \(D \), and, for some \(\gamma \),

\[\lim_{r \to \infty} \frac{\mu(r)}{r^{n+\beta-\eta}} = 0 \quad (\eta > 0 \text{ if } \beta \neq \pi, \quad \eta = 0 \text{ if } \beta = \pi), \]

and if \(u(x) \to 0 \) on \(\partial D \) as \(|x| \to \infty \), then \(u(x) \to 0 \) uniformly in \(D \) as \(|x| \to \infty \).

Proof. Given \(\varepsilon > 0 \), there exists \(r_0 > 0 \) such that \(-\varepsilon < u(x) < \varepsilon \) for
$x \in \partial D, \ |x| \geq r_0$. Denoting $M_0 = \max_{|x|=r_0} |u(x)|$, we can apply Lemma 1 (in the case $\beta=\pi$ we apply the Gilbarg-Hopf theorem) to the function $v(x) = u(x) + M_0 w(x) + \varepsilon$ in the open set D_{r_0}. We get $v(x) \geq 0$ in D_{r_0}. Taking r_1 to be such that $M_0 w(x) < \varepsilon$ in D_{r_1}, we conclude that $u(x) > -2\varepsilon$ in D_{r_1}. Similarly we get $u(x) < 2\varepsilon$ in D_{r_1} and the theorem is proved.

REMARK. Using a proper linear transformation we conclude that the assumption $a_{ij}(\infty) = \delta_{ij}$, can be dismissed if in (15) β is replaced by β', where β' is the angular opening of the image of K_β under the linear transformation. The continuity assumption of the $a_{ij}(x)$ at infinity can be replaced by the weaker assumption that the oscillation of the $a_{ij}(x)$ near infinity is sufficiently small.

We can reduce the case $0 < \beta \leq 2\pi$ to the case $\beta = \pi$ by the conformal mapping $z' = z^{\pi/\beta}$, where $z = x_2 + ix_1$, $z' = x'_2 + ix'_1$. Applying Theorem 1, we get the following theorem after some calculation.

Theorem 2. Let $D \subset K_\beta$, $n=2$, and assume that L satisfies (i), (ii), that $(a_{ij}(x))$ is Dini continuous at infinity with $a_{ij}(\infty) = \delta_{ij}$, and that $r^{1-\gamma} p(r)$ ($\gamma = \pi/\beta$) is monotone decreasing. If $Lu(x) = 0$ in D, and

$$
\lim_{r \to \infty} \frac{\mu(r)}{r^{\pi/\beta}} = 0,
$$

and if $u(x) \to 0$ on ∂D as $|x| \to \infty$, then $u(x) \to 0$ uniformly in D as $|x| \to \infty$.

As in Theorem 1, the restriction $a_{ij}(\infty) = \delta_{ij}$ can be dismissed, but then in (16) and in $r^{1-\gamma} p(r)$, β should be replaced by β'.

In analogue with Theorem 2, one can formulate an extension of the Gilbarg-Hopf theorem to the case $0 < \beta \leq 2\pi$. Serrin's results [8] can also be extended to domains $D \subset K_\beta$ ($0 < \beta \leq 2\pi$) such that the image of D under the mapping $z' = z^{\pi/\beta}$ contains a half plane $x'_2 > c$. In particular we have the following.

If $Lu \leq 0$ in D and $u \geq 0$ on ∂D, then $\lim_{r \to \infty} r^{-\pi/\beta} m(r)$ exists and is ≤ 0.

3. In this section we consider the case $n \geq 3$.

Lemma 3. Suppose $D \subset K_\beta$, $\frac{\pi}{3} \leq \beta < \pi$, $n \geq 3$. Assume that L satisfies (i), (ii) and that $(a_{ij}(x))$ is continuous at infinity with $a_{ij}(\infty) = \delta_{ij}$. If $Lu(x) \leq 0$ in D_{r_0}, $u(x) \geq 0$ on ∂D_{r_0}, and, for some $\gamma' < \gamma = \pi/\beta$,

$$
\lim_{k \to \infty} r_k^{-\gamma'} m(r_k) = 0 \quad (r_k \to \infty \text{ as } k \to \infty),
$$

If $Lu \leq 0$ in D and $u \geq 0$ on ∂D, then $\lim_{r \to \infty} r^{-\pi/\beta} m(r)$ exists and is ≤ 0.

and if \(r_0 \) is sufficiently large, then \(u(x) \geq 0 \) in \(D_{r_0} \).

Proof. The proof proceeds as in Lemma 1, if (following Hopf [4]), we define

\[
K(x) = k(\rho, x_n), \quad \rho = \sqrt{x_1^2 + \cdots + x_{n-1}^2} = \sqrt{r^2 - x_n^2}, \quad 0 < r < 1,
\]

where \(k \) is the function defined in the proof of Lemma 1. The only essential difference will be in estimating \(\sum a_{ij}(x)K''_{ij}(\xi) \). Clearly,

\[
\sum K''_{ij}(x) = (n-2) \frac{1}{\rho} \frac{\partial k}{\partial \rho},
\]

and

\[
\sum |K''_{ij}(x)| \leq A_3 \sum |k''_i| + A_4 \frac{1}{\rho} \left| \frac{\partial k}{\partial \rho} \right| \quad (|x| < 1, A_3 > 0, A_4 > 0).
\]

If we show that

\[
J = \frac{1}{\rho} \frac{\partial k}{\partial \rho} / |k'| \leq B_1 \quad \text{and} \quad |J| \leq B_1 + \frac{B_2}{k},
\]

where \(B_1 \) and \(B_2 \) are positive constants, then we can proceed as in the proof of Lemma 1, and the proof of Lemma 3 will be completed.

To prove the first part of (17), we write \(J \) in the form

\[
J = \frac{|z|^{\delta-1}}{\sin \vartheta} \frac{1}{|x'|} \frac{\partial h}{\partial \rho} + \frac{|z|^{\delta-1}}{|h'(z)|^2 |z|^{2(\delta-1)}} \frac{\partial h}{\partial \rho'} \frac{1}{|z| \sin \vartheta} \frac{|z|^{\delta-1}}{|h'(z)|^2 |z|^{2(\delta-1)}} \frac{\partial h}{\partial \vartheta} = J_1 + J_2
\]

where \(J_1 \) is the first term and \(z' = z', z = x_n + i \rho, \vartheta = \vartheta, \rho = |z| \sin \vartheta \), etc. Since \(\frac{1}{\rho'} \frac{\partial h}{\partial \vartheta} \) is bounded near \(\rho' = 0 \), and since \(|h'(z')| \) is bounded from below by a positive constant, we get \(|J_1| \leq B_1 \).

Since \(\frac{\partial h(z')}{\partial x_n} \) is bounded and \(\frac{\sin (\delta-1) \vartheta}{\sin \vartheta} \) is bounded if \(1 < \delta < 3 \), it follows that \(J_2 \leq 0 \) and consequently, \(J \leq B_1 \).

The second part of (17) follows from noting that \(|J| \leq \frac{B_2}{2 |z|} \leq \frac{B_2}{k} \).

Lemma 4. Lemma 2 is true also in the case \(n \geq 3 \).

Proof. The function \(t(x) = r^{\delta-2} |x|^{2-n} \) satisfies (a), (b) and (d). We shall find \(w(x) \) in the form \(f(t) \). Condition (c) implies that
By our assumptions, \(\sum |a_{i,j}(x)| - \delta_i \leq \epsilon(|x|) \to 0 \) as \(|x| \to 0\). Using the harmonicity of \(|x|^{2-n}\), we find that if \(f(t) \) satisfies

\[
(19) \quad f''(t) \frac{f'(t)}{f(t)} < -(B_1 \epsilon(|x|) + B_2 |x|p(|x|))/t , \quad f'(t) > 0,
\]

where \(B_1 \) and \(B_2 \) are proper constants, then (18) follows. Now, if \(r_0 \) is such that \(B_1 \epsilon(r) + B_2 r p(r) < 1-\delta \) (0<\(\delta <1 \)) for \(r>r_0 \), and if

\[
(20) \quad f''(t) \frac{f'(t)}{f(t)} = -(1-\delta)t^{-1} , \quad f'(t) > 0 ,
\]

then (19) follows. Solving (20) we get the function \(f(t) = t^\delta \), which satisfies (a)–(d).

With Lemmas 2 and 3 at hand, we can use the argument used in proving Theorem 1 and thus get the following.

Theorem 3. Suppose \(D \subset K_\beta, \frac{\pi}{3} \leq \beta \leq \pi, n \geq 3 \). Assume that \(L \) satisfies (i), (ii) and that \(a_{i,j}(x) \) is continuous at infinity with \(a_{i,j}(\infty) = \delta_i \). If \(Lu(x) = 0 \) in \(D \), and for some \(\eta \),

\[
\lim_{r \to \infty} \frac{\mu(r)}{\gamma^{|\beta-\eta|}} = 0 \quad (\eta > 0 \text{ if } \beta \neq \pi, \eta = 0 \text{ if } \beta = \pi),
\]

and if \(u(x) \to 0 \) on \(\partial D \) as \(|x| \to \infty\), then \(u(x) \to 0 \) uniformly in \(D \) as \(|x| \to \infty\).

Remarks. (a) The remark which follows Theorem 1, applies also to Theorem 3.

(b) If we assume in Theorem 3, that \(u(x) = 0(r^{2-n+\delta}) \), \(\delta > 0 \) on \(\partial D \) then the same holds in \(D \). This follows by applying the maximum principle to functions of the form \(u(x) \pm Ar^{2-n+\delta} \pm \epsilon \), where \(A \) is a proper fixed constant and \(\epsilon > 0 \) (compare [2; 324–325]).

4. Let \(D \) belong to the half space \(x_n > 0 \) and denote by \(C_r \) the open set \(D \cap |x| < r \). We shall consider the behavior of solutions near \(x = 0 \); it is therefore assumed that \(0 \in \overline{D} \).

We first observe that the construction of \(w(x) \) in Lemma 4, can be easily modified to derive functions \(w_r(x) \) defined in \(C_r = C_{r_0} \cap |x| > r \) for all \(0 < r < r_0 \), and having the following properties:
(a) $w_r(x) \geq 0$ if $x \in \partial C'_r$,
(b) $w_r(x) = 1$ if $x \in C_{r_0}$, $|x| = r$,
(c) $Lw_r(x) \leq 0$ in C'_r, and
(d) there exists δ $(0 < \delta < 1)$ depending on r_0 ($\delta \to 1$ as $r_0 \to 0$), such that
$$\lim_{r \to 0} r^{\delta(z-n)}w_r(x) = 0 \quad \text{if} \quad x \in C_{r_0}.$$

Here, r_0 is assumed to be sufficiently small, and, $(a_{ij}(x))$ is assumed to be continuous at $x=0$ with $a_{ij}(0) = \delta_{ij}$.

With the aid of $w_r(x)$ we can prove an analogue of the Gilbarg-Hopf theorem.

If $Lu \leq 0$ in C_{r_0}, $u \geq 0$ on ∂C_{r_0} and
$$\lim_{r \to 0} r^{\delta(n-2)}m(r) = 0 \quad (0 < \delta < 1),$$
and if r_0 is sufficiently small (depending on δ), then $u \geq 0$ in C_{r_0}.

We can now use the method used in proving Theorem 1, noting that the role that $w(x)$ played in that proof is now given to the function $f_{r_0}(h\left(\frac{x}{r_0}\right))$ of Gilbarg-Hopf. The following theorem is thus proved.

Theorem 4. Let D belong to the half space $x_n > 0$, $n \geq 3$. Assume that L satisfies (i), (ii) and that $(a_{ij}(x))$ is continuous at $x=0$. If $Lu(x) = 0$ in D, and, for some positive ε,
$$\lim_{r \to 0} r^{n-2-\varepsilon}\mu(r) = 0,$$
and if $u(x) \to 0$ on ∂D as $|x| \to 0$, then $u(x) \to 0$ uniformly in D as $|x| \to 0$.

The continuity assumption on the $a_{ij}(x)$ at $x=0$, can be weakened. The case $n=2$ can be treated in a similar manner. Note that now, instead of modifying Lemma 4, we rather modify Lemma 2 and thus obtain $w_r(x)$ in the form $\left(\frac{2}{n} \partial(x'_1, x'_2)\right)^{\delta}$, where (x'_1, x'_2) is the image of (x_1, x_2) under the mapping $z'=z^{2/n}$. We have the following.

Theorem 5. Let $D \subset K_\beta$, $n=2$, and assume that L satisfies (i), (ii) and that $(a_{ij}(x))$ is continuous at $x=0$ with $a_{ij}(0) = \delta_{ij}$. If $Lu(x) = 0$ in D, and, for some positive ε,
$$\lim_{r \to 0} r^{\varepsilon(1-\beta)}\mu(r) = 0,$$
and if \(u(x) \to 0 \) on \(\partial D \) as \(|x| \to 0 \), then \(u(x) \to 0 \) uniformly in \(D \) as \(|x| \to 0 \).

Another way to treat the case \(n=2 \), is to reduce it to Theorem 1, using the mapping \(z'=z^{-\pi/\beta} \). We thus get the following.

Theorem 6. Let \(D \subset K_\beta \), \(n=2 \), and assume that \(L \) satisfies (i), (ii) and that \((a_{ij}(x)) \) is Dini continuous at \(x=0 \) with \(a_{ij}(0)=\delta_{ij} \). Assume further that \(r^{1+\pi/\beta}p(r) \) is monotone increasing. If \(Lu(x)=0 \) in \(D \) and

\[
\lim_{r \to 0} r^{-\pi/\beta} \mu(r)=0,
\]
and if \(u(x) \to 0 \) on \(\partial D \) as \(|x| \to 0 \), then \(u(x) \to 0 \) uniformly in \(D \) as \(|x| \to 0 \).

By using the same mapping \(z'=z^{-\pi/\beta} \), we can derive theorems analogous with the Gilbarg-Hopf ([1], [4]) and Serrin's ([8]) theorems, provided that \(L \) satisfies the assumptions of Theorem 6.

In the case \(n \geq 3 \), \(\beta \leq \pi \), such theorems can also be obtained, by using the transformation \(x_i'=x_i/|x|^n \) (\(i=1, \cdots, n \)).

PART II

5. Let \(x=(x_1, \cdots, x_n) \) and denote \(X=(x, t) \), \(|X|=|(x|^2+t^3)^{1/2} \). Consider the operator

\[
(1) \quad Lu \equiv \sum_{i,j=1}^n a_{ij}(X) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{\ell=1}^n b_{\ell}(X) \frac{\partial u}{\partial x_{\ell}} - \frac{\partial u}{\partial t},
\]

defined in an unbounded domain \(D \). We shall assume that \(L \) satisfies the following conditions:

(i) \(\sum_{i,j} |a_{ij}(X)| \) is bounded in \(D \), and, for all \(X \in D \), \(\xi_i \) real,

\[
\sum_{i,j} a_{ij}(X)\xi_i\xi_j \geq \alpha \sum_i \xi_i^2 \quad (\alpha > 0),
\]

(ii) for all \(X \in D \), \(|X|=R \),

\[
(2) \quad |\sum_{i} x_i b_{\ell}(X)| \leq p(R),
\]

where \(p(R) \) (\(0 < R < \infty \)) is bounded and \(p(R) \to 0 \) as \(R \to \infty \).

Beside the functions \(m(R), \mu(R) \) defined in Part I, we introduce the functions

\[
m'(R)=\inf_{X \in T_R} u(X), \quad \mu'(R)=\sup_{X \in T_R} |u(X)|,
\]

where \(T_R=D \cap |x|^2+|t|=R \).

Let \(K_\beta \) denote the cone with angular opening \(\beta \), whose axis is the
positive \(t \)-axis and whose vertex is in the origin. In what follows, \(u(X) \) is assumed to belong to \(C^2(D) \). In Theorems 8, 10 \(u(X) \) is also assumed to be continuous in \(\overline{D} \).

Theorem 7. Let \(D \) belong to the half space \(t>0 \), and assume that \(L \) satisfies (i), (ii). If \(u(X) \geq 0 \) on \(\partial D \), \(Lu(X) \leq 0 \) in \(D \), and if
\[
\lim_{k \to \infty} \frac{m(R_k)}{R_k^2} = 0 \quad (R_k \to \infty \text{ as } k \to \infty),
\]
then \(u(X) \geq 0 \) in \(D \).

Proof. The function \(v R(X) = (|X|^2 + (t+K)^2)/R^2 \) \((K>0)\) has the following properties:

(a) \(v_R(X) \geq 0 \) if \(X \in \partial D \), \(|X| \leq R \),
(b) \(v_R(X) \geq 1 \) if \(X \in D \), \(|X| = R \),
(c) \(L v_R(X) < 0 \) in \(C_R = D \cap |X| < R \), if \(K \) is sufficiently large, and
(d) \(R^2 v_R(X) \) is bounded, for every \(X \), as \(R \to \infty \).

The function \(\tilde{u}(X) = u(X) - \sigma(R)v_R(X) \), where \(\sigma(R) = \min(0, m(R)) \), is non-negative on \(\partial C_R \) and \(Lu(X) \leq 0 \) in \(C_R \). Applying the (weak) minimum principle [7], we conclude that \(\tilde{u}(X) \geq 0 \) in \(C_R \). Taking \(R = R_k \to \infty \) and using (3), we get \(u(X) \geq 0 \).

Remark. It is clear that the same proof holds under weaker assumptions on \(L \): (ii) may be replaced by \(\sum a_i b_i(X) \leq H \), where \(H \) is a constant, and in (i), the boundedness of \(\sum |a_i(X)| \) in \(D \) may be replaced by the boundedness of \(\sum a_i(X) \) in \(D \) and the boundedness of \(\sum |a_i(X)| \) in each \(C_R \).

Lemma 5. Let \(D \) belong to the half space \(t>0 \), and assume that \(L \) satisfies (i), (ii). If \(R_0 \) is sufficiently large, then there exists a function \(w(X) \) defined in \(D_{R_0} = D \cap |X| > R_0 \), and having the following properties:

(a) \(w(X) \geq 0 \) if \(X \in \partial D_{R_0} \),
(b) \(w(X) \geq 1 \) if \(X \in D \), \(|X| = R_0 \),
(c) \(Lw(X) \leq 0 \) in \(D_{R_0} \), and
(d) \(w(X) \to 0 \) uniformly in \(D_{R_0} \) as \(|X| \to \infty \).

Proof. Define
\[w(X) = \frac{C}{(t+1)^{\varepsilon}} \exp\left(\frac{-H|x|^2}{t+1}\right) \quad (C > 0, \varepsilon > 0, H > 0). \]

Since \(W(X) > 0 \) if \(|X| = R_0, \ t \geq 0 \), we can choose \(C \) such that (b) is satisfied. Since (a) and (d) are also satisfied, it remains to verify (c).

\[Lw = w\left\{ \sum a_{i,j} \frac{4H^2x_i x_j}{(t+1)^2} - \sum a_{i,j} \frac{2H}{t+1} - \sum x_i b_i \frac{2H}{t+1} + \frac{\varepsilon}{t+1} - \frac{H|x|^2}{(t+1)^2} \right\}; \]

consequently, if

\[(4) \quad 4H \sum a_{i,j} x_i x_j \leq |x|^2, \quad 2H \sum a_{i,i} + 2H \sum x_i b_i \geq \varepsilon, \]

then \(Lw \leq 0 \). Obviously we can choose \(H \) and \(\varepsilon \) such that (4) is satisfied.

With Theorem 7 and Lemma 5 at hand, we can now proceed as in the proof of Theorem 1 and get the following.

Theorem 8. Let \(D \) belong to the half space \(t > 0 \), and assume that \(L \) satisfies (i), (ii). If \(Lu(X) = 0 \) in \(D \) and

\[\lim_{R \to \infty} \frac{\mu(R)}{R^2} = 0, \]

and if \(u(X) \to 0 \) on \(\partial D \) as \(|X| \to \infty \), then \(u(X) \to 0 \) uniformly in \(D \) as \(|X| \to \infty \).

Theorems 7, 8 are not true for domains \(D \) in the half space \(t < 0 \). As an example take \(D \) to be the whole half space \(t < 0 \), and take \(u(x, t) = t^{1/m} \), where \(m \) is an odd positive integer. Then

\[u = 0 \ \text{on} \ t = 0, \quad Lu = -\frac{1}{m} t^{1/m-1} < 0 \ \text{if} \ t < 0, \]

\[\lim_{R \to \infty} \frac{\mu(R)}{R^2} = 0 \ \text{if} \ \frac{1}{m} < \varepsilon, \]

but \(u(X) < 0 \) if \(t < 0 \), and \(\lim u(X) \) does not exist as \(|X| \to \infty, t \leq 0 \).

6. Theorem 9. Let \(D \subset K_{\beta}, \ 0 < \beta < 2\pi, \) and assume that \(L \) satisfies (i), (ii). If \(Lu(X) \leq 0 \) in \(D \), \(u(X) \geq 0 \) on \(\partial D \), and if

\[\lim_{k \to \infty} \frac{m'(R_k)}{R_k^2} = 0 \quad (R_k \to \infty \text{ as } k \to \infty), \]

then \(u(X) \geq 0 \) in \(D \).
Taking \(v_\beta(X) = 2(|x|^2 + Bt + C)/R^2 \) (\(B \) and \(C \) are proper constants), we proceed as in the proof of Theorem 7. Details will be omitted. The remark that follows Theorem 7 applies also to Theorem 9.

Lemma 5 can also be generalized to the case \(D \subset K_\beta, 0 < \beta < 2\pi \). Indeed, the function \(w(X) \) may be defined as follows:

\[
w(X) = \begin{cases}
\frac{C}{(t+R_0)^\gamma} \exp \left(-\frac{H|x|^2}{t+R_0} \right) & \text{if } t > -R_0 \\
0 & \text{if } t \leq -R_0.
\end{cases}
\]

Proceeding as in § 5, we get the following theorem.

Theorem 10. Let \(D \subset K_\beta, 0 < \beta < 2\pi \), and assume that \(L \) satisfies (i), (ii). If \(Lu(X) = 0 \) in \(D \) and

\[
\lim_{R \to \infty} \frac{\mu(R)}{R^2} = 0,
\]

and if \(u(X) \to 0 \) on \(\partial D \) as \(|X| \to \infty \), then \(u(X) \to 0 \) uniformly in \(D \) as \(|X| \to \infty \).

Note that (7) can be replaced by the stronger assumption

\[
\lim_{R \to \infty} \frac{\mu(R)}{R} = 0.
\]

References

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Robert George Buschman, *A substitution theorem for the Laplace transformation and its generalization to transformations with symmetric kernel* ... 1529

S. D. Conte, *Numerical solution of vibration problems in two space variables* ... 1535

Paul Dedecker, *A property of differential forms in the calculus of variations* ... 1545

H. Delange and Heini Halberstam, *A note on additive functions* 1551

Jerald L. Ericksen, *Characteristic direction for equations of motion of non-Newtonian fluids* ... 1557

Avner Friedman, *On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order* 1563

Ronald Kay Getoor, *Additive functionals of a Markov process* 1577

U. C. Guha, *(γ, k)-summability of series* ... 1593

Alvin Hausner, *The tauberian theorem for group algebras of vector-valued functions* ... 1603

Lester J. Heider, *T-sets and abstract (L)-spaces* .. 1611

Melvin Henriksen, *Some remarks on a paper of Aronszajn and Panitchpakdi* .. 1619

H. M. Lieberstein, *On the generalized radiation problem of A. Weinstein* ... 1623

Robert Osserman, *On the inequality Δu ≥ f(u)* ... 1641

Calvin R. Putnam, *On semi-normal operators* .. 1649

Binyamin Schwarz, *Bounds for the principal frequency of the non-homogeneous membrane and for the generalized Dirichlet integral* ... 1653

Edward Silverman, *Morrey’s representation theorem for surfaces in metric spaces* ... 1677

V. N. Singh, *Certain generalized hypergeometric identities of the Rogers-Ramanujan type. II* ... 1691

R. J. Smith, *A determinant in continuous rings* ... 1701

Drury William Wall, *Sub-quasigroups of finite quasigroups* 1711

Sadayuki Yamamuro, *Monotone completeness of normed semi-ordered linear spaces* .. 1715

C. T. Rajagopal, *Simplified proofs of “Some Tauberian theorems” of Jakimovski: Addendum and corrigendum* 1727

N. Aronszajn and Prom Panitchpakdi, *Correction to: “Extension of uniformly continuous transformations in hyperconvex metric spaces”* .. 1729

Alfred Huber, *Correction to: “The reflection principle for polyharmonic functions”* .. 1731