(γ, k)-SUMMABILITY OF SERIES

U. C. GUHA
(\(\gamma, k\))-SUMMABILITY OF SERIES

U. C. GUHA

1. Introduction. Let \(\gamma_k(x)\) denote the \((C, k)\) mean of \(\cos x\), so that

\begin{equation}
\gamma_0(x) = \cos x,
\end{equation}

and

\begin{equation}
\gamma_k(x) = \frac{k}{x^k} \int_0^x (x-u)^{k-1} \cos u \, du, \quad (k > 0),
\end{equation}

\begin{align*}
&= k \int_0^1 (1-t)^{k-1} \cos xt \, dt, \\
&= \Gamma(k+1) \frac{C_k(x)}{x^k},
\end{align*}

where \(C_k(x)\), the \(k\)th fractional integral of \(\cos x\), is commonly known as Young's function [6, p. 564].

We shall say that the infinite series \(\sum a_n\) is summable \((\gamma, k)\) if

(i) \(\sum a_n \gamma_k(nt)\) converges for \(0 < t < A\)

and

(ii) \(\lim_{t \to 0} \sum_{n=0}^\infty a_n \gamma_k(nt) = S\), where \(S\) is finite.

We see that \((\gamma, 1) = (R, 1)\) and \((\gamma, 2) = (R, 2)\), where \((R, 1)\) and \((R, 2)\) are the well known Riemann summability methods. Hence the \((\gamma, k)\)-summability methods constitute, in a sense, an extension of \((R, 1)\) and \((R, 2)\) summability methods to \((R, k)\) methods where \(k\) may be non-integral. But this extension is not linked with the ideas which lie at the root of the Riemann summability methods, that is, taking generalised symmetric derivatives of repeatedly integrated Fourier series, so that the equivalence of \((\gamma, k)\) and \((R, k)\) for \(k = 1, 2\) may be considered to be somewhat accidental, and the extension artificial. However, the \((\gamma, k)\) methods are also connected with certain aspects of the summability problems of Fourier series. For, let \(\sum A_n(x)\) be the Fourier series of a periodic and Lebesgue integrable function \(f(x)\) and let

\[ \phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \} \]

Received June 3, 1957.
Then, by some well known theorems (see, for example, [1].) the problem
of Cesàro summability of \( \sum A_n(x) \) is connected with Cesàro continuity
of \( \phi(t) \) at \( t = 0 \), \( \phi(t) \) being said to be \((C, k)\) continuous at \( t = 0 \) if
\[
k \int_0^t (1-y)^{k-1} \phi(ty) \, dy \text{ exists for } 0 < t < A \text{ and tends to a finite limit as } t \text{ tends to zero.}
\]
On the other hand, under certain conditions (e.g., if \( k \geq 1 \)) we have
\[
k \int_0^t (1-y)^{k-1} \phi(ty) \, dy = \sum_0^\infty A_n(x) \gamma_k(nt) .
\]
Thus the nature of the connexion between \((\gamma, k)\) and Cesàro summability
methods, when the series in question is a Fourier series, is immediately
apparent.

Some known theorems which may be interpreted as results on \((\gamma, k)\)
methods are stated below. \( \delta \) denotes any arbitrary positive number.

\((A_1)\) If a series is summable \((\gamma, 1)\) then it is summable \((C, 1+\delta)\).


\((A_2)\) If a series is summable \((\gamma, 2)\) then it is summable \((C, 2+\delta)\).

See Kuttner [7].

\((A_3)\) If a Fourier-Lebesgue series is summable \((\gamma, k)\), \( k \geq 1 \), then it is
summable, \((C, k+\delta)\).

See Bosanquet [1] and Paley [8].

Neither Bosanquet nor Paley actually states any such result, but if \( \alpha \geq 1 \), then Bosanquet’s Theorem 1 as well as Paley’s Theorem 1 can be
restated in the present form.

\((B_1)\) If a series is summable \((C, -\delta)\) then it is summable \((\gamma, 1)\).

See Hardy and Littlewood [4].

\((B_2)\) If a series is summable \((C, 1-\delta)\) then it is summable \((\gamma, 2)\).

See Bosanquet [1] and Verblunsky [10].

\((B_3)\) If \( \sum_0^\infty a_n/n^2 \) is convergent and \( \sum_0^\infty a_n \) is summable \((C, k)\), \( k \geq -1 \), then
\( \sum_0^\infty a_n \) is summable \((\gamma, k+1+\delta)\).
See Bosanquet [1].

In view of the above results the question naturally arises whether we can remove the restrictions (a) that in (A₃) the series in question is a Fourier series and \( k \geq 1 \) and (b) that in (B₃) \( \sum a_n/n^2 \) is convergent, and obtain the general results

\[
(A'_3) \quad (r, k) \implies (C, k + \delta), \quad k \geq 0,
\]

and

\[
(B'_3) \quad (C, k) \implies (r, k + 1 + \delta), \quad k \geq -1.
\]

But so far as (B₃) is concerned, we may state here that the convergence of \( \sum a_n/n^2 \) is essential for the truth of the conclusion, because we shall prove a result (Lemma 5) which implies that if \( \sum a_n \) is summable \((r, k), \quad k \geq 2\), then \( \sum a_n/n^2 \) is convergent.

In this paper we shall obtain the following results of the type of 
\( (A'_3) \):

(i) If \( k \) is zero or a positive integer, then \((r, k) \implies (C, k + \delta)\).

(ii) If \( [k] \geq 4 \), then \((r, k) \implies (C, k + \delta)\).

The question of the truth of \( (A'_3) \) for fractional values of \( k \) less than 4 is still open.

2. Lemmas.

**Lemma 1.** If \( k > 0 \), then for large positive values of \( x \),

\[
\gamma_k(x) = A x^{-k} + O\left(\frac{1}{x^2}\right) + \frac{B \cos \left(\frac{x - k\pi}{2}\right)}{x^{k}} + O\left(\frac{1}{x^{k+1}}\right),
\]

where \( A \) and \( B \) are non-zero constants; the asymptotic formulae for the derivatives of \( \gamma_k(x) \) are obtained by formal differentiation of this formula.

This result is familiar. See, for example, Bosanquet [1].

**Lemma 2.** Let \( f(x) \) be periodic with period \( 2\pi \) and Lebesque integrable, and let \( \sum (a_n \cos nx + b_n \sin nx) \) be its Fourier series. Set

\[
\phi(t) = \frac{1}{2} \{ f(x + t) + f(x - t) \},
\]

\[
\phi(t) = \frac{1}{2} \{ f(x + t) - f(x - t) \},
\]
If \( g(t) \) is integrable in the Cesàro-Lebesgue sense in \((0, \pi)\) and its Fourier series is summable \((C, k)\) at \( t=0 \), then \( \sum \left( \frac{d}{dx} \right)(a_n \cos nx + b_n \sin nx) \) is summable \((C, k+r)\).

For this result see Bosanquet [2, Theorem 2].

**Lemma 3.** Let \( f(t) \) be an even periodic function with period \( 2\pi \). If \( f(t) \in C\lambda L \) where \( 0 < \lambda < 1 \) and \( f(t) = o(1)(C, \lambda + 1) \) as \( t \to 0 \), then the \((C\lambda L)\)-Fourier series of \( f(t) \) at \( t=0 \) is summable \((C, k)\) for every \( k > \lambda + 1 \).

For this result see Sargent [9, Theorem 4].

**Lemma 4.** If \( \sum_{n=0}^{\infty} a_n r_k(nt) \) is convergent for \( \alpha < t < \beta \), then

\[
\begin{align*}
(i) & \quad a_n = o(n^k) \quad \text{if} \quad 0 < k \leq 2, \\
(ii) & \quad a_n = o(n^2) \quad \text{if} \quad k > 2.
\end{align*}
\]

**Proof** Case 1. \( k=0 \). The hypothesis implies that \( \lim_{n \to \infty} a_n \cos nt = 0 \) for \( \alpha < t < \beta \), which, by the Cantor-Lebesgue theorem, implies that \( a_n = o(1) \).

Case 2. \( k > 0 \). The hypothesis implies that \( \lim_{n \to \infty} a_n r_k(nt) = 0 \) for \( \alpha < t < \beta \), which, on account of Lemma 1, implies that

\[
\lim_{n \to \infty} a_n \left\{ \frac{A}{n^2 t^2} + O\left( \frac{1}{n^3 t^3} \right) + \frac{B \cos \left( nt - k \pi \right)}{n^k t^k} + O\left( \frac{1}{n^{k+1} t^{k+1}} \right) \right\} = 0 \quad \text{for} \quad \alpha < t < \beta.
\]

If \( 0 < k \leq 2 \), we write this as

\[
\lim_{n \to \infty} a_n \left\{ \frac{A}{n^2 t^2} + O\left( \frac{1}{n^3 t^3} \right) + \frac{B \cos \left( nt - k \pi \right)}{n^k t^k} + O\left( \frac{1}{n^{k+1} t^{k+1}} \right) \right\} = 0,
\]

and if \( k > 2 \), we write

\[
\lim_{n \to \infty} a_n \left\{ \frac{A}{n} + O\left( \frac{1}{n^2} \right) + \frac{B \cos \left( nt - k \pi \right)}{n^{k-2} t^k} + O\left( \frac{1}{n^{k-1} t^{k+1}} \right) \right\} = 0.
\]

The result, for \( 0 < k \leq 2 \), is now obtained by a slight modification of the
usual proof of the Cantor-Lebesgue theorem, whereas, for $k > 2$ we get the result by noticing that the expression within brackets tends to a non-zero limit as $n$ tends to infinity.

**Lemma 5.** If $k \geq 2$ and $\sum_{n=0}^{\infty} a_n r_k(nt)$ is convergent for $\alpha < t < \beta$, then $\sum_{n=1}^{\infty} a_n/n^2$ is convergent.

**Proof.** Since Kuttner [7] has proved the result for $k = 2$, we assume that $k > 2$. We also assume without any loss of generality that $\alpha > 0$. Now suppose that $(\alpha_0, \beta_0)$ is a subinterval of $(\alpha, \beta)$. Since

\begin{equation}
C_k(nt) = \frac{(nt)^{k-2}}{\Gamma(k-1)} - C_{k-2}(nt),
\end{equation}

therefore

\begin{align*}
\int_{\alpha_0}^{\beta_0} C_k(nt)(\beta_0-t)(t-\alpha_0) \, dt &= \int_{\alpha_0}^{\beta_0} \frac{n^{k-2}t^{k-2}}{\Gamma(k-1)} (\beta_0-t)(t-\alpha_0) \, dt - \int_{\alpha_0}^{\beta_0} C_{k-2}(nt)(\beta_0-t)(t-\alpha_0) \, dt \\
&= n^{k-2}\phi(\alpha_0, \beta_0) - \int_{\alpha_0}^{\beta_0} C_{k-2}(nt)(\beta_0-t)(t-\alpha_0) \, dt,
\end{align*}

where

$$\phi(\alpha_0, \beta_0) = \frac{1}{\Gamma(k-1)} \int_{\alpha_0}^{\beta_0} t^{k-2}(\beta_0-t)(t-\alpha_0) \, dt$$

is positive.

Hence, integrating by parts twice, we have

\begin{equation}
\int_{\alpha_0}^{\beta_0} C_k(nt)(\beta_0-t)(t-\alpha_0) \, dt = n^{k-2}\phi(\alpha_0, \beta_0) - 1/n^2 [(\beta_0-\alpha_0) \{C_k(n\beta_0) + C_k(n\alpha_0)\}] + \frac{2}{n^2} \int_{\alpha_0}^{\beta_0} C_k(nt) \, dt.
\end{equation}

Now, since $k > 2$,

$$C_k(nt) = \frac{n^{k+t}}{\Gamma(k+1)} r_k(nt) = O(n^{k-2}),$$

for any fixed $t$. Hence, from (2.2) we get

\begin{equation}
\int_{\alpha_0}^{\beta_0} C_k(nt)(\beta_0-t)(t-\alpha_0) \, dt = n^{k-2}\phi(\alpha_0, \beta_0) + O(n^{k-4}).
\end{equation}

Therefore, if $p$ and $q$ are two positive integers and $q > p$,
\[ \int_{n_0}^{n_k} \left\{ \sum_{n=p}^{q} \frac{a_n}{n^k} C_k(nt)(\beta_0 - t)(t - \alpha_0) \right\} \, dt = \sum_{n=p}^{q} \frac{a_n}{n^k} C_k(nt)(\beta_0 - t)(t - \alpha_0) \, dt \]

\[ = \phi(\alpha_0, \beta_0) \sum_{n=p}^{q} \frac{a_n}{n^2} + \sum_{n=p}^{q} O(n^{-4})a_n \quad \text{by (2.3)} \]

\[ = \phi(\alpha_0, \beta_0) \sum_{n=p}^{q} \frac{a_n}{n^2} + \sum_{n=p}^{q} o\left(\frac{1}{n^2}\right) \quad \text{by Lemma 4}. \]

If possible, let the lemma be false. Then we can find a positive number \( \varepsilon \) such that, for an infinity of pairs of integers \((p_i, q_i)\), \(q_i > p_i\), we have

\[ \left| \sum_{n=p_i}^{q_i} \frac{a_n}{n^2} \right| > 2\varepsilon. \]  

Again, if \( p_0 \) is sufficiently large, then

\[ \sum_{n=p_0}^{q_0} o\left(\frac{1}{n^2}\right) < \varepsilon \phi(\alpha_0, \beta_0). \]

From (2.4), (2.5), (2.6) it follows that

\[ \int_{n_0}^{n_k} \left\{ \sum_{n=p_0}^{q_0} \frac{a_n}{n^k} C_k(nt)(\beta_0 - t)(t - \alpha_0) \right\} \, dt > \varepsilon \phi(\alpha_0, \beta_0). \]

But the quantity on the left hand side of (2.7)

\[ \leq \left\{ \text{l.u.b.} \left| \sum_{n=p_0}^{q_0} \frac{a_n}{n^k} C_k(nt) \right| \right\} \int_{n_0}^{n_k} (\beta_0 - t)(t - \alpha_0) \, dt. \]

From (2.7) and (2.8),

\[ \text{l.u.b.} \left| \sum_{n=p_0}^{q_0} \frac{a_n}{n^k} C_k(nt) \right| > \varepsilon \phi(\alpha_0, \beta_0) \int_{n_0}^{n_k} (\beta_0 - t)(t - \alpha_0) \, dt \]

\[ > \varepsilon \alpha_0^{k-2}/\Gamma(k-1) \]

\[ \geq \varepsilon \alpha_0^{k-2}/\Gamma(k-1) \]

\[ > M \varepsilon, \]

where \( M \) is a positive constant independent of the subinterval \((\alpha_0, \beta_0)\).

Hence \( \left| \sum_{n=p_0}^{q_0} \frac{a_n}{n^k} C_k(nt) \right| < M \varepsilon \) at some point in \((\alpha_0, \beta_0)\) and therefore throughout a subinterval \((\alpha_i, \beta_i)\) of \((\alpha_0, \beta_0)\), since \( \sum_{n=p_0}^{q_0} \frac{a_n}{n^k} C_k(nt) \) is a continuous function of \( t \).

If, in the above argument, we now replace \((\alpha_0, \beta_0)\) by \((\alpha_i, \beta_i)\), \((p_0, q_0)\) by \((p_i, q_i)\) where \( p_i > q_i \), we will reach the conclusion that
throughout a subinterval \((\alpha_2, \beta_2)\) of \((\alpha_1, \beta_1)\). We can thus determine a sequence of pairs of integers \((p_i, q_i)\), tending to infinity with \(i\), and a corresponding sequence of intervals \((\alpha_i, \beta_i)\) such that \(\alpha_{i+1} \geq \alpha_i, \beta_{i+1} \leq \beta_i\) and
\[
\left| \sum_{n=p_i}^{q_i} \frac{a_n}{n^k} C_k(nt) \right| > M \varepsilon
\]
throughout \((\alpha_i, \beta_i)\). Therefore, there is at least one point \(t_0\) common to all these intervals such that the infinite series \(\sum \frac{a_n}{n^k} C_k(nt)\) diverges for \(t=t_0\). This contradicts the hypothesis of the lemma.

3. Theorems.

**Theorem 1.** If \(\sum \frac{a_n}{n^0}\) is summable \((\gamma, k)\) where \(k\) is zero or a positive integer, then \(\sum \frac{a_n}{n^2}\) is summable \((C, k+\delta)\), \(\delta > 0\).

**Proof.** Case 1. \(k>0\). As we have already noted in the introduction that the result is known to be true for \(k=1\) and \(k=2\) we take \(k\) to be an integer greater than 2 and assume that \(\sum \frac{a_n}{n^0}\) is summable \((\gamma, k)\) to \(S\).

Suppose \(k\) is an even integer. Then by (1.2) and repeated application of (2.1), we find that, if \(w^l, t^0\), where \(R, A_1, A_2, \ldots\) are some constants. Therefore
\[
(3.1) \quad \sum_{n=0}^{\infty} a_n \gamma_k(nt) = a_0 + \sum_{n=1}^{\infty} a_n \left\{ \left( \frac{A_1}{n^2 t^2} + \frac{A_2}{n^2 t^4} + \cdots + \frac{A_{k/2}}{n^2 t^k} \right) + \frac{R \cos nt}{n^k t^k} \right\} ,
\]
for \(t \neq 0\). Since, by Lemmas 4 and 5, \(\sum_{n=1}^{\infty} a_n/n^2, \sum_{n=1}^{\infty} a_n/n^4, \) etc. converge respectively to \(S_1, S_2, \) etc. say, it follows from (3.1) that \(\sum_{n=1}^{\infty} a_n/n^k \cos nt\) is convergent for \(0<t<A\). It is also convergent for \(t=0\).

From (3.1)
\[
(3.2) \quad a_0 + \frac{R}{t^k} \sum_{n=1}^{\infty} \frac{a_n}{n^k} \cos nt = \sum_{n=0}^{\infty} a_n \gamma_k(nt) - \left( \frac{A_1 S_1}{t^2} + \frac{A_2 S_3}{t^4} + \cdots + \frac{A_{k/2} S_{k/2}}{t^k} \right) .
\]
By suitably altering \( k/2+1 \) terms of the series \( \sum a_n \) and working with the resulting series, say \( \sum a'_n \), we can simultaneously have \( S=a_0=a'_0 \), \( S_1=S_2=\cdots=S_{k/2}=0 \), so that by (3.2),

\[
\sum_{1}^{\infty} \frac{a'_n}{n^k} \cos nt = o(t^k) \quad \text{as} \quad t \to 0 .
\]

Again, \( \frac{a'_n}{n^k} = o(n^{2-k}) = o(n^{-1}) \), so that \( \sum_{1}^{\infty} \frac{a'_n}{n^k} \cos nt \) is a Fourier series converging to a function \( f(t) \), say, in a neighbourhood of the origin. Since \( f(t) = o(t^k) \) for small \( t \), it follows that the \( k \)th symmetric generalised derivative of \( f(t) \) exists at \( t=0 \), and is equal to zero there. Hence, by virtue of well known results in the theory of Fourier series, we can immediately conclude that \( (C, k+\delta) \sum_{1}^{\infty} a'_n = 0 \), so that \( (C, k+\delta) \sum_{0}^{\infty} a_n = S \). The proof, when \( k \) is an odd integer, is similar.

**Case 2.** \( k=0 \). We are given that \( \sum_{0}^{\infty} a_n \cos nt \) converges to a function \( f(t) \) for \( 0<t<A \) and \( \lim_{t \to 0} f(t) \) is a finite number \( S \). Therefore \( f(t) \) is bounded in some interval \( 0<t<\eta \).

Let \( \sum_{0}^{\infty} b_n \cos nt \) be the Fourier series of an even periodic function \( \lambda(t) \) defined as follows.

\[
\lambda(t) = \begin{cases} 
1 & \text{for} \quad 0 \leq t \leq \eta' < \eta \\
0 & \text{for} \quad \eta \leq t \leq \pi.
\end{cases}
\]

Moreover, let \( \lambda(t) \) change smoothly as \( t \) increases from \( \eta' \) to \( \eta \), so that \( \lambda''(t) \) exists and is continuous. Hence \( b_n = o(1/n^2) \). (See [5 Theorem 40]).

If \( \sum_{0}^{\infty} c_n \cos nt \) is the formal product of \( \sum_{0}^{\infty} a_n \cos nt \) and \( \sum_{0}^{\infty} b_n \cos nt \), then it follows from Rajchman’s theory of formal multiplication [12, section 11.42] that \( \sum_{0}^{\infty} c_n \cos nt \) converges to \( f(t) \) in \( 0<t \leq \eta' \), to \( \lambda(t)f(t) \) in \( \eta' \leq t \leq \eta \), and to zero in \( \eta \leq t \leq \pi \). Hence it follows that \( \sum_{0}^{\infty} c_n \cos nt \) is a Fourier series [12, Theorem 11.33], and therefore \( \sum_{0}^{\infty} c_n \) is summable \((c, \delta)\) for \( \delta>0 \), because \( \lim_{t \to 0} f(t) = S \). Consequently, \( \sum_{0}^{\infty} a_n \) is also summable \((c, \delta)\) (See [12, section 11.42]).

**Theorem 2.** Let \( \sum_{0}^{\infty} a_n \) be summable \((\gamma, k)\) where \( k \geq 1 \) and let \( \sum_{1}^{\infty} \frac{a_n}{n^{k+1}} \cos nx \) (when \( [k] \) is odd) or \( \sum_{1}^{\infty} \frac{a_n}{n^{k+1}} \sin nx \) (when \( [k] \) is even) be
a Fourier series. Then \( \sum_{n=0}^{\infty} a_n \) is summable \((c, k+\delta), \delta > 0\).

**Proof.** Since, in Theorem 1, we have already proved the result for integral \( k \) under more general conditions, we assume \( k \) to be non-integral. We also take \([k]\) to be an odd integer. The proof, when \([k]\) is even, is similar.

By making \( \frac{[k]-1}{2} \) applications of (2.1), using Lemma 5, and arguing as in the deduction of (3.3), we get

\[
(3.4) \quad \sum_{n=1}^{\infty} \frac{a'_n}{n^k} C_{k-[k]+1}(nt) = o(t^k),
\]

where \( \sum_{n=0}^{\infty} a'_n \) differs from \( \sum_{n=0}^{\infty} a_n \) in a finite number of terms only, \( \sum_{n=1}^{\infty} a'_n/n^2 = 0, \sum_{n=1}^{\infty} a'_n/n^4 = 0 \), etc., and \( \sum_{n=0}^{\infty} a'_n \) is summable \((\gamma, k)\) to \( a'_0 = a_0 \).

Let \( \sum_{n=1}^{\infty} \frac{a'_n}{n^{[k]-1}} \cos nx \) be the Fourier series of an even function \( \phi(x) \in L \).

Then it can be easily shown that

\[
(3.5) \quad \phi_{k-[k]+1}(t) = \sum_{n=1}^{\infty} \frac{a'_n}{n^k} C_{k-[k]+1}(nt)
= o(t^k) \quad \text{by (3.4).}
\]

Again, \( \phi(t) \in L \) obviously implies that \( \phi(t) \) is Cesàro-Lebesgue integrable \( C_{\lambda}L \) for any \( \lambda \geq 0 \) so that

\[
(3.6) \quad \phi(t) \in C_{k-[k]}L
\]

From (3.5) and (3.6), we have (See [3, Theorem 2])

\[
\frac{\phi(t)}{t^{[k]-1}} \in C_{k-[k]}L
\]

and

\[
\frac{\phi(t)}{t^{[k]-1}} = o(1)(C, k-[k]+1) \quad \text{as} \quad t \to 0.
\]

Hence, in view of Lemma 3, we conclude that the (Cesàro-Lebesgue) Fourier series of \( \frac{\phi(t)}{t^{[k]-1}} \) is summable \((C, k-[k]+1+\delta)\) at \( t=0 \) for any \( \delta > 0 \). Now it follows from Lemma 2, where we take \( r=[k]−1 \), that \( \sum \alpha'_n \) is summable \((C, k+\delta)\). Hence \( \sum\alpha_n \) is also summable \((C, k+\delta)\).
COROLLARY. If \( \sum_{n=0}^{\infty} a_n \) is summable \((\gamma, k)\), \( k \geq 4 \), then \( \sum_{n=0}^{\infty} a_n \) is summable \((C, k+\delta)\), \( \delta > 0 \).

The corollary follows immediately from the theorem because \( a_n = o(n^2) \) by Lemma 4.

REFERENCES


UNIVERSITY OF MALAYA,
SINGAPORE
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manu scripts may be sent to any of the editors. All other communications to the editors should be addressed to the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues, $1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsuusha (International Academic Printing Co., Ltd.), No. 10, 1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
Robert George Buschman, *A substitution theorem for the Laplace transformation and its generalization to transformations with symmetric kernel* .................................................. 1529
S. D. Conte, *Numerical solution of vibration problems in two space variables* .......................................................... 1535
Paul Dedecker, *A property of differential forms in the calculus of variations* .......................................................... 1545
H. Delange and Heini Halberstam, *A note on additive functions* .......................................................... 1551
Jerald L. Ericksen, *Characteristic direction for equations of motion of non-Newtonian fluids* .................................................. 1557
Avner Friedman, *On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order* .......................................................... 1563
Ronald Kay Getoor, *Additive functionals of a Markov process* .......................................................... 1577
U. C. Guha, *(γ, k)-summability of series* .......................................................... 1593
Alvin Hausner, *The tauberian theorem for group algebras of vector-valued functions* .................................................. 1603
Lester J. Heider, *T-sets and abstract (L)-spaces* .......................................................... 1611
Melvin Henriksen, *Some remarks on a paper of Aronszajn and Panitchpakdi* .................................................. 1619
Robert Osserman, *On the inequality Δu ≥ f(u)* .......................................................... 1641
Calvin R. Putnam, *On semi-normal operators* .......................................................... 1649
Binyamin Schwarz, *Bounds for the principal frequency of the non-homogeneous membrane and for the generalized Dirichlet integral* .................................................. 1653
Edward Silverman, *Morrey’s representation theorem for surfaces in metric spaces* .................................................. 1677
V. N. Singh, *Certain generalized hypergeometric identities of the Rogers-Ramanujan type. II* .................................................. 1691
R. J. Smith, *A determinant in continuous rings* .......................................................... 1701
Drury William Wall, *Sub-quasigroups of finite quasigroups* .......................................................... 1711
Sadayuki Yamamuro, *Monotone completeness of normed semi-ordered linear spaces* .................................................. 1715
C. T. Rajagopal, *Simplified proofs of “Some Tauberian theorems” of Jakimovski: Addendum and corrigendum* .................................................. 1727
N. Aronszajn and Prom Panitchpakdi, *Correction to: “Extension of uniformly continuous transformations in hyperconvex metric spaces”* .................................................. 1729
Alfred Huber, *Correction to: “The reflection principle for polyharmonic functions”* .................................................. 1731