Pacific Journal of
Mathematics

MORREY’S REPRESENTATION THEOREM FOR SURFACES IN

METRIC SPACES

EDWARD SILVERMAN




MORREY’S REPRESENTATION THEOREM FOR SURFACES
IN METRIC SPACES

E. SILVERMAN

1. Introduction. In 1935 Morrey showed that a non-degenerate
surface of finite Lebesgue area has a quasi-conformal representation on
the unit circle. He made use of Schwarz’ result for polyhedral surfaces
and was able to use a limiting process after he had shown that the
representations of the surfaces involved were sufficiently well behaved
for the area to be given by the usual integral. The limiting process
depended upon Tonelli’s result concerning the lower semi-continuity of
the Dirichlet integral.

Several years later Cesari reduced the dependence upon complex
variable theory by the use of a variational technique to obtain a slightly
weaker version of Schwarz’ result, but he showed that for the remainder
of Morrey’s argument his form was adequate.

The purpose of this paper is to remove the restriction that the
surfaces be in Euclidean space; the method is that of Cesari.

Morrey’s theorem has proved useful in the study of certain two-
dimensional problems in the calculus of variations. It is hoped that the
extension of his theorem will permit corresponding extensions of that
theory [3, 6, 12].

A desirable feature of quasi-conformal mappings is that the area of
the surface is given by one half the Dirichlet integral. To retain this pro-
perty for surfaces which are not in Euclidean space requires the definition
of an appropriate integral to complement the definition of area. The de-
finition of (Lebesgue) area used in this paper is that given in [13] which
agrees with the usual definition in case the surface is in Euclidean space.

We shall make use of the ideas of [13] in two other respects. First,
we need only solve our problem for surfaces in m, the space of bounded
sequences [1], since the definitions are chosen so as to be invariant
under an isometry and we can map other surfaces isometrically into m.
Second, we shall make use of the fact that the area of a funection in m
depends only upon its distinct components. The last remark results
from the definition of the area of a triangle. Let r={rf}, s={s'}, and
t={t‘} be three points in m. Then the area of the triangle with these
points as vertices is, by definition,
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2. A closure theorem for A.C.T. functions. Certain definitions ap-
plying to real-valued functions must be modified to apply to functions
which range in a metric space.

DEFINITION 1. Let ¢ be defined on the interval [a, b] with range
in a metric space D. Let @ be the interval function defined by

?([e, d])=0(¢(c), ¢(d)) asc=d=sb,

where o(r, s) is the distance between » and s in D. Then ¢ is B.V. or
A.C. according as @ is B.V. or A.C. Define Dp=D® wherever the right
hand side exists.

With this definition of bounded variation and absolute continuity of
a function of one real variable in a metric space D, we extend verbatim
the definitions of bounded variation and absolute continuity in the sense
of Tonelli, B.V.T. and A.C.T., to apply to functions of two variables
with range in D [10].

If « is continuous on an open set (G contained in E, into D, define,
where the right hand sides exist,

D, x(u, v)=De(u) where ¢(t)=a(t, v) ,
D,x(u, v)=D¢(v) where ¢(t)=x(u, t)

If « is B.V.T. then D,» and D,x exist a.e. [8].

If ¢ is defined on [a, b] into m and is A.C. it is still possible that
lim Mti(t—) may not exist anywhere [5]. Hence we define a component-
w-t w—
wise derivative ¢’ by ¢’={¢"}. Since ¢ is A.C. it follows that all of
the ¢¢ are also and that ¢” and D¢ exist almost everywhere. That
Dy=|¢"| for each 4 is evident, hence ¢’ is defined, and in m, almost
everywhere in [a, b].

THEOREM 1. If ¢ is A.C. then D¢ exists and is equal to |¢'| wher-
ever ¢’ exists.

Proof. Suppose that the theorem is true whenever ¢ has only a
finite number of non-zero components. Let ¢, be that function whose
only non-zero components are the first n, and these are the first » com-
ponents of ¢. Then (see the proof of Theorem 10) length ¢=1lim length

n—>co

¢,. Hence
SDgo:Iength ¢=lim length ¢,=lim SDgonzlim S leal= S ] -

Thus we may as well suppose ¢ has only a finite number of non-zero
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components. Let ¢ be a point where ¢’ is defined. It suffices to show
that

D*¢(t)=lim sup ||S"(Ti;3:;0|(t)| <1o'].

For some ¢ there exists a sequence of numbers w,—t¢ such that

e lwn —t|

and
lo*(w,) —¢'@)|=|p(w,) —¢(@)] -
The existence of this sequence implies that D*¢(¢)=l¢"(O)I<|¢'|.
DEFINITION 2. If x is continuous on an open set G into m, define,
where the right hand sides exist,

z,(u, v)=¢' () where ¢(t)=x(¢, v) ,
z,(u, v)=¢'(v) where ¢(t)=x(u, t) .

THEOREM 2. If x is A.C.T. on G into m then
lz.|=D2x and |a,|=D,w

wherever the left hand sides exist.

DerFINITION 3. If 2 is A.C.T. on G into D and if D, and D,x are
in L* then x is a D-mapping [4]. Let

Dia)= | |[@ur+ Dy

[23

It was shown in [13] that if & is a D-mapping on a Jordan region
into a metric space, then the Lebesgue area of z, L(x), is given by
what corresponds to the usual integral (see § 6).

Let 11" be the projection of m defined by

at 1<N
Yot ____{ = ’
(a'h) 0 >N,

Put I"z=,z.

THEOREM 3. If x, is a sequence of A.C.T. functions on a bounded
open set G into m, if x,—x uniformly in each closed set H contained
in G, if the norms of the partial (component-wise) derivatives p,=|Tm,|,
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An=|%m,| are in L*, a>1, and Sg[p;”n-kq;”n] <M for all m, then x s A.C.T.
G
in G, the norms of its partials p=|x,| and q=|z,| are in L* and

Sgp‘”zlim inf Sgp;, qu‘”:lim inf quw .
G mee G G mee G

Proof. Let us first suppose that x,=yx, for each m and fixed N.
The hypothesis, together with the closure theorem for A.C.T. real-valued
functions, assures us that z* is A.C.T. for each 7. Hence yx is A.C.T.

The remainder of the proof, in case z,=yx,, deviates slightly from
that given in [4] for real-valued functions.

Let K be a closed set contained in G whose distance from the
boundary of G is 20>0. Let K, be the closed set of all points whose
distance from K does not exceed p. Let n>2/p. Define (n; x) by

(n; )= {(n; =, 1)} and

u+l/nfo+1l/n
n; @, i)u, v):nzg 'S i, 5) dr ds for (u, v)e K .

Then (n; ) has continuous first partial derivatives, (n; 2),=(; x,),
(n; @), =(n; x,), and (n; @,),—>(n; )y, (n; Tn)y—(n; x),. Furthermore, if |y|
isin L% where y={y'} is defined on G into m, each y* being measurable,
then

[f1ees = [t

K G

Thus
[Tiees onge=tim [ (1o @aie <tim int ([ weate <21
K K

G

Since x is A.C.T. and «, is integrable for each ¢, (n; 2l)—2!, a.e. in K
and |(»; «,)|—|®.] a.e. in K. Thus |z,| is in L* and

{1zt =tim it {{1co; el <tim int ({ Kl <21

Finally, p*=lim || yo,|* and
N->co

Sgp“=lim SS lsze|*<lim lim inf SS I(y@a)*<lim inf SS @< M .
N—>oco N—>co m~»oo m—oo
K K G

G

Similarly
SSq””:lim inf qu;':,gM .
K

m—soo
G
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3. Equicontinuity theorems. The theorems listed in this section
are taken from [4], except that now the surfaces need not be in Eucli-
dean space. The proofs carry over almost without change.

Let @ be the square [0=u, v<1], let Q* be its boundary, and = be
defined on @ into a metric space D.

THEOREM 4. [L. C. Young]. Given two positive numbers N and e
there exists a positive number 7 depending only upon N and e such that
for any D-mapping x with D(x)<N there exists a 0, 7<d<e, and a
finite subdivision of @ wnto rectangles whose side-lengths lie between o
and 20 and such that image of each side of such rectangles not on Q* is
a rectifiable curve whose length is less than . A subdivision may be ob-
tained by means of straight lines parallel to the sides of Q.

THEOREM 5. Let S be a base (or open non-degenerate) surface, leot
S,, n=1,2, «--, be a sequence of surfaces such that |S,, S|— 0, each S,
having a D-representation x, on Q with D(x,)<M (|S., S| is the Fréchet
distance between the surfaces S, and S). Then the mappings x, are
equicontinuous in each closed set KCQ° (the interior of Q).

THEOREM 6. Let S be an open non-degenerate surface and S, be
a sequence of surfaces with |S,, S| — 0 such that each S, has a D-rep-
resentation x, on Q with D(x,)<M and such that there exist points
Wim € Q%, 1=1,2,8, and a positive number m with |w,—w.|>m,
(@, (Win), To(wp))>m for i+j. Then the mappings are equicontinuous in
an open set contaiming Q. That is, for each ¢>0 there is a 6>0 such
that if w, w'eQ, Jw—w|<9, dist (w, Q*)<d, and dist(w’, Q%)< 3, then
8(ao(w), ,(w))<e.

4. Lower semi-continuity theorems. The results in this section
follow from [10].
If y is a D-mapping on G into m, let

En(y)=S§ Sup {3, k, y}

E(y)=“ sup {7, k, y}

G

where

(o, k, vy =13, v} +{&, v}

and

{0, ¥} =Wiy+@)*.
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Let

F(y):“ sup {3, g} .

THEOREM 7. If x, and & are continuous on G (the closure of G)

into m and are D-mappings on G with x,— x uniformly on G, G being
of finite measure, then

D(x)<lim inf D(x,) , E(2)<lim inf E(z;) ,
k—co k—co
F(x)<lim inf F(z,) .
k->c0

Proof. We shall prove that £ is lower semi-continuous. The other
two parts are proved in a similar manner.

The hypothesis and Theorem 2.1 [10, p. 26] show that E, is lower
semi-continuous. The theorem follows since E,<FE,., and E=lim E,,.

n—>oc0

5. Quasi-conformal representations for surfaces in m. Much of
this section is lifted bodily from [2]. The principal problem is to obtain
a desirable representation for certain polyhedra. After this representa-
tion has been obtained, Morrey’s technique yields a similar representa-
tion for other surfaces in m.

LEmMMA 1. Let a,=0,0b,, and c, be constants, n=1, 2, -«-, N. If
Sf(@)=max [a,t*+b,t+c,) then for some m, f+(0)=fn(0) where f*(0)=
lim (f ()= f(0))/t and f(t)=ant*+but +Cp.
t>o™¥

Proof. That f*(0) exists is a result of the convexity of f. Now
let w;,>0, w,—0. Then for some m we have f(w,)=f.(w,) for an in-
finite set of k’s, and in addition, f(0)=f,.(0). Therefore

£+(0)=lim L@ =) _ yip @) =ful0) _ g ) .

K—>o0 W, koo Wy

LeMMA 2. Let a,, b,, and c, be measurable functions on a bounded
measurable set E with a,(x)=0, n=1,2, ..., N. Let a, b, and c be sum-
mable functions on E such that a,(x)<a(x), |b.(x) (@), and |c.(x) Zc(z).
In addition let M be a positive constant and A and B be measurable
functions on E such that |A(x)|<2M and |B(x)|<2M? on E. Let

falw, ) =1+ A@)t+B(@)t*) (@ (x)t* + b (@)t + ca())
f(@, t)=max fu(, t)
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and
o®)=| f@ t)da.

Then, for each x, there is an r=n(x) such that
= (@, 0)da.

Proof. If we examine the proof of the theorem permitting differ-
entiation under the integral sign [7] we see that it is sufficient to show
the existence of a summable function g such that, for some 7>0,

[, t)-tf(x, 0)|§g(w) , 0<t<7 .

If we take 7<(5M)~' we may take g(x)=2[7a(x)+b(x)].
If y is a D-mapping into m, let

Then

L(y)=SS sup [, k&, ] .

THEOREM 8. An open non-degenerate polyhedron & contained in
range 1Y for some N has & representation x* on the unit circle & such
that «* is a D-mapping and

max {i, #*} =max [, k, x*] a.e. i &,
k3 ik

Proof. Let X be a representation of &° on @ and let C=range
X|@*. Consider the class K of all representations = of < which are
D-mappings on <. Since & is a polyhedron, K is not empty. Let
I=inf E(x) for all x€ K. We shall see that the infimum is attained for
r=a*.

Let Z, be a minimizing sequence with E(Z,)<I+1/n. Fix three
distinet points P, on Q* with Q,=X(P,) also distinct. For each =,
choose P, on €* so that Z,(P;,,)=Q;. Let P;* be three distinct points
of &*. By means of a conformal transformation taking % into itself
and P,, into P}, the functions Z, are transformed into x, where x,(P;)
=@Q,. It is easy to verify that E(x,)=E(Z,).

Theorems 5 and 6 assure us that the sequence {w,} is equicontinu-
ous and hence a subsequence of the x, converges uniformly to «*. The
closure theorem for D-mappings enables us to conclude that «*e K. By
Theorem 7, E(z*)=I,
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Now let ¢ and ¢ be Lipschitzian with constant M in Z and vanish
on Z*. Then [2] the transformations T' and 77,

T: a=u+tep(u,v), B=v+ed(u, v),
are both Lipschitzian if |e|<1/(3M). Put
*[ula, B, ¢), v(a, B, l=a(a, B, ¢) ,
Then x€ K [10].
Now put

J(e)zE(x)=§§ max {i, k, ) (@, f)dadf .
%

A straightforward computation shows that

J(e)= SP” max [+ )~ 2F Hau,+ Bufo) + G+ B] du do ,
7
where
EL=@V+ @i, Gi=@'Y+@y, Fi=ala+taitay®,
_oa, B)

o(u, v)

We apply Lemma 2 to compute

J*(0)=SS{[—(Ei'i—foZ)tﬁu—2Fi“s%]+[(Efs—Gi‘s)¢v—2Fi‘s¢u]} du dv ,
&
where r and s depend upon (u, v). That J*(0)=0 is evident since J

assumes its minimum at ¢=0.
From the arbitrariness and independence of ¢ and ¢ we obtain,

first of all, that

SS (EX—G¥)p.—2F %, du dv=0

and

[(@s-cng.—2rrpaauanzo.

Next we see that if we replace ¢ by —¢ and ¢ by —¢ then the
equality must hold in each case.

The remainder of Cesari’s proof now goes through without change,
and we conclude that E}=G}, FX=0 almost everywhere. It is clear
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that
i, k, 2*]1=4 44, k, a*}

for all 4, k. Also, where the equalities above hold, if we order » and
s properly we see that

cxXr=aFs, afr=—aks [r, s, *]=4{r, s, *} = {r, *} ={s, a*} .
Also, from the maximizing property
max {i, By 2*} ={r, s, a*} ={r, o*} + {5, ¥} =2{r, 2*}
1%k

=2{s, *} =2[r, s, *]=2max [i, k, =*] .
(N
Finally {r, *} =max {4, 2*} for otherwise {3, s, *} >{r, s, x*}.

LEMMA 3. Let & be a non-degenerate polyhedron in m. Then for
some N, the projected polyhedron I is non-degenerate for all n>N.

Proof. The hypothesis implies that the vertices of each triangle of
& are distinct and not on a line. It is clear that N may be taken
large enough for /I"<” to have this property for all n>N.

LEMMA 4. If &’ ¢s a non-degenerate polyhedron with representation
x, and ©f in the countable set of functions x° there are only a finite
number of distinct functions, then < has & representation x* on the
unit circle & such that

max {s, ¥} =max [z, k£, *] a.e. in €.
i ik
DEFINITION 4. A D-mapping « is quasi-conformal in a Jordan region
R if
sup [(wz)“+(wi)z]=siup [k, — 25 a.e. in R.
i &

THEOREM 9. If x, and x are quasi-conformal mappings on R with
x, converging uniformly to x and L(x,)— L(x), then x is quasi-conformal.

Proof. From [y J+{yl’<2sup {¢, y} it follows that D(x.)<2L(w,.)

and hence that D(x,)<<M for some M. The closure theorem for A.C.T.
functions assures us that x is a D-mapping and D(x)<M. More exactly,
we have

N—>00

L(x)ggg sup {i, z} <lim inf SS sup {i, o} =lim inf L(z,)=L(z) .
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Hence §up [, k, «]=sup {7, x} a.e.
kB i

THEOREM 10. An open non-degenerate surface & of finite Lebesgue
area has & quasi-conformal representation on E.

Proof. There exists a sequence of polyhedral surfaces &’} ap-
proaching .& with L(&°%)— L(.5”), and we may suppose that each &k is
open non-degenerate.

Using the idea of [13, § 8] we can, for each n, determine a poly-
hedron &, with the properties

(a) The Fréchet distance between &2 and <7} is less than 1/n.

(b) L(F)z=LF3)>UT)—1]n.

(¢) If =z, is a representation of & then there are only a finite
number of distinct functions in the collection .

(d) The &, are open non-degenerate.

Hence the sequence .7, approaches & and L(S7)=lim (.7}).

The remainder of the proof is the same as that for a surface in
Euclidean space [4].

The idea referred to is the following. If y is a representation of
a polyhedron <&” then the sequence ¥’ is uniformly bounded and equi-
continuous, thus totally bounded. Hence for each ¢>0 there exists a
finite subset y's of the y® with the property that sup |y°*—y's|<e for each
1 and some 4,. If < is open non-degenerate and /I*Z” is also, then
adjoin ¥*, k=1, 2, ---, n to the y's. Now replace those components of
y which are not in the subset by one which is and is within ¢ of it.
The resulting function represents an open non-degenerate polyhedron
whose Fréchet distance from &’ does not exceed e and whose area does
not exceed that of

6. Isometric surfaces in m. For later applications it is convenient
to know that if x is quasi-conformal and y is isometric with «, then y
is also quasi-conformal.

Let a, b, A and B be points of m.

LEMMA 5. If |acos6+bsind|=|A cos0+Bsin 0| for all 0 then sup
[(@')*+®")T=sup [(A)+(BY].

Proof. Suppose that for some p we have (47)*+(B?)*>0. Then
there exist real numbers 2>0 and 6 such that A?=21cosf and B*=12sind.
Thus
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(A7F+ (B =AY+ (B'YP S0 sup [A7A'+ B'BT
=sup [A* cos 0+ B sin §]*=| A cos 0+ B sin 0|} =| a cos 6 +b sin 6|
=sup |a’ cos 6+0b' sin 0> <sup [(a’)*+ (b)) .

Similarly
sup [(a’)*+(b°)']1= sup [(A')'+(B)T] .

COROLLARY 1. If {0;;j=1,2,---} is dense in [0, 2z] and if |acos
0,4+ bsinb |=|Acos@;+ Bsinb,| for all j, then sup [(ai)‘l—k(bi)z]:s?p [(A%)+
(B

Fix 0 and let u=7cos §—ssind, v=rsin 0+scos §. Suppose that
is A.C.T. on G into m and define y by y(r, s)=w(u, v). Since &' is
A.C.T. for each 7, so is y°. Furthermore, except for a set Z of measure
0, yi=aicos 0+t sin @ for all s. Thus for s,& Z we have

length y(r, s;)=lim length II”"y(r, s,)= lim SDT(II o)
N —o0 N—oo

= lim S sup |t cos O+t sin 01§S"% cos 0+, sin 0||§S .. +S |, |
N—co i=SN

where the first integral is taken over the intersection of dom ¥ with

the line s=s, and the other integrals are taken over the intersection of

G with the line [—u sin 0+wv cos ]=s,. Thus

Sso length y(r, sﬂ)éggﬂmu"_{_“ EX]

and since r and s may be interchanged in this argument, we see that
y is A.C.T.

The partials of y are, of course, directional derivatives of 2. We
can now apply Theorem 1 to obtain, almost everywhere in G,

xy= {x}, cos 4% sin } and Dyw=|x, cos 0+, sin 0|

where, if ¢(s)=a(u+scosf, v+ssinf), then a,=¢'(0) and Dyr=D¢(0)
(see Definition 1).

Now let 6,, j=1, 2, +--, be dense in [0, 27]. Let W be that set of
measure 0 in the complement of which xgj::{x;', cos 0,4+ sin ¢,} and
Dy @ =| @, cos 6+, sin 0,].

Observe that if o and y are isometric (dom z=domy and |(p)—
2(Q|=ly(p)—y(q)| for all p, g€ doma) then D,,jao:D,,jy wherever either
side exists.

THEOREM 11. If « is quasi-conformal and y s tsometric with x,
then y s quasi-conformal,
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Proof. That y is a D-mapping follows directly from the definitions.
By the preceding remarks and Corollary 1 we have sup {4, «} =sup {3, y}
almost everywhere. In [13] it was shown that L(x)=L(y). Hence

L) = | [supti, &, 1= [ sup {0, v ={{ sup (3, a1 = [ sup i, b, 21 =L@

from which we can conclude that sup [¢, &k, y]=sup {7, y} almost every-
where.

7. Almost conformal representations for surfaces in a metric space.
If a surface is in a metric space, then there exists an isometric surface
in m. The definition of ‘almost-conformal’ is phrased so as to be in-
variant under isometries. Hence the result of the last section can be
applied to surfaces in metric spaces.

DEFINITION 5. Let X be continuous on a Jordan region R into a
metric space D. Then X is almost-conformal if there exists a quasi-
conformal map x on R into m which is isometric with X.

We can now repeat some familiar reasoning of [13] to obtain the
following.

THEOREM 12. Amn open non-degenerate surface in & metric space has
an almost-conformal representation wpon the unit circle.

Proof. Let X be a representation on @ of an open non-degenerate
surface 90 If p;,, 1=1,2, .-+, is dense in range X then X is isometric
with = {X'}, where Xq)=0d(p;, X(q)) for all ¢ge Q. By Theorem 10
there is a quasi-conformal map y on the unit circle ” which is Fréchet
equivalent to . Define Y on % into D by Y(s)=X(r) where z(r)=y(s).
If a(r)=y(s) and a(r')=y(s) then X(r)=X(+'), so Y is well defined. The
map Y is a representation of .7~ upon & which is isometric to a quasi-
conformal map y. Hence Y is almost-conformal.

Let & be a surface in D and suppose . has an almost-conformal
representation X on a Jordan region R. Then X is a D-mapping and

L(9)=Sgsup [¢, k, X] where X’ is defined as in the proof of Theorem 12.
ik
R

Finally we observe that if X is a D-mapping then X is almost-
conformal if sup {¢, X} =sup[4, k, X], and conversely. The direct state-
ment is an immediate consequence of the definition. For the converse
note that if x={X'} then x is isometric with X and is quasi-conformal.

8. Surfaces in a Banach space. If a D-mapping has range in a
Banach space B then it is possible to give a definition of quasi-con-
formality which is analogous to that for the case B=m. Then we shall
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see that the notions of quasi-conformal and almost-conformal are equi-
valent and, in case B=E,, they are both equivalent to the original
definition of Morrey.

Let X be defined on a Jordan region R into B. There exists a
smallest (separable) subspace B(X)C B which contains range X. A
sequence {f,} of linear functionals of norm one over B is admissible
with respect to X if sup fi(r)=|r| for each e B(X). The transforma-
tion T: B(X)—m defined by T(r)={f(r)} is an isometry. It was shown
in [13] that such an admissible sequence always exists.

Let {fi;, X}={¢, TX} and [f;, fu, X1=[¢, k, TX].

DEFINITION 6. In the notation of the preceding paragraphs, X is
quasi-conformal if X is a D-mapping and if sup {f;, X}=sup [fi, fi, X]
almost everywhere in R.

Theorem 11 assures us that this definition is equivalent to that
given earlier for the case B=m.

THEOREM 13. A necessary and sufflcient condition that X be quasi-
conformal is that X be almost-conformal.

Proof. The function TX is isometric with X. If X is quasi-con-
formal then

sup {i, TX} =sup {f;, X} =sup[fi, fr X]=sup[s, k, TX].

Thus TX is quasi-conformal in m and X is almost-conformal. If X is
almost-conformal there exists a quasi-conformal function y which is iso-
metric with X and, therefore, with 7X. (The function y has the same
domain as X and has range in m.) Thus 7TX is also quasi-conformal
and

sup {fi, X} =sup {i, TX}=sup[i, k, TX]=sup [f;, fi, X].

Hence X is quasi-conformal.

Now suppose that B is E,. If f is a linear functional of norm
one then there exists a point » with |p|=1 such that f(r)=p-r for
each reE,. Since {f;} is admissible, sup p;»r=|r|. If r and s are
two points in E, with |»|=|s| and 7r-s=0, then (r-p)+(s-p)’<r-r for
any p with |p|=1.

If X is quasi-conformal in the sense of Morrey (almost-conformal
[4]) then X is a D-mapping and E=G, F'=0 almost everywhere (E=X,
X, FI=X,-X,, G=X,-X,). Where these equations hold, (X,-p)*+(X,-
p)*<E for any p on the unit sphere. Hence sup {f;, X} <E=area of
the square determined by X, and X,=sup[f;, fx, X]<sup{fi, X}. Thus
X is quasi-conformal in the sense of this paper.
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Now let X be quasi-conformal in the sense of this paper. Since E,
has the property that an absolutely continuous function on an interval
into E, does have a derivative almost everywhere, we can conclude that
X, and X, exist almost everywhere (not only component-wise derivatives).
If sup {fi, X} =0, then E=F=G=0. If X, and X, both exist and sup
{fi, X} >0, it is easy to see that

sup [fi, fio X1= max [(a-X,)(0-X,)—(a-X,)b-X.)]=V EG—F* ,
sup {fu X} = rlralla;}f [(a,.Xu)2+(a.Xu)z]

=(T5E)+y/(BLEY ~we-r;

clearly these are equal only if E=G, FF=0. We conclude that the defi-
nitions of almost-conformal and quasi-conformal as given in this paper
are equivalent to the original definition of Morrey.
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